
 

 

 

 

Faculty of Electrical Engineering 

Impact on Distribution Network Hosting Capacity using Machine 

Learning Based Reactive Power Support from PV Smart Inverters 

 

Sepehr Safavi 

Master’s thesis in Electrical Engineering    ELE-3900   May 2024 



 

 

Table of Contents 

Abbreviation.......................................................................................................................... 8 

1 Introduction ................................................................................................................... 1 

1.1 Background and Motivation .................................................................................... 1 

1.2 Problem Statement .................................................................................................. 1 

1.3 Research Objectives ................................................................................................ 3 

1.4 Thesis Limitation..................................................................................................... 3 

1.5 Scope of the Thesis.................................................................................................. 3 

2 Paper review .................................................................................................................. 4 

2.1 Smart Distribution Network ..................................................................................... 4 

2.2 Voltage problems .................................................................................................... 4 

2.2.1 Overloading and power loss problems .............................................................. 5 

2.2.2 power quality problems .................................................................................... 5 

2.2.3 protection problems .......................................................................................... 5 

2.3 Hosting capacity: enhancement techniques .............................................................. 6 

2.3.1 Reactive power control ..................................................................................... 7 

2.4 Machine learning background .................................................................................. 8 

2.4.1 Reinforcement Learning ................................................................................... 8 

2.4.2 Unsupervised learning ...................................................................................... 9 

2.4.3 Supervised Learning ......................................................................................... 9 

2.5 ML Method Selection .............................................................................................. 9 

2.6 SUPPORT VECTOR MODEL (SVM) .................................................................. 10 

2.7 SVM with RBF Kernel for Reactive Power Prediction........................................... 12 

2.7.1 Why RBF Kernel SVM is a Good Choice ....................................................... 12 

2.8 Tuning Gamma (γ) and Sigma (σ) in RBF SVM .................................................... 12 

3 Methodology ............................................................................................................... 14 

3.1 Flow chart ............................................................................................................. 14 



 

 

3.2 tools used .............................................................................................................. 15 

3.2.1 CIGRE Network ............................................................................................. 16 

4 Method implementation ............................................................................................... 18 

4.1 power flow analysis ............................................................................................... 18 

4.2 DATASET FOR MODELING .............................................................................. 20 

4.2.1 SAMPLE RESULTS ...................................................................................... 20 

5 Results ......................................................................................................................... 23 

5.1 SVM model ........................................................................................................... 23 

5.2 SVM Analysis ....................................................................................................... 25 

5.2.1 Underfitting and Overfitting ........................................................................... 25 

5.2.2 Accuracy ........................................................................................................ 26 

5.2.3 Robustness ..................................................................................................... 26 

5.2.4 Performance ................................................................................................... 26 

6 Conclusion and Future Research .................................................................................. 27 

Appendix A ......................................................................................................................... 28 

Appendix B ......................................................................................................................... 34 

Appendix C ......................................................................................................................... 37 

References ........................................................................................................................... 42 

 

List of Tables 

List of Figures 

Figure 1.1 Unilateral vs distributed power system .................................................................. 2 

Figure 2 Factors affect HC ..................................................................................................... 6 

Figure 3 Reactive power control curve ................................................................................... 7 

Figure 4 Basic framework of reinforcement learning ............................................................. 9 

Figure 5, Flow Chart ............................................................................................................ 14 

Figure 6, CIGRE Medium Voltage Distribution Network [19] ............................................. 16 

Figure 7, CIGRE Model ...................................................................................................... 17 



 

 

Figure 8 voltage bus ............................................................................................................ 19 

Figure 9, reactive power bus ................................................................................................ 19 

Figure 10, reactive power sample buses ............................................................................... 21 

Figure 11, voltage sample buses .......................................................................................... 22 

Figure 12, ML Predic Bus2 .................................................................................................. 23 

Figure 13, ML Predic Bus3 .................................................................................................. 24 

Figure 14, ML Predic Bus4 .................................................................................................. 24 

Figure 15, ML Predic Bus5 .................................................................................................. 25 

 

  



 

 

  



 

 

Abstract  

Nowadays, due to growth of advanced technology and its impact on people lives, there is an 

increasing need for aligning and optimizing infrastructure with people needs. Harnessing 

renewable energy from different sources, store and eventually transmit and distributed it is an 

all-time challenge which nowadays by implementing and proper maintenance we lead to 

having higher efficiency to the point where we are able to maximize usage of these resources. 

There is a concept called Hosting capacity to measure proper amount of integration of 

distribution generators into the grid without causing any malfunctioning in the system. The 

goal is to find a way to enhance the HC. 

Predicting reactive power is a good solution to halt voltage violation. Techniques such as 

optimal power flow has been recommended for that however, machine learning algorithms is 

new approach for reactive power predication due to its better performance and ability to 

consider dominant variables affected on the data set. 

Thus, the literature review has been conducted to choose a ML algorithm for time series 

prediction of reactive power on a chosen Network. After, the methodology has been 

illustrated. Then, a dataset has been generated by doing power flow analysis and used in the 

ML algorithm in order to compare the results. In this case, for some parts the results were not 

fulfilling compared to the generated data where the affected factors have been discussed and 

future works proposed.  

 

  

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 Abbreviation 

          HC   Hosting Capacity 

          ML   Machine Learning 

          OPF   Optimal Power Fkow 

          SVM    Support Vector Machine 

          PV        Photovoltaic 

          HV       High Voltage 

          LV        Low Voltage 

          SDN    Smart Distribution Network 

         AMI     Advanced metering infrastructure  

         ICT       information and communication technologies 

         RNNs     Recurrent Neural Networks  

         GBMs    Gradient Boosting Machines  

         LSTM    Long-Short Term Memory 

         CNN     Convolutional Neural Network 
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1 Introduction 

In this section the background and problem will be discussed along with the thesis scope. 

1.1 Background and Motivation 

 

The global shift towards renewable energy is accelerating due to advancements in technology, 

economic incentives, environmental considerations, and political and social support. 

