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Abstract

This thesis explores the effectiveness of Large Language Models (LLMs) in enhancing
educational methodologies, particularly focusing on personalized learning experiences in
music education. Initially, a comprehensive literature review was conducted to establish
the theoretical foundation and identify gaps in the current application of Large Language
Models in education. Subsequently, employing a quantitative approach, the study utilized
the Supervised Fine-Tuning QLoRA approach to adapt the Llamaz2-chat model to respond
accurately to music educational queries. The Results showed the fine-tuned model with the
instruction dataset provides some good results on the provided prompts. The performance
of the model was evaluated using standard metrics such as BERTScore, F1 Score, and
Exact Match, which confirmed the model’s efficacy in providing accurate and contextually
appropriate responses. While the findings confirm the potential of integrating LLMs into
educational frameworks, they also highlight some limitations, such as the need for contin-
uous model training to adapt to evolving and diverse musical content and creativity. This
study establishes a basis for future research, suggesting the exploration of symbolic music
understanding models like MusicBERT and LLMs integration within music education.
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Introduction

In recent years, the capabilities of artificial intelligence (AI) have expanded significantly,
particularly in the field of natural language processing (NLP). Large Language Models
(LLMs), a sophisticated form of artificial intelligence, can generate and understand human
language. This thesis explores the applications of LLMs in music education, specifically
within music education. These models work by using a huge collection of written text to
learn how to generate and understand human language [1].

Music education is challenged by various issues like limited access to quality instruction
due to geographical and financial barriers, which lack students’ ability to get high-quality
music training. The diversity in students’ learning styles and rates of progress complicates
the effectiveness of traditional teaching methods. Traditional music education methods,
which often depend on one-on-one lessons or small classes, are not easily scalable, limiting
the availability of quality education.

This study [2] showed that Large Language Models (LLMs) enhance education by offering
personalized learning experiences, serving as support tools. Additionally, LLMs provide
assessments and feedback on student work and generate a variety of educational resources
and content to enrich learning and teaching materials.

Large Language Models (LLMs) can automate tasks, but they also have some limitations
such as biased output and hallucinations. To solve these issues for downstream tasks such
as music education, it is necessary to control the model’s response using fine-tuning method.
Fine-tuning is the technique to increase the performance of LLMs in music education, where
models are trained on music datasets in a supervised learning manner. This fine-tuning
allows LLMs to understand and generate music content, therefore increasing their accuracy
and performance in music education.

However, fine-tuning LLMs requires a lot of computational resources and VRAM due to
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their larger size. To alleviate this problem, we can use parameter-efficient fine-tuning
(PEFT) like Low-Rank Adaptation (LoRA) [3]. LoRA decreases the number of trainable
parameters by introducing trainable low-rank matrices into the large model, significantly
lowering the computational cost and memory resources for fine-tuning.

Despite LoRA’s efficiency, the increasing size of Large Language Models (LLMs) still
faces some challenges. To further optimize the process QLoRA [4] can be used which
is the extended version of LoRA. QLoRA backpropagates gradients through frozen, 4-bit
quantized pre-trained Large Language Models into Low-Rank Adapters (LoRA).

Using QloRA, we can fine-tune the Llama2 7B model with limited memory and resources.
The Results showed the fine-tuned model with the instruction dataset provides some great
results on the provided prompts. The performance of the model was evaluated using
standard metrics such as BERTScore, F1 Score, and Exact-Match, which confirmed the
model’s efficacy in providing accurate and contextually appropriate responses. While the
findings confirm the potential of integrating LLMs into educational frameworks, they also
highlight some limitations, such as the need for continuous model training to adapt to
evolving and diverse musical content and creativity. This study establishes a basis for
future research, suggesting the exploration of symbolic music understanding models like
MusicBERT and LLMs integration within music education.

1.1 Problem Statement

Traditional methods in music education often fail to meet the diverse needs and learning
of students, they also face limitations such as the high cost of quality education. The
development of Large Language Models (LLMs), a type of advanced artificial intelligence,
offers an effective solution to these issues. However, using Large language Models effec-
tively in music education needs a good understanding of how to use these LLM models to
handle various musical-related questions. This thesis aims to develop a new framework
that uses Large Language Models to make music education more personalized, engaging,
and accessible for students and improve their creative and composition skills.

To explore the integration of LLMs in music education, this thesis is structured around
several key objectives:

* Literature Review: Review the current state of research and identify potential gaps
in the application of Large Language Models (LLMs) in music education.

* Feasibility Study: Conduct a feasibility study on using LLMs for interpreting and
responding to musical inquiries, focusing on technical limitations and opportunities.

* Framework Development: Develop a music education framework that utilizes LLMs
to provide feedback and ideas on simple music composition tasks, demonstrating

LLMs’ potential in targeted educational contexts.

* Framework Evaluation: Evaluate the effectiveness of the framework by analyzing
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the quality of LLM-generated feedback on relevance and educational value.

To achieve these objectives, below mentioned research questions need to be answered,
which we will discuss in the discussion section.

* RQ1: How can Large Language Models (LLMs) be effectively utilized to understand
and respond to diverse musical queries and inputs in music education?

* RQ2: What are the main challenges in designing a framework for music education
that provides personalized and adaptive learning experiences?

* RQg3: What are the key design principles when developing an Al-based music educa-
tion framework?

* RQ4: How can user engagement and improvement in compositional skills be mea-
sured for such a framework?

Personalized Instruction

Music

Education
Using large
Language
Models

Music Theory Education

@ Composition Assistance
L ]

Performance Analysis &
Feedback

Figure 1.1: Applications of Large Language Models for Music Education

This thesis is structured into six chapters, Chapter 2 provides a comprehensive literature
review, laying out the foundational theories and identifying research gaps. Chapter 3
outlines the tools, methodology, dataset preparation, and model selection and fine-tuning.
Chapter 4 describes the training results and evaluates the model’s performance, analyzing
its effectiveness and efficiency. Chapter 5 discusses the findings, and research questions and
explores the study’s limitations. The thesis concludes with Chapter 6, which summarizes
the research findings and suggests directions for future work, emphasizing the potential
and challenges of integrating LLMs into music education frameworks.



Literature Review

This chapter explores artificial intelligence (AI) in music education, also focusing on the
use of Large Language Models (LMMs) which are based on transformer architectures.
This section explains how artificial intelligence tools are used to increase music education
by showing the improvements in student performance for music education, especially for
piano learning.

This chapter also briefly discusses transformer architectures which are widely used in Large
Language Models. The chapter further discusses innovative systems such as MusiLingo
[5], which integrate music encoders with Large Language Models to improve music
captioning and query responses, thus increasing the educational experience. Moreover,
different neural network architectures from simple melody generators to sophisticated
systems capable of composing complex musical pieces are reviewed. Furthermore, we
discussed some techniques for optimizing the outputs of Large Language Models (LMMs)
for specific downstream tasks, to handle challenges such as bias and hallucination in model
responses.
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2.1 Artificial Intelligence in Music Education

As technology progresses it becomes increasingly vital to use modern technologies, es-
pecially artificial intelligence (AI) in education. Al has become an increasingly popular
medium in a few years, which is being used by not only different companies but also
the education sector like universities for education purposes. The study [6] shows the
integration of artificial intelligence (AI) in music education, especially its uses in piano
classes through Al-powered chatbots across seven music schools. The incorporation of Al
into the educational process showed a 15% increase in students’ academic performance.
The research highlights the potential of chatbots in enhancing music education, offering
a new pathway for development. AI's role in creating individualized learning paths and
assessing student performance underscores its capability to transform music education
[6]. The integration of Al in online teaching has improved the quality and efficiency of
education by supporting personalized learning experiences and leveraging big data for
Music Information Retrieval (MIR). Al in music education presents an optimistic future for
the music industry, promising continuous improvement and widespread application after
overcoming current limitations[7]. Table 2.1 shows improvement statistics by using Al in
education.

