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Abstract
Offshore wind energy, especially in regions like the Norwegian Arctic, is a
promising source of renewable energy. Graph Neural Networks (GNNs) have
shown potential in modeling complex systems like weather, making them suit-
able for improving wind resource assessments. This thesis investigates the use
of GNNs for predicting offshore wind patterns, utilizing high-resolution Syn-
thetic Aperture Radar (SAR) data from Sentinel-1 and the Copernicus Arctic
Regional Reanalysis (CARRA) data. The research begins with a thorough explo-
ration of wind data sources to evaluate their reliability. The findings indicate
that the SAR-based wind retrieval method offers superior spatial resolution
and detail compared to traditional reanalysis products and in situ observations
while maintaining an accurate representation of long-term wind resources
despite its poor temporal resolution. Experiments with several graph and GNN
architectures were conducted to assess their effectiveness in predicting wind
fields. Simple GNN architectures generated reasonable two-dimensional wind
fields but struggled to capture the detailed variations observed in SAR data.
This suggests the need for more sophisticated architectures and additional data
inputs to improve accuracy. Key findings highlight the importance of incorporat-
ing long-range spatial dependencies, refining performance evaluation methods,
and expanding the training dataset with more comprehensive data sources.
This thesis represents a first step toward integrating GNNs into offshore wind
resource assessments and identifies areas for further exploration.
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Preface
This thesis project was part of a collaboration between the Machine Learning
group and the Renewable Energy group at UiT that commenced in the summer
of 2023, supported by Equinor Akademiaavtalen. The objective of this initiative
is the exploration of possible applications of Graph Neural Networks (GNNs)
for offshore wind prediction, focusing on the Norwegian Arctic. The project
group within the time period of this thesis project consisted mainly of Prof.
Yngve Birkelund, my supervisor Prof. Benjamin Ricaud, Prof. Igor Esau, Eduard
Khachatrian, PhD (postdoc), Lihong Zhou (PhD candidate), and myself.

The first project phase involved the evaluation of available regional wind
data sources in order to understand how GNNs would have to be applied,
built, and trained. This resulted in a peer-reviewed publication created mainly
by Eduard Khachatrian and myself. Therefore, this thesis deviates from the
traditional monograph format commonly employed for Master’s theses and
instead adopts a hybrid structure that incorporates both monograph and the
following publication:

Eduard Khachatrian, Patricia Asemann, Lihong Zhou, Yngve Birkelund, Igor
Esau, and Benjamin Ricaud. Exploring the Potential of Sentinel-1 Ocean Wind
Field Product for Near-Surface Offshore Wind Assessment in the Norwegian
Arctic. Atmosphere, 15, no. 2: 146, 10.3390/atmos15020146, 2024.

To preserve the coherence of the thesis and maintain a logical progression of
topics, this publication has been integrated into this thesis as Chapter 2. This
placement ensures that the reader can follow the unfolding narrative without
disruption, as from Chapter 3 onwards, the thesis transitions to the application
of GNNs. The inclusion of the published work serves to provide a tangible
example of my first attempts at a “proper” scientific contribution. One other
work was produced during the period of this thesis project that is not part of
this thesis:

Eduard Khachatrian and Patricia Asemann. The Value of Sentinel-1 Ocean Wind
Fields Component for the Study of Polar Lows, Under Review at Frontiers in
Earth Science.

All code produced by me within this thesis project will be made available to
Benjamin Ricaud for further development within the project group.
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1
Introduction
1.1 Background and Motivation

As the global demand for sustainable power solutions continues to grow, off-
shore wind energy has emerged as one of the most promising sources of
renewable energy [14]. With its large relative offshore area, high average wind
speeds and high capacity factors, Norway makes an ideal candidate for the
expansion of offshore wind power production [3]. The Norwegian energy in-
dustry is a world leader in offshore operations and installations, and much of
the expertise from the oil and gas industry can leverage the development of
offshore wind power. When it comes to floating offshore wind technologies,
Equinor alone already holds a 47% share of the global power production. In
2022, the Norwegian government launched an ambitious initiative, planning on
allocating large areas in Norwegian waters to increase offshore wind produc-
tion in Norway to 30 gigawatts by 2040 [39]. To achieve this goal, around 1,500
wind turbines will have to be installed over the course of less than two decades.
The increase in produced power is supposed to provide affordable electricity to
Norwegian households, be exported to other countries, and to help meet the
electricity demands of the petroleum sector. Although several offshore wind
parks and research initiatives are already operating in the South and West of
Norway, the potential of Northern Norway remains untapped.

A critical first step toward harnessing this potential involves the identification
of suitable locations for wind power plants. Evaluating wind power potential
in offshore regions presents several challenges. One of the main limitations

1



1.1 background and motivation 2

is the sparse availability of reliable observational or numerical data in these
remote areas. Observational data includes in situ measurements and remote
sensing data, and is essential for accurate wind resource assessment. In situ
measurements are extremely sparse in our area of interest due to the logis-
tical difficulties and high costs associated with deploying and maintaining
equipment in offshore and Arctic regions. Remote sensing technologies offer al-
ternative methods for obtaining observations of (larger-scale) wind fields. Until
recently, scatterometers were the primary tool used for this purpose, but lately,
Synthetic Aperture Radar (SAR) has been on the rise as a valuable method for
retrieving offshore wind data. SAR determines the near-surface wind speed
by measuring the backscatter from the sea surface. Capillary waves and sea
surface roughness are directly influenced by atmospheric forcing, i.e. wind
above the surface. Thus, the backscattering can be interpreted as a function
of wind speed, wind direction relative to the look angle, and incidence angle.
In comparison to scatterometers, SAR-based offshore wind retrieval methods
result in slightly less accurate wind speed readings and are limited in their
ability to retrieve the wind direction [7, 45]. However, they provide wind fields
with a much higher spatial resolution—improving it by an order of magni-
tude—which results in the ability to capture the complex wind patterns often
present in coastal areas, and a better representation of small-scale weather
events [7].

Traditionally, wind resource assessment has relied on numerical simulations,
including reanalyses and numerical weather prediction (NWP) models. High
spatial resolution NWP models like the Weather Research and Forecasting
(WRF) model can provide valuable insights into wind patterns over various
terrains, but they are computationally very expensive, making them less acces-
sible for large-scale or long-term wind resource assessments [48]. Additionally,
the uncertainties and errors present in NWP models due to our incomplete
physical understanding of weather systems and the insufficient resolution of
small-scale interactions still lead to inaccuracies [13].
Reanalyses are comprehensive datasets that integrate historical weather ob-
servations with modern forecasting models to provide a continuous, gridded
dataset of atmospheric conditions over time. Global reanalyses like ERA5 from
the European Centre for Medium-Range Weather Forecasts (ECMWF) offer ex-
tensive temporal coverage and are widely used for various climate and weather
applications. However, their performance in offshore areas, particularly in the
Norwegian Arctic, is most limited by their coarse spatial resolution, failing to
resolve mesoscale features or the complexities of wind fields introduced by the
interaction of ocean and land areas [12, 16].
Regional reanalyses tailored to our area of interest include the 3km Norwegian
Reanalysis (NORA3) and the Copernicus Arctic Regional Reanalysis (CARRA).
They have higher spatial resolutions than global datasets and are better adapted
to the specific meteorological characteristics of the Norwegian Arctic. However,
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even they have the tendency to underestimate the mean wind speed and, thus,
wind resources [19, 28, 43].

To tackle these challenges, there is a pressing need for better data coverage that
is both temporally extensive and spatially detailed. In this context, innovations
in machine learning and deep learning technologies offer promising solutions1.
Among these, graph neural networks have emerged as a powerful tool capable
of modeling complex systems governed by partial differential equations, such
as fluids, and thereby weather systems [35, 41]. By leveraging the strengths of
GNNs, it should be possible to create models that can better understand and
predict wind patterns and energy availability in regions with limited observa-
tional data and poor-performing reanalysis products. This approach has the
potential to mitigate some of the limitations of traditional wind resource assess-
ment methods, possibly providing more reliable and accurate wind resource
assessments.

1.2 Objectives and Research Questions

The research project which this thesis is embedded in is at an early stage. This
thesis aims to take the first steps toward wind power prediction with GNNs.
The following two main objectives and underlying research questions were
raised:

Data exploration Assessing the reliability of different wind data sources
available for the Norwegian Arctic in order to determine suitable ground truth
data and training procedures for supervised deep learning methods.

• To what degree can SAR-based wind retrieval methods compete with the
more traditionally used reanalysis products and in situ observations in
offshore wind resource assessment?

• Is the information contained in the currently available SAR wind data for
our area of interest comprehensive enough to serve as a reliable training
source for deep learning networks, particularly GNNs, in offshore wind
prediction?

• How can wind data be translated into a graph structure that allows
message passing in accordance with the physical properties of wind
fields as dynamic systems?

1. Section 3.3 provides more details on previous developments of deep learning in meteoro-
logical research.
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Experimenting with GNNs Providing a preliminary understanding of the
potential benefits of using GNNs for offshore wind prediction.

• Can the limitations of traditional methods for offshore wind resource
assessment be addressed and mitigated by GNNs?

• Is a simple GNN architecture fed with minimal meteorological data able
to generate useful two-dimensional near-surface offshore wind fields
consistent with the level of detail present in SAR observations?

• How do changes in network parameters or architecture choices (e.g.,
number and order of layers, graph setup) affect the predictive power and
accuracy of GNNs?

Chapter 2 will dive into the first part, data exploration, and give an answer to
the first research question; comparing five different wind data sources (in situ
and remote sensing observations as well as three different reanalysis products).
Chapter 3 and Chapter 4 will lay the theoretical groundwork for exploring
GNNs and provide the technical information of our experiments, respectively.
The results of those experiments are presented in Chapter 5. Lastly, Chapter
6 recapitulates the main results of both parts and gives an outlook to future
research on this topic.



2
Offshore Wind Data
Exploration: Publication
Objectives The primary objective of this paper is to evaluate strengths and
weaknesses of themost prominent publicly available wind data sources covering
the offshore region of the Norwegian Arctic. We aim to particularly compare the
lesser-used SAR-based Sentinel-1 Level-2 Ocean Wind Fields (OWI) component
with the more common reanalysis products and in situ measurements to
determine its suitability for offshore wind resource assessment.

Summary This paper conducts a case study, analysing 238 SAR scenes from
2022 for the Goliat station, an oil platform located in the Barents Sea. The
Sentinel-1 data is compared with in situ observations and three reanalysis prod-
ucts—ERA5, NORA3, and CARRA—to evaluate its accuracy in representing
offshore wind conditions. Statistical measures such as RMSE, correlation coef-
ficient, and standard deviation are used to assess the performance of Sentinel-1
against the other data sources. Additionally, the study analyses the Weibull
parameters to characterize wind speed distributions. It underscores the im-
portance of high spatial resolution data in capturing intricate wind patterns
near complex coastlines, which is critical for the planning and development
of offshore wind farms. The findings contribute to the broader understand-
ing of integrating SAR-based wind products with traditional wind assessment
methods, providing a robust understanding of the publicly available wind data
sources in the Norwegian Arctic.

5
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Main Findings

1. The Sentinel-1 OWI product demonstrates similar statistical properties
to in situ and reanalysis data, with comparable RMSE, correlation coeffi-
cients, and standard deviations.

2. The Weibull parameters for Sentinel-1 closely match those of the reanaly-
sis products, indicating its capability to representwind speed distributions
accurately. However, in situ measurements tend to underestimate wind
speeds compared to other sources.

3. While Sentinel-1 offers unmatched spatial resolution, its temporal resolu-
tion limitations do not significantly hinder its ability to characterize wind
speed distributions, making it a valuable tool for offshore wind resource
assessments.

Contributions and Authorship Eduard Khachatrian (E. K.) and I (P.
A.) contributed equally to the publication. Eduard had already acquired the
datasets and performed parts of the formal analysis when I joined the project. I
reviewed existing literature on the topic, contributing to the framework of the
manuscript. Eduard and I analysed and interpreted the results together. Yngve
Birkelund, Igor Esau, Benjamin Ricaud, and Lihong Zhou contributed valuable
comments to the manuscript. We also thank the anonymous reviewers for their
constructive feedback.