However, integrating high levels of distributed generation (DG) into power grids can 

introduce several challenges. These include voltage fluctuations, increased line losses, 

transformer and feeder overloads, malfunctions in protective devices, and elevated harmonic 

distortions that can breach the thresholds set by international norms. Such issues arise when 

the grid's hosting capacity (HC) is exceeded. Thus, evaluating and improving the hosting 

capacity of distribution networks is becoming a critical priority for both utility companies and 

DG developers, framing it as a key strategy for ensuring the smooth integration of renewable 

energy sources.[1] 

More importantly, the rise of artificial intelligence and its affect on technology is a proper 

case to study which in this thesis it will be used. Meaning, using ML algorithms to facilitate 

and tackle current issues that are exist, particularly in power system. 

1.2 Problem Statement 

  

Historically, power distribution systems operated on a simple principle where electricity 

flowed in one direction, from centralized generation facilities through the transmission and 

distribution lines to consumers. The introduction and expansion of distributed generation 

(DG) technologies, such as solar photovoltaics (PV) and wind turbines, have revolutionized 

this traditional flow, creating a more complex network where power can originate from 

multiple sources. [2] This transformation has been propelled by a mix of political, social, 

economic, environmental, and technical factors. Despite the benefits, the surge in DG 

adoption can have detrimental effects on the grid, including potential overvoltage issues, the 

thermal overloading of network components, an increased likelihood of surpassing the short 

circuit capacities of equipment, and the incorrect functioning of protective devices, all of 

which could compromise system integrity and reliability.[3] 
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                                                   Figure 1.1 Unilateral vs distributed power system 

 

 In the context of deregulated energy markets, there is a conflict between owners or investors 

of distributed generation (DG) and distribution system operators (DSOs). DG investors are 

eager to increase the integration of DG units into the electrical grid, whereas DSOs are wary 

of the complications that may arise from too much DG integration. To mediate this disparity 

and make objective decisions on whether to approve or deny new DG integration proposals, 

the concept of hosting capacity (HC) was introduced as a fair and transparent mechanism.                              

  This strategy focuses on understanding the technical limits set by both the operators of the 

system and the customers. It defines hosting capacity (HC) as the highest amount of 

distributed energy that can be added to the power system without causing problems. The 

calculation of HC isn't straightforward or uniform; it varies and should be done considering 

different factors like changes in voltage and frequency, the risk of equipment overheating, 

power quality issues, and protection system failures. [4] 
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Using ML in reactive power prediction is a proper tool due to its nature. Meaning, having 

asceses to a big amount of real time data to sort out the best value among them in a 

decentralized network will be a good environment for ML to be implemented. 

In order to get the maximum results out of it this needs to be tested in a smaller case network 

to see the reliability of the algorithms and accordingly it could be implemented in larger scale 

networks. 

1.3 Research Objectives 

This study covers following: 

• Factors affected HC 

• ML approach 

• Time series forecasting reactive power 

• Analysis of the results  

1.4 Thesis Limitation 

• A small network has been chosen, considering 4 buses 

• A limited dataset has been used for analysis 

• ML algorithm has been used on a time series of generated dataset 

1.5 Scope of the Thesis 

Scope of the thesis will be included in the following sections 

• Introduction: in this section background and the problem have been discussed along 

with objectives and limitations of thesis. 

• Paper Review: it covers dominant factors affecting HC and ML approaches to tackle 

the reactive power prediction. 

• Methodology: in this section the overview of how to approach to tackle the problem 

by showing a flow chart and the tools that have been used is discussed.  

• Implementation: this part covers the dataset generation and implementing the ML 

algorithm 

• Results: the results will be discussed here. ML results will be analyzed in terms of 

accuracy, robustness and performance. 

• Conclusion: overall conclusion and future work are mentioned in this section. 
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2 Paper review 

2.1 Smart Distribution Network 

Traditional electricity grids are one-way streets: power plants generate electricity that flows 

through passive infrastructure to end users.  Smart network distribution (SND) disrupts this 

model by introducing intelligence and two-way communication into the grid. This 

transformation offers a range of benefits, including improved efficiency, reliability, and 

integration of renewable energy sources. 

The foundation of SND lies in the convergence of information and communication 

technologies (ICT) with the power grid. Advanced metering infrastructure (AMI) replaces 

traditional meters with intelligent devices that collect real-time data on energy consumption 

and grid conditions. 

This data empowers utilities to monitor and manage the grid proactively, identifying potential 

problems and optimizing power flows.[42]  

The two-way communication enabled by SND unlocks further possibilities. Distributed 

generation (DG), such as solar panels, can be integrated more effectively. Smart grids can 

also facilitate demand response programs, where consumers are incentivized to adjust their 

electricity usage during peak hours, alleviating strain on the grid.[43] 

 

As mentioned in introduction, HC is the main measure to evaluate the proper integration of 

Der through grid where needs to be improved; however, there are some limitations which 

need to be tackle including: 

 

2.2 Voltage problems 

When a distributed generation (DG) unit generates more power than what is needed for the 

load, the excess electricity is fed back into the grid. This can lead to an increase in voltage at 

the point where the load is connected, potentially causing the feeder close to it to become 

overloaded. The primary issues that exceed acceptable thresholds due to high levels of DG 

integration are the rise in voltage and the surpassing of the maximum continuous current that 

the wires (conductor ampacity) can handle. [5]  

The effects of DG integration on the network's voltage profile and the voltage increase 

(DVrise) across various bus locations were estimated. [6] 

   

    ∆𝑉𝑟𝑖𝑠𝑒 ≅
𝑃∗𝑅+𝑄∗𝑋

|𝑉𝑛|
 

Where Vn is a system parameter specified by the DSO and can be adjusted by controlling the 

set-point of the OLTC in the upstream transformer. 

The resistance (R) and reactance (X) are determined by the specific attributes of the system. 

To mitigate voltage increases, enhancing the system's resistance and reactance through cable 

upgrades is a strategy. Nonetheless, this approach may not always be feasible due to financial 

constraints and the practical challenges of updating existing cables in densely populated urban 
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areas. The (X/R) ratio remains a fixed value, reflective of the distinct features of the 

distribution system. A higher (X/R) ratio indicates that the (Q*X) term is more significant. 