Aspect of Music Education Improvement
Overall Academic Performance | 15%

Piano Playing Skills 6.51%
Solfeggio and Music Literature | 4%

Vocal Singing 0.56%

Table 2.1: Improvements in music education through Al integration[7]

2.2 Large Language Models (LLMs)

Large Language Models use transformer models, are deep learning algorithms, and are
trained using massive datasets that allow LMMs to predict, translate, or generate text and
understand the natural language [8].

A transformer model, commonly used in Large Language Models, features an encoder and
decoder to process data. It tokenizes input, breaks down input text into understandable
pieces, and uses mathematical calculations to identify relationships between tokens. Unlike
traditional long short-term memory models, transformer models employ self-attention
mechanisms, allowing them to learn faster and consider entire sentence contexts for more
accurate predictions [9].

2.2.1 Transformer Architecture

Transformer architecture introduced by [9] forms the foundation of modern Large Lan-
guage Models. This architecture enhances text processing and generation capabilities by
effectively capturing the relationships between words and phrases within their contexts.
Below in Figure 2.1 is a transformer architecture with details of its key components.
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Figure 2.1: Transformer architecture introduced by [9] in 2017 paper "Attention is All You Need"

Self-Attention Mechanism The core feature of the transformer is the self-attention mech-
anism, which assesses the significance of all words in the sequence for each word within
the sequence. It assigns weights to words based on their relevance in a given context,
enabling a deeper and more nuanced understanding of language nuances.

Encoding and Decoding Layers Transformers are structured with multiple encoding and
decoding layers. The encoding layers process the input text through a combination of
self-attention and feedforward neural networks, developing a rich, contextualized repre-
sentation of each word. Subsequently, the decoding layers focus on generating the output
text, and predicting subsequent words by leveraging the context provided by the encoding
layers.

Multi-Head Attention An extension of the self-attention mechanism, multi-head attention
allows the transformer to simultaneously concentrate on various aspects of the input data.
This feature enables the model to capture a broader range of relationships within the text,
enhancing its interpretative and generative capabilities.

Feedforward Neural Networks Following the self-attention phase, transformers utilize
feedforward neural networks to further refine the contextual representations of words.
This step ensures that the nuances captured by the attention mechanisms are effectively
integrated into the final model output.
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There are different LMM architectures widely used for their unique capabilities and func-
tionality, we are not going into the details of each but we have mentioned below a few of
them.

GPT (Generative Pre-trained Transformer)

LLaMA (Large Language Model by Meta)

BERT (Bidirectional Encoder Representations from Transformers)

Ts (Text-to-Text Transfer Transformer)

In recent years "OpenAl has developed GPT-3, an advanced Al capable of generating
human-like text. GPT-3, which stands out for its use of 175 billion parameters, was trained
on Microsoft’s Azure Al supercomputer at an estimated cost of $12 million. Since its beta
release in June 2020, GPT-3 has showcased its ability to autonomously produce high-quality
text" [10].

2.3 Music Representation

The selection of representation and its encoding is closely linked to how the input and
output are configured within the architecture, specifically the number of input and output
nodes. While a deep learning architecture has the capability to autonomously extract
meaningful features from data, the chosen representation can greatly impact both the
accuracy of the learning process and the quality of the output generated [11]. In this study,
we discuss two primary representations: audio and symbolic.

2.3.1 Audio Representation:

Audio representation, particularly in the form of a signal waveform, provides a foundational
digital model of sound. Signal waveform derived through Fourier transform, the primary
benefit of using waveform is that it represent the foundational aspect of audio representation
that is important for understanding and manipulating sound in its digital form. The main
drawback is the computational demand processing low-level raw signals requires significant
memory and computational resources.

2.3.2 Symbolic Representation:

Symbolic representation in music involves extracting audio information into a format that
allows easier manipulation and analysis of musical elements. Unlike raw audio data cap-
tured in a waveform, symbolic forms such as MIDI, Piano Rolls, and ABC Notation provide
structured ways to represent musical notes, rhythms, and other information, Figure 2.2
shows symbolic formats. These formats help in tasks like composition and music genera-
tion and are also important in music information retrieval and computational musicology
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where detailed manipulation of musical components is required.

* MIDI: Musical Instrument Digital Interface (MIDI), is a technical standard that
outlines a protocol for events, a digital interface, and connectors, used in various
electronic musical instruments, software, and devices. MIDI messages are crucial
for indicating the start (Note on) and end (Note off) of a note. Each MIDI note
number corresponds to a note pitch, ranging from o to 127 [11]. For symbolic music
generation, some common musical events are listed in the Table 2.2 [12].

* Piano Roll: It is represented as a two-dimensional grid where the x-axis denotes
successive time steps and the y-axis denotes pitch.

* ABC Notation: [13] Primarily used for folk and traditional music, this format encodes
each note as a token. The pitch class of a note is denoted by a corresponding letter
in English notation (e.g., A for A or La), with additional notations for octaves and
duration. Measures are demarcated with bars (‘|’). ABC notation offers a high
compression rate, which results in shorter sequence lengths compared to MID and
this format is also compatible with the language model for musical analysis and
generation as explained in ChatMusician [14].

1

: Bubbling Wine
reel

4/4

1/8 o s e | =
K: Edor

| :BE~E2 d2”~cd|BE~E2 ADFA|GBEF GABd|g2fg edBA|
B=cBA GBdB|A2~GB ADFA|BE~E2 GBe"c|dBA=c BE~E2:|
| :Be~e2 gebe|Ad~d2 fdad|Beed efge|fgaf gfef|
g2fg edB”c|defe dBA=c|BE~E2 GBe”c|dBA=c BE~E2:|

- = 3 4 X

Pitch

Time (seconds)

(@) ABC notation (b) MIDI

EHE=EE- - EE
E=EE- - S

S o oo o
E=EE- - A= |

(c) Codec (d) Wav

Figure 2.2: Musical formats include Wav, Codec, MIDI (depicted as a piano roll), and ABC notation.
As we move from figures (a to d ), the compression rate decreases [14].
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Event Type Definition

Note On Initiates a note at a specific pitch.

Pitch Specifies the pitch value of a note.

Note Off Signals the termination of a note at a specific pitch.

Note Duration Calculated from the time difference between 'Note On’
and the corresponding 'Note Off’, including any 'Time
Shift’ events.

Time Shift Advances the current time by a set number of quantized
steps.

Position/Sub-beat Identifies discrete positions within a bar.

Bar Indicates the divisions between bars.

Piece Start Denotes the commencement of a musical piece.

Chord Represents each chord change.

Program/Instrument | Assigns a MIDI program number at the start of each track.

Track Delineates each separate track within the composition.

Time Signature Signifies changes in the time signature throughout the
piece.

Note Velocity Sets the intensity for subsequent 'Note On’ events.

Tempo Adjust for variations in the tempo throughout the piece.

Table 2.2: MIDI event types

2.4 Language Models for Music Captioning and Query
Response

Large Language Models are being used for music captioning, recommendation, and query
responses, MusiLingo [5] is an innovative system designed to bridge the gap between
music and language, making it easier for people without formal musical training to interact
with and understand music through natural language queries. It builds on previous models
like MusCaps [15] and MuLan [16] by integrating pre-trained music encoders with Large
Language Models (LMMs) for improved performance in music captioning and question-
answering.

The system has been trained on the Musiclnstruct Dataset, featuring over 60,000 Q&A
pairs covering a wide range of music-related topics, demonstrating state-of-the-art perfor-
mance in both objective and subjective music questions across various datasets. Despite
its advancements, MusiLingo[5] has room for improvement in fine-tuning, model univer-
sality, and aligning generated responses with human music interpretations, presenting
opportunities for further development[s]. Figure 2.3 shows the musiclingo model.
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Figure 2.3: MusiLingo model overview [5].