Section Author
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3.3 Statistical Analysis E. K.
3.4 Wind Speed Distribution P. A.
4. Results and Discussion
4.1 Wind Speed both
4.2 Wind Direction both
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5. Conclusions P. A.
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Abstract: The exploitation of offshore wind resources is a crucial step towards a clean energy future.
It requires an advanced approach for high-resolution wind resource evaluations. We explored the
suitability of the Sentinel-1 Level-2 OCN ocean wind field (OWI) product for offshore wind resource
assessments. The SAR data were compared to in situ observations and three reanalysis products: the
global reanalysis ERA5 and two regional reanalyses CARRA and NORA3. This case study matches
238 scenes from 2022 for the Goliat station, an oil platform located 85 km northwest of Hammerfest
in the Barents Sea, where a new offshore wind park has been proposed. The analysis showed that
despite their unique limitations in spatial and temporal resolutions, all data sources have similar
statistical properties (RMSE, correlation coefficient, and standard deviation). The Weibull parameters
characterizing the wind speed distributions showed strong similarities between the Sentinel-1 and all
reanalysis data. The Weibull parameters of the in situ measurements showed an underestimation of
wind speed compared to all other sources. Comparing the full reanalysis datasets with the subsets
matching the SAR scenes, only slight changes in Weibull parameters were found, indicating that,
despite its low temporal resolution, the Sentinel-1 Level 2 OWI product can compete with the more
commonly used reanalysis products in the estimation of offshore wind resources. Its high spatial
resolution, which is unmatched by other methods, renders it especially valuable in offshore areas
close to complex coastlines and in resolving weather events at a smaller scale.

Keywords: offshore wind; renewable energy; synthetic aperture radar; reanalysis data; Sentinel-1;
Arctic

1. Introduction

The rapid exploitation of renewable and sustainable energy sources plays a pivotal
role in the resolution of the current global environmental crisis. In this context, offshore
wind power production has emerged as one of the most promising technologies available.
According to the International Energy Agency, offshore wind has the potential to cover
the current global energy demand many times over [1]. Innovations in turbine capacities,
foundations, and energy transmission continue to promote this technology and drive
down the costs of offshore wind energy production. Despite its high regional advantage,
Norway’s offshore wind resources remain largely untapped [1].

The first step towards the realization of new offshore wind power plants is the selection
of high-quality locations, that is, those with high mean wind speed and minimal wind
variability while being relatively close to the shore. Preliminary wind resource assessments
are particularly difficult in offshore regions due to the sparseness of in situ observations.
Reanalysis products offer a more consistent and long-term coverage. However, they also
entail a number of drawbacks such as low spatial resolution, poor performance in coastal
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areas, and a general underestimation of wind speed compared to in situ measurements [2,3].
Remote sensing data from synthetic aperture radar (SAR) offers a complementary source
of information on near-surface offshore wind.

In light of the ambitious goals of the Norwegian government in terms of developing
offshore wind, a comprehensive evaluation and intercomparison of all sources of wind
data available for the Norwegian offshore region is crucial. Most offshore wind energy
projects commissioned today are placed within 50 km of the shore; thus, reliable wind
data sources for coastal regions are needed. When predicting wind energy production,
an accurate estimation of the wind speed distribution is of essential importance as the
wind power output is proportional to the cubed wind speed. Although the offshore wind
resources in the North and the Norwegian Sea have previously been assessed, to the best
of our knowledge, the wind resources in the Barents Sea have not been addressed in the
existing literature.

This paper aims to evaluate the suitability of the Sentinel-1 OWI component for
near-surface offshore wind energy assessments. We compared it to in situ measurements
and three reanalysis products: the global reanalysis ERA5 and the regional reanalyses
CARRA and NORA3, within a one-year case study for the Goliat station in the Barents Sea,
presenting a comprehensive assessment of wind data sources available for the Norwegian
Arctic offshore region. Wind data were compiled from all sources for the year 2022 and
a statistical analysis was performed. This study is of particular interest to GoliatVIND,
a floating offshore wind demonstration project currently in the planning stage that will
be located near Goliat to supply renewable energy to the oil platform, reducing its carbon
emissions [4].

The paper is organized as follows: Section 2 provides the theoretical background
containing relevant research. Section 3 presents the utilized wind datasets and applied
analysis methodology. Section 4 provides the results and discussion. Finally, the conclusions
are presented in Section 5.

2. Theoretical Background
2.1. Reanalysis Products

Reanalysis data are produced by assimilating historical weather observations into
a numerical weather prediction (NWP) model. The reanalysis datasets that are publicly
available are often characterized by a low spatial resolution, typically ranging from 3 to
50 km. ERA5, CARRA, and NORA3 have each been validated against observations in
previous studies.

Although ERA5 performs well in offshore areas and has been shown to generally
outperform other global reanalysis products, its low spatial resolution of 31 km causes a
significant performance decrease in coastal areas due to the changes in surface roughness
and topology not being discernible in the dataset [2]. This is important in the coastal areas
of northern Norway, where the complex mountainous coastlines and fjords can produce
intricate wind fields that extend far out over the ocean. In Figure 1, where the wind comes
from inland, this is evident in the long black shadows in the Sentinel-1 backscatter caused
by the complex terrain. Beyond that, the low spatial resolution of ERA5 restricts its ability to
adequately resolve mesoscale features. Several studies illustrated the weaknesses of ERA5
in the representation of weather phenomena characteristic to the Arctic climate system,
such as polar lows, which would have a considerable effect on potential wind farms due to
the occurring high wind speeds [5,6].

Reanalysis products generally exhibit the tendency to underestimate mean wind speed
as compared to in situ measurements. The strongest tendency for the reanalysis products
utilized here was found for ERA5 [3]. While this underestimation seems to be proportional
to the ruggedness of the terrain, it is still present for terrain with low ruggedness, e.g., the
ocean surface. In addition, a negative correlation of this underestimation with latitude
was found. Both of these results reduce the impact of this tendency on the Norwegian
Arctic offshore region. Regional reanalysis products tend to be more adequate to represent
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smaller-scale and region-specific weather events and the spatial and temporal variability
of wind. This was shown to be the case for both CARRA and NORA3; although a slight
underestimation of mean wind speed was still found, they improved the representation of
the spatial variability, temporal variability, and climatology of extremes in both offshore
and coastal regions [5–7]. For both regional reanalysis products, a substantial part of the
improvements compared to ERA5 were attributed to the higher spatial resolution.

Figure 1. Illustration of the geographical area investigated in this study. The Goliat station (pink dot),
located in the Barents Sea, 85 km north of Hammerfest; the search polygon for SAR data (orange
rectangle); and false-color composite representation (HH, HV, and HV polarizations as RGB) of
Sentinel-1 SAR images for 3 January 2022. The false-color composite scene illustrates the intensity
of the backscatter in dB, where higher values, i.e., bright areas, correspond to the rougher surface
and, therefore, higher wind speed, and darker areas correspond to a smooth ocean surface and, thus,
lower wind speed.

2.2. Sentinel-1 Level-2 OWI Product

Wind data retrieval from satellite observations offers valuable complementary insights
into offshore wind resources. Although a number of studies have attempted to utilize
satellite scatterometers for offshore wind energy assessment, their low spatial resolution
provides no advantage over reanalysis products [8]. SAR is capable of producing near-
surface offshore wind speed data with a grid size of 1 km, a significantly higher resolution
than all reanalysis products presented here. SAR operates at a variety of characteristics,
such as frequency bands, polarization channels, and spatial resolutions, and responds
to dielectric properties, geometry, and roughness, and to an object’s surface or volume
structure, depending on the penetration depth of the signal. One of the most crucial
advantages of this type of sensor is the complete independence of solar illumination
and weather conditions due to wavelengths that can penetrate dense clouds [9]. This is
especially important for polar areas since dense cloud cover and long periods of darkness
prevail there for several months of the year.
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Wind speed can be estimated from SAR sensors through the measurement of the
backscatter of the sea surface. As capillary waves and, thus, sea surface roughness, are
directly dependent on atmospheric forcing, the sea backscattering in the C-band can
be understood as a function of wind speed, wind direction (relative to the look angle),
and incidence angle. However, other influences such as oil slicks, strong surface currents,
or reflection from nearby coastlines can distort this proportionality. Furthermore, different
polarization signals inhibit different limitations in the accurate representation of either low
or high wind speeds: while co-polarized signals saturate with increasing wind speeds,
cross-polarized signals cannot be distinguished from instrument noise at low wind speeds.
Even a combined signal wind retrieval approach requires a priori information about the
wind direction most commonly provided by NWP models [10]. Lastly, as no information
about atmospheric stratification is available, wind retrieval at 10 m above the surface
from SAR utilizes a geophysical model function assuming neutral stability. Therefore,
the method cannot respond to changes in wind speed due to atmospheric stratification [11].

The key limitation of wind products acquired from SAR technology is its temporal
resolution. Therefore, even when collecting a long time series, SAR cannot provide the
same amount of temporal information as reanalyses or in situ observations. Barthelmie and
Pryor conducted a detailed study assessing the suitability of limited satellite time series
data for estimating the stochastic parameters of the wind speed distribution [12]. They
showed that when accepting an uncertainty of ±10% at a confidence level of 90%, only
150 (randomly selected) scenes are required to characterize both the mean wind speed
and the variance sufficiently accurate. However, in the case of Sentinel-1, the scenes are
not randomly selected but exhibit a strong temporal selectivity, as the satellite revisits any
specific area only at certain times of the day. This provokes a discussion of the diurnal
variability present in the investigated wind fields. Although coastal areas exhibit diurnal
cycles largely due to advective effects, no strong diurnal patterns are expected over the
open ocean.

To the best of our knowledge, the Sentinel-1 Level-2 OWI component has only been
assessed in a small number of case studies, each comparing it to in situ observations,
e.g., around Ireland [8], around Cyprus [13], and in the Ionian Sea [14]. Similar to the
reanalyses, a tendency of the Sentinel-1 OWI component to underestimate wind speed was
found, where the bias linearly decreased with increasing wind speed. When estimating
average wind power, the errors as compared to results obtained from in situ measurements
were between 5 and 10%. However, none of these studies compares the Sentinel-1 data to
the reanalyses, which are more commonly used for wind resource assessments than in situ
observations. Off the coast of Norway, where measurement stations are especially sparse
and the complex coastlines produce intricate wind field patterns, this intercomparison will
be of great value for the future of wind resource assessments, further reducing project risk
at the site-finding stage.

3. Methods
3.1. Datasets

In this study, five different wind speed and wind direction data sources were analyzed:
in situ observations, three reanalysis products, including one global reanalysis product and
two regional reanalysis products, and a SAR-based remote sensing product. The following
subsections briefly present the technical details of each data source used for the analyses.
Table 1 displays the datasets used in this study along with the main characteristics and
their crucial differences.
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Table 1. List of datasets used in this study along with their crucial characteristics. Even though in situ
observations have a high spatial resolution, the singular point corresponds to a certain small area
(point on a map), which does not allow any further information about the broader surrounding area
to be obtained.

Resolution
Dataset Type

Temporal Spatial

Seklima in situ observation every 20 min singular point

ERA5 Global reanalysis hourly 31 km

NORA3 Regional reanalysis hourly 3 km

CARRA Regional reanalysis every 3 h 2.5 km

Sentinel-1 SAR-based once in 1–2 days 1 km

3.1.1. In Situ Observations

For this study, measurements provided by the Norwegian Center For Climate Services
(Seklima) were used, particularly from a single Norwegian offshore station, Goliat Fpso (Sta-
tion number: SN76956; Goliat), located in the Barents Sea (71.31◦ N, 22.25◦ E) [15]. The sen-
sor is located 46 m above mean sea level and has been operating from 9 September 2015.
It provides wind speed and wind direction information, extrapolated to 10 m.a.s.l. by
employing a power law wind profile with a wind shear coefficient of 0.13 [16]. From all
data sources investigated in this study, this method has the highest temporal resolution,
providing measurements every 20 min, averaged over 10 min intervals.

As Figure 1 illustrates, the wind field around and at the Goliat station is influenced by
the complex coastline if the wind comes from inland. The sea surface at this location is not
expected to be affected by wave reflections off the coast, rendering this a suitable place for
comparison. However, it also limits the applicability of the results of this study to areas
closer to the shore or even within fjords. This specific location was recently selected for the
construction of an offshore wind farm. Thus, comparing the measurement data from this
site with other available wind data sources can provide unique complementary insights
into the design and implementation of wind power, not only for the Goliat station, but also
for future offshore wind power exploitation in general.

3.1.2. Reanalyses
ERA5

ERA5 is the fifth-generation global reanalysis model developed by the European
Centre for Medium-Range Weather Forecasts (ECMWF) [17]; it is publicly available through
the Copernicus Climate Change Service. It has a spatial resolution of approximately 31 km,
rendering it unable to resolve mesoscale features and complex topology along coastlines.
Its temporal resolution, however, is very high, providing instant values of hourly wind
speed and direction. In this study, we used the “10 m u-component of wind” and “10 m
v-component of wind” from the ERA5 hourly data on single levels, calculating the wind
speed via

√
u2 + v2 [18].