Therefore, managing the system's reactive power (Q) emerges as a viable strategy to prevent 

overvoltage situations. Problems with overvoltage and rapid voltage fluctuations become 

significantly apparent when numerous photovoltaic (PV) systems are installed close to the 

end of long and lightly loaded feeders. [7] 

 

2.2.1 Overloading and power loss problems  

Optimal placement of distributed generation (DG) units can cut down on losses within the 

feeder and alleviate the load on the supply transformers. Typically, the process of minimizing 

feeder losses through the integration of DGs is framed as an optimization challenge. In 

practical terms, the decision on where to place DG units and how powerful they should be is 

often made by the DG investor or owner. The most advantageous condition is achieved when 

the DG is situated near the load that is being served.[8] 

 

The integration (DG) units can thus alleviate the risk of overloading, decrease the losses 

within the system, extend the lifespan of equipment, and enhance the thermal performance of 

both feeders and transformers. [9] 

 

The worst-case scenario which leads to the greatest risk of overloading occurs with the 

maximum generation and minimum loading. If the DG output power is higher than the local 

load power, i.e. PDG > Pload; the DG starts to inject power to the upstream network after 

meet the load demand. Therefore, reverse power flow will arise and may lead to exceeding 

the thermal capacity of the equipment (transformers and feeders). [10] 

 

2.2.2 power quality problems 

 

Power quality focuses on the relationship between the electrical utility and its consumers, 

specifically regarding how voltage and current disturbances. deviations from the ideal 

sinusoidal waveform affect both the network and its users. The goal of voltage quality is to 

ensure that the voltage supplied to customers is within acceptable range. The excessive DG 

penetration may lead to some power quality disturbances such as power system harmonics, 

steady state voltage variations, rapid voltage changes, voltage dips and flickers. [11] 

 

 

 

 

2.2.3 protection problems  

When the power generated by distributed generation (DG) surpasses local demand, it can lead 

to reverse power flow and issues with the protection systems. High levels of DG can alter 

both the amount and direction of fault currents, potentially leading to protection system 

malfunctions, including inappropriate activations under normal conditions or failures to 

activate during faults. adjustments to current protection mechanisms might be necessary to 

accommodate the influence of DG. 

 



 

Page 6 of 46 

Additionally, when evaluating the hosting capacity (HC) within the context of protection 

limitations, the analysis should consider various thresholds of DG integration. These include: 

 

- The degree of DG penetration at which altering the settings for current or delay on any 

current protection relays is required. 

- The point of DG integration at which the addition of extra circuit breakers or protective 

components to the network is recommended. 

- The level of DG penetration that necessitates the replacement of an existing protection relay 

with a newer model. [12] 

 

 
                                                       Figure 2 Factors affect HC 

 

 

 

 

 

2.3 Hosting capacity: enhancement techniques  

 

Currently, improving the system's hosting capacity (HC) is considered crucial for distribution 

system operators (DSOs). The technical strategies available for boosting the system's HC are 

divided into three main groups: DSO solutions, prosumer solutions and interactive solutions. 

[13] 
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Among different enhancement strategies, here we discuss particularly for reactive power 

control method. 

 

2.3.1 Reactive power control 

There is a relationship between the reactive power, whether injected or absorbed, in a PV 

inverter and the bus voltage when connected to the PV system in a grid. 

In one scenario which is under-voltage, the control functions in a capacitive manner, injecting 

reactive power until the voltage approaches the reference voltage. This control method is also 

utilized to increase the active power injection into the grid during under-voltage scenarios, 

thereby improving the HC of the system. On the other hand, when over-voltage occurs, the 

control operates in an inductive manner, absorbing reactive power to maintain the voltage at 

the bus equal to the reference value. Furthermore, it ensures that the actual power production 

from the PV system remains constant.[14] 

 

 
                   Figure 3 Reactive power control curve 

 

 

Voltage rise problems are considered as the important factor for high DG penetration. 

Reactive power control techniques are the most effective methods for tackling over voltage 

problems with DSOs and end-users. Various reactive power control techniques can be utilized 

such as shunt and series capacitor banks, Static VAr compensator, Static compensator and DG 

units controlled by smart inverters. 

 

2.3.1.1 capacitor bank 

Power capacitors can be utilized in either series or parallel (shunt) configurations. In the case 

of series capacitors, they are typically used in high-voltage (HV) transmission lines for series 

compensation, enhancing the lines' capacity to transmit power. On the other hand, shunt 

capacitors are integrated into electrical systems to perform various functions.[15] 

Shunt capacitors work by modifying the power factor of the load, improving efficiency. In 

contrast, series capacitors by counteracting the inductive reactance in the circuit they are 

connected to imposes their affect. 
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2.3.1.2 static VAR compensator  

Static var compensators regulate voltage by controlling the reactive power absorbed from or 

injected into the power system. it generates reactive power by switching capacitor banks when 

the system voltage is low, or the load is inductive. Therefore, the reactive power demand of 

the lagging load is provided by the static var compensator, which relieves the transmission of 

the distribution line. Therefore, the voltage drop decreases and the voltage at the load terminal 

should increase. Likewise, when the system voltage is high or the load is capacitive, the static 

var compensator absorbs reactive power. In this case, the static var compensator uses a reactor 

to dissipate the VAR in the system, thereby reducing the system voltage. 

 

 

2.4 Machine learning background 

  

In general, Machine learning involves the process of learning where data or signals are 

transformed into information, with the aim of extracting knowledge. This knowledge, which 

may consist of new data or insights about the learning system itself, can assist in making 

decisions or predictions.[16][17] 

In the Machine Learning (ML) area, there are three main categories: unsupervised learning, 

supervised learning, and reinforcement learning (RL).  

SVM algorithm will be chosen for this study. 

 

2.4.1 Reinforcement Learning 

Reinforcement learning is a technique in machine learning where training involves rewarding 

positive behavior and penalizing negative behavior. The agent, or the entity being trained, has 

the capability to observe and understand its surroundings, make decisions, and learn via a 

process of trial and error. 