Authors in Musilingo used MERT [17] as a music encoder to extract musical details from
the input music clip. Additionally, they used Vicuna [18] as the large language model. It
receives the music embeddings from the adaptation layer and produces text responses,
incorporating additional user-provided text input.

2.5 Music Understanding and Generation

Recurrent Neural Networks (RNNs) were used for their proficiency in processing sequential
data, marking their first significant application in 1989 with the generation of simple
monophonic melodies. The Long Short-Term Memory (LSTM) networks later addressed
the RNNs’ limitations in preserving long-term sequence information, which facilitated
their use in crafting structured blues improvisations [19].

Subsequent advancements brought about more sophisticated models such as the Recurrent
Neural Network - Restricted Boltzmann Machine (RNN-RBM) [20], alongside improve-
ments to RNNs that increased the generation capabilities for polyphonic music by better
handling long-term structural dependencies. This narrative emerged with the introduction
of advanced deep generative models like Variational Auto-Encoders (VAE), Generative
Adversarial Networks (GAN), and Transformers. These cutting-edge models significantly
expanded the frontiers of the field, enabling the creation of hierarchical models that cap-
ture extensive musical structures, GANs that produce melodies and complex multi-track
compositions sequentially, and [21] used transformers to generate music with a longer-term
structure as discussed in the paper [20].

[14] introduce an open-source transformer-based Large Language Model (LMM) "Chat-
Musician" designed to unify music and language, enabling the model to understand and
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generate music using ABC notation as a text-compatible representation. The ChatMusician-
Base model was initialized using fp16-precision and based on the LLaMA2-7B-Base weights.
It underwent a training process involving continual pre-training and fine-tuning, with LoRA
adapters incorporated into attention and MLP layers, alongside comprehensive training
across embeddings and all linear layers. To enable musical abilities in the LMMs they
used musical dataset for its pretraining, musicpile was prepared using a wide range of
sources, including general public datasets like Pile, Falcon RefinedWeb, and Wikipedia,
further enriched with 255k music knowledge Q&A pairs and summaries generated using
GPT-4. This work related to our task where we need to train the large language model
so that it can understand the music and respond to those queries so that we can use the
language model for music educational purposes or integrate it with a current educational
platform on my making new framework. Empirical evaluations show that ChatMusician
outperforms existing models like GPT-4 in music composition and understanding. Table 2.3
shows the performance of different models on music theory bench.

Models Music Knowledge | Music Reasoning
Baseline 25.0 25.0
GPT-4 58.2 25.6
ChatMusician-Base 40.2 27.1
ChatMusician 39.5 26.3
GPT-3.5 31.2 25.3
LLaMA2-7B-Base 33.3 24.7

Table 2.3: Performance of various models on music knowledge and reasoning metrics [14].

However, they utilize the music ABC notation as it is simpler and more human-readable,
making it good for folk music and simple melodies. In our model we need to use the
MIDI file format due to its richness in information, MIDI files contain detailed information
about each note and control message, such as pitch, velocity, duration, timing, onset, and
offset makes it a robust choice for deep learning models and music composition [22].
ChatMusician mostly produces music in the Irish style, a bias that arises from an imbalance
of this genre in the training data. This issue illustrates the model’s difficulty in creating a
diverse array of musical styles, pointing to a crucial area for future improvements. Moreover,
the model occasionally generates ’hallucinations’ which means outputs that are musically
incorrect or irrelevant.

Authors in [23] discussed the generation of music using deep learning and all the different
models how they used to generate the music. They also highlighted its rapid advance-
ments and current challenges. They mentioned that while these models generate complex
musical pieces. Yet its application faces significant challenges that impact the effectiveness
and creativity of generated music for example they lack interaction, creativity, control,
and structural coherence [24]. Furthermore, their study suggests exploring multi-agent
systems and reinforcement learning to enhance creativity and adaptability, aiming for
more dynamic and responsive music generation tools that better align with human musical
processes.
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2.6 MusicBERT for Symbolic Music Understanding

MusicBERT [25] is a large pre-trained model specifically designed for understanding
symbolic music data. Symbolic music data (MIDI) represent music in a structured format
that includes details like pitch, duration, and velocity of notes. This model is trained on a
wide range of datasets containing over a million songs, allowing it to understand a large
variety of musical styles and structures. As mentioned in the paper [25] MusicBERT model
is very effective for the four main tasks related to music understanding, melody completion,
accompaniment suggestion, genre classification, and style classification.

MusicBERT includes features discussed in the paper[25] like OctupleMIDI Encoding and
Bar-level Masking Strategy that improve its performance. OctupleMIDI Encoding combines
several music details into one piece, which helps simplify and speed up how the model
learns from complex music in other words. They use the sequences of octuple tokens to
represent symbolic music (MIDI) and OctupleMIDI reduces the sequence for example it
will encode 6 notes into 6 tokens which is far shorter than the other encoding methods
like CP-Like encoding and REMI-Like encoding. The Bar-level Masking Strategy helps the
model learn more effectively by covering up entire bars of music, which prevents the model
from just copying nearby notes and encourages it to understand deeper patterns.

By using MusicBERT’s large Million MIDI Dataset, which contains a wide variety of music,
our model can get better at recognizing and creating complex musical pieces that help
students make melodies composition and analyze the student MIDI files. Adding these
features will help make our model more versatile and creative, potentially improving how
it’s used in music education and setting a new Framework for the use of LLMs in Music
Education.

Positional : ]
i | 2000000 |
encoding H £
Linear
Classifiers
Concatenation

Hiddens of
musical notes @

Transformer ’

Embeddings
of elements

encoder

HE 2= .\‘! _ Embeddings of
F g musical notes @

Figure 2.4: MusicBERT model structure [25].

2.7 Techniques for Enhancing LLMs Performance for
Downstream Tasks

Large Language Models (LLMs) are trained on vast amounts of data across multiple
domains, and they have some limitations such as bias in the generated response and
hallucination, which means the context is misunderstood and sometimes generates incor-
rect and false text. However, when targeting specific tasks, they require fine-tuning with
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task-specific datasets to optimize performance. Here we will discuss some techniques as
shown in Figure 2.5 that can be used to control the model response.

2.7.1 Prompt Engineering

Prompt Engineering means carefully crafting prompts that can effectively guide the model’s
output. While prompting, we can use specific keywords and instructions to get the desired
output. In a few shots, learning prompts include some examples to guide the model’s
output, this can include setting the tone, style, or even the format of the output. Prompting
is an iterative approach that is time-consuming though it’s a powerful technique still faces
challenges such as ensuring consistency and the need to update the prompts for different
cases.

/ Prompt Engineering

LLM’s
output performance
improvement
techniques

ay

Figure 2.5: LMM'’s output performance improvement techniques

2.7.2 Fine-Tuning

Fine-Tuning process entails adapting a pre-trained model by training it on a smaller,
task-specific dataset. Full fine-tuning modifies the all model’s weights to align with the
requirements of the downstream task, enhancing the accuracy and relevance of its outputs.
Comprehensive fine-tuning is an efficient approach as it leverages a pre-trained model’s
existing general language knowledge, requiring less data to adapt to specific tasks. This
technique notably enhances accuracy by refining the model’s ability to capture and repro-
duce the nuances of specialized domains, crucial in fields laden with unique terminologies
such as the legal, medical, or financial sectors. Additionally, by training on a diverse array of
examples, including edge cases, the model becomes more adept at handling a wide range of
inputs, thereby increasing its robustness and overall performance. Effective fine-tuning of
these Large Language Models often requires advanced computational resources with large
memory usage. Furthermore, the full fine-tuning method is not only time-consuming but
also requires the distribution of computational tasks across multiple GPUs [26] [27].
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2.7.3 Parameter Efficient Fine-tuning (PEFT)

Parameter-efficient fine-tuning increases the efficiency of learning capabilities for new tasks
by updating a small number of the pre-trained model’s parameters. PEFT [28] handles the
issues of computational cost and memory usage for the full fine-tuning of Large Language
Models. This approach involves maintaining most of the pre-trained model’s parameters
frozen while only changing those needed for specific tasks. Parameter-efficient fine-tuning
has different techniques but the most used for these cases are Adapter, LoRA, and QLoRA

[29].