NORA3

NORA3 is a regional reanalysis model produced by the Norwegian Meteorological In-
stitute covering the North Sea, the Norwegian Sea, and the Barents Sea (44.02◦ N–84.06◦ N,
30.17◦ W–85.79◦ E) with a spatial resolution of 3 km. The NORA3 data are obtained by
downscaling ERA5 data using a nonhydrostatic convection-permitting numerical weather
prediction model (HARMONIE-AROME) [19]. Along with the wind field, NORA3 pro-
vides various atmospheric and surface meteorological parameters, such as mean sea level
pressure, air temperature and relative humidity, fog, wind speed, and direction [20]. Sol-
brekke et al. demonstrated that the wind field in NORA3 is much improved relative to its
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host analysis, particularly in mountainous areas and along the improved grid-resolving
coastlines. In this study, we used NORA3 as one of the reanalysis sources since it is specifi-
cally designed and validated for Norway and has a high spatial and temporal resolution,
providing instant values of wind speed and direction at 10 m.a.s.l. for every hour.

CARRA

CARRA (Copernicus Arctic Regional Reanalysis) was the second regional reanalysis
product used in this study. It contains 3-hourly analyses along with hourly short-term
forecasts at a 2.5 km resolution of atmospheric and surface meteorological parameters,
such as surface and near-surface temperature, precipitation, humidity, wind, pressure,
and atmosphere fluxes. It is divided into CARRA-East and CARRA-West; the west domain
covers Greenland along with the neighboring seas and territories. In this study, we were
interested in the East domain, which covers Svalbard, Franz Josef Land, Novaya Zemlya,
and the northern parts of Scandinavia [21]. Similar to NORA3, CARRA was also created by
the HARMONIE-AROME with the ERA5 global reanalysis as lateral boundary conditions.
In addition, some enhancements have been implemented in comparison to both ERA5 and
the operational HARMONIE-AROME modeling systems, including extensive utilization
of satellite data for the HARMONIE-AROME operational weather prediction system,
significant augmentation in the surface observation datasets, and substantial improvements
in the regional physiography and orography [7]. Furthermore, CARRA utilizes an improved
data assimilation system compared to NORA3.

3.1.3. Remote Sensing

The OWI component from the Sentinel-1 Level-2 OCN product was acquired through
the publicly available Copernicus Open Access Hub, the European Union’s Earth obser-
vation program. Sentinel-1 operates at the C-band with a central frequency of 5.404 GHz
and includes two polar-orbit Sentinel-1A and Sentinel-1B missions that provide multiple
sensing modes, such as stripmap (SM), extra-wide (EW), wave (WV), and interferometric-
wide (IW) swath modes in single (HH or VV) or dual polarization (HH + HV or VV + VH)
at a 40 m spatial resolution. SAR reaches equilibrium within less than one minute. The
Sentinel-1 Level-2 OCN OWI component is fully calibrated and is provided as an ocean
surface wind vector, including wind speed and wind direction, estimated from Sentinel-1
Level-1 SAR images by inversion of its associated normalized radar cross section (NRCS).
It is a ground range gridded estimate of the surface wind speed and direction at 10 m above
the surface with a spatial resolution of 1 km.

In this study, we focused on the extraction of the available Sentinel-1 Level-2 OCN
scenes for the Goliat station for 2022. For Northern Norway, the acquisition mode is IW,
which is acquired using the TOPSAR technique, providing an improved quality product by
enhancing image homogeneity. Sentinel-1 revisits the region of interest of this study once
every 1–2 days, passing either at around 5:00 UTC or 16:00 UTC.

3.2. Temporal and Spatial Preprocessing

The 238 SAR scenes available from Sentinel-1 between January and December 2022 for
the area covering the Goliat station were extracted, providing wind speed and direction
information at 10 m above the ocean surface. Subsequently, the same information from
all the above-mentioned data sources, including the Seklima in situ observations and
the three reanalyses ERA5, CARRA, and NORA3 were acquired, overlapping with the
Sentinel-1 data both spatially and temporally. In the case of low-resolution ERA5, this
matchup was performed by extracting the single point of the output grid closest to the
Goliat station. For CARRA, NORA3, and Sentinel-1, which have higher spatial resolutions,
the mean value of the four closest points was computed. The Seklima data were employed
as the reference source, as in situ measurements are commonly assumed to provide the
most accurate observations.
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The data sources differ in temporal and spatial resolution. The Seklima data have the
lowest spatial resolution (singular) and highest temporal resolution, providing the wind
speed and direction data every 20 min. The global ERA5 reanalysis provides wind data
at a low spatial resolution (31 km); however, it has a high temporal resolution with data
provided every hour. On the other hand, CARRA reanalysis has a significantly higher
spatial resolution (3 km), but relatively lower temporal resolution (3 h). The optimal
source from both spatial and temporal resolution points of view is NORA3 with a spatial
resolution of 3 km, which is provided hourly. Sentinel-1 provides wind produce with
the highest spatial resolution (1 km), but at the expense of temporal resolution, with a
maximum of one scene per day.

3.3. Statistical Analysis

In order to properly compare the differences between all the above-mentioned wind
data sources, and to quantitatively evaluate the accuracy of the Sentinel-1 SAR-based wind
speed and direction product, we applied several commonly employed stochastic measures
to the full datasets, such as root mean squared error (RMSE), Pearson correlation coefficient,
and standard deviation [22]. RMSE is one of the most commonly used measures for
evaluating the quality of forecasts/predictions. It illustrates the deviation of a prediction
from the reference value for each point of a time series by calculating the Euclidean
distance between the two. The Pearson correlation coefficient captures the amount of linear
correlation between two variables, ranging from −1 to +1. The standard deviation displays
the spread of the data points around the mean value from the dataset, thus showing the
dispersion in a set of values.

3.4. Wind Speed Distribution

The stochastic character of wind speed allows its representation by a probability den-
sity function. For the assessment of offshore wind resources in a given region, an accurate
representation of the wind speed distribution is crucial. The Weibull distribution f (v, λ, k)
is widely used for this purpose as it generally provides a good fit to offshore wind speed
data [23]:

f (v, λ, k) =
k
λ

( v
λ

)k−1
exp

(
−
( v

λ

)k
)

(1)

with the wind speed v ∈ R+, the scale parameter λ > 0, and the shape parameter k > 0.
The scale parameter λ specifies the ratio of horizontal to vertical extent of the distribution,
i.e., an increase in λ results in a wider and lower Weibull distribution. The shape parameter
k indicates the skewness of the distribution; a larger value for k, therefore, indicates more
frequent high-wind-speed events. In a continuation of their work, Pryor et al. evaluated
the critical sample size of independent SAR scenes needed to characterize the Weibull
parameters. They came to the conclusion that no more than 250 observations are needed
for an uncertainty of ±10% at a confidence level of 90% for the characterization of both
Weibull parameters [24].

For an estimation of the annual wind power production of a wind turbine at a given
site, the wind speed would first have to be extrapolated vertically to the hub height of
the turbine. There are a number of models commonly used for this purpose, each with
its own limitations. In heterogeneous terrain, models such as the logarithmic law or the
power law are recognized as applicable well up to heights of 200 m and 300 m above
the ground, respectively [25]. However, as wind turbines are rapidly increasing in size,
especially offshore and for floating foundations (e.g., the Vestas V236-15.0 MW model by
Vestas Wind Systems A/S in Aarhus, Denmark reaches a rotor diameter of 236 m), and as
the atmospheric boundary layer above the smooth ocean surface is much shallower than
over complex or rough terrain, the case discussed in this study extends far beyond the
applicability of these models. More complex models require knowledge about many more
atmospheric parameters that were not available to us for the considered location. Therefore,
in this study, we limit the analysis of the available wind power to the comparison of the
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Weibull distributions fitted to the 10 m wind speed histograms of each data source, as the
wind speed distribution and wind power output are closely related. Although it is outside
of scope of this study, the authors note the necessity to explore this issue further and
find alternative solutions in order to maintain the performance of offshore wind resource
estimation in the future.

4. Results and Discussion
4.1. Wind Speed

As the wind power available at a given site is proportional to the cubed wind speed,
a precise assessment of the wind speed distribution and of the uncertainty present in the
available data is of critical importance for wind energy purposes. It is a crucial parameter
that directly impacts wind energy potential, influences the capacity factor and profitability
of a given location, and affects the choice of wind turbine. Since wind turbines are optimized
for particular wind speed ranges, the wind speed distribution present at a given site plays
a key role in the selection of the turbine type. Wind turbines used for offshore power
production usually have a cut-in wind speed at 2–3 m/s (at hub height), a rated wind speed
of 14–16 m/s, and a cut-off wind speed between 25 and 30 m/s. Therefore, the interval
ranging from the cut-in to the cut-off wind speed, and especially between the cut-in and
the rated wind speed, has to be represented with high accuracy for wind power assessment
purposes. It is worth noting that, as most wind data sources provide the wind speed at
10 m above the ocean surface, the wind speed interval of interest is shifted relative to that
at the hub height.

4.1.1. Scatterplots

Figure 2 shows scatterplots obtained from comparing the wind speed from the ref-
erence source, i.e., Seklima in situ observations, to each other source, including ERA5,
NORA3, and CARRA reanalyses, and Sentinel-1. The Seklima data are plotted on the hori-
zontal axis, all other sources are plotted along the respective vertical axes. The background
heatmaps provide extra insight into the distribution of wind speed across the scatterplot.
Accordingly, darker regions in the heatmap signify a higher density of data points. The scat-
terplots clearly demonstrate a very strong positive linear relationship between all pairs of
datasets shown. The close clustering of data points suggests a strong similarity between
the Seklima dataset and all three reanalyses, and between Seklima and the Sentinel-1 data.
Linear regressions were fitted to each scatterplot, with the slope and intercept parameters
varying only slightly between data sources.

4.1.2. Statistical Metrics

In order to quantitatively evaluate the statistical differences between the above-
mentioned sources, a number of metrics, including RMSE, Pearson correlation coefficient,
and standard deviation, were calculated for Sentinel-1, ERA5, NORA3, CARRA, each with
respect to Seklima. Table 2 presents the results, while Figure 3 shows the Taylor diagram,
visualizing all the above-mentioned metrics for all data sources in a single plot.

Table 2. Statistical metrics applied to wind speed time series from each data source compared to the
reference source, Seklima, in situ observations.

Dataset RMSE [m/s] Correlation Coeff. Std. Deviation [m/s]

Seklima - - 4.19

ERA5 1.65 0.92 3.82

NORA3 1.80 0.90 3.98

CARRA 2.05 0.88 4.03

Sentinel-1 2.00 0.88 3.95
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Figure 2. Scatterplots of wind speed data from Seklima (plotted on the horizontal axes) versus ERA5,
NORA3, CARRA, and Sentinel-1 (plotted on the respective vertical axes).

The RMSEs of the four data sources ranged from 1.65 m/s to 2.05 m/s. ERA5 had the
lowest RMSE with 1.65 m/s, indicating a slightly more accurate model compared to those
with higher RMSEs, namely, CARRA with a maximum value of 2.05 m/s. Despite the range,
it is worth noting that all four data sources had relatively close RMSE values, demonstrating
similar levels of accuracy. Moreover, we can highlight that the RMSE of Sentinel-1 fell within
the range of RMSE values obtained for the three reanalyses, displaying a similar closeness
between the respective wind speed time series. The Pearson correlation coefficient ranged
between 0.88 for both CARRA and Sentinel-1 and 0.92 for ERA5, again placing the SAR-
based data within the values obtained for the three reanalyses, and indicating a high overall
correlation with the reference data. While the scatterplots only visually demonstrated
the relationship between the Seklima data with the Sentinel-1 and the reanalyses data,
the correlation coefficient confirmed that there was a strong linear relationship between the
compared sources and the reference data. Table 3 displays the cross-correlation between
the wind speed data sources. This specifically demonstrates the close relationship between
the global reanalysis ERA5 and the two regional reanalyses CARRA and NORA3. This
likely results from CARRA and NORA3 employing ERA5 as their host model.
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Figure 3. Taylor diagram for wind speed data from Seklima versus ERA5, NORA3, CARRA,
and Sentinel-1. The red contours display the RMSE value of the data sources compared to the
reference source.

Table 3. Cross-correlation matrix between the different wind speed data sources, i.e., Seklima, ERA5,
NORA3, CARRA reanalysis, and Sentinel-1.