 

The main of the elements on RL are the agent which interacts with its environment,  

on each time step, the agent receives the environment state St, in which St ϵ S, means  

the set of all possible states, based on that the agent “acts” selecting a specific  

Action At ϵ A(St). As a consequence of this action, the environment sends a reward  

to the agent, and the main goal for the agent it’s to maximize total reward overall.[18] 

This maximization is called Value function and the rule that the  

agent follows to achieve more rewards is called policy which makes a mapping  

of probabilities distributions of each and one of the possibilities of actions that can  

be executed.[19] 
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                                       Figure 4 Basic framework of reinforcement learning 

 

 

 

 

 

 

 

 

 

2.4.2 Unsupervised learning  

Unsupervised learning is a fundamental technique in machine learning where algorithms 

discover hidden patterns and structures within unlabeled data. Unlike supervised learning, 

which involves training a model with labeled data (data where the desired output is already 

known), unsupervised learning operates on data without any predefined categories or labels. 

This allows the model to identify interesting and potentially useful relationships within the 

data on its own.[41] 

 

2.4.3 Supervised Learning  

In supervised learning, the algorithm is trained on a labeled dataset. This means the data 

includes both input features and the desired output (labels). The algorithm learns the 

relationship between the features and the labels, and then uses this knowledge to make 

predictions for new, unseen data. 

2.5 ML Method Selection 

Predicting the reactive power of Distributed Energy Resources (DERs) connected to a Smart 

Distribution Network (SDN) is crucial for maintaining grid stability and efficiency. 

Supervised learning is good at tasks where labeled data is readily available. In the context of 

SDN with DERs, historical data on past power generation and consumption patterns of the 
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DERs can be collected. This data, along with environmental factors influencing their output, 

solar irradiance for solar panels, wind speed for wind turbines, serves as labeled data for 

training. The labeled data allows the supervised learning model to learn the relationships 

between these factors and the corresponding reactive power output of the DERs. This 

knowledge helps the model to predict reactive power for unseen scenarios.[44] 

On the other hand, Reinforcement learning is good in scenarios where the environment is 

complex, dynamic, and the desired outcome might not be defined. The core concept involves 

an agent interacting with the environment, taking actions, and receiving rewards or penalties 

(reinforcement signals) based on the outcomes. Over time, the agent learns to make better 

decisions that maximize its rewards.[45] 

Overall, supervised learning offers several advantages for reactive power prediction in SDN 

due to the facts: 

interpretability: Supervised learning models often provide better interpretability compared 

to reinforcement learning models. This allows us to understand the key factors influencing 

reactive power output, which is valuable for optimizing DER operation and control strategies 

within the network. 

Focus on Prediction: Supervised learning is specifically designed for prediction tasks, 

making it a more direct approach for this application. 

2.6 SUPPORT VECTOR MODEL (SVM) 

Support Vector Machines (SVMs) are powerful supervised learning algorithms widely used in 

power system applications. They are good at finding optimal decision boundaries 

(hyperplanes) in high-dimensional spaces, separating data points belonging to different 

classes with the largest margin. This margin signifies the distance between the hyperplane and 

the closest data points (support vectors) from each class, ensuring good generalization for 

unseen data prediction.[20] 

 

2.6.1.1 Core Principle: 

SVMs aim to maximize the margin between the hyperplane and the support vectors. This 

ensures a clear separation between classes, leading to robust models capable of handling 

unseen data effectively.[20] 

Mathematically, SVMs formulate the learning problem as a convex optimization problem. 

This formulation guarantees a unique solution and facilitates efficient computational 

methods.[21] 
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2.6.1.2 Types of SVMs: 

Linear SVMs:  

Suitable for data that is linearly separable in the feature space. The decision boundary is a 

straight line (in 2D) or hyperplane (in higher dimensions).[22] 

Non-Linear SVMs:  

Used for data with non-linear relationships. They use kernel functions to map the data points 

into a higher-dimensional space where linear separation becomes possible. Common kernels 

include linear, polynomial, and radial basis function (RBF).[22] 

2.6.1.3 Application to Reactive Power Prediction: 

SVMs can be a valuable tool for predicting reactive power values in time series data. Due to 

the facts 

2.6.1.3.1 Data Preparation: 
Historical reactive power measurements along with relevant influencing factors such as 

voltage, active power, time of day, weather conditions) form the training data.[23] 

In this study these data have been driven by running power flow analysis considering 288 

samples. 

Feature engineering techniques might be necessary to create informative features from the 

raw data that enhance the model's learning process.[24] 

2.6.1.3.2 Model Training: 
Choosing an appropriate SVM type (linear or non-linear) based on the complexity of the 

relationship between reactive power and its influencing factors should be done. [25] 

Non-linear SVMs with RBF kernels are often preferred for capturing complex non-linear 

patterns in power system data. 

Train the SVM model on the prepared historical data. Hyperparameter tuning might be 

required to optimize model performance for specific dataset. Common hyperparameters for 

SVMs include kernel parameters and regularization coefficients.[23] 

 

2.6.1.4 Advantages of Using SVMs for Reactive Power Prediction: 

• Effective in High-Dimensional Spaces: SVMs can handle data with multiple 

influencing factors, making them suitable for complex real-world power system 

scenarios.[20] 

• Good Generalization: By maximizing the margin, SVMs tend to avoid overfitting 

and perform well on unseen data, leading to reliable predictions.[26] 

Considerations: 

• Hyperparameter Tuning: Finding the optimal hyperparameters for the SVM model 

can require experimentation and expertise. Techniques like grid search or randomized 

search can be employed to efficiently identify suitable hyperparameter 

combinations.[21] 
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2.7 SVM with RBF Kernel for Reactive Power Prediction 

It has been used other algorithms for predicting reactive power values of buses such as 

LSTM, CNN however, a Support Vector Machine (SVM) with a Radial Basis Function (RBF) 

kernel is a good approach due to several factors: 

 

Number of Samples: considering not a huge amount of data, an RBF kernel can work 

effectively with this sample size. Compared to more complex models like deep neural 

networks, SVMs can often achieve good results with smaller datasets [27]. 