LoRA: Low-Rank Adaptation (LoRA) [3], is an efficient approach for fine-tuning Large
Language Models. LoRA reduces the number of trainable parameters and makes the
process feasible for fine-tuning large models. LoRA works by adding trainable low-rank
components into each layer of a transformer model while keeping the pre-trained model
weights frozen. This way we can reduce the computational cost for training and the
memory requirements for GPU resources.

h |

Pretrained
Weights

X | |

Figure 2.6: LoRA reparameterization trains only A and B [3].

Suppose we have a LLM with a weight matrix dimension of 50,000 x 50,000. In a traditional
full fine-tuning scenario, we would need to update 2,500,000,000 parameters. However,
by employing LoRA, we can significantly reduce this number.

Using LoRA, we decompose the large weight matrix into two smaller matrices A and B,
each with a low rank r. For instance, if we choose r = 3, the new parameter count becomes
(50,000 x 3) + (3 X 50,000) = 300,000 parameters. This represents a reduction by a
factor of more than 8,000, dramatically decreasing the computational load and memory
footprint needed for training.
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Pre-Trained LLM
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Figure 2.7: LoRA parameter-efficient fine-tuning process

IfLoRA is good then why do we need QLoRA? First, we will discuss the concept of quantization.
Quantization is a technique used to reduce the precision of model weights from a continuous
set of values to a discrete one, thereby shrinking the model’s memory footprint and
decreasing computational demands during inference. It involves converting weights from
floating point to integer values by scaling according to a normalization constant and then
rounding off. While quantization typically leads to reduced storage requirements and
energy consumption, it can sometimes increase inference time due to the overhead of
performing these operations. However, with advanced methods like Quantization Aware
Training (QAT) [30], models can be fine-tuned to incorporate quantization errors, allowing
them to perform comparably to their non-quantized versions. This makes quantization
especially valuable for deploying deep learning models on edge devices with limited
computational resources [26].

034 || 375 || 564 8 84 || 126
Maping
112 || 27 || -0.9 » 25 61 || -20
-47 || o068 || 143 106 || 15 32
FP32 INT8

Figure 2.8: Quantization from FP32 to INTS8
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QLoRA: QLoRA [4], a cutting-edge fine-tuning approach that dramatically reduces memory
usage, enabling the fine-tuning of a 65 billion parameter model on a single 48GB GPU while
retaining full 16-bit fine-tuning task performance [4]. This breakthrough is facilitated by
QLORA’s ability to backpropagate gradients through a frozen, 4-bit quantized pre-trained
language model into Low-Rank Adapters (LoRA). This Study describes their most effective
model family, termed Guanaco, which exceeds all previously released models on the
Vicuna benchmark, achieving 99.3% of the performance of ChatGPT with just 24 hours of
fine-tuning on a single GPU.

QLORA incorporates several key innovations to minimize memory usage without sacrificing
performance:

4-bit NormalFloat (NF4) The first innovation is the 4-bit NormalFloat (NF4), a novel data
type optimized for normally distributed weights, enhancing efficiency in memory use. The
primary quantization equation used in QLORA is:

127

Xintg = round X X 2.1
int8 absmax ( XFP32) FP32 ( )

where Xpp,, is the tensor of model weights in full precision, and Xjyg is the quantized
tensor in 8-bit format. This normalization and scaling process compresses the data without
significant loss of information.

Double Quantization The second innovation is Double Quantization, which involves quan-
tizing the quantization constants themselves, significantly reducing the average memory
footprint. The dequantization process critical for restoring the quantized values to their
original scale during model inference is described by:

dequant(CFsz, Xintg) = Xineg X Crp32 = XFp32 (2.2)

This ensures that performance remains unaffected even at reduced precision.

2.7.4 Retrieval Augmented Generation (RAG)

Retrieval Augmented Generation (RAG) [31], developed by Meta researchers, revolutionizes
natural language processing by integrating information retrieval with text generation. RAG
enhances Large Language Models (LMMs) by fetching relevant contextual data from a
vast vector database, improving the responses’ precision and relevance. This is achieved by
embedding data into vectors, retrieving pertinent information based on user queries, and
concatenating these findings with the original query to enrich the model’s context.

RAG is invaluable in applications requiring up-to-date or extensive document-based
knowledge, such as technical support systems utilizing internal manuals or medical re-
search databases. Unlike simple prompt engineering that struggles with limited context,
RAG broadens the LMM'’s understanding by incorporating real-time, specific information,
thereby minimizing inaccuracies and ’hallucinations’—incorrect assumptions made by the
model [32].

The advantages of using RAG include its ability to update responses with evolving data,
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traceability of information sources, and cost-effectiveness, as it reduces the need for ex-
tensive labeled data and computational resources. However, RAG has some limitations
like it may not substantially improve outcomes in scenarios where LMMs fail to process
complex data like financial summaries or medical records. In such instances, fine-tuning
the LMM might be more effective than augmenting it with RAG, particularly when a deeper
understanding of specialized content is required [27].

These techniques are designed to optimize Large Language Models for specific tasks,
resolving limitations like bias, hallucinations, and computational inefficiencies. Prompt
engineering and fine-tuning provide foundational performance improvements, while PEFT
and RAG offer advanced solutions to enhance the performance of Large Language Models.
This thesis will integrate the PEFT method to create a more accurate, efficient, and context-
aware model.



Methods

This chapter discusses some important steps taken for this thesis including which tools we
used, dataset preparation, and the main methodology for fine-tuning the Llamaz2 7billion
parameters model for our music education framework. Moreover, it also discusses how we
effectively utilized the available T4 GPU within the limited VRAM of Google-Colab using
the QLoRA technique. The methodology flowchart Fig 3.1 outlines our important steps
for the model fine-tuning process. Moreover, the Chapter discusses how we created the
dataset and why we used the parameter-efficient fine-tuning QLoRA approach. The code
for this thesis is available on the git repository [33].

Creating instruction
Data Collection Data preprocessing e

and response format
Dataset splitinto train Tokenizing the
Mt SEleny & Evaluation sets instruction dataset
Installing Required Loading the model Loading the dataset
libraries from huggingface from huggingface
Meodel’s performance Training & evaluation Setting the PEFT Fine-
validation of model tuing parameters

Figure 3.1: Methodology flowchart for this study
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3.1 Tools

We used the pre-trained Llamaz2 chat model, which has 7 billion parameters. The fine-tuning
process was carried out using a T4 GPU of Google-Colab, chosen for its long availability and
cost-effectiveness despite its limited 16 GB VRAM. This memory size is not enough for the
full fine-tuning. To address this issue, we implemented the parameter-efficient fine-tuning
method, QLoRA, which supports 4-bit precision to optimize VRAM usage effectively. Our
implementation made extensive use of Huggingface’s libraries, including transformers,
accelerate, peft, trl, and bitsandbytes, to facilitate the QLoRA technique.

Additionally, the development and data processing phases were conducted on a local
environment using Jupyter Notebook on a laptop equipped with an Intel(R) Core(TM) i7-
8550U CPU at 1.80GHz, with 1992 MHz, 4 cores, and 8 logical processors. Despite the laptop’s
limited RAM, this setup proved capable of efficiently coding, experimenting, and managing
project files, thereby demonstrating the feasibility of conducting high-level research with
accessible consumer hardware. Table 3.1 highlights some tools and technologies used for
this thesis.

