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Histological Hyperspectral 
Glioblastoma Dataset 
(HistologyHSI-GB)
Samuel Ortega   1,2,3,7 ✉, Laura Quintana-Quintana   2,7, Raquel Leon   2,7,  
Himar Fabelo   2,4,5, María de la Luz Plaza6, Rafael Camacho6 & Gustavo M. Callico   2

Hyperspectral (HS) imaging (HSI) technology combines the main features of two existing technologies: 
imaging and spectroscopy. This allows to analyse simultaneously the morphological and chemical 
attributes of the objects captured by a HS camera. In recent years, the use of HSI provides valuable 
insights into the interaction between light and biological tissues, and makes it possible to detect 
patterns, cells, or biomarkers, thus, being able to identify diseases. This work presents the 
HistologyHSI-GB dataset, which contains 469 HS images from 13 patients diagnosed with brain 
tumours, specifically glioblastoma. The slides were stained with haematoxylin and eosin (H&E) 
and captured using a microscope at 20× power magnification. Skilled histopathologists diagnosed 
the slides and provided image-level annotations. The dataset was acquired using custom HSI 
instrumentation, consisting of a microscope equipped with an HS camera covering the spectral range 
from 400 to 1000 nm.

Background & Summary
Hyperspectral (HS) imaging (HSI) is a technology able to measure both the spatial and spectral information of 
objects or substances, combining the features of spectroscopy and digital imaging in a single imaging modality. 
Because the absorption, reflection, transmission and scattering of light are unique to each material, this technol-
ogy allows non-invasive identification of materials. The first use of HSI was for the remote sensing exploration of 
the Earth’s surface in the 80s1. In recent years, this technology has been extended to a wide range of applications, 
such as precision agriculture2,3, food quality inspection4–6, industrial sorting of materials7,8, art conservation9,10, 
or forensic sciences11,12. In medicine, recent research has proven HSI technology to be useful for different clinical 
applications13,14, for example, as a surgical guidance tool15,16, as a tool for early diagnosis17–19, or as a technology 
able to measure different biochemical parameters that can be useful for medical practitioners20–23.

Digital and computational pathology techniques are intended to provide pathologists with a tool for the 
quantitative analysis of pathological specimens, reducing inter-observer variability among different patholo-
gists and saving the time of manual examination of histological specimens24,25. Recently, some researchers have 
investigated HSI as a suitable technology for computational pathology in various fields, such as digital staining, 
colour enhancement, standardization of pathological slides or the exploitation of autofluorescence or immuno-
histochemistry of histological slides26. However, the primary use of HSI in computational pathology is currently 
in diagnostic research for routine clinical practice. In this context, recent applications have been focused on the 
diagnosis of cholangiocarcinoma27,28, head and neck squamous cell carcinoma29, membranous nephropathy30, 
breast cancer31, or the classification of leukocyes32,33, among others.

The workflow in HS computational pathology research usually involves digitizing the histological slides 
using HSI instrumentation and extracting information from the HS images that could be useful for diagnostic 
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purposes using various image processing methods. Although a wide variety of techniques are used in the lit-
erature to this end, it is difficult to compare the different approaches fairly, mainly due to the lack of publicly 
available datasets34.

In this work, we provide a publicly available dataset of HS images of haematoxylin and eosin (H&E) stained 
histological slides corresponding to brain tumours, specifically Glioblastoma (GB)35,36. To the best of our knowl-
edge there are other databases related to gastric cancer but, this is the first publicly available dataset of HS brain 
histological images35. This dataset is composed of 469 HS images from 13 different patients, with image-level 
annotations for two different classes (non-tumour or tumour) according to the manual examination of the 
histological samples. The HS images cover the spectral range from 400 to 1000 nm and were taken at 20× mag-
nification. On the one hand, this dataset can be relevant for researchers interested in HS image classification 
and other HS image processing techniques, such as spectral unmixing or HS data compression. This dataset was 
acquired by our research group and all HS images were employed to train different classification algorithms for 
GB detection which were presented in previous research work36–38. In this manuscript, we exclusively present 
the curated version of the dataset, from which artifacts and labelling errors found in previous publications have 
been eliminated. Besides the proposed classification techniques, a broad range of potential methods could be 
explored to evaluate the effectiveness of HSI in enhancing the performance relative to the outcomes obtained 
with RGB (Red-Green-Blue) images. On the other hand, this dataset can be used by researchers in the field of 
computational pathology and pathology practitioners to envision the possibilities of this technology for routine 
clinical practice. In this work, we provide a repository with the HS data, its homologous RGB image and, a snap-
shot of the original slides showing the region of interest for each HS image. We also provide a comprehensive 
explanation of the microscopic HS system, its quality validation process, and how the dataset is organized.