Variables Seklima ERA5 NORA3 CARRA Sentinel-1

Seklima 1 0.92 0.90 0.88 0.88

ERA5 1 0.98 0.93 0.91

NORA3 1 0.94 0.91

CARRA 1 0.88

Sentinel-1 1

The reference data (Seklima—red star) had a higher standard deviation than all other
sources, indicating the largest amount of wind speed variability. This is interesting as it is
the only source that averages its output values over a longer time interval (10 min); all other
sources provide instantaneous or pseudo-instantaneous values. Since shorter sampling
periods lead to higher gusts being captured in the data as compared to long averaging
periods, the difference in averaging periods present in the data sources investigated within
this study could have led to the hypothesis that the reanalyses and the Sentinel-1 data
display a higher wind speed variability, and thus, variance. The contrary seems to be the
case here, as none of the other data sources were able to fully capture the wind speed
variance displayed by the in situ observations; all other data sources had a slightly lower
standard deviation than Seklima. ERA5 had the lowest standard deviation of 3.82, thus
representing the least amount of variability in wind speed. Nevertheless, it should be noted
that the standard deviation did not range significantly among the five data sources, which
implies a similar variation of values among the datasets.
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4.1.3. Wind Speed Occurrences

Figure 4 shows histograms of the differences in wind speed occurrences acquired by
several sources between the reference source, Seklima, and the other data sources, namely,
ERA5, NORA3, CARRA, and Sentinel-1. The horizontal axis represents the range of wind
speeds in m/s, while the vertical axis displays the difference of wind speed occurrence
in percent. Accordingly, when the occurrence frequency difference is 2, it shows that the
corresponding wind speed occurred 2% more often in the reference data than the compared
source. Moreover, each histogram displays the maximum, minimum, and variance of
the differences.

Figure 4. Histograms of the differences in wind speed occurrences between Seklima and the other
data sources, i.e., ERA5, NORA3, CARRA reanalysis, and Sentinel-1.

Most of the wind speed differences fell within the range of −2 to +2%, suggesting
a good level of agreement for those wind speed intervals. However, for all data sources,
there were higher values of disagreement present, both on the positive and negative side.
Generally, the outliers tended to be either consistently positive or negative throughout
all combinations of data sources, indicating a similar bias present in all reanalyses and
the Sentinel-1 data as compared to the in situ measurements. All sources displayed an
under-representation of the 2 m/s wind speed, which might correspond to difficulties in
capturing low-wind events. The most significant over-representation was detected for
wind speed values around 9–11 m/s.

Another interesting point is that Sentinel-1 had the lowest variance in wind speed
difference among all the sources, which means that the data points were relatively consistent
and indicated a higher level of accuracy in the wind speed prediction than other sources.
On the other hand, ERA5 provided the highest variance, which means that the spread of
the values was larger and the wind speed precision might not have been very consistent.
However, it should be mentioned that the variance differences were small between the
sources, with the highest variance equal to 5.5 (ERA5) and the lowest to 4.6 (Sentinel-1).

The histograms provide valuable insight into the reliability and consistency of wind
speed data obtained from different sources by highlighting intervals that are in need of
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further calibration. Overall, they give rise to the impression that all reanalyses and the
SAR-based product tended to underestimate low wind speeds and overestimate high wind
speeds as compared to the in situ observations that were employed as reference data. It
should be noted that these discrepancies do not necessarily indicate a bad performance
of the reanalyses or the Sentinel-1 product; the fact that there were differences similar
in tendency and magnitude that were consistent for all compared data sources suggests
that there might have been a bias present in the in situ measurement data. As a matter
of fact, a study investigating vertical wind profiles for nine oil platforms in the south of
Norway concluded that the power law with a wind shear coefficient of 0.13 that is presently
employed on Norwegian oil platforms results in an average 0.8 m/s underestimation of
the 10 m wind speed [16]. As these observations are, in turn, used for the assimilation and
verification of reanalysis products, these findings highlight the need for a more independent,
yet accurate representation of the wind speed distribution.

4.2. Wind Direction

Another important parameter in the preliminary site assessment for wind energy
purposes is wind direction. Along with wind speed, it plays a fundamental role in opti-
mizing the wind energy generation of a given wind farm. In particular, information about
the distribution of the wind direction significantly influences the wind park layout and,
thus, aids in maximizing the energy output by avoiding wake losses within the wind farm.
Furthermore, the complex topology of the fjords and mountains in the coastal areas of
Northern Norway heavily affects the wind field over the ocean, as can clearly be seen
in Figure 1. In order to choose the optimal location, a high spatial resolution capable of
resolving the intricate wind patterns present in these areas is essential.

Figure 5 shows the wind roses of all data sources, displaying the occurrences of
wind directions and a rough representation of the wind speed distribution for each wind
direction bin, allowing for a visual comparison between sources. Overall, all diagrams
display similar prevailing wind directions, namely, mainly from the East and West South
West. Some differences are discernible, e.g., the wind direction distribution of ERA5 seemed
to fluctuate less than all other data sources, which may result from its low spatial resolution
and account for its inability to resolve the flow over the complex topology of the coastline
nearby. Furthermore, while Sentinel-1 represented the West wind best, its representation
of the wind coming from the East quartile was broader than that of Seklima and the two
regional reanalyses. However, more detailed and quantitative analyses would be needed
in order to properly assess the performance of the four data sources in capturing the
distribution of wind direction.

4.3. Wind Speed Weibull Distribution Comparison

The importance of an accurate representation of the wind speed distribution has
already been discussed in this study. In order to assess the ability of the SAR-based
product to capture the stochastic properties of the wind speed despite its low temporal
resolution, a comparison of the sparse match-up datasets of the reanalyses and in situ
observations with their respective dense datasets, that is, with their full temporal resolution,
is appropriate. The first row of Figure 6 shows the wind speed histograms of the dense
and the sparse Seklima data, and the Sentinel-1 data, alongside their respective Weibull
distribution. The histograms and Weibull distributions of the three reanalysis products,
dense and sparse, are shown in the second and third row, respectively. Additionally, Table 4
summarizes the corresponding Weibull parameters obtained for the dense and sparse wind
speed datasets from all sources. The Weibull distribution obtained from the dense Seklima
data was reproduced in all other plots as a reference.
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Figure 5. Wind roses compiling the wind direction distributions from the Seklima, ERA5, NORA3,
CARRA, and Sentinel-1 datasets.

Figure 6. Weibull probability density function and observed wind speed histograms for several cases:
dense and sparse datasets from Seklima, ERA5, NORA3, and CARRA, and Sentinel-1. Dense refers
to the sample obtained for the Goliat station over the year 2022 with the respective full temporal
resolution, that is, every 20 min for Seklima, and several times a day for the three reanalysis sources.
Sparse refers to the subsets of the 238 data points overlapping temporally with the Sentinel-1 scenes.
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Table 4. The Weibull shape and scale parameters k and λ obtained for the dense and sparse wind
speed datasets from all sources.

Dataset
Weibull Parameters

k λ

dense 1.85 8.01
Seklima

sparse 1.70 7.83
dense 2.21 8.90

ERA5
sparse 2.23 9.08
dense 2.14 9.22

NORA3
sparse 2.17 9.23
dense 2.22 9.43

CARRA
sparse 2.26 9.67

Sentinel-1 (sparse) 2.33 9.79

The Weibull parameters obtained for the Sentinel-1 dataset are k = 2.33 and c = 9.79,
clearly illustrating an overestimation of the distributed wind speed compared to the ref-
erence data. This result strongly contrasts with those obtained in previous studies (see
Section 2), concluding that, for other specific regions, Sentinel-1 and the reanalysis products
generally tended to underestimate wind speed as compared to the in situ observations.
However, as discussed previously, Olsen et al. found that wind speed data obtained from
measurements at Norwegian oil platforms tended to underestimate wind speed due to a
flawed vertical wind profile [16]. This provides a valid explanation for the discrepancy
found here. This assumption is supported by the fact that the Weibull parameters of all
three reanalysis products were not just close to one another, but also very close to those of
the Sentinel-1 dataset.

Although there is a visible difference between the dense and the sparse Seklima
histogram, their Weibull distributions were still considerably close. The change in shape
and scale parameters from the dense to the sparse sample was k = 1.85 → 1.70 (a decrease
of ∼8.1%) and λ = 8.01 → 7.83 (a decrease of ∼2.25%), respectively. The differences
between parameters for the dense and sparse reanalysis datasets were even less for all three
reanalyses (no more than a 2% change in k and 2.5% in λ). Pryor et al. determined that
around 250 independent scenes are needed to characterize these parameters [24]. With these
results achieved using 238 scenes, we are pleased to note that in this case, the temporal
selectivity due to the sampling rate of Sentinel-1 did not seem to introduce a major bias
into the distributions.

However, minor tendencies are observable. With decreasing temporal resolution,
both k and λ decreased for Seklima but slightly increased for all three reanalysis products.
For the latter, going from the dense to the sparse datasets, this resulted in lower and
wider distributions with more pronounced tails and, thus, a higher mean wind speed.
The opposite happened to the Seklima data; the distribution became slimmer and slightly
less skewed, resulting in a lower mean wind speed. Thus, moving from the dense to the
sparse datasets accentuated the discrepancy between the Seklima distribution and the four
others. However, the relative changes of both k and λ, especially for the reanalysis products,
were too small to be attributed to a potential bias resulting from temporal selectivity.

In the context of wind resource assessment, these results are valuable, but not enough.
The average wind power of a site with a certain wind speed Weibull distribution is given by

P =
1
2

ρλ3Γ
(

1 +
3
k

)
(2)

with the gamma function Γ [24]. The high order of the scale parameter λ explains why the
accuracy achieved by the number of SAR scenes used here is insufficient to characterize
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the annual average wind power. According to Barthelmie et al., almost 2000 independent
scenes are required to achieve an uncertainty of ±10% at a confidence level of 90% [12].
For the Goliat site, this translates to almost 8.5 years of SAR data, which, for the Sentinel-1
OWI product evaluated here, are not yet available.

5. Conclusions

The presented analysis justifies the application of the Sentinel-1 OWI component
for offshore wind resource evaluation. We found that the RMSE, correlation coefficient,
and standard deviation were similar for all data sources, placing the performance of the
SAR-based wind retrieval within the range of the three reanalysis products. An analysis
of the wind speed differences displayed a clear bias between the in situ measurements
and the other four data sources, which may result from an underestimation of the reduced
wind speed as distributed from Norwegian oil platforms [16]. A qualitative review of the
distribution of wind direction showed no distinct discrepancies between the data sources.

The analysis of the Weibull distributions fitted to each dataset led to a similar conclu-
sion: while the Weibull parameters of the three reanalyses and the Sentinel-1 data were
reasonably close to one another, those of the Seklima data differed considerably, resulting in
a shift of the Weibull distribution towards lower wind speed values. The sparse reanalysis
datasets, consisting of 238 points matching up with the SAR scenes, were compared with
their respective dense datasets, containing their full temporal resolution. The change in
Weibull parameters between the two variants was no more than 2.5% for both scale and
shape parameters. This suggests the conclusion that the low temporal resolution of the
Sentinel-1 data is not generally an obstacle in the accurate representation of the wind speed
distribution. However, in order to perform a complete wind resource assessment with a
reasonable accuracy, a longer time series would be required. Nonetheless, its unmatched
spatial resolution renders it a valuable source of information for wind resource assessments
in offshore areas affected by complex coastlines unresolved by other data sources. Further-
more, it offers the potential to resolve mesoscale features such as polar lows, which are
often not captured by reanalysis products.

This study analyzed some of the similarities and dissimilarities present in the available
data sources for assessing near-surface offshore wind in the Norwegian Arctic. However, it
is far from exhaustive. Future studies could include both a spatial and temporal expansion
of the data taken into consideration, enabling a more accurate representation of the stochas-
tic characteristics of all sources. In this context, several questions could be addressed that
arise naturally from this work: How does the Sentinel-1 OWI component perform under
varying meteorological conditions, i.e., at the tails of the wind speed distribution? How
severely is it affected by the coastline when moving closer to the shore or even into fjords?
And how large are the errors introduced by atmospheric stratification that deviates from
the assumed neutral stability? An in-depth analysis of spatial and temporal variability,
such as diurnal, seasonal, and interannual variability, would also prove valuable to further
characterize the wind climatology in the Norwegian Arctic and aid in the understanding of
the limitations of the Sentinel-1 OWI component for offshore wind resource assessments.
Lastly, a more holistic approach to wind resource evaluation procedures has to be de-
veloped in order to utilize the added value of SAR-based wind retrieval for wind farm
planning and development.
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WV Wave Mode
IW Interferometric-Wide Mode
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3
Graph Neural Networks:
Theoretical Background

3.1 Graph Theory

Graphs are mathematical structures used to model sets of objects where some
are pair-wise connected or related. They provide a flexible framework for
representing complex networks and interactions and are used to analyse a
wide range of systems and processes in biological, chemical, social, technical,
and physical sciences.