Tool/Technology Description

Llama2 Chat Model A pre-trained model with 7 billion parameters.

T4 GPU of Google-Colab | Used for the fine-tuning process with 16GB VRAM.

QLoRA For 4-bit precision to effectively optimize VRAM usage.

Huggingface Libraries Includes transformers, accelerate, peft, trl, and bitsand-
bytes to facilitate the QLoRA technique.

Jupyter Notebook Software environment used for data processing on a local
laptop.

Intel Core i7-8550U CPU | 1.80GHz with 1992 MHz, 4 cores, and 8 logical processors,
utilized in local environment setup.

Python The programming language used throughout the project
for scripting and automation tasks.
music21 Library A Python library used for midi analysis and manipulation.

Table 3.1: Summary of tools and technologies used in the project

3.2 Instruction Dataset

Instruction datasets in the form of Q&A pairs are used to fine-tune the Large Language
Models LLMs. Fine-tuning is usually undergoes a supervised machine learning approach
and contains both strings input as instruction and output as a response. There are many
instruction datasets with different formats and lengths some of them are created manually
like the Flan Collection[34] and Dollyi5k[35] dataset while others are created using Large
Language Models like the Alpaca[36].

For a music education purpose, we have created a small instruction dataset as the purpose
is to finetune the LLM on this dataset so that the model can understand diverse instructions
and responses to them related to music education without Hallucination. In Al and language
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models, "hallucination" describes situations where these models produce information that
is incorrect, made up, or nonsensical as though it were factual. Such errors can arise from
a variety of factors, such as the data used to train the model, how the model processes
input, or its limited grasp of the context[37].

Using Web Scraping

Instruction Dataset Midi files, processed using
Sources music21 library

Chatgpt-4 for making
instruction and response
Figure 3.2: Sources used to prepare instruction dataset

We used MIDI files, web data, and ChatGPT-4 to create a rich and diverse instruction
dataset. Initially, we extracted the notes and chords from the midi files utilizing the
music21 Python library, a powerful tool for analyzing and manipulating musical data.
Following this extraction, we provided the chords and notes to ChatGPT-4, which then
generated detailed instruction and response pairs. The Instruction dataset was saved in
JSON format, to easily accessible data for further processing and analysis with LLMs. As we
used the Llama2 7B parameters model, the chat format is recommended as follows:

<s>[INST] <<SYS>>{System Promptl}</<SYS>>
{Instruction}[/INST]
{Response}</s>

For the Large Language Models to easily process and understand human language, we
converted the dataset into chunks or tokens. Tokens are fundamental step in preparing data
for these models. Tokenization of data is the process of breaking down text into smaller,
manageable chunks, known as tokens, which simplifies the computational understanding
and analysis of the language. This procedure is vital as it increases the efficiency of the
large language model during training and fine-tuning by providing a structured form of
data that mimics the natural language patterns. we uploaded the tokenized dataset to
Hugging Face, ensuring it is readily available for future use and can be easily accessed
by the global research community. Fig 3.3, Fig 3.4, and Fig 3.5 show the distribution of
tokens on instruction, response, and chat columns respectively. Figure 3.6 shows the final
instruction dataset that is used for this thesis, the "instruction" columns contain all the
instructions the "response" column contains all the responses, and the last column which
is "chat", includes both instruction and response in the format above mention.
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Figure 3.3: Distribution of tokens on instruction column

Distribution of the tokens count for Output Column
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Figure 3.4: Tokens distribution on response col-
umn
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Figure 3.5: Tokens distribution on chat column.
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For the left hand, the fingerings are what are the fingerings for playing a C ##4F Instruction: What
little finger (5), middle finger (3), and.. major chord on the piano with the left.. for playing a C majox
For the right hand, the fingerings are What are the fingerings for playing a C #HF Instruction: What
thumb (1), middle finger (3), and little.. major chord on the piano with the right.. for playing a C major
C/E is the first inversion of the C major What does C/E signify in choxd inversions, #HE Instruction: What
chord, where E is the bass note. This.. and which inversion is it? chord inversions, and
€/G is the second inversion of the C major What does C/G signify in chord inversions, ##Ff Instruction: What
chord, where G is the bass note. This.. and which inversion is it? chord inversions, and
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Figure 3.6: Instruction dataset tokenized and pushed to the huggingface

3.3 Model Selection

In this section, we delve into the reasons behind our model selection and the array of
alternatives that were considered. Subsequent sections will provide a detailed, step-by-step
explanation of the fine-tuning process we employed.
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A variety of models are currently available for tasks like ours, including high-profile options
such as ChatGPT and PalM. These models, however, often come with associated costs for
access to their APIs or for fine-tuning capabilities, as detailed in the pricing policies of their
providers [38]. After evaluating the options, we decided to use the Llama 2-Chat model
[39]. This model, with configurations ranging from 7 billion to 7o billion parameters, has
demonstrated superior performance over other existing open-source chat models across
various benchmarks. Specifically, the Llama 2-Chat is a fine-tuned version of the original
Llama 2, optimized particularly for conversational applications, making it ideal for our
requirements in educational technology.

HUMAN
FEEDBACK
FINE-TUNING
@ Safety Reward Model
AN Rejection Proximal Policy
- Sampling Optimization
Human preference data Helpful Reward Model m
PRETRAINING

Self-supervised Llama 2 S_upervi§ed

learning . - fine-tuning

Pretraining data

Figure 3.7: Training process of Llama 2-Chat provided by meta [39]

The fine-tuning environment is prepared by installing the required libraries from hugging
face using pip install transformers, accelerate, peft, trl, and bitsandbytes. We used the
Google Colab T4 16GB of VRAM GPU which is not completely enough to save the model’s
weight, so here we used the QLoRA technique (reviewed in Chapter 2) to fine-tune the
model in 4-bit precision and optimize VRAM usage.

3.4 Quantized Low-Rank Adaptation (QLoRA)

Fine-tuning is the process of increasing the performance of Large Language Models LLMs
or changing the behavior for the specific use case, with the increasing size of pre-trained
Large Language Models the traditional fine-tuning process is impractical and the process
is highly resource-intensive, with the fine-tuning of models like the LLaMA 65B requiring
upwards of 780 GB of GPU memory as discussed in the papers[4][40] high computational
cost has limited the fine-tuning of Large Language Models, so to handle this issue they
proposed the new approach named QLoRA[4] which reduced the memory VRAM usage
to fine-tune Large Language Models on a single GPU while keeping the 16-bit fine-tuning
performance.
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Figure 3.8: Image from the QLoRA paper showing the different methods fullfine-tuning, lora and
QLoRA[4].

Three approaches (4-bit NormalFloat, Double Quantization and Paged Optimizer) in-
troduced by QLoRA [4] that are intended to make fine-tuning language models more
memory-efficient without affecting the performance. So for the Llama2 model with 7 bil-
lion parameters on a Google-Colab T4 GPU where we have 16 GB of VRAM, we unitized
the 4-bit precision to optimize the VRAM usage, which means the model is quantized to
4-bit and then finetuned with LoRA for this purpose we used bitsandbytes, a quantization
library with a Transformers integration. Using this we can quantize a model to 8 or 4 bits
and allow many other options by configuring the BitsAndBytesConfig[41].

from transformers import BitsAndBytesConfig
quant_config = BitsAndBytesConfig(

: load_in_4bit=True,

4 load_in_8bit_£fp32_cpu_offload=True,

w N

5 bnb_4bit_quant_type="nfd",
6 bnb_4bit_compute_dtype=compute_dtype,
7 bnb_4bit_use_double_quant=False)

Authors in [41] state that setting load_in_4bit=True enables the quantization of the
model to 4 bits, and bnb_4bit_quant_type="nf4" uses a specialized 4-bit data type for
weights that are initialized from a normal distribution."