Methods
This section provides a detailed explanation of the methodology employed in previous works36–38, This includes 
a description of the methods used for collecting histological samples, an overview of the microscopic HS system, 
and the process of acquiring and processing the HS data.

Histological samples description.  The research conducted in this study employs human biopsies 
extracted during brain tumour resection procedures (Fig. 1a). This research involved participants who were 18 
years of age or older, all diagnosed with primary brain tumours and undergoing neurosurgical procedures at the 
University Hospital of Gran Canaria Doctor Negrín (Las Palmas de Gran Canaria, Spain). Prior to their involve-
ment in the study, each participant provided written informed consent, which explicitly authorized the publica-
tion of any images or data obtained during the study. The Research Ethics Committee of the University Hospital 
of Gran Canaria Doctor Negrin (Comité Ético de Investigación Clínica-Comité de Ética en la Investigación, 
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Fig. 1  Graphical abstract of the methodology followed. (a) Resection procedure. (b) Macroscopic annotations 
of the GB locations. (c) HS data capture using a microscopic HS system. (d) ROI selection. (e) Dataset 
summary.

https://doi.org/10.1038/s41597-024-03510-x


3Scientific Data |          (2024) 11:681  | https://doi.org/10.1038/s41597-024-03510-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

CEIC/CEI) approved the study protocol and consent procedures (reference 130069). All research procedures were 
conducted in strict compliance with applicable guidelines and regulations. The pathological slides used in this 
research were processed and analysed in the Pathological Anatomy Department of the same hospital. After the 
tumour tissue resection during neurosurgery, the biopsy samples underwent a series of standardized procedures. 
First, the samples were dehydrated to remove the excess of water, as it is immiscible with most embedding media. 
The samples were then embedded in paraffin blocks, mounted on microtomes and sliced into 4 µm thick slices. 
Finally, the slices were rehydrated and stained with H&E, a method commonly used in pathology.

The pathologists involved in the study analysed the stained sections using routine examination techniques. 
Each sample was evaluated and diagnosed as GB (a grade 4 primary brain tumour) according to the 2016 World 
Health Organization (WHO) classification of tumours of the central nervous system39. Macroscopic annotations 
of the GB locations on the physical pathological slides were made using a red marker pen (Fig. 1b). These anno-
tations served as reference points for further analysis. In addition, non-tumour areas, where no discrete pres-
ence of tumour cells was observed, were annotated (blue marker pen) on the histology slides. The pen-marker 
annotations on the histological slide were deliberately outlined with wide borders to maintain a safety dis-
tance between tumour and non-tumour areas. Afterwards, regions of interest (ROIs) were selected from these 
pathologist-annotated areas for further study. These ROIs were subsequently digitized using the microscopic 
HS system (Fig. 1c), allowing for a detailed analysis of their spectral characteristics. Multiple HS images were 
acquired to cover the entire selected ROI. Figure 1d shows an example of the annotations within the pathological 
slide and the selection of different ROIs and the HS images (imaged at 20×). Finally, Fig. 1e summarizes the 
number of HS images acquired for each patient in the HistologyHSI-GB dataset.