Interpretability: SVMs offer a level of interpretability that LSTMs generally lack. The 

decision boundary learned by an SVM-RBF can be analyzed to understand which factors, 

weather conditions, historical power generation patterns, most significantly influence the 

reactive power output of DERs. This interpretability can be valuable for improving DER 

operation strategies and control mechanisms within the SDN.[46] 

Computational Efficiency: Training an SVM-RBF model is typically less computationally 

expensive compared to training an LSTM network. This can be an advantage in resource-

constrained environments where computational power might be limited.[46] 

Gamma (γ) and Sigma (σ): These hyperparameters are specific to the RBF kernel and 

control the smoothness and flexibility of the decision boundary. Tuning these parameters is 

crucial for optimal model performance.[28] 

2.7.1 Why RBF Kernel SVM is a Good Choice 

Non-Linearity: Power system data often shows non-linear relationships between reactive 

power and its influencing factors (voltage, active power, etc.). RBF kernels are good at 

capturing such non-linear patterns by mapping data points into a higher-dimensional space 

where linear separation becomes possible [29]. 

Effectiveness: Studies have demonstrated the effectiveness of RBF SVMs for short-term 

reactive power forecasting, achieving good prediction accuracy.[30] 

Hyperparameter Tuning: The ability to tune gamma (γ) and sigma (σ) allows us to adjust 

the model's complexity based on the specific characteristics of reactive power data [31]. 

2.8 Tuning Gamma (γ) and Sigma (σ) in RBF SVM  

Gamma (γ) and Sigma (σ) are crucial hyperparameters in an SVM with an RBF kernel used 

for predicting reactive power values. Tuning these parameters significantly impacts the 
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model's ability to capture the non-linear relationships in the dataset. Here's how these factors 

can effectively be tunned: 

Understanding the Roles: 

• Gamma (γ): This hyperparameter controls the influence of each data point on the 

decision boundary. 

o Higher Gamma (γ): Leads to a more flexible (complex) boundary that can 

capture intricate non-linear patterns. However, it can also lead to overfitting if 

not chosen carefully. [32] 

o Lower Gamma (γ): Results in a smoother (less complex) boundary that might 

miss subtle non-linear relationships in the data. [32] 

• Sigma (σ): This hyperparameter controls the width of the RBF function, affecting the 

decision boundary's smoothness. 

o Smaller Sigma (σ): Creates a narrower function, making the model more 

sensitive to local variations in the data. This can be beneficial for capturing 

specific patterns but might also increase computational cost and risk 

overfitting. [33] 

o Larger Sigma (σ): Leads to a wider function, providing a smoother decision 

boundary that might be less sensitive to local variations but could miss some 

non-linear trends. [34] 

Tuning Techniques: 

There are common techniques for tuning gamma and sigma to find the optimal combination 

for reactive power prediction task: 

• Grid Search: This method systematically evaluates a predefined grid of gamma and 

sigma values. We can train the SVM model with each combination and choose the one 

that yields the best performance metric, mean squared error (MSE) or mean absolute 

error (MAE) for regression tasks. However, grid search can be computationally 

expensive, especially for large grids. [35] 

• Randomized Search: This technique samples random combinations of gamma and 

sigma values from a specified range. It can be computationally more efficient than 

grid search while still effectively exploring the hyperparameter space. [35] 

• Bayesian Optimization: This advanced technique uses a probabilistic model to 

iteratively select promising hyperparameter combinations based on past evaluations. It 

can be particularly efficient for finding optimal values when dealing with expensive-

to-evaluate models. [35] 

 

 

 

 

 

 

 

 



 

Page 14 of 46 

3 Methodology 

In this section the way to approach the algorithm will be illustrated.  

 

3.1 Flow chart 
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         Figure 5, Flow Chart 
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Here as it is showed in the flow chart, an overview of methodology has been illustrated.  

 

It starts with identify the problem and goes for reviewing papers. Then ML algorithm has 

been chosen and after that the proper tool to implement that will be mentioned. Later on, 

Power flow analysis and time series have been conducted to generate the dataset. Then the 

ML algorithm has been conducted to the dataset and generated the results. At the end the 

results have been analyzed  

3.2 tools used 

In this section, the tools that have been used to approach the method will be introduced, 

including the data, software, algorithm. 

 

In order to implement the code for optimal power flow analysis and SVM model Anaconda 

Navigator with Jupyter Notebook has been used. 

 

The data have been added to the Jupyter Notebook Environment using panda power library 

for generating the results. 
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3.2.1 CIGRE Network 

Below topology has been chosen for the study. Consider DERs connected to the buses 2, 3, 4 

and 5.  

This Network has been chosen from sample CIGRE Networks with provided values where 

can be found in Appendix A. 

 One transformer connecting the 110kv bus bar to the 20kv bus bar. 

4 DERs Connected to the bus bars 

 

In the next sections collecting of dataset and traing model will be conducted, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                Figure 6, CIGRE Medium Voltage Distribution Network [19] 
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Figure 7, CIGRE Model 



 

Page 18 of 46 

 

 

4 Method implementation 

The method implements in this way. First. The target values for the study which here are 

reactive power will be generated by doing optimal power flow with 288 samples. Considering 

5 minutes interval in a day. Then these samples will be tested an trained under SVM model to 

see if the predicted values are align with actual values, consider the generated values. 

4.1 power flow analysis  

 

Power flow analysis (PFA) is a computational method that determines the voltage magnitudes 

and phase angles at each bus (electrical node) in a power system under steady-state operating 

conditions.[36] 

 

It considers various factors, including: 

• Generator real and reactive power injections 

• Load real and reactive power demands 

• Transmission line impedances 

• Transformer tap settings 

Key outputs of a power flow study include: 

• Voltage profile: The magnitude and angle of voltage at each bus. 

• Real and reactive power flows in each transmission line. 

• Power losses in transmission lines. 

 

To solve these equations, various numerical methods are employed, the most common of 

which include: 

• Newton-Raphson Method: A second-order iterative technique that is widely used 

due to its fast convergence properties, particularly suitable for large systems.[37] 

• Gauss-Seidel Method: An iterative method that is simpler but slower in convergence 

compared to the Newton-Raphson method, often used in smaller or less complex 

systems.[37] 

• Fast Decoupled Load Flow: A simplification of the Newton-Raphson method that 

decouples the P and Q equations to speed up calculations.[37] 

 

This analysis provides critical insights into voltage levels, power flows, and system losses 

throughout the network, facilitating optimal operational planning and the effective integration 

of new energy resources.[38] 

 

Below figures are the voltage and reactive power values for each bus bar 
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                                                                            Figure 8 voltage bus 

 

Figure 8 demonstrates the voltage profile for each bus bar. These values are from the data of 

the example network. 