Definition: Graph A graph is a pair 𝐺 = (𝑉 , 𝐸), with the (generally finite)
set 𝑉 of vertices or nodes 𝑣𝑖 and a set 𝐸 of unordered pairs {𝑣𝑖, 𝑣 𝑗 } called
edges.

If the edge 𝑒𝑖 𝑗 = {𝑣𝑖, 𝑣 𝑗 } exists, the vertices 𝑣𝑖 and 𝑣 𝑗 are called adjacent. The
neighbourhood of a node 𝑣 is defined as N(𝑣) = {𝑢 ∈ 𝑉 |{𝑣,𝑢} ∈ 𝐸}. Let
𝑛 = |𝑉 | be the number of nodes in the graph. The adjacency matrix A ∈ R𝑛×𝑛
is defined by

∀𝑖, 𝑗 ∈ {1, . . . , 𝑛} : 𝐴𝑖 𝑗 =

{
1, {𝑣𝑖, 𝑣 𝑗 } ∈ 𝐸

0, {𝑣𝑖, 𝑣 𝑗 } ∉ 𝐸
(3.1)

A graph if directed if the set of edges contains ordered pairs instead of unordered
pairs. A graph is undirected if and only if its adjacency matrix is symmetric.
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A graph may have node attributes (or, in this context, features) X ∈ R𝑛×𝑓 with
feature dimension 𝑓 . In a weighted graph, a weight𝑤 ∈ R is assigned to each
edge. Accordingly, a weighted graph can have edge attributes X𝑒 ∈ R𝑚×𝑐 , with
𝑚 being the number of edges in the graph and 𝑐 the number of edge attributes.
This way, more than one weight can be assigned to each edge.

Definition: Bipartite graph A graph 𝐺 = (𝑉 , 𝐸) is bipartite if its set of
vertices 𝑉 can be divided into two disjoint and independent sets 𝑉 = 𝑈 ∪𝑊 .
Two sets are disjoint if 𝑈 ∩𝑊 = ∅; one set of vertices 𝑈 is independent if no
two elements within it are adjacent. This means that every edge of a bipartite
graph 𝐺 = (𝑈 ,𝑊 , 𝐸) connects one node in 𝑈 to one in𝑊 .

3.2 Graph Neural Networks

Machine learning is the field of study concerned with developing algorithms
that can learn to solve tasks from data and generalize this ability to previously
unseen data. It includes a variety of models to classify, predict, cluster or
recognize patterns in a given dataset. The most successful type of model from
this field is the artificial neural network, loosely inspired by the function of
neurons and synapses in human or animal brains. The “neurons” or nodes are
typically arranged in layers, and layers are connected by “synapses” or edges,
performing different transformations on the input data stored in the nodes.
Each edge has a weight𝑤 ∈ R assigned to it that changes during the training
process1. During training, the neural network processes input data through its
multiple layers (one input layer, one output layer, and any number of “hidden”
layers inbetween). In each node, a non-linear activation function is applied to
the weighted sum of the outputs of the previous layer. This allows the network
to capture complex, non-linear relationships in the data.
The network’s performance is measured using a loss function, which quantifies
the difference between the predicted output and the actual target, the ground
truth. This means that in order to solve a task with a neural network, we need
a training dataset for which the task has already been solved; it has to be
labeled. This is the case for any supervised learning method. The choice of loss
function depends on the task; for instance, mean squared error is usually used
for regression tasks, while cross-entropy loss is used for classification tasks. To
minimize the loss function, the network undergoes an optimization process
called backpropagation. During backpropagation, the network calculates the
gradient of the loss function with respect to each weight by applying the

1. We have already heard of many of these terms in the previous section on graph theory. In
fact, any neural network can be described as a dynamic, directed, and weighted graph.
This does not make it a graph neural network though.
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chain rule backwards through the network—hence the name. These gradients
indicate how much each weight should be adjusted to reduce the loss. Lastly,
an optimizer, such as stochastic gradient descent or more advanced variants
like Adam, updates the weights iteratively based on the calculated gradients.
The optimization process continues until the network converges to a set of
weights that minimize the loss function, resulting in a trained model. More
detailed explanations of these concepts can be found in [1, 11, 44].

Deep learning, a subset of machine learning, refers to the use of sophisticated,
hierarchical neural network architectures for complex task-solving. The term
“deep” refers to the increased number of hidden layers in deep learning neural
networks. The main difference between machine learning and deep learning
models lies in their approach to data representation. While machine learning
models typically require manual feature extraction, deep learning models
automatically discover the representations needed for classification or detection
through multiple layers of abstraction. Deep learning models are therefore
particularly adept at handling large volumes of unstructured data, such as
images, audio, or text.

Within deep learning, graph neural networks form the class of neural networks
that processes graph-structured data. They operate by recursively aggregating
and transforming information from each node’s neighbourhood to compute
new representations of all nodes. This process, known as message passing,
allows GNNs to capture the dependencies and interactions between nodes in
a graph. For a node feature vector x(𝑘 )

𝑖
∈ R𝑓 with 𝑓 features in layer 𝑘 of a

network, and the edge attributes e𝑗,𝑖 ∈ R𝑐 from node 𝑣 𝑗 to node 𝑣𝑖 (e𝑗,𝑖 = 1 for
unweighted graphs), a general message passing operation can be expressed
as

x(𝑘 )
𝑖

= 𝛾 (𝑘 ) ©­«x(𝑘−1)𝑖
,
⊕
𝑗∈N(𝑖 )

𝜙 (𝑘 )
(
x(𝑘−1)
𝑖

, x(𝑘−1)
𝑗

, e𝑗,𝑖
)ª®¬ . (3.2)

Here,
⊕

denotes the aggregation scheme, a differentiable, permutation in-
variant function, e.g. a sum, and 𝛾 and 𝜙 denote layer-specific, differentiable
functions, e.g. linear transformations. Depending on the task at hand and the
characteristics of a given graph, the optimal choices for those functions may
differ, creating a variety of possible message passing schemes. Wu et al. [47]
provide a comprehensive overview of GNNs, thoroughly explaining the differ-
ent "flavours" of message passing.
GNNs have been proven to be highly effective for modeling complex physical
systems and systems on non-Euclidean domains [35, 41]. Global weather data,
which captures the state of the atmosphere, roughly conforms to the shape
of a hollow sphere—a non-Euclidean space—and is governed by thermody-
namic laws. Therefore, GNNs should be particularly well-suited for simulating
weather systems.
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Convolution is the core mathematical operation that underpins an entire cate-
gory of neural networks known as Convolutional Neural Networks (CNNs). It
is roughly defined as the integral of the product of two functions it is given
as arguments2. In contrast to fully connected neural networks, convolutional
filters aim to simulate the behaviour of a visual cortex, allowing for the recog-
nition of spatial relationships in image data, for example. On a regional scale,
the domain of weather data could be approximated as Euclidean and handled
with conventional CNNs. According to Bruna et al. [4], however, employing
graph-based versions of convolutional architectures can substantially lower
the number of parameters in a network without degrading performance, often
improving test error and accelerating forward propagation.
Convolutional GNNs generalize the convolution operation from regularly grid-
ded data to graph data. Instead of passing a filter over the pixels of an image,
the learned, localized, spectral filter is convolved with the node representations,
aggregating the information of each node’s neighbourhood. Applying graph
convolutional layers iteratively increases the receptive field of the network
by one further connection per layer. The connectivity of the graph will thus
determine how quickly messages are "passed" within the graph. There are
different variants of graph covolutional operators, two of which are specified
hereafter.

Definition: GraphConvOperator The node-wise formulation of the Graph-
Conv operator as defined by Morris et al. [29] is given by

x(𝑘 )
𝑖

= W1x
(𝑘−1)
𝑖

+W2

∑︁
𝑗∈N(𝑖 )

𝑒 𝑗,𝑖 · x(𝑘−1)𝑗
, (3.3)

where 𝑒 𝑗,𝑖 denotes the edge weight from source node 𝑣 𝑗 to target node 𝑣𝑖 .
Comparing this expression to Eq. 3.2, a sum has been chosen as aggregation
scheme, and simple linear transformations (without added bias) for the func-
tions 𝛾 and 𝜙 . Note that, due to the separate transformation of the target node
features x(𝑘 )

𝑖
and the source node features x(𝑘−1)

𝑗
, this definition allows for the

handling of bipartite graphs where the nodes of the two sets 𝑈 and𝑊 may
have different feature dimensions.

Definition: GCNConvOperator The Graph Convolutional Network (GCN)
layer as introduced by Kipf and Welling in [18] applied to the feature vector x𝑖
of node 𝑣𝑖 in layer 𝑘 is mathematically defined as

x(𝑘 )
𝑖

=
∑︁

𝑗∈N(𝑖 )∪{𝑖 }

1√︁
deg(𝑖)

√︁
deg( 𝑗)

·
(
W⊤ · x(𝑘−1)

𝑗

)
+ b. (3.4)

2. Technically, the exact mathematical definition requires one of the functions to be reflected
about the y-axis and shifted before computing the product or the integral, but in the
context of CNNs, this step is unnecessary and thus usually skipped.
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The neighbouring node features including its own are transformed by a weight
matrix W, normalized by their degree, and summed up. Lastly, a bias vector b
is added to the output. If the graph is weighted, this formulation generalizes
to

x(𝑘 )
𝑖

=
∑︁

𝑗∈N(𝑖 )∪{𝑖 }

𝑒 𝑗,𝑖√︃
𝑑 𝑗

√︃
𝑑𝑖

·
(
W⊤ · x(𝑘−1)

𝑗

)
+ b, (3.5)

where 𝑒 𝑗,𝑖 denotes the edge weight from source node 𝑣 𝑗 to target node 𝑣𝑖 (𝑒 𝑗,𝑖 =
1 for all edges in unweighted graphs) and 𝑑𝑖 = 1 +∑

𝑗∈N(𝑖 ) 𝑒 𝑗,𝑖 , the weighted
equivalent to the degree of node 𝑣𝑖 , including the self-connection3 [36]. This
transformation can also be expressed as a spectral-based method:

X(𝑘 ) = D̂− 1
2 ÂD̂− 1

2X(𝑘−1)W(𝑘−1) , (3.6)

where Â = A+I𝑛 is the adjacencymatrix with added self-loops (I𝑛 is the identity
matrix of dimension𝑛), D̂ is a diagonalmatrix of node degrees including the self-
connections, so 𝐷̂𝑖𝑖 =

∑
𝑗 𝐴𝑖 𝑗 , and W(𝑘−1) is the trainable weight matrix of the

previous layer [18]. This particular formulation ensures that the eigenvalues of
the operator applied to X lie within the range [0, 1], thereby avoiding numerical
instabilities, i.e. vanishing or exploding gradients [47]. This modification of
the adjacency matrix is called renormalization trick⁴.

Note that the activation function has not been included in any of the above
formulations and will have to be applied to their output before passing it on
to the next layer. With this foundation laid, the next section will dive into a
more detailed discussion of the possibilities and limitations of deep learning
in meteorological research.

3.3 Possibilities and Limitations of Deep
Learning in Meteorological Research

In recent years, machine and deep learning have emerged as powerful tools
across various domains of research and everyday life, especially the latter often
hailed for its transformative potential. Machine learning has first been applied
in atmospheric science in 1990, performing cloud classification with neural

3. Note that both of these formulations for graph convolutional operators do not allow
multidimensional edge features. The original formulation of the GCN layer does not
include any edge features, but the implementation by PyTorch Geometric (see Section
4.2.1) allows for (scalar) edge weights for both GraphConv and GCN layer.

4. More recent works like [52] and [24] make further improvements to convolutional GNNs
that could be explored in future works, taking long-range dependencies within graphs
into account and introducing more flexibility.
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networks [21]. While certainly applicable to some tasks, machine learning
approaches are inherently limited by their use of domain-specific, sometimes
hand-crafted features rather than a more generalized approach. In contrast,
deep learning promises improved techniques for understanding temporal and
spatial dependencies in data. Although deep learning undoubtedly offers potent
opportunities, it is important to moderate the enthusiasm with a critical under-
standing of its boundaries. This section aims to briefly examine the possibilities,
some prior applications, and limitations of deep learning within meteorological
research, particularly wind prediction, to better appreciate where exactly deep
learning might effectively contribute.