LoRA fine-tuning adds a few adaptable elements to models, enhancing their function
while keeping memory usage low. It integrates an additional projection into the model’s
operations, increasing its efficiency without changing the original parameters. This method
boosts performance and allows adding multiple adapters with little impact on memory
[31[4][42]. We used the following value for LoRA configuration.

| peft_params = LoraConfig(

2 lora_alpha=16,
3 lora_dropout=0.1,
4 r=8,

5 bias="none",
6 task_type="CAUSAL_LM")
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Now we will set the training parameters to optimize the training process.

1 from transformers import TrainingArguments
2

s training_params = TrainingArguments (
output_dir="./training_Results",
evaluation_strategy="epoch",

6 num_train_epochs=2,

7 per_device_train_batch_size=4,

8 per_device_eval_batch_size=4,

9 gradient_accumulation_steps=2,

10 optim="paged_adamw_32bit",

1 save_steps=25,

12 logging_steps=25,

13 learning_rate=2e-4,

N

v

14 weight_decay=0.001,

15 fplé=False,

16 bfl16=False,

17 max_grad_norm=0.3,

18 max_steps=-1,

19 warmup_ratio=0.03,

20 group_by_length=True,

21 lr_scheduler_type="constant",

22 report_to="wandb"

We passed all these components, such as the model, dataset, LoRa configuration, tokenizer,
and training parameters, to the SFT Trainer. This is a key step in reinforcement learning.
We use supervised fine-tuning, and the transformer reinforcement learning (TRL) provides
an API for SFT models, which allow us to fine-tune Large Language Models on our own
dataset hosted on Hugging Face with just a few lines of code. There are differences between
the Trainer and SFTTrainer, both of which are Hugging Face classes, but they have different
use cases. The Trainer is suitable for larger datasets and offers more customization of the
training loop, while the SFTTrainer is more efficient for fast fine-tuning on small datasets
with pre-trained models[43].

Feature Trainer SFTTrainer
Purpose General-purpose training from | Supervised fine-tuning of pre-
scratch trained models

Customization Highly customizable Simpler interface with fewer op-
tions

Training workflow | Handles complex workflows Streamlined workflow

Data requirements | Larger datasets Smaller datasets

Memory usage Higher Lower with PEFT and packing op-
timizations

Training speed Slower Faster with smaller datasets and
shorter times

Table 3.2: Comparison of Trainer and SFTTrainer features[43]
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3.5 Fine-Tuning Details

In our fine-tuning process, we started by setting the learning rate to 2 X 10™* and used a
weight decay of 0.001 to handle the overfitting issue . The main purpose is that our model
training remains stable and efficient. The model processes information in batches of 4,
each with a sequence length of up to 4096 tokens. This batch and sequence configuration
is particularly effective in managing memory resources during fine-tuning and training of
Large Language Models. Overall fine-tuning of our model used two epochs, this duration
chosen to increase the performance without excessive training of model, which could lead
to over-fitting or unnecessary computational cost. This balance is crucial for achieving high
performance while maintaining efficiency. It is suggested that 3-5 epochs are enough for
fine-tuning the model on small dataset like in our case where we have around 1800 rows
of instruction.

After fine-tuning, it is important to save not just the model weights but also the configuration
and tokenizer to ensure compatibility during future loads. The updated model pushed to
the huggingface Llama2-Finetuned, provides an easy interface for interaction through the
transformers pipelines listed below, which are ideal for testing and text-generation.

# Use a pipeline as a high-level helper
from transformers import pipeline

pipe = pipeline("text-generation", model="mudassar93/llama2-chat-piano"

)

# Load model directly
from transformers import AutoTokenizer, AutoModelForCausallM

tokenizer = AutoTokenizer.from_pretrained("mudassar93/1llama2-chat-piano

II)

s model = AutoModelForCausalLM.from_pretrained ("mudassar93/1llama2-chat -

piano")

In this chapter, we explored the instruction fine-tuning process of LLMs with basic computer
resources. Our use of the T4 GPU from Google-Colab, despite its limitations, highlighted
the necessity for optimization techniques like QLoRA to handle Large Language Models
(LLMs) efficiently. The successful implementation of QLoRA, utilizing 4-bit precision to
reduce VRAM usage, showcases an innovative approach to overcoming hardware con-
straints while maintaining model performance. Additionally, using Huggingface’s powerful
libraries facilitated the effective adaptation and execution of complex tasks, highlighting
the potential of open-source tools in expanding the capabilities of Al research within
existing technological limits.


https://huggingface.co/mudassar93/llama2-chat-piano

Results

This chapter discusses the training loss, evaluation loss, and learning rate of our pre-trained
model ensuring the fine-tuning process, and highlights the model’s effective learning
over each epoch. It also discusses the response generated by our models by providing
some instructions where the models showed consistence performance. Moreover, the
chapter explained some standard matrices to validate the model-generated text including
BERTScore, F1, and Exact-Match. These metrics determine the model’s precision, recall, and
overall accuracy in generating text, showing how well they align with human evaluative
standards, and showing its applications in natural language processing tasks.

4.1 Training & Evaluation

The training and Evaluation process shows a clear improvement in the loss over the epochs,
which is a good thing that the model is learning effectively from our instruction dataset.
Below we mentioned the training and evaluation loss:

Epochs and Losses

* Epoch o: The training loss started at 0.4916 and the evaluation loss was 0.3797 This
initial loss is relatively high, as expected at the beginning of training, but it indicates
that the model has started to learn from the training data.

* Epoch 1: There was a significant decrease in both training and validation loss to
0.3104 and 0.3348, respectively. This decrease indicates that the model is effectively
adjusting its weights and biases to minimize the error in its performance or generation
task.

28
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Evaluation

* Validation Loss: 0.33476176857948303, which relates to the loss reported at the end
of Epoch 1, indicating consistent model evaluation.

* Evaluation Runtime: 26.0132 seconds, which provides a measure of how long it takes
to evaluate the model on the validation dataset.

* Evaluation Samples per Second: 14.031. This metric shows how many samples are
being processed per second during validation, providing insight into the model’s
inference speed.

* Evaluation Steps per Second: 3.537. This reflects the number of batches (steps)
processed per second, offering an indication of the processing efficiency during model
evaluation.

Epoch | Training Loss | Evaluation Loss

o} 0.4916 0.3797
1 0.3104 0.3348

Table 4.1: Training and Evaluation Loss over epochs

Metric Value
Validation Loss 0.3348
Evaluation Runtime (seconds) | 26.0132
Evaluation Samples per Second | 14.031
Evaluation Steps per Second 3.537

Table 4.2: Evaluation Metrics

Moreover, a dropout of o.1 is used which helps to prevent model overfitting by randomly
dropping units in the neural network during training, and for the optimizer, we used Paged
AdamW (32-bit precision).

Training Loss Over Time
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Figure 4.1: Shows the training loss over time during the fine-tuning of model
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4.2 Generated Text Validation

We set the system prompt as 'You are a helpful assistant that provides accurate and concise
responses related to music theory’. The temperature was set to 0.1 and the output token size
to 200, where the temperature controls the randomness of the output generation; lower
temperature results in more predictable and conservative text, while the token size limits
the length of the generated text. Here are some prompts given to the model and their
responses.

Prompt:

Describe the structure and fingerings for playing a D# major 13th chord on the piano.

Model Response

A 13th chord is a complex chord that includes a root, a major third, a perfect fifth, a
major seventh, a minor ninth, a major eleventh, and a minor thirteenth. The D# major
13th chord is played with the left hand using the little finger (5) on D#, middle finger
(3) on F#, index finger (2) on A#, and thumb (1) on C#. The right hand uses thumb (1) on
D#, index finger (2) on F#, middle finger (3) on A#, and little finger (5) on C#. This
chord is often used in jazz and classical music to add depth and complexity to a
progression.,

Figure 4.2: Prompt given and the response generated by model

Ve

. stream("write the notes of c major?")