 

 

 

 

 

 

 

 
                                                                   Figure 9, reactive power bus 

Figure 9 shows the reactive power injected to each bus bar. Like the figure 8 these values are 

from the data of the example network 
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4.2 DATASET FOR MODELING 

In order to test and train the model a set of data needed to be used. OPF is the tool here to 

generate the proper power where need to be injected to the buses. In the topology that has 

been used here include 4 buses (along with HV bus connect to the external grid) 

 

Optimal Power Flow (OPF) is an advanced mathematical technique used in electrical power 

systems to determine the most economical operating conditions while satisfying system 

constraints like voltage limits, power flow on transmission lines, and generator output limits. 

The goal of OPF is to optimize a specific objective function, typically the cost of generation, 

while adhering to the physical and operational constraints of the network.[39, 40] 

 

• Objective Function: Minimize the total generation cost, which is often a function of 

the power output of the generators. 

• Constraints: 

• Power balance constraints: Ensure that the total generation meets the total 

demand plus system losses. 

• Generator limits: Each generator has a maximum and minimum output limit. 

• Voltage limits: Voltages at different buses must be kept within predefined 

bounds to ensure safe operation. 

• Transmission line limits: Power flowing through each transmission line must 

not exceed its thermal limit. 

 

4.2.1 SAMPLE RESULTS 

The data and code that has been used for OPF can be found in Appendix B 

For each bus 288 samples have been captured. The following results have been generated for 

voltage and reactive power. The voltage profile for buses should be in acceptance range 

which is 1 [P.U ]∓0.05. 

The purpose of having this amount of data is to train and test the model.  
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                                     Figure 10, reactive power sample buses 

This is the time series for reactive power. It can be observed that the DER reactive power 

penetration for buses 2, 3, 4, 5 are around the range 0.2 MVAR (all buses around same range), 

which is close to 0.2 MVAR for the mentioned buses.  
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                                                Figure 11, voltage sample buses 

 

 

 

Voltage Profile for all buses are within the acceptance range, 1 [P.U ]∓0.05. 

This is demonstration of voltage profile of buses that the DERs reactive power prediction will 

be conducted. 
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5 Results 

In this section the results of SVM model will be mentioned.  

5.1 SVM model  

The dataset that has been collected previously will be used here to be used in SVM model. 

In order to prepare the model half of the data have been used for train and the other ones have 

been used for testing the model. The code that used for this part is available in Appendix C 

 

 

                                                                      Figure 12, ML Predict Bus2 
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                                                                     Figure 13, ML Predict Bus3 

 

 

                                                                   Figure 14, ML Predict Bus4 
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                                                                    Figure 15, ML Predict Bus5 

 

 

 

 

 

 

 

 

 

 

5.2 SVM Analysis  

This section will be discussed regarding ML results for figures 12-15. 

5.2.1 Underfitting and Overfitting 

Evaluating underfitting and Overfitting is one of the main measures regarding model 

accuracy. 

cross all buses, there's a tendency towards underfitting rather than overfitting. The models 

generally predict a smoothed version of the actual values, which indicates that they may not 

be capturing all the subtleties and dynamics of the reactive power fluctuations. 

Buses 2 and 3, figures 12 & 13 show underfitting as the model predictions do not capture the 

full variability and peaks in the reactive power. 

As for buses 4 and 5, figures 14 & 15, shows a balanced fit, tracking the actual data closely 

without sticking too tightly to the data.  
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5.2.2 Accuracy 

accuracy varies with some buses showing high accuracy while others moderate. 

For buses 2 and 3, figures 12 & 13 have moderate accuracy; predictions generally follow the 

trend of actual values but miss finer fluctuations and peaks, indicating a need for model 

adjustments to enhance sensitivity. 

As for buses 4 and 5, figures 14 & 15 show high accuracy, with predictions closely aligning 

with actual values. 

 

5.2.3 Robustness  

The models show a degree of robustness in that they avoid large errors and capture the central 

trend reasonably well. 

Buses 2, figures 12 and show good robustness in a general operational sense but lack the 

ability to adapt to sudden changes or capture extreme values effectively. 

Buses 4 and 5, figures 14 & 15 demonstrate very good robustness, adapting well to the 

changes in reactive power over time and maintaining stability in predictions. 

 

5.2.4 Performance 

Performance is closely related to the accuracy and robustness. Buses with higher accuracy and 

robustness show better overall performance. 

Regarding buses 2 and 3, figures 12 & 13 demonstrate adequate performance for general 

trends but struggle with the details and dynamics of the dataset. Their performance could be 

enhanced by increasing model sensitivity and possibly re-evaluating the feature set or 

preprocessing methods. 

Buses 4 and 5, figures 14 & 15 are the better performers, showing good degree of accuracy 

and robustness which turn into superior overall performance. These ones replicate better the 

data and meet performance expectations. 
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6 Conclusion and Future Research  

The analysis of the SVM models trained to predict reactive power for various buses using an 

RBF kernel reveals that while some buses exhibit high accuracy and performance, others 

show room for improvement, particularly in terms of capturing the reactive power's dynamics 

and fluctuations. Key findings include a tendency towards underfitting in several buses, 

suggesting that the model parameters need adjustment to better capture the peaks and troughs 

in the reactive power data. 

Adjusting the gamma parameter in the SVM models could help improve sensitivity to 

fluctuations, potentially reducing underfitting and classing set of data could help to have more 

accurate results. 

Adding more features or enhancing the preprocessing steps to better capture the dynamics and 

dependencies in the data might improve model performance, especially for buses 2 and 3, 

figures 12 & 13 where current models underperform. 

In addition, having more real data such as weather conditions, past reactive power data, active 

power data, although can add complexity to the model however, it could lead to a more 

accurate prediction. 