Microscopic HS system.  In this study, an HS camera coupled to a conventional brightfield microscope 
was employed to capture the HistologyHSI-GB dataset (Fig. 2). The HS camera (Fig. 2a) is a Hyperspec® VNIR 
A-Series from HeadWall Photonics (Fitchburg, MA, USA), which is based on an imaging spectrometer cou-
pled to a CCD (charge-coupled device) sensor, the Adimec-1000 m (Adimec, Eindhoven, Netherlands). This 
HS camera works in the visual and near-infrared (VNIR) spectral range, from 400 to 1000 nm with a spectral 
resolution of 2.8 nm, sampling 1004 spatial pixels and, 826 spectral channels. The microscope is an Olympus 
BX-53 (Olympus, Tokyo, Japan), with four magnification lenses: 5×, 10×, 20× and 50×. The objective lenses are 
optimized for infrared (IR) observations and the light source is an halogen lamp (Fig. 2b). The HS camera is based 
on a push-broom technique, requiring a spatial scanning to acquire an HS cube. The system employs a mechan-
ical stage (SCAN, Märzhäuser, Wetzlar, Germany) attached to the microscope for this purpose, which provides 
accurate movement in the 3 spatial axes directions (Fig. 2c-d). A more detailed description of the different parts of 
the acquisition system can be found in Table 1. A custom software was developed for synchronizing the scanning 
movement and the HS camera data acquisition. The optimal exposure time was configured to 40 ms (the maxi-
mum allowed by the HS camera). The scanning speed of the microscope platform was adjusted according to the 
ratio of pixel size to exposure time to obtain squared pixels in the resulting HS cubes. Since multiple images were 
captured from each ROI, the software was designed to enable the acquisition of consecutive HS cubes in a row. 
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Fig. 2  Microscopic HS system. (a) HS camera. (b) Halogen light source. (c) Positioning joystick. (d) XY linear 
stage.
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Whenever an HS cube was captured (composed by 800 lines), it was stored in memory while the camera and plat-
form continuing to capture data until several cubes were captured. This approach helps save time during image 
acquisition and minimizes the need for human intervention. To prevent potential degradation of focus or errors 
caused by the platform while moving, the capture of consecutive HS cubes was limited to a maximum of ten.

Data acquisition methodology.  As previously mentioned, relevant areas were identified on the slides and 
highlighted with a pen in blue (non-tumour) or red (tumour). The capture process of a sample starts by selecting 
a ROI, from different non-tumour and tumour highlighted areas, to be imaged. Since cells details are needed for 
further processing, a 20× magnification was chosen to capture the HS images. The coarse focus of the specimen 
(Fig. 3a) is performed using the microscope binoculars. The procedure relies on the user’s subjective criteria. The 
final HS image is brought into focus by examining a specific frame captured by the push-broom camera, referred 
to as the Yλ frame (e.g., Yλ frame extracted from the yellow line in Fig. 3b). The λ axis of an Yλ frame corre-
sponds to the spectral information, while the Y axis represents the spatial information across the field of view 
(FOV) of the camera. The objective is to identify the sharpest spatial frequency along various working distances 
from the sensor to the sample (Fig. 3c shows a focused Yλ frame while Fig. 3d shows an unfocused one). The 
working distance adjustment is performed precisely by using the Z movement with the joystick.

After achieving the optimal focus on the sample, the software was configured to capture several HS images 
consecutively, where the number of images is defined as an input parameter. The number of images should 
be kept relatively low to avoid the focus degradation throughout the specimen, due to the non-flat nature of 
microscopic samples and the platform error/vibration during movement. In this case, a maximum of 10 HS 
images were extracted consecutively from a selected ROI. The dataset was captured with the light power set to 
the maximum (100 W) and the exposure time to 40 ms. At 20× magnification, the pixel size is 0.373 µm, and the 
microscope platform was configured to scan the sample at a speed of 9.325 µm/s. Furthermore, to overcome the 
challenges posed by the high dimensionality of the HS images, the collected cubes were constrained to a spatial 
size of 800 lines, resulting in 1.23 GB data cubes. The HS cubes had a dimension of 800 × 1004 × 826 (number 
of lines × number of rows × number of bands), corresponding to a spatial size of 299 × 375 µm recorded over a 
span of 32 s.