<s> [INST] <<SYS>>
You are a helpful assistant that provides accurate and concise responses realted to music theory.
<< /SYS>>

write the notes of ¢ major? [/INST]

The notes of the C major chord are C, E, and G.</s>

Figure 4.3: User prompt given to model "write the notes of C major".
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© stream("How to play D minor and how many notes are in D minor?")
<s> [INST] <<SYS>>
You are a helpful assistant that provides accurate and concise responses realted to music theory.
<</SYS>>
How to play D minor and how many notes are in D minor? [/INST]
To play the D minor chord on the piano, use the fingerings: Left hand - little finger (5) on D, middle finger (3) on F, thumb (1) on A;

Right hand - thumb (1) on D, middle finger (3) on F, little finger (5) on A. This chord consists of three notes: D, F, and A.

The D minor chord is constructed with a root (D), a minor third (F), and a perfect fifth (A). It is abbreviated as Dm.</s>

Figure 4.4: User prompt given to model "How to play D minor and how many notes are in D minor".

Model evaluation is an important step that involves measuring the performance, precision,
and effectiveness of Large Language Models across different language-related tasks [44].
Our fine-tuned model’s generated text is validated using the standard matrices BERTScore,
F1, and Exact_match these are metrics used to evaluate the performance of Large Language
Models, particularly in tasks involving natural language processing (NLP) and machine
learning. Each of these standard metrics provides a distinct purpose and offers insights
into different aspects of model performance[45].

4.2.1 BERTScore

BERTScore is a standard metric designed to evaluate text generation more effectively than
traditional methods. Unlike conventional metrics that focus on exact token matches be-
tween a generated sentence and a reference, BERTScore leverages contextual embeddings
to assess the similarity between each token in the candidate and reference sentences. The
results demonstrate that BERTScore not only aligns more closely with human evaluations
but also surpasses existing metrics in guiding model selection. Additionally, in an adver-
sarial paraphrase detection scenario, BERTScore proved to be significantly more resilient,
effectively handling complex examples where traditional metrics failed[46].

Metric Value

BERTScore Fi 0.94009
BERTScore Precision | 0.91825
BERTScore Recall 0.96299

Table 4.3: Key performance metrics of our model

* BERTScore F1 (0.94009): This represents a balanced metric that integrates both
precision and recall. An F1 score near 1.0, as observed in our study, indicates that
the model demonstrates a high level of accuracy and completeness in its responses,
successfully managing the balance between precision and recall.

* BERTScore Precision (0.91825): This score assesses the accuracy of the output
generated by the model. A precision score of about 0.918 indicates that a high
proportion of the responses from the model were relevant or correct in the context
they were used.

* BERTScore Recall (0.96299): This measures the model’s ability to retrieve or gener-
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ate all relevant instances or information. A recall score of about 0.963 suggests that
the model successfully retrieved or generated almost all relevant information.

4.2.2 F1Score and Exact Match

The F1 Score is a standard metric to evaluate the accuracy of a text generation model,
especially when the model is used for classification tasks such as determining the relevancy
or categorization of the generated text. F1 metric is useful when you need to balance the
precision and recall of the model’s predictions, which is often the case in natural language
processing (NLP) applications. For our model, the average f1 score is 0.26125 and the Exact
Match score is 0.00 for the exact match the tokens of the model’s Generated text should
exactly match the tokens of reference text then the Exact-Match score will be 100 otherwise
it will be o as in our case.

Summary of Results:

The fine-tuned model demonstrated excellent performance, producing accurate and rel-
evant responses to the musical instructions it received. It achieved impressive scores in
various metrics, with a BERTScore F1 of 0.94009, which measures the overall quality of the
generated text. The precision score was 0.91825, indicating the model’s ability to produce
relevant responses, and the recall score was 0.96299, reflecting the model’s capability
to retrieve all relevant content. These standard metrics measure the fine-tuned model’s
efficiency and accuracy in handling musical queries, making it a reliable and feasible tool
in educational frameworks.

This success directly addresses our research question by describing how Large Language
Models (LLMs) can be effectively used to understand and engage with diverse musical
education contents, suggesting great opportunities for further exploration and development.
This thesis approach provides a clear and sound path forward, showcasing the potential
of integrating advanced fine-tuning techniques to create a more accurate, efficient, and
context-aware model. This Fine-tuned model can be integrated with other LLMs for the
music education framework.



Discussion

The results from this study highlight the application of Large Language Models (LLMs)
in musical education framework, specifically through their capacity to provide accurate
responses to musical queries. This capability highlights the potential of Large Language
Models to transform educational settings by offering personalized and precise assistance
to learners. In the validation of the models’ responses, it was observed that the model
accurately generated responses for instructions that were already added within the instruc-
tion dataset. This accuracy shows the effectiveness of the fine-tuning process. However,
introducing new instructions to the fine-tuned model and its outputs showed a decline
in accuracy, marked by instances of hallucination. This study utilized specific datasets
which may not represent all musical educational contexts. Additionally, the Large language
Model’s (LLM’s) performance was only as good as the data it was trained on, which might
limit its effectiveness in scenarios not covered during training. For example, the model
response to the prompt "Write a simple melody using C minor chord" the model wrote a
sequence of notes creating a melody while when we asked "Write a simple melody using ¢
minor in jazz style" here the model was lacking its abilities.

Interpretation of Training and Evaluation and Analysis of Performance
Metrics

The training and evaluation process shows a clear improvement in the loss over the
training epochs, showing effective learning from our instruction dataset. At the beginning,
the training loss was high, but it decreased by Epoch 1 as shown in the Figure 4.1, suggesting
that the model was successfully adjusting its weights to minimize errors. This decrease in
loss shows the model’s ability to learn and adapt to the given musical instructions effectively.
The evaluation of our fine-tuned model using BERTScore and F1 provides a comprehensive
understanding of its performance. The BERTScore F1 of 0.94009 as shown in the Table 4.3
indicates a high level of accuracy and completeness in the model’s responses. A precision
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score of 0.91825 indicates that a significant majority of the model’s outputs are relevant to
the given prompts validated through the reference data. High precision means the model is
effectively reducing false positives, ensuring that the responses generated are contextually
appropriate and accurate. This is important in educational frameworks where precision
is essential to avoid providing incorrect information to students. On the other hand, the
BERTScore Recall of 0.96299 measures the proportion of relevant instances that have been
retrieved over the total amount of relevant instances. A recall score of 0.96299 depicts that
the model successfully generates almost all relevant information in its responses. High
recall shows that the model is comprehensive in its output, capturing the full breadth of
the relevant content needed to answer a query.

Addressing the Research Questions

In addressing RQ1, the study confirms that LLMs using the QloRA approach can be fine-
tuned on specific musical data to increase their ability to understand and respond to a
diverse range of musical queries, from basic theory questions to complex compositional
feedback. This capability facilitates personalized learning by tailoring responses to fit the
unique educational requirements and creative inputs of students in music education. This
study [47] about Large Language Models (LLMs) like GPT and BERT has explained their
ability to automate a variety of educational tasks across different categories such as labeling,
assessment and grading, prediction, feedback, content generation, and recommendations
and others.

In response to RQ2, one of the main challenges in designing a music education framework
that provides personalized and adaptive learning experiences is the integration of Large
Language Models (LLMs). These language models require continuous tuning with the
updated and creative needs of music education. It is important to fine-tune LLMs with a
wide range of music instruction datasets to ensure they can understand and respond to
diverse musical queries and adapt to the changes within educational requirements over
time.