In addition, other ML Supervised Algorithms can be used to evaluate their capabilities 

including Recurrent Neural Networks (RNNs), Random Forest, Gradient Boosting Machines 

(GBMs). 
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Appendix A 

 

Bus Number DER Active Power (MW) Reactive Power Capability (Mvar) 

Bus 2 1.2 0.2 

Bus 3 1.2 0.2 

Bus 4 1.2 0.2 

Bus 5 1.2 0.2 

 

Power flow Analysis data & Code 

import pandapower as pp 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
from sklearn.svm import SVR 
from sklearn.model_selection import train_test_split, GridSearchCV 
from sklearn.preprocessing import StandardScaler 
 
net = pp.create_empty_network() 
 
# Adding buses 
buses = ['110 kV bar', '20 kV bar', 'bus 2', 'bus 3', 'bus 4', 'bus 5', 'bus 6'] 
bus_ids = [pp.create_bus(net, name=bus, vn_kv=110 if '110' in bus else 20, type='b') for 
bus in buses] 
 
# External grid connection 
pp.create_ext_grid(net, bus=bus_ids[0], vm_pu=1.02) 
 
# Create an empty list for line IDs 
line_ids = [] 
 
# Add lines 
line_data = {'length_km': 1, 'std_type': "NAYY 4x150 SE"} 
connections = [(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1)] 
[line_ids.append(pp.create_line(net, from_bus=bus_ids[f-1], to_bus=bus_ids[t-1], 
**line_data)) for f, t in connections] 
# Add lines 
line_data = {'length_km': 1, 'std_type': "NAYY 4x150 SE"} 
connections = [(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1)] 
[line_ids.append(pp.create_line(net, from_bus=bus_ids[f-1], to_bus=bus_ids[t-1], 
**line_data)) for f, t in connections] 
 
# Transformer 
pp.create_transformer_from_parameters(net, hv_bus=bus_ids[0], lv_bus=bus_ids[1],  
                                      i0_percent=0.038, pfe_kw=11.6, vkr_percent=0.322,  
                                      sn_mva=40, vn_lv_kv=22, vn_hv_kv=110, 
vk_percent=17.8) 
 
# Add loads 
loads = {'p_mw': 1, 'q_mvar': 0.2} 
[pp.create_load(net, bus=bus_ids[i], **loads) for i in range(2, 7)] 
 
# Run optimal power flow 
pp.runopp(net, verbose=True)  
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bus_ids = net.bus.index 
 
# Generate time series data for 288 time steps 
n_timesteps = 288 
time_steps = np.arange(n_timesteps) 
load_variation = 0.1  # ±10% of the initial load 
 
# Create time series for each load based on the OPF results 
np.random.seed(0)  # For reproducibility 
load_profiles_p = {} 
load_profiles_q = {} 
for load in net.load.index: 
    base_p = net.load.at[load, 'p_mw'] 
    base_q = net.load.at[load, 'q_mvar'] 
    load_profiles_p[load] = np.random.normal(base_p, base_p * load_variation, n_timesteps) 
    load_profiles_q[load] = np.random.normal(base_q, base_q * load_variation, n_timesteps) 
 
# Time series arrays for the simulation results 
vm_pu_time_series = np.zeros((n_timesteps, len(bus_ids))) 
q_mvar_time_series = np.zeros((n_timesteps, len(bus_ids))) 
 
# Running OPF for each time step 
for t in time_steps: 
    for load in net.load.index: 
        net.load.at[load, 'p_mw'] = load_profiles_p[load][t] 
        net.load.at[load, 'q_mvar'] = load_profiles_q[load][t] 
    pp.runopp(net) 
    vm_pu_time_series[t, :] = net.res_bus.vm_pu.values 
    q_mvar_time_series[t, :] = net.res_bus.q_mvar.values 
 
# Data scaling and SVM training/testing 
scaler = StandardScaler() 
 
# Hyperparameter grid for tuning 
param_grid = { 
    'C': [0.1, 1, 10, 100], 
    'gamma': [1e-4, 1e-3, 1e-2, 0.1, 1] 
} 
 
for idx, bus_id in enumerate(bus_ids): 
    # Split and scale the data 
    X_train, X_test, y_train, y_test = train_test_split( 
        time_steps.reshape(-1, 1), q_mvar_time_series[:, idx], test_size=0.25, 
random_state=42) 
    X_train_scaled = scaler.fit_transform(X_train) 
    X_test_scaled = scaler.transform(X_test) 
     
    # Perform Grid Search 
    grid_search = GridSearchCV(SVR(kernel='rbf'), param_grid, cv=5, n_jobs=-1, verbose=2) 
    grid_search.fit(X_train_scaled, y_train) 
     
    # Train the SVM model with the best found parameters 
    best_C = grid_search.best_params_['C'] 
    best_gamma = grid_search.best_params_['gamma'] 
    svm_regressor = SVR(kernel='rbf', C=best_C, gamma=best_gamma) 
    svm_regressor.fit(X_train_scaled, y_train) 
     
    # Predict the values 
    y_pred = svm_regressor.predict(X_test_scaled) 
     
    # Plot actual vs predicted values 
    plt.figure(figsize=(10, 5)) 
    plt.scatter(X_test, y_test, color='blue', label='Actual Reactive Power') 
    plt.scatter(X_test, y_pred, color='red', label='Predicted Reactive Power', alpha=0.7) 
    plt.xlabel('Time Step') 
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    plt.ylabel('Reactive Power (MVAR)') 
    plt.title(f'Actual vs Predicted Reactive Power for Bus {net.bus.at[bus_id, "name"]} - 
Tuned Model') 
    plt.legend() 
    plt.grid(True) 
    plt.show() 
 
 
 
 
 
 
 
 
 

Voltage & power demonstration for buses 

 

 

import pandapower as pp 

import pandapower.timeseries as timeseries 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

 

# Create an empty network 

net = pp.create_empty_network() 

 

# Adding buses 

buses = ['110 kV bar', '20 kV bar', 'bus 2', 'bus 3', 'bus 4', 'bus 5', 'bus 6'] 

bus_ids = [pp.create_bus(net, name=bus, vn_kv=110 if '110' in bus else 20, type='b') for bus 

in buses] 

 

# External grid connection 

pp.create_ext_grid(net, bus=bus_ids[0], vm_pu=1.02) 

 

# Initialize line_ids 
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line_ids = [] 

 

 