After the HS images were captured, the reference images for calibration were acquired. In HS image pro-
cessing, flat-field calibration is an essential step designed to correct the raw data recorded by an HS system. This 
method corrects the HS data for differences due to the environmental conditions and instrumentation. The 
flat-field calibration makes use of white (WR) and dark (DR) reference images. The WR recording is designed to 
capture data about the HS imaging system under the same conditions used for sample collection, without involv-
ing the sample itself. Therefore, the WR is obtained by scanning a section of the histological slide where no tissue 
is present. Since there is no sample material in such position of the slide, this HS frame contains the maximum 
values that the sensor is able to measure for each pixel and wavelength in the specified capturing conditions 
(exposure time, light intensity, the optical properties of the glass slide, etc.). Afterwards, the DR is captured by 
blocking the light transmission to the HS camera. This HS frame contains the minimum values that the system is 
able to provide for each pixel and band, and also information about the dark currents in the CCD. Ideally, the DR 
values should be very close to zero. However, higher values can be obtained, typically due to the intrinsic noise of 
the sensor. To ensure a robust measurement of the reference images for calibration, 100 Yλ frames are captured 
for both WR and DR, allowing any potential errors to be averaged. These reference images were employed for the 
HS data calibration as detailed in next section. During the acquisition process of the HistologyHSI-GB dataset, 

Component Manufacturer Model Key Parameter

Microscope

Microscope Model

Olympus, Tokyo, Japan

BX-53 Brightfield microscope

Trinocular Tube U-TR30IR-1-2 30° inclination and FN22

Eyepiece WHN10X-H-1-7 Wide field eyepiece FN22

Lenses*
LMPLN-IR 5× and 10×

LCPLN-IR 20× and 50×

Power supply unit TH4 - 200 12 V 100 W

Lamp House U-LH100IR-1-7 Transmittance and reflectance

IR Halogen Lamp Philips, Amsterdam, Netherlands 7724 EVA 400–1800 nm

Stage
Märzhäuser, Wetzlar, Germany

SCAN 130 × 85 3D movement with ± 3 µm resolution

Joystick M-HID-JS-3 Movement in the 3 axes

Camera Adapter Olympus, Tokyo, Japan U-CMAD3-1-7 C-mount

HSI System

HS Camera HeadWall Photonics, Fitchburg, 
MA, USA

Hyperspec® VNIR 
A-Series

Technology Push-broom scanning

Spectral range 400 to 1000 nm

N° of bands 826 bands

Spectral resolution 2.8 nm

Spatial size 1 × 1004 pixels

FPA Detector Adimec, Eindhoven, Netherlands RA1000m CCD with 7.4 μm pixel pitch

Frame grabber EPIX, Inc., Buffalo Grove, IL, USA PIXCI® EL1 PCIe x1 Camera Link Frame Grabber

Table 1.  Description of the HS microscopic system components.
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image-level annotations were applied. These annotations (tumour or non-tumour) remained consistent across 
the entire HS cube, indicating that all data within the cube shared the same annotation.

HS Data calibration.  The goal of the HS microscopic system is to provide a spectral signature per spa-
tial pixel of the captured scene. These spectral signatures indicate the percentage of incident radiation that the 
scanned object transmits or reflects at each captured wavelength. Various factors, including the inherent spec-
tral response of the sensor, the transmission of light through lenses and optical components, and the spectral 
characteristics of the light source influence the spectral response of an HS acquisition system. To obtain spectral 
signatures that accurately indicate the percentage of transmitted or reflected radiation at each wavelength in the 
sample, the HS cubes need to be calibrated. This calibration consists of normalizing the captured HS pixels by 
linearly scaling their values considering the WR and DR. Equation (1) is employed to calibrate the HS data, where 
ri and Rawi refer to each Yλ frame from the calibrated and the raw image, respectively. Figure 4 shows an example 
of how the spectral signatures of different pixels (Fig. 4a) are scaled to transmittance using the aforementioned 
calibration. The shape of the WR and DR is shown in Fig. 4b, and several pixels from a ROI before (Fig. 4c), and 
after calibration (Fig. 4d).