A fundamental aspect of learning theory is a model’s ability to generalize from
a finite set of training data. To logically infer rules applicable to an entire set,
one would need information about every member of that set. Machine learning
mitigates this by building on a probabilistic framework rather than definitive
rules, aiming to find rules that are likely correct for most members of the set.
However, weather systems are among the most complex physical phenomena
on Earth, influenced by numerous variables. This means that available training
data will likely never capture all possible scenarios, leading to models that may
perform well on training and validation data but fail in real-world applications
outside their training domain [40].
Another critical issue is the assumption that the training data are identically
and independently distributed (i.i.d.). Many derivations of machine learning
techniques rely on the i.i.d. assumption; without it, key statistical laws such as
the law of large numbers and the central limit theorem no longer apply. This
assumption may be violated in meteorological data, which typically exhibits
spatial and temporal dependencies; possibly affecting parameter convergence,
performance metrics, and optimization processes, increasing the risk of over-
fitting and reducing the model’s generalization ability [11, 40].

Deep learning for meteorological problems faces the paradox of having both an
overabundance and a scarcity of data. The vast amount of meteorological data
collected by a wide variety of sensors, both terrestrial and extraterrestrial, as
well as outputs from NWP models, is almost insurmountable. However, merely
collecting data does not equate to improving our understanding of the system
being measured—data alone does not constitute knowledge. Many deep learn-
ing methods are (semi-)supervised and rely on labeled data for training. In
areas where we lack physical knowledge and could benefit from deep learning,
the labeled datasets available are often small and require manual labeling,
making them insufficient for the needs of many deep learning models that
demand large amounts of training data. However, this task essentially equates
to complex classification based on spatial and temporal clues, e.g. for detecting
specific weather events in high-dimensional observational or model data. This
is an area that deep learning can certainly contribute to, efficiently expanding
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the small, existing labeled datasets [15, 26, 46].
The increase in available observational and model data calls for the sensi-
ble integration of data-informed approaches with traditional theory-driven
research. This could be done by improving parameterizations or replacing
physical sub-models with deep learning models, reducing biases where our
physical understanding is incomplete or where resolved models are computa-
tionally expensive [10, 13]. Deep learning can also aid in spatial downscaling
of wind fields with reduced computational demands, as demonstrated with
CNNs and generative adversarial networks (GANs) [6, 25]. Generative models
and recurrent neural networks have also been used for interval wind power
prediction [34]. It should be noted that, while improving the predictive accu-
racy of NWP models is important, it does not necessarily enhance our scientific
understanding of weather systems. Interpretability is a major weakness of deep
neural networks due to their black box nature, and we are still far from recov-
ering causal relationships from deep learning models trained on observational
data.

However, by learning from historical weather data, deep learning models offer
a promising approach to improving nowcasting and forecasting abilities⁵. Es-
pecially GNNs have already proven to be more effective in this domain than
traditional approaches, as seen in works by Ryan Keisler [17] and later by
Google with GraphCast [20]. GraphCast claims to “significantly outperform
the most accurate operational deterministic systems on 90% of 1380 verifi-
cation targets, supporting better severe event prediction, including tropical
cyclones, atmospheric rivers, and extreme temperatures”. It is trained directly
on reanalysis data, integrating historical weather observations and NWP model
outputs. It leverages GNNs’ ability to handle complex data structures, making
it well-suited for capturing the spatial and temporal dynamics of atmospheric
processes. The model predicts hundreds of weather variables over a 10-day
period at a 0.25-degree resolution globally in under one minute. This promis-
ing result suggests that GNNs may also perform well on smaller-scale wind
prediction.

5. It is worthy to note that, because weather is inherently chaotic and thus sensitively
dependent on initial conditions, the time frame for which even a perfect weather model,
physical or deep learning-based, can provide accurate forecasts is limited by the reliability
and completeness of available observational data [32].



4
Graph Neural Networks:
Experimental Approach

The last section has already highlighted the most prominent areas in which
GNNs might benefit our cause of offshore wind prediction. Schultz et al. [42]
concluded in their discussion that deep learning networks have particularly
high chances of outperforming and replacing traditional approaches if they
manage to leverage the small-scale patterns in observational data that NWP
models fail to resolve. In our publication (see Chapter 2) we found that SAR-
based wind retrieval can indeed compete with reanalysis products in terms
of long-term wind resource representation while providing wind fields with a
higher spatial resolution. Figure 4.1 shows two wind fields provided as provided
by CARRA and Sentinel-1 OWI for (almost) the same point in time. It is apparent
that not only is the spatial resolution of the SAR-based product much better,
but there are also details and physical properties of the wind field discernible
that are not or not well resolved by the regional reanalysis.
Previously proposed GNN models for weather predictions have used reanalysis
datasets for training, which is convenient due to their spatial and temporal
regularity, but it limits the models’ learning potential. While these models can
improve predictions by learning from historical data as opposed to NWPmodels,
their performance is restricted by the data, which is informed by our imperfect
physical understanding and numerical implementation of the weather system.
There have been initial attempts at training deep learning networks with
remote sensing data, such as precipitation nowcasting with radar data [38, 49],
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(a) Sentinel-1 OWI wind field from January 3rd, 2022 at 5:00 UTC. Grid points over land are masked out as
the retrieval method is only defined on open ocean (≥ 1 km from shore). Note the high level of detail.

(b) CARRA wind field from January 3rd, 2022 at 6:00 UTC, the output time step closest in time to the SAR
scene shown above. The outline of the corresponding Sentinel-1 SAR scene is shown in black.

Figure 4.1: Comparison of Sentinel-1 OWI and CARRA wind fields in our area of interest. The
location of the Goliat station is indicated in both pictures (red dot) as well as the area of model
prediction (orange frame, see Section 4.1.1). The differences in resolution and detail between
the two data sources are clearly visible.
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and studies employing deep learning networks, even GNNs, for a variety of
tasks around the processing and classification of raw SAR data [27, 30]. Zhu et
al. [51] provide an extensive review of existing studies and limitations of deep
learning with SAR data. To our knowledge, no GNN or any other deep learning
network has been trained using SAR data for wind applications.

The central problem presents as follows: CARRA has a high temporal resolution
but too low spatial resolution; the SAR-based Sentinel-1 OWI component has
a high spatial resolution and level of detail, but too low temporal resolution.
Therefore, our goal is to fill these gaps by producing high-resolution and high-
detail wind fields for times where CARRA output is available but no Sentinel-1
SAR scene. Our approach involves providing the GNN with CARRA data as
input, one time step at a time, to predict wind speed values at the same spatial
resolution as the Sentinel-1 OWI component (1 km × 1 km). By leveraging
the strengths of both data sources, our model aims to generate accurate and
detailed wind fields, contributing to more reliable and complete offshore wind
resource assessments in the Norwegian Arctic region.

4.1 Graph Setup

4.1.1 Datasets

Sentinel-1 OWI The Sentinel-1 constellation consists of two satellites (Senti-
nel-1A and Sentinel-1B), which together provide global coverage with relatively
short revisit times. The European Space Agency (ESA) operates Sentinel-1 as an
open data mission, which means that the acquired data are publicly available
for non-commercial use and can be accessed through the Copernicus Data
Space Ecosystem [8].
Sentinel-1 delivers radar imagery products distributed on three levels of pro-
cessing. Level-0 consists of raw data. Level-1 provides baseline products for
multiple sensing modes. Level-2 consists of geophysical products derived from
Level-1. The comparatively new Ocean Wind Fields (OWI) component used in
this thesis is one of three Level-2 Ocean (OCN) products for wind, wave and
currents applications. Wind speed values in the range of [0 m/s, 25 m/s] and
wind direction values in degrees are provided alongside their respective grid
points of given latitude and longitude at a spatial resolution of 1 km × 1 km.
The wind direction values are informed by reanalysis data.
We collected all available Sentinel-1 OWI wind data overlapping with our area
of interest—the Goliat station in the Barents Sea—in the period between Febru-
ary 2021 and December 2023, acquiring a total of 832 SAR scenes. The amount
of data points varies from scene to scene depending on the area it covers, and
lies anywhere between roughly 20, 000 and 45, 000.
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CARRA The essential characteristics of the Arctic-specific, regional reanalysis
CARRA are presented in Section 3.1.2 of the publication in Chapter 2. From the
three reanalysis products investigated in the publication,CARRA has the highest
spatial resolution of 2.5 km and a substantially higher temporal resolution than
Sentinel-1 (3-hourly vs. 1-2 times in 2 days). That and its enhanced performance
in the Arctic regions made it a solid choice for the purposes of this project.
We use output data from the CARRA reanalysis for the same period of time
as Sentinel-1 OWI, February 2021 until December 2023, at its full temporal
resolution (output every 3 hours), including the variables 10mwind speed,10m
wind direction, surface pressure, and 2 m air temperature. The downloaded
data has a spatial resolution of 2.5 km × 2.5 km and each file covers the same
area of roughly 400 km × 400 km including the Goliat station, meaning each
file contains 160 × 160 grid points.

Ground truth data To enable the model to learn from observational rather
than model output data, the ground truth data was constructed using the
Sentinel-1 OWI component. Due to the satellites’ varying orientation as they
pass over our area of interest, the geographical locations of the grid points
vary with each SAR scene. Since we are trying to fill the temporal gaps in-
between SAR scenes, the model will be expected to predict a high-resolution
wind field for a particular geographic area without a corresponding SAR scene
for comparison. Consequently, the ground truth data was fitted to an output
grid of 51 × 51 grid points around the Goliat station with fixed geographical
locations, maintaining Sentinel-1 OWI’s spatial resolution of 1 km × 1 km.
For each available SAR scene, a linear interpolation was performed using the
four closest neighbours of each output node within the SAR grid, interpolating
the given wind speed values. Before conducting the nearest-neighbour search,
all parts of the SAR scene that were more than 2.5 km away from the outer
edges of the output grid were masked out to reduce runtime. Finally, the wind
speed values were normalized by dividing by 25 m/s, the maximum output
value of the Sentinel-1 OWI component.

One might question, why not use a larger output grid? After all, 51 km×51 km
does not represent a very large offshore area; and the SAR scenes cover areas
of up to around 250 km in width, with over 40, 000 grid points instead of
2, 601. For meaningful interpolation of a ground truth wind field, the Sentinel-
1 scene must fully cover the output grid. However, as the coverage of Sentinel-1
scenes varies, increasing the grid size would result in fewer scenes overlapping
entirely with the output grid, rendering them useless for training. From an
initial collection of 832 Sentinel-1 SAR scenes between February 2021 and
December 2023 that overlap with the Goliat station, only 548 scenes overlap
with at least 49 out of the 51 rows or columns of the output grid. This constraint
reduces the already small dataset available for model training by approximately
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35%. Luckily, this issue will simply be solved over time as the amount of
Sentinel-1 OWI data increases daily, gradually expanding the available dataset
for training.

Lastly, although the wind direction is provided alongside the wind speed in the
Sentinel-1 OWI component, we decided to only predict the spatially distributed
wind speed. As of today, SAR-based wind retrieval methods are insufficiently
capable of retrieving an accurate estimation of the wind direction and thus rely
on wind direction information from NWP models. Despite the higher spatial
resolution of the Sentinel-1 data, this causal relationship between the twomakes
the prediction of wind directions based on the SAR data superfluous.

4.1.2 Preprocessing

Given that meteorological variables like wind speed, temperature, and pressure
are inherently positive, it seems appropriate to normalize them to the [0, 1]
range, as this best reflects their original values.
Within the CARRA files, all values for surface pressure and 2 m temperature
were normalized using their global minimum and maximum values. All wind
speed values were capped at 25 m/s, as Sentinel-1 OWI values cannot exceed
that value anyway, and then wind speed was normalized in both Sentinel-1
and CARRA files by dividing by 25, resulting in wind speed values between 0
and 1. Although wind directions are of course circular in nature, this cannot
be represented properly by any interval in R. The wind direction values in the
CARRA files were therefore normalized by dividing by 360, again resulting in
values between 0 and 1.

4.1.3 Graph Structure

The model operates on a graph 𝐺 = (𝑉 CARRA,𝑉 out, 𝐸CARRA, 𝐸out, 𝐸CARRA→out).
The features and edge weights are time step dependent, meaning a graph
𝐺 = 𝐺 (𝑡) is constructed for each time step 𝑡 . Graphs of different time steps are
not connected. The following paragraphs describe the individual components
in detail and Figure 4.2 illustrates the structure of a graph 𝐺 (𝑡) schemati-
cally.

CARRA nodes CARRA nodes 𝑣CARRA
𝑖

∈ 𝑉CARRA represent the larger grid of
160× 160 = 25, 600 nodes as spanned by the CARRA reanalysis, with a spatial
resolution of 2.5 km × 2.5 km. CARRA nodes contain the four features wind
speed, wind direction, surface pressure, and 2 m air temperature, as provided
by the reanalysis for a given time step 𝑡 .
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Figure 4.2: Illustration of the input graph structure. The two node types are shown on the left
(CARRA) and right (output). The longer cuboids of the CARRA nodes represent feature vectors
vs. the scalar output nodes shown as circles. The homogeneous edge types created via kNN
search are schematically shown in black for both subgraphs. The heterogeneous edges going
from CARRA to output nodes are schematically shown in orange. Note that one CARRA node
may be connected to several output nodes, and vice versa, as illustrated by the light orange
edges.