Regarding RQ3, When developing an Al-based music education framework using LLMs,
it’s important to focus on several key design principles to ensure its effectiveness and
user engagement. Firstly, interactivity is crucial, allowing students to receive immediate,
personalized feedback. The system should adapt its content to individual learning styles
and skill levels, promoting personalized learning. The framework should have the ability to
allow students to experiment with creative music styles. As mentioned earlier integration
is the main part of scalability also ethical considerations must address fairness in feedback
across different musical genres and styles to prevent bias. The user interface should be
intuitive, making the system accessible to all learners. Furthermore, the framework should
include mechanisms for assessing and tracking student progress, also helping the student
to provide feedback in their composition task or allow them to provide a MIDI file then
the system will make suggestions which we will discuss in the future work section.

Regarding RQ4, user engagement and improvement in compositional skills can be measured
using different metrics and techniques. One approach is to use pre and post-assessments to
check students’ compositional skills before and after using the music education framework.
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The assessment will contain tasks such as making a piece of music, analyzing musical
structures, or creating a melody using chords. Moreover, engagement metrics such as
time spent on the educational platform, number of interactions with the framework, and
completion rates of exercises can provide good statics on user engagement. Integrating a
feature that allows users to review and reflect on their previous works and the feedback
received can also help measure progress and engagement over time.

During the thesis project, we faced some technical challenges and resource limitations
that affected the performance and completeness of the music education framework. The
thesis topic was great for exploring the application of Large Language Models for music
education while our unfamiliarity with music and music models was time-consuming as
in limited time learning and implementing new models was challenging. However, we
successfully laid down the process and implementation for fine-tuning the Large Language
Model using PEFT QLoRA for downstream tasks. Moreover, we also face limited memory
and GPU as pre-trained transformer-based Large Language Models are large and need
high computation and large memory environments.



Conclusion & Future Work

In this study, we have explored the potential of Large Language Models (LLMs) within
the area of music education, particularly highlighting the effectiveness of the Parameter
Efficient Fine-Tuning QLoRA approach. This methodology has shown results in accurately
interpreting and responding to musical queries, thereby enhancing educational practices.
Despite these advancements, the study also identifies significant limitations, including the
model’s dependency on extensive and continuous training to manage diverse and evolving
musical content. Additionally, potential biases in the training dataset could lead the model
to favor certain music genres, styles, or cultures, which highlights the need for careful
selection of training data.

6.1 Future Work

In future work, we suggest making an instruction dataset that includes a wide range of
music theory, styles, and genres. A comprehensive dataset that covers all music theory will
allow us to address the bias and hallucination issues of pre-trained models. Moreover, our
fine-tuned model will be able to handle diverse musical queries and also able to generate
more correct and reliable responses.

Our current fine-tuned model handles only text inputs and can generate text-based re-
sponses for music-related queries. To improve this music education framework we will use
the MusicBERT model which can understand and process symbolic music data like MIDI
formats. The MIDI format contains important information such as pitch, chords, notes,
duration, and velocity of notes. Integrating MusicBERT will improve the adaptability and
the performance of the music education framework allowing it to provide feedback and
creative suggestion to the students’ music compositions, hence improving their musical
compositional skills.
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Furthermore, LangChain, an open-source library, can be used to integrate our fine-tuned
model with MusicBERT. LangChain will enable a more efficient and effective educational
tool that combines the strengths of both fine-tuned models and MusicBERT. It will create
a pipeline between these two models where MusicBERT will process the symbolic music
data like MIDI and the output will be used by a fine-tuned model to generate educational
content and provide feedback and creative suggestions on compositions. Integrated systems
can be used to provide real time feedback and suggestions for students’ MIDI compositions
based on technical accuracy, styles, notes duration, velocity, and other features processed
by MusicBERT.

Music Education Framework Using LLMs

4 N

LangChain

Fine-Tuned

/'— LLM on music MusicBERT ‘—\

Model

dataset

User Input + midi format

Model Output
- . @

'T

Figure 6.1: Music education framework using LLMs
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A

Appendix

Task Description
This appendix includes the original task description for this thesis. The following pages

present the full document as it was received at the start of the project period containing
problem description, research objectives, and questions.
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Background

Traditional music composition teaching methods are often time-consuming and require
a considerable investment of time and resources. Many aspiring composers encounter
difficulties such as insufficient access to expert guidance, expensive private tuition, and a
lack of immediate feedback on their work. Conventional classroom settings and private
lessons may not always accommodate individual learning styles or offer the level of
interaction needed to inspire creativity and maintain interest.

Furthermore, learning music can be challenging for beginners due to the complexity of
music theory and compositional techniques. Consequently, beginners may get
discouraged from pursuing their interest in music composition. A learning platform that
can adapt to the learner's knowledge and skills is required to tackle this issue. Such a
platform should provide a personalized learning path that aligns with the learner's
objectives and interests.

Problem description

The current advancement of Large Language Models (LLMs) has made it possible to
create text resembling human language. This development brings great potential for
personalized learning experiences and improved music education. Indeed, it can provide
more accessible and efficient ways to learn music.

The challenge is to develop an Al-powered tool that can effectively address the
difficulties faced in music education. The tool should be designed to provide an inclusive,
engaging, and customized learning experience for music composition. It must be able to
comprehend and respond to various musical queries and inputs, offer helpful feedback,
and guide users through the learning process. The tool should act as a virtual mentor,
capable of honing the user's compositional skills.

Therefore, this thesis aims to develop an interactive framework that uses LLMs to make
music education more accessible to everyone. This framework is meant to meet the
needs of both music students and educators. It attempts to alleviate the limitations of
traditional music education. Indeed, it seeks to introduce a teaching method that
incorporates effectiveness, accessibility, and engagement.

Scope and limitations
e Focus on the academic part and research problems.
e Implementing a commercial product is out of scope.
e Proof-of-concept implementation of algorithms are expected to emerge.

Research questions

e How can Large Language Models (LLMs) be effectively utilized to understand and
respond to diverse musical queries and inputs in music education?

e What are the main challenges in designing a framework for music education that
provides personalized and adaptive learning experiences?

e What are the key design principles when developing an Al-based music education
framework?

e How can user engagement and improvement in compositional skills be measured for
such a framework?



Research Objectives

e Review the current state of research and identify potential gaps in the application of
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inquiries, specifically focusing on technical limitations and opportunities.

e Develop a music education framework that utilizes LLMs to provide feedback and ideas
on simple music composition tasks, demonstrating LLMs' potential in targeted
educational contexts.

e Evaluate the effectiveness of the framework by analyzing the quality of LLM-generated
feedback on relevance and educational value.
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Documentation for correct use of such information should be added, as far as possible,
to this paper (thesis).

The text for this task should be added as an appendix to the report (thesis).

General project requirements

If the tasks or the problems are performed in close cooperation with an external
company, the candidate should follow the guidelines or other directives given by the
management of the company.

The candidate does not have the authority to enter or access external companies’
information system, production equipment or likewise. If such should be necessary for
solving the task in a satisfactory way a detailed permission should be given by the
management in the company before any action are made.

Any travel cost, printing and phone cost must be covered by the candidate themselves, if
and only if, this is not covered by an agreement between the candidate and the
management in the enterprises.

If the candidate enters some unexpected problems or challenges during the work with
the tasks and these will cause changes to the work plan, it should be addressed to the
supervisor at the UiT or the person which is responsible, without any delay in time.

The candidate is required to demonstrate continuous progress in developing and
completing the work. Continuous progress is defined as consistent, substantive
advancement in research, analysis, writing, and other activities directly related to
fulfilling the thesis requirements determined by the supervisory committee.

If the candidate fails to demonstrate continuous progress, as evidenced by regularly
requesting help without showing substantive independent effort or failing to engage
with the supervisors or the thesis work, the supervisors may limit or withdraw support
and assistance.
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report. The final report with its appendices should be submitted no later than the
decided final date.
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