r
Raw DR
WR DR (1)i

i=
−
−

Furthermore, the calibration process also helps to remove the stripping noise effect, which typically appears 
when acquiring HS images using push-broom scanners40. The stripping noise consists in spatially coherent lines 
that appear in the spatial scanning axis due to static artifacts produced in the sensors, which are repeated in each 
push-broom frame, as shown in Fig. 5a. In the calibrated images, the effect of the stripping noise disappears 
(Fig. 5b). The stripping noise is mainly produced due to the fact that different photo-receptors of the sensor have 
slightly different sensibilities, producing slightly different values when measuring exactly the same amount of 
incident radiation. The effect of stripping noise and light influence can also be observed in the synthetic RGB 
shown in Fig. 5c and how this effect disappears after performing the calibration (Fig. 5d).

Greyscale images (Fig. 5a,b) were generated by averaging all spectral bands of the HS image, while the syn-
thetic RGB image (Fig. 5c) was obtained closely mimicking the spectral response of the human eye41. For mod-
elling the human eye spectral response, the method employed the normal probability density function following 
Eq. (2) over the HS data, where μ is the mean (μR = 590, μG = 560, and μB = 470) and σ is the standard deviation 
(σR = 0.08, σG = 0.06, and σB = 0.04). In Fig. 6, we can observe that, after the normal probability density func-
tion, RGB channels take the following central values and bandwidths: R = 590 ± 44 nm, G = 560 ± 79 nm and, 
B = 470 ± 111 nm.
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Fig. 3  Capture process to obtain focused HS cubes. (a) Example of a histology slide with tumour and non-
tumour annotations. The yellow square identifies a ROI where the HS image was captured. (b) Synthetic RGB 
image where the Yλ frame employed to focus the sample is marked in yellow. Examples of (c) focused and (d) 
unfocused Yλ frames.

https://doi.org/10.1038/s41597-024-03510-x


6Scientific Data |          (2024) 11:681  | https://doi.org/10.1038/s41597-024-03510-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

Finally, in order to present some examples of the HistologyHSI-GB dataset, Fig. 7 shows the synthetic RGB 
images, as well as the different calibrated spectral bands found in several HS cubes. The contribution of the sen-
sor noise can be observed in the extreme bands.

Data Records
The HistologyHSI-GB dataset42 has been deposited in The Cancer Imaging Archive (TCIA) repository43 for 
cancer imaging. The dataset is structured in a hierarchy of folders, as shown in Fig. 8. At the top level of the 
hierarchy there is a single folder associated with each one of the patients comprising the dataset. At the patient 
level, the folder names correspond to Pi, where i i{ 1 13}∈ ≤ ≤ . For each patient, we can find several folders 
containing the different HS images for that patient. There is a different number of folders per patient, and the 
name of each folder encodes the information about which ROI of the histological slide the data was acquired 
from (ROI_j) and another field indicating an image identifier within that ROI (Ck). The folders in the image level 
also contain information about the image-level annotations according to the diagnosis, which can be tumour (T) 
or non-tumour (NT). The number of ROIs and image identifiers varies depending on the patient, but the total 
number of images from each class can be found in Fig. 1e. A conventional image of the slide with the macro-
scopic annotations and the location of the different ROIs within the slide is available for each patient (Pi.png).

Finally, each folder within the image-folder level contains an HS image from the histological slide, the nec-
essary files for the calibration (dark and white references), and a synthetic RGB image extracted from the HS 
cube. The HS cubes are stored in ENVI format44 (the standard format for storing HS images). The ENVI format 
consists of a flat-binary raster file with an accompanying ASCII (American Standard Code for Information 
Interchange) header file. A more detailed description of the different files in each image folder can be found 

Fig. 4  Effect of calibration in the spectral signatures. (a) Grayscale image (generated by averaging each  
spectral band) and selecting pixels corresponding to different materials. (b) WR and DR spectral signatures.  
(c) Uncalibrated spectral signatures from the selected pixels. (d) Calibrated spectral signatures from the selected 
pixels. Colours in (c,d) correspond to selected pixels in (a).
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Table 2. The HS cubes from the histological slides and the white and dark references are stored as ENVI files. 
The HistologyHSI-GB dataset comprises 469 images from 13 different patients, where 166 images are labelled as 
tumour, and 303 are labelled as non-tumour.