Outputnodes Output nodes 𝑣out𝑖 ∈ 𝑉 out represent the small grid of 51×51 =

2, 601 points centered around the Goliat station, with a spatial resolution of
1 km × 1 km. They have no features associated with them, but for implemen-
tation purposes of the message passing have been initialized with one feature
that is set constant.

In contrast to many other graphs commonly used in the context of GNNs,
the graph nodes in this case have geophysical meaning and are thus tied to
geographical locations. In addition to the node type and edge type dictionary
items, the latitudes and longitudes of the individual subgraphs’ nodes are stored
as a separate dictionary item so as to not confuse them for features.

CARRA edges 𝐸CARRA contains the undirected edges on the CARRA sub-
graph, i.e. edges that connect two CARRA nodes 𝑣CARRA

𝑖
and 𝑣CARRA

𝑗
. For each

CARRA file, edges are created using a k-nearest-neighbour (kNN) search with
𝑘 = 4 (or 𝑘 = 8), resulting in 76, 8001 CARRA edges for each time step. As the
CARRA nodes are arranged in a regular grid, the four nearest neighbours of
most nodes will be those directly “above, below, left, and right” of it, so the

1. This number is much smaller than 4 · 25, 600 = 102, 400 since in an undirected graph, the
edges {𝑣𝑖 , 𝑣 𝑗 } and {𝑣 𝑗 , 𝑣𝑖 } are not distinct and thus only count for one edge.
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distances spanned by most edges will be roughly the same; 2.5 km. The CARRA
edges are therefore unweighted.

Output edges The edges on the output subgraph, 𝐸out, share most of those
characteristics. They are also undirected and unweighted, and each output
node is connected to its four nearest neighbours, resulting in 10, 404 output
edges.

CARRA-to-outputedges Lastly,𝐸CARRA→out contains the directed,weighted
edges pointing from source nodes within the CARRA subgraph to target nodes
within the output subgraph. An edge is added if the distance between a CARRA
node and an output node is less than or equal to 2.5 km. Due to the regular
distances within both grids, this procedure ensures that each output node is
adjacent to at least one CARRA node, allowing for sufficient message passing
from one to the other subgraph. As the geographical distances spanned by this
edge type may be anything between 0 and 2.5 km, edge weights are stored
with them, containing the inversed, normalized distances. Depending on the
time step, 𝐸CARRA→out contains 8317 or 8310 edges2. On average, each output
node is therefore connected to roughly 3.2 CARRA nodes.

4.2 Model Setup

4.2.1 Implementation

All code for this thesis project was written in Python. Several Python libraries
are available that allow the implementation of sophisticated deep learning
networks with only a few dozen lines of code; here, PyTorch was used [31].
PyTorch Geometric (PyG) provides a convenient framework for the implemen-
tation of GNNs [9]. Some components of the graphs and ground truth data
were computed with scikit-learn [33]. All trainings were run on a MacBook Pro
2021 (M1), so the computational power available was very limited, presupposing
efficient implementation and coding practices.

4.2.2 Architecture Overview

For forecasting purposes, GNNs are commonly built in an “encode-process-
decode” configuration: first, the input graph 𝐺in is transformed into a latent
representation 𝐺0 by an encoder, another transformation is then applied to

2. This difference is the result of a slight shift of the latitudes and longitudes of the CARRA
grid points after June 30th, 2022.
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𝐺0 𝑀 times to return 𝐺𝑀 , which is then decoded into an output graph 𝐺out
[2, 17, 20].

Here, this approach is modified slightly as our interest is not to forecast wind
fields but to downscale them from the coarser CARRA grid onto a different,
finer grid. We therefore skip the “decode” part of the process and remain
with a “(process)-encode-process” architecture. Depending on the experiment,
one or more message passing layers first operate on the input graph 𝐺in =

(𝑉 CARRA, 𝐸CARRA). Then, a single message passing step over the CARRA-to-
output bipartite subgraph (𝑉 CARRA,𝑉 out, 𝐸CARRA→out) is performed, encoding
the (representation of the) CARRA input subgraph and creating the latent
representation on the output subgraph, 𝐺0 = (𝑉 out, 𝐸out). This representation
is then processed by a number𝑀 of message passing layers, varying the number
of channels, to produce the final output graph 𝐺𝑀 = 𝐺out, with one feature
dimension representing the wind speed.

The message passing schemes chosen for this purpose are of convolutional
nature. The operator conv.GCNConv from torch_geometric.nn [36] was
used for neighbourhood aggregation on the homogeneous subgraphs 𝐺CARRA
and 𝐺out. Although it provides more numerical stability (see Section 3.2) it
does not support the handling of bipartite graphs3, rendering it unsuitable
for the message passing from the CARRA to the output subgraph. Therefore,
the conv.GraphConv layer from torch_geometric.nn [37] was used as an
encoder. Lastly, a linear transformation (torch_geometric.nn.Linear) was
applied to reduce the number of features to one for the final output. After every
layer except the last one, the rectified linear unit (ReLU) activation function
was applied to introduce non-linearity to the function modeled by the network
and to ensure the output values of hidden layers are between 0 and 1.

4.2.3 Training Details

Regardless of their exact architecture, the training objective of all GNNs is
defined as the mean squared error (MSE) between the ground truth values and
the predicted values for the normalized wind speed on the output grid:

LMSE =
1

2601

2601∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2, (4.1)

3. Looking at Eq. 3.6 we see that, if the adjacency matrix is no longer square (due to different
numbers of nodes in 𝑉 CARRA and 𝑉 out), this expression is no longer valid, as the square
root and inversion of matrices is only defined for square matrices. Furthermore, self-loops
cannot be added when the sets of source and target nodes are not the same.
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where 𝑦𝑖 and 𝑦𝑖 are the ground truth and the predicted wind speed value
for node 𝑣𝑖 , respectively. The model was then trained to minimize this loss
using the Adam optimizer for backpropagation of the gradients and update the
network weights. Adam was chosen for its adaptive learning rate capabilities
and computational efficiency.
Prior to training, the weights were initialized using the He Kaiming method,
due to its compatibility with ReLU activation functions. The learning rate
was set between 0.001 and 0.0002, depending on the specific experiment.
This range was chosen to balance the convergence speed and stability of the
training process. The dataset was randomly split into training, validation, and
test sets with a ratio of 80%/10%/10%. Random splitting was used to prevent
potential temporal biases from using consecutive time steps and to ensure a fair
evaluation of the models’ performances across different data subsets.



5
Results and Discussion
This chapter reports on the results of the experiments with GNNs. The results
from the publication on the comparison of Sentinel-1 OWI versus in situ obser-
vations and reanalyses can be found in Chapter 2 and will not be repeated here.
There is no strict separation between results and discussion in this chapter as
they go hand in hand in this rather conceptual work.

Training a neural network is mathematically equivalent to a non-convex opti-
mization problem. The objective of the network is to minimize the loss, which
depends on a large number of parameters. One could imagine the training
process as a marble moving on the loss surface in the high-dimensional param-
eter space, pushed down-slope by the optimizer; its trajectory often navigating
around local maxima and minima while aiming to find the global minimum.
Whether a neural network can be trained for a given task highly depends,
among other factors, on a variety of architecture design choices. The number
and order of layers and channels, choice of activation function, loss function,
optimizer, weight initialization method, and learning rate can substantially
impact the structure of the loss surface and the learning process. As a neural
network grows deeper or wider and thus, more parameters are added to the
model, the loss surface generally becomes more complex and “sharp”, increas-
ing the chances of getting trapped in a local minimum. However, the exact
nature of how the above-mentioned design choices affect the training perfor-
mance are unfortunately unclear [22].
In that sense, finetuning a deep learning network for optimal performance on
a given task becomes an empirical science, despite the mathematical nature
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of the network. If the computational resources allow for it, the easiest way of
finding the best possible choice for a design parameter may just be through trial
and error, which is what was considered best in this context of a preliminary
methodology evaluation.

Table 5.1 and Table 5.2 provide an overview of some of the tested architecture
and training configurations, respectively. Some factors are not mentioned in
the table because they were identical for all configurations: the MSE loss func-
tion, ReLU activation function, the Kaiming weight initialization method, the
optimizer Adam, a batch size of 1 (necessary due to differences in graph dimen-
sions), and the single GraphConv layer from CARRA to the output subgraph.
In the following, we will evaluate pairs of network configurations by means
of their loss curves, i.e. the development of training and validation losses over
training epochs, and look at some examples of their respective predictions on
the test data.
More network configurations were trained in the process of this project butwere
not deemed worth mentioning in this thesis, as their behaviour was as expected.
The four configurations discussed here were selected for explicit comparison
of individual parameters which will be discussed in the following.

version
number of GCN layers number of neighbours

on CARRA on output CARRA output

V1 3 6 8 8
V2 3 6 4 4
V3 4 2 4 4
V4 2 3 4 4

Table 5.1: Architecture design parameters for the presented selection of network configurations.
"Number of neighbours" corresponds to the chosen values for 𝑘 in the kNN graph constructions.
The highlighted version V4 is investigated in more depth in this chapter.

version hidden channels learning rate epochs

V1 64 0.001 100
V2 64 0.0002 500
V3 64 0.0005 500
V4 64 0.0005 500

Table 5.2: Training parameters for the presented selection of network configurations. Other
parameter choices were identical for all versions; loss function: MSE, activation function: ReLU,
weight initialization: Kaiming method, optimizer: Adam, batch size = 1. The highlighted version
V4 is investigated in more depth in this chapter.
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5.1 Over-Smoothing and Connectivity

A major difference between training performances and generalization ability
(on the validation set) can be seen when the connectivity or the number of
GCNConv layers operating on the CARRA and the output subgraphs changes.
Figures 5.1 and 5.2 show the loss curves of the four selected network trainings.
The most obvious deficit can be seen in Figure 5.1a, the loss curve of network V1
which was trained on the 8NN-subgraphs1 of CARRA and output as compared
to the 4NN-subgraphs that were fed to the other three networks. This higher
level of connectivity resulted in a degeneration of learning capability; although
the loss decreased in the first epoch, it almost immediately stagnated around
a much higher value than the other configurations trained on 4NN-subgraphs.
The second difference between network V1 and the others is the higher initial
learning rate lr = 0.001, but the same value was used for the preliminary
assessment of the learning behaviour of all network configurations and worked
fine in all other cases. It is therefore unlikely that the failed training is a result
of the initial learning rate being too high.

The remaining three configurations differed mainly in their number of GCN-
Conv layers: network V2 has 3/6 layers on the CARRA and output subgraphs,
respectively, network V3 has 4/2, and network V4 has 2/3. All other parameters
except a small change in the initial learning rate of network V2 are identical.
All three graphs clearly display learning of the networks, since both training
and validation loss decrease for all configurations. The development of the
training loss is indeed very similar for all networks, dropping dramatically after
the first epoch and continuing to decrease with an increasingly shallow slope
down to a value of 0.0065 − 0.0068 after 500 epochs. The validation loss on
the other hand displays distinctly different behaviour: For configuration V2, it
decreases only until epoch 60 and then remains relatively constant, at a much
higher loss of almost 0.010. For configuration V3, it decreases, but with a more
shallow slope, and finishes after training around 0.008. For configuration V4,
the validation loss decreases together with the training loss, and stagnates
only after around 300 epochs. Its final loss value is roughly 0.007 and thus
much closer to the final training loss, indicating better generalization. Table
5.3 summarizes the post-training losses of the four configurations.

This is no surprise, as the over-smoothing tendency of deep GNNs (so, GNNs
with more stacked layers) is a well-known problem in literature and can be
hard to overcome [5, 23, 50]. Although the configuration with fewer layers
seems to perform better here, too, we should keep in mind that the number of
layers also limits how far information can “travel” within the graph while being
fed forward in the network; i.e. for two GCNConv layers on the CARRA 4NN-

1. 8NN (and 4NN) is short for kNN (𝑘 nearest neighbours) with 𝑘 = 8 (or 𝑘 = 4).
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(a) Training and validation loss curves of network configuration V1, with 3 GCNConv layers on
the CARRA and 6 GCNConv layers on the output subgraph, operating on 8NN-subgraphs
instead of 4NN. Note the different scale of the vertical axis in this graph compared to the
others. Since the learning did not progress after the first epochs, the training was aborted
after 100 instead of 500 epochs.

(b) Training and validation loss curves of network configuration V2, with 3 GCNConv layers on
the CARRA and 6 GCNConv layers on the output subgraph.

Figure 5.1: Comparison of loss curves for the network configurations V1 and V2. The main
difference was in the graph setup; V1 operated on 8NN-subgraphs of CARRA and output, V2 on
4NN-subgraphs.
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(a) Training and validation loss curves of network configuration V3, with 4 GCNConv layers on
the CARRA and 2 GCNConv layers on the output subgraph.

(b) Training and validation loss curves of network configuration V4, with 2 GCNConv layers on
the CARRA and 3 GCNConv layers on the output subgraph.

Figure 5.2: Comparison of loss curves for the network configurations V3 and V4 that differed
in the number of GCNConv layers applied to the CARRA and output subgraphs. Although both
graphs display learning, V4 shows better learning and generalization behaviour.
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version train loss val loss

V1 0.02124 0.02704
V2 0.00680 0.00970
V3 0.00658 0.00812
V4 0.00650 0.00672

Table 5.3: Training and validation losses of the four network configurations after training. The
best-performing network V4 is highlighted. The average MSE loss of a linear interpolation of
the CARRA values is 0.01322.

subgraph, one GraphConv layer from CARRA to output and three GCNConv
layers on the output 4NN-subgraph, information from one CARRA node can be
passed a maximum distance of (2.5+2.5+2.5+1+1+1) km = 10.5 km across
the geographical area covered by the graph nodes2. In this case, no CARRA
node that is further than 3×2.5 km away from any output node will contribute
at all to the final prediction, and the prediction from medium- to large-scale
features of the wind field (relative to the size of the output grid) may not be
possible unless they are already present in the CARRA wind field.

This illustrates that a bigger number of layers, or the ability to propagate
information over larger areas within the graph, may be beneficial to our use
case. A number of methods have been proposed to mitigate the problem of
over-smoothing in deep GNNs or overcome the localized nature of shallow
GNNs, e.g. co-training and self-training [23], topology-based regularization
[5], or skip connections [50]. In this context, adding skip connections may
allow for more effective networks and should be considered for future work.
Nevertheless, the average MSE between linearly interpolated CARRA wind
fields and the true wind fields is 0.01322, which compared to the validation
losses in Table 5.3 shows that some of the GNN configurations evaluated here
improve the small-scale representation, albeit not exhaustively.

5.2 Spatial Variability

For better visualization of the problem, Figure 5.3 shows four predictions of
network V4 based on previously unseen data sampled from the test set. Due
to the slightly better performance of this network compared to the others, the
following results will be shown for this configuration only to stay concise.

2. This is only true formost nodes: In the case of an output node that is part of the outer edge
of the output grid and thus connected to “diagonal” neighbours, up to one connection
within the output grid can span 2 km and up to two can span

√
2 km.
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(a) May 1st, 2021 at 16:00 UTC

(b) September 16th, 2021 at 5:00 UTC

(c) October 23rd, 2021 at 16:00 UTC

(d) November 11th, 2021 at 5:00 UTC

Figure 5.3: Wind fields drawn from CARRA (left), as predicted by the model V4 (center), and
the true wind field interpolated from Sentinel-1 SAR data (right), for a subset from the test data.
All tiles display the same geographical area, 51 km×51 km around the Goliat station. One value
in CARRA corresponds to an area of 2.5 km×2.5 km, whereas one value in the prediction or the
truth corresponds to 1 km × 1 km, hence the difference in resolution. Note that the normalized
wind speed is displayed, 1 on the colourmap corresponds to 25m/s.
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On the left of each subfigure, the CARRA input wind field is shown, the center
tile shows the wind speed prediction of the model on the finer output grid and
on the right, the ground truth wind field on the output grid as interpolated
from the Sentinel-1 data is shown.
Independently from the quality of the prediction, the increased spatial reso-
lution drastically improves the rendition of the wind field. The CARRA wind
field tends to be quite smooth and often almost constant in this area. Only
two out of the four shown CARRA scenes display any discernible features
(top and bottom). The interpolations of the SAR scenes, on the other hand,
although containing a similar range of wind speeds per time step as the CARRA
scenes, display much more spatial variability and features in the wind field
that sometimes only span a couple of “pixels” or, in this context, nodes. The
predictions by the GNN configuration V4 fail to replicate the precise locations
and arrangements of those structures. But, at least to the human eye, they
clearly show much more similarities to the ground truth data than a simple
interpolation of the CARRA wind field would, for example.

The improved spatial variability and presence of small-scale details is exactly
what we aim to reproduce with the GNN, but quantifying their presence is not
straightforward. The easiest way to at least compare the range of wind speeds
present in individual predictions is to compute themean and standard deviation.
Figure 5.4 shows examples of the wind speed histograms of CARRA, the model
prediction, and the ground truth, for four time steps sampled from the test data.
The plots only accumulate the wind speeds within the geographical area of the
output grid. Due to its lower spatial resolution, the total number of points in
the CARRA data is therefore lower than those of prediction and ground truth.
The normalized values for mean wind speed and standard deviation are shown
individually for each plot.
Although this is just a subset of the data and not representative, the figures
indicate that in these cases, the standard deviations of the predicted wind
speeds is much closer to the true value than to the CARRA value. If there are
distinct differences in the appearance of the wind speed distributions of CARRA
and ground truth, like in Figures 5.4a and 5.4b, the predicted distributions
have more similarity in shape to those of the true distributions vs. those of
CARRA.

As discussed in more depth in the publication in Chapter 2, distributions rep-
resenting long time series of wind speed measurements tend to have distinct
shapes and can therefore readily be quantified and compared. Unfortunately,
this is not the case here. As any of these scenes only capture a short moment in
time and a very limited area of the Earth’s surface, their wind speed histograms
cannot be considered representative of a probabilistic distribution. The calcu-
lation of Weibull parameters would therefore be meaningless, and the values
for mean and standard deviation have to be interpreted carefully.
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(a) March 28th, 2021 at 5:00 UTC

(b) December 5th, 2021 at 5:00 UTC

(c) August 25th, 2022 at 16:00 UTC

(d) November 30th, 2022 at 5:00 UTC

Figure 5.4: Histograms of the wind speeds of individual time steps within the geographical area
of the output grid. From left to right: the wind speeds from the corresponding CARRA time step,
the wind speeds as predicted from network V4, and the wind speeds as present in the Sentinel-1
interpolation. Note that CARRA’s spatial resolution and therefore its total number of points is
lower than that of model prediction and ground truth.
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(a) The differences in mean wind speed between the true wind field and
the CARRA wind field (blue) and the predicted wind field (orange) for
individual time steps. Computed on the test data with network V4.

(b) The differences in wind speed standard deviation present in the true
wind field minus CARRA wind field (blue) and minus the predicted
wind field (orange) for individual time steps. Computed on the test
data with network V4.

Figure 5.5: Histograms comparing the mean wind speed and standard deviation of CARRA and
the model prediction to those of the ground truth. Computed for all time steps of the test data,
on the area of the output grid.
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Figure 5.4 shows the histograms of the differences in mean wind speed (top)
and standard deviation (bottom) between the truth and CARRA (blue), and
between truth and prediction (orange), for all data from the test set. We should
note that, containing only 56 (approx. 10% of 548) samples, this set is still not
representative. Nevertheless, we can observe that both histograms are in the
same range of values, indicating that on average, the GNN configuration V4may
not lead to an improvement. In Figure 5.5, the differences in standard deviation
between truth and CARRA seem to have their maximum on the positive side.
The differences in standard deviation between truth and prediction on the
other hand seem to be more centered, which would indicate that the widths
of the predicted wind speed distributions do not have a clear tendency to be
smaller than the ground truth. However, this conclusion cannot confidently be
drawn from this sample; more data would be needed.

5.3 Data Availability and Generalization Issue

When neither the dataset nor the network design have been previously estab-
lished, it is difficult to infer whether the failure of network training is due to
the dataset, the network design, or the task itself. By changing one network
parameter at a time and comparing the models’ relative performances, we can
draw some conclusions about which parameter choice might be better. But if
the dataset available for training is simply not representative of the collection
of possible states, generalization becomes logically impossible (see Section 3.3).
That is almost certainly the case here: A total of 548 CARRA and SAR scenes
cannot possibly capture the whole picture of how any weather situation will
influence the wind field.

Consequently, none of these results give a clear answer to the most essential
question of whether our problem statement is well-defined in the first place.
Does a preferably invertible function exist that maps the information contained
in our (single-level, four meteorological variables) CARRA data to the corre-
sponding high-resolution SAR wind field? If there is no such function and the
problem is ill-defined, then no network finetuning or data accumulation will
help the case.



6
Conclusions
The following paragraphs will conclude the findings presented in this thesis
with regard to the two project phases and their respective research questions
as stated in Chapter 1, followed by a brief evaluation and outlook.

6.1 Data Exploration

SAR-based offshore wind retrieval methods demonstrated a high spatial reso-
lution and level of detail that may prove particularly advantageous for offshore
wind resource assessment. The results from the publication indicated that SAR
data can indeed compete with reanalysis products and in situ observations over
the long term in the representation of wind resources. However, the temporal
resolution of SAR data can remain a limitation e.g. in areas with pronounced
diurnal variability, as it does not provide continuous coverage, which is crucial
for comprehensive and accurate wind resource assessments.

The currently available SAR wind data, while providing high spatial resolution,
was found to be insufficiently comprehensive as a standalone training source for
GNNs. As an emerging technique for wind retrieval, products like the Sentinel-1
OWI component are only available for the last few years, aggravating its limited
temporal coverage. But the datasets are growing, and it is therefore still worth
taking the first steps now down the avenue of SAR-data-informed deep learning
for wind resource evaluation.
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Translating SAR wind data into a graph structure that facilitates physically
consistent message passing in a GNN is a challenging task. Reducing a three-
dimensional, dynamic fluid system to a two-dimensional, small-area, discrete
grid inevitably results in some loss of information. While the graph structure
used here enabled localized message passing, it did not incorporate long-range
connections.

6.2 Graph Neural Networks

While GNNs are theoretically well-suited for modeling complex systems like
weather on non-Euclidean domains, their practical application is not straightfor-
ward. The results suggest that simple GNN architectures may not be sufficient
for this task. More sophisticated architectures might be necessary to capture
both spatial and temporal dependencies effectively.

The experiments with simple GNN architectures showed that while they can
generate reasonable two-dimensional near-surface wind fields, the level of de-
tail did not consistently match that of SAR observations. The models struggled
with accurately capturing the fine-scale variations present in the SAR data,
indicating that more sophisticated architectures or additional data inputs are
necessary to achieve higher accuracy.

It was demonstrated that network parameters and architecture choices signifi-
cantly impact the performance and accuracy of GNNs for wind field prediction.
Variations in the number of layers, along with the setup of the graph structure,
influenced the model’s ability to learn from the data and generalize to unseen
conditions. These results underscore the importance of careful design and
tuning of GNN configurations to optimize their performance for this specific
application.

6.3 Epilogue

This research marks an early step in the application of GNNs for offshore wind
prediction. As part of an interdisciplinary project in its initial stage—aiming
to combine renewable energy and boundary layer meteorology with deep
learning—, significant time was dedicated to literature research and discussion
in both disciplines to develop comprehensive understanding of the possibilities
of this integration. While this foundational work provided valuable insights and
a strong knowledge base, it naturally limited the scope for extensive original
research.
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Nevertheless, this work addressed the research questions andmade preliminary
conclusions, which was the primary aim. Moving forward, the project group
could benefit from the findings presented here by exploring any of the following
directions:

• Considerations toward the inclusion of long-range spatial dependencies
within the input graph without risking over-smoothing, by modifying the
graph setup and refining the GNN architecture design. Existing research
proposes a variety of methods for this purpose, e.g. by implementing
skip connections [50] or an improved type of GCN layer [52].

• Improved GNN performance evaluation tailored to the characteristics of
our requirements. Especially the reproduction of physical details present
in the SAR data should be evaluated in more detail, i.e. through spatial
statistics, and the suitability of the chosen loss function for this task
should be determined.

• Expanding the training dataset, e.g. by learning wind fields for more than
one location, thus having access to more SAR scenes, or by incorporating
additional data, either observations for ground truth or adding more
variables or levels to the CARRA input data.

Lastly, the fundamental purpose of this work as a Master’s thesis was to de-
termine the depth of my understanding, knowledge, and competence in my
field of studies. In that sense, this project proved invaluable to me as a young
researcher. I had the chance to conduct both collaborative and independent
research, contribute to original findings, and navigate the ups and downs of
peer-reviewed publishing. This experience has not only strengthened my ex-
pertise but also prepared me for future challenges and opportunities in the
field of atmospheric sciences and beyond.
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