Technical Validation
A technical validation was accomplished to support the quality of the HistologyHSI-GB dataset. Linear sensor 
systems demonstrate analogous basis functions for both spectral sensitivity and responsivity decomposition45. 
Spectral responsivity refers to the effectiveness of light detection in relation to its frequency or wavelength. 
However, camera channels often exhibit varying sensitivity across different wavelengths due to the spectral 
responsivities of the detectors and the non-uniform output of diffractive or filtering elements46. Proper charac-
terization is essential for ensuring the reliability and accuracy of HS data analysis and interpretation. HS data 
captured for noise quantification and spectral and spatial calibration which are used to perform the technical 
validation (Fig. 9) can be found in a published dataset47.

Signal to noise ratio.  In this section, we present the signal-to-noise ratio (SNR) measurements for our 
instrumentation. We obtained the signal (S) values by capturing images of the light without any sample, similar 
to the procedure used for recording the WR in flat-field calibration. For the noise (N) values, we recorded HS 
images in the absence of light. The SNR was calculated as the ratio between the mean value of S and the stand-
ard deviation of N. These recordings were taken over 100 push-broom frames under the same conditions as the 
image recordings. We calculated the SNR over the entire spectral range for the central pixel of the push-broom 
frame (Fig. 10a), which shows that the SNR exceeds 20 dB over the entire spectral range, peaking 42 dB at 655 nm. 

a b c d

Fig. 5  Examples of the uncalibrated and calibrated HS images. (a,b) grayscale representation generated by 
averaging all spectral bands of the uncalibrated and calibrated HS images, respectively. (c,d) synthetic RGB 
image of the uncalibrated and calibrated HS images, respectively, generated using a model of human eye 
spectral response.
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Fig. 6  Human eye spectral response to light where different colour line represents the normal probability 
distribution function modelling each channel.
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Furthermore, the SNR remains above 30 dB for wavelengths ranging from 448 to 894 nm. The SNR spatial dis-
tribution was also calculated over the camera FOV for different spectral bands (Fig. 10b), showing that SNR is 
evenly distributed over the FOV for the different spectral bands, indicating a uniform spatial distribution.

Spectral characterization.  The WCT-2065 polymer (Fig. 9a), a transmittance wavelength calibration stand-
ard from Avian Technologies (New London, USA), was employed to conduct the spectral characterization of the 
microscopic HS system. It represents an alternative designation for NIST (National Institute of Standards and 
Technology) SRM-2065 standard48. Its purpose lies in facilitating the calibration of spectrophotometers, covering the 
wavelength range of 400–2200 nm. The standard uses a glass filter material that incorporates a combination of rare 
earth oxides. This glass composition includes holmium oxide, samarium oxide, ytterbium oxide, and neodymium 
oxide, which are blended with lanthanum, boron, silicon, and zirconium oxides found in the base glass. The resulting 
combination of these oxides creates a filter material with specific optical properties suitable for calibration purposes.
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Fig. 7  Examples of HS images from the HistologyHSI-GB dataset showing the synthetic RGB images and 
different spectral bands after calibration for tumour and non-tumour samples.
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An HS image of the WCT-2065 polymer was captured using the microscopic HS system and further 
pre-processed. This calibration standard can qualitatively validate the spectral quality of the employed instru-
mentation (Fig. 11). However, a systematic approach is required for a more accurate and thorough calibra-
tion. In order to perform the quantitative validation, the Pearson correlation coefficient (PCC) and root mean 
square error (RMSE) Eq. (3) were employed to measure the difference between two sets of data. PCC measure 
the degree of linear anti-correlation or correlation in the range [−1, 1], where −1 indicates perfectly linearly 
anti-correlated data and 1 indicates perfectly linearly correlated data and it is computed following the Eq. (4). In 
addition, local maxima and minima were found to detect the most significant signal peaks. Thus, similar peaks 
were identified both in the captured image and the reference (represented by red and black crosses in Fig. 11a, 
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Fig. 8  Graphical representation of the HistologyHSI-GB dataset structure.

File name Description

darkReference ENVI binary file containing the dark reference used for calibration.

darkReference.hdr ENVI header for the dark reference.

raw ENVI binary file containing the histological HS data.

raw.hdr ENVI header for the raw file.

rgb.png Synthetic RGB image extracted from the HS cube.

whiteReference ENVI binary file containing the white reference used for calibration.

whiteReference.hdr ENVI header for the white reference.

Table 2.  Brief description of the different files contained in each folder in the dataset.

Fig. 9  Spectral and spatial calibration targets. (a) Certified WCT-2065 polymer. (b) 0.01 mm microscope slide 
reticule.
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respectively), resulting in a mean wavelength difference spectra shift of 6.60 nm between them. Furthermore, 
Fig. 11b shows that the PCC between WCT-2065 and the measured HS peak absorbance values provided good 
value, as well as, it RMSE (PCC = 1 and RMSE = 0.02). Thus, this NIST traceable standard allows accurate and 
reliable measurements of the spectral reliability of the HS acquisition system.
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Spatial characterization.  Spatial resolution, the ability of a camera to capture fine details and distinguish 
between separate objects, is also a critical feature in imaging systems. It determines the smallest size of an object 
that can be recorded. This parameter is essential in applications like histological diagnosis, where identifying 
small details is essential. Accurate spatial resolution characterization enables improved system performance and 
precise analysis in various fields, including histopathology49. Firstly, the camera is manually aligned to capture 
the information properly50. Then, the spatial resolution of the microscopic HS system was evaluated both theo-
retically and empirically. The theoretical calculation of the FOV, shown in Eq. (5), considered factors such as pixel 
size (Ps), number of pixels (N), magnification (Mi), and sensor size (Ss).

FOV Ps N
M

S
M (5)i

s

i
= ⋅ =

An empirical test using a micrometre ruler (Fig. 9b) provides further insight into the spatial resolution capa-
bilities of the cameras. In order to perform this test, a Yλ spatial profile of the ruler (Fig. 12a) and its first deriv-
ative (Fig. 12b) was analysed to determine the mean distance between peaks (local minima peaks signalled with 
red crosses and local maxima peaks with green crosses). The results of the theoretical calculation provide a pixel 
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Fig. 10  SNR of the microscopic HS system: (a) over the spectral range for the central pixel of the push-broom 
frame and (b) its spatial distribution for different wavelengths (blue: 403 nm, orange: 448 nm, yellow: 655 nm, 
purple: 894 nm and green: 997 nm).
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Fig. 11  Spectral characterization of the microscopic HS system. (a) Manufactured certified spectral signature 
of the WCT-2065 polymer (black line) and spectral signature captured by the microscopic HS system (red line). 
(b) Pearson Correlation Coefficient between WCT-2065 and the measured HS peak values.
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size of 0.3700 μm and the empirical one is 0.3697 μm. This method confirmed that the spatial resolution of the 
microscopic HS system matches the theoretical pixel size with an average error of less than 0.0003 μm.

Once the pixel size has been calculated and the camera has been visually aligned, together with the infor-
mation about the mechanical resolution and frame rate of the camera, the required motor rotation speed of the 
mechanical stage is determined. However, an additional analysis was conducted to further improve and verify 
the correct configuration of the scanning parameters. The entire HS acquisition system is considered as a whole, 
including the microscope, camera, and movement mechanism. For this evaluation, the goal is to capture an 
image of a circle printed in a calibration slide (dot target) and evaluate its appearance to identify camera mis-
alignments and suboptimal movement speeds. The circle appears as a perfect rounded circle when captured at 
the correct speed but appears as an ellipse when the speed is too high or too low. While visual inspection pro-
vides a relatively good assessment, an automatic methodology50 is needed for a more precise and rigorous cali-
bration. First, principal component analysis (PCA) is employed to find the directions of the longest and shortest 
axes of the ellipse (φmin and φmax). Then, eccentricity can be calculated following Eq. (6), where a perfect circle 
would provide values close to zero. In our case, the dot target from the calibration slide was captured, and its 
eccentricity was computed providing accurate results (e = 0.176). Thus, the microscopic HS system is properly 
calibrated in the spatial domain, and it is possible to acquire HS images under satisfactory conditions.
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Usage Notes
Recommended pre-processing.  The pre-processing framework applied to each HS cube is based on 
standard calibration and spectral band reduction. First, HS images are transformed from radiance to normalized 
transmittance by calibration. As a result of the strong correlation of spectral information between adjacent spec-
tral bands, we propose to reduce the spectral dimensionality of the original data. A spectrally reduced HS image is 
generated by averaging the spectral bands of adjacent neighbouring bands to perform this band reduction. Using 
a spectral window of three neighbours, this process reduces the original 826 bands to 275, while slightly decreas-
ing the presence of white Gaussian noise. Furthermore, reducing the number of bands proves to be advantageous 
in terms of reducing the computational cost of subsequent image processing tasks. However, this band reduction 
is optional, depending on the further processing interest. Additionally, for image analysis involving the spectral 
analysis of the samples, it is recommended to perform a background sample segmentation, where the pixels cor-
responding to the tissue and the background light of the microscope are identified. Finally, to use classification 
methods, the label (tumour or non-tumour) of each HS cube should be extracted from the folder name.

Recommended data partition and data HS processing applications.  To perform machine learn-
ing analysis, an unbiased data partition should be performed. The dataset used for this study poses three chal-
lenges. First, the dataset is limited in the number of patients (13 patients). Second, samples containing both 
classes (tumour and non-tumour) are only available for 8 patients. Hence, the non-tumour samples information 
is limited in terms of patients. Third, the dataset is unbalanced, with more images annotated as non-tumour. In 
previous works36,38, a data partition based on 4 different folds was employed. Furthermore, spectral unmixing 
techniques could be performed as a preprocessing stage prior to classification51, or they can be used to determine 
the abundances of known endmembers of the images, specifically identifying the proportions of the H&E stains 
in each pixel52.

Fig. 12  Pixel size validation using a micrometre ruler. (a) Profile of Yλ frame extracted from the Yλ frame and 
(b) its first derivative where red crosses are local minima peaks and green crosses local maxima peaks.
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Limitations and future perspectives.  The dataset has several limitations. As previously mentioned, the 
primary limitation is its relatively small cohort, consisting of data from only 13 patients. Furthermore, informa-
tion for both classes of interest, tumour, and non-tumour, is available for only 8 of these patients. This leads to an 
imbalanced dataset, with a predominance of images classified as non-tumour. Such an imbalance could poten-
tially introduce bias and affect the generalizability of the findings derived from this dataset.

Another limitation is related to the type of annotations available in this dataset. The macroscopic annotations 
of tumour and non-tumour regions on the pathological slides, leading to only image-level annotations for the 
HS images. A more sophisticated method for digitally annotating the images would allow to identify regions 
where tumour and non-tumour tissues are adjacent, making possible to capture regions comprising both classes 
in a single HS image. More detailed digital annotation would help in further validating the classification algo-
rithms on a pixel-by-pixel basis and could also offer potential for other methods such as unsupervised learning 
or spectral unmixing. However, more detailed annotations would significantly increase the time and manual 
effort required to label each image.

Finally, this dataset is focused on images captured on a single magnification (20×). The motivation of using 
the higher magnification available for the instrumentation was driven by the need to capture detailed cell-level 
information from the histological slides. However, creating a dataset containing the same images at different 
magnifications could be of potential interest and benefit to the scientific community.

In summary, future datasets of HS histological samples will need to include a larger number of patients, 
ensure a balanced representation of the various classes of interest, incorporate more detailed annotations, and 
provide images at various magnification levels.

Code availability
A tutorial on how to read and display HS data is available in a public repository: https://github.com/HIRIS-Lab/
HistologyHSI-GB. These tutorials include the use of custom MATLAB and Python functions and some of the 
most common toolbox/libraries.
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