 

# Add lines 

line_data = {'length_km': 1, 'std_type': "NAYY 4x150 SE"} 

connections = [(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1)] 

[line_ids.append(pp.create_line(net, from_bus=bus_ids[f-1], to_bus=bus_ids[t-1], 

**line_data)) for f, t in connections] 

 

# Transformer 

pp.create_transformer_from_parameters(net, hv_bus=bus_ids[0], lv_bus=bus_ids[1],  

                                      i0_percent=0.038, pfe_kw=11.6, vkr_percent=0.322,  

                                      sn_mva=40, vn_lv_kv=22, vn_hv_kv=110, vk_percent=17.8) 

 

# Add loads 

loads = {'p_mw': 1, 'q_mvar': 0.2} 

[pp.create_load(net, bus=bus_ids[i], **loads) for i in range(2, 7)] 

 

# Run optimal power flow 

pp.runopp(net, verbose=True) 

 

# Define the time series for the loads 

number_of_steps = 288  # For one day with 5-minute intervals 

load_p_mw = np.random.normal(1, 0.1, number_of_steps)  # Active power time series 

load_q_mvar = np.random.normal(0.2, 0.05, number_of_steps)  # Reactive power time series 

 

# Create DataFrames for the time series data 
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df_load_p = pd.DataFrame({'load0_p': load_p_mw, 'load1_p': load_p_mw, 'load2_p': 

load_p_mw, 'load3_p': load_p_mw, 'load4_p': load_p_mw}) 

df_load_q = pd.DataFrame({'load0_q': load_q_mvar, 'load1_q': load_q_mvar, 'load2_q': 

load_q_mvar, 'load3_q': load_q_mvar, 'load4_q': load_q_mvar}) 

 

# Creating the data source 

ds_load_p = pp.timeseries.DFData(df_load_p) 

ds_load_q = pp.timeseries.DFData(df_load_q) 

 

# Creating output writer to store results 

ow = pp.timeseries.OutputWriter(net, time_steps=range(number_of_steps), 

output_path='./time_series_results/', output_file_type=".csv") 

ow.log_variable('res_bus', 'vm_pu') 

ow.log_variable('res_bus', 'q_mvar') 

 

# Running the time series simulation 

pp.timeseries.run_timeseries(net, time_steps=range(number_of_steps)) 

 

# Plotting Voltage Profiles for All Buses 

plt.figure(figsize=(12, 6)) 

for bus_id in bus_ids: 

    plt.plot(net.res_bus.index, net.res_bus['vm_pu'], label=f'Voltage at Bus 

{net.bus.name.at[bus_id]}') 

plt.xlabel('Time Step') 

plt.ylabel('Voltage (p.u.)') 

plt.title('Voltage Profiles for All Buses') 

plt.legend() 

plt.grid(True) 

plt.savefig('voltage_profiles.png') 
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plt.show() 

 

# Plotting Reactive Power Profiles 

plt.figure(figsize=(12, 6)) 

for bus_id in bus_ids: 

    plt.plot(net.res_bus.index, net.res_bus['q_mvar'], label=f'Reactive Power at Bus 

{net.bus.name.at[bus_id]}') 

plt.xlabel('Time Step') 

plt.ylabel('Reactive Power (MVAR)') 

plt.title('Reactive Power Profiles for All Buses') 

plt.legend() 

plt.grid(True) 

plt.savefig('reactive_power_profiles.png') 

plt.show 
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Appendix B 

        Data Sampling Code 

import pandapower as pp 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

 

# Generate time series data for 288 time steps 

n_timesteps = 288 

time_steps = np.arange(n_timesteps) 

 

 

load_variation = 0.1 

 

# Create time series for each load based on the load results from OPF 

load_profiles_p = {} 

load_profiles_q = {} 

for load in net.load.index: 

    base_p = net.load.at[load, 'p_mw'] 

    base_q = net.load.at[load, 'q_mvar'] 
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    np.random.seed(0)   

    load_profiles_p[load] = np.random.normal(base_p, base_p * load_variation, n_timesteps) 

    load_profiles_q[load] = np.random.normal(base_q, base_q * load_variation, n_timesteps) 

 

# Apply these profiles to the loads and run a time simulation 

# For simplicity, we will just recalculate OPF for each time step (not efficient for large 

networks) 

vm_pu_time_series = np.zeros((n_timesteps, len(bus_ids))) 

q_mvar_time_series = np.zeros((n_timesteps, len(bus_ids))) 

 

for t in time_steps: 

     

    for load in net.load.index: 

        net.load.at[load, 'p_mw'] = load_profiles_p[load][t] 

        net.load.at[load, 'q_mvar'] = load_profiles_q[load][t] 

     

    # Run OPF for the current time step 

    pp.runopp(net) 

     

    # Store results 

    vm_pu_time_series[t, :] = net.res_bus.vm_pu.values 

    q_mvar_time_series[t, :] = net.res_bus.q_mvar.values 

print(net.res_bus.vm_pu.head()) 

print(net.res_bus.q_mvar.head()) 

# Plot results 

# Voltage Profile Plot 

plt.figure(figsize=(12, 6)) 

for idx, bus_id in enumerate(bus_ids): 
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    plt.plot(time_steps, vm_pu_time_series[:, idx], label=f'Bus {net.bus.name.at[bus_id]} 

Voltage') 

plt.xlabel('Time Step') 

plt.ylabel('Voltage (p.u.)') 

plt.title('Voltage Profiles Over Time') 

plt.legend(loc='upper left', bbox_to_anchor=(1, 0.5))  # Position the legend outside the plot 

plt.grid(True) 

plt.tight_layout(rect=[0, 0, 0.75, 1])  # Adjust the plot area to make room for the legend 

plt.savefig('time_series_voltage_profile.png') 

plt.show() 

 

# Reactive Power Profile Plot 

plt.figure(figsize=(12, 6)) 

for idx, bus_id in enumerate(bus_ids): 

    plt.plot(time_steps, q_mvar_time_series[:, idx], label=f'Bus {net.bus.name.at[bus_id]} 

Reactive Power') 

plt.xlabel('Time Step') 

plt.ylabel('Reactive Power (MVAR)') 

plt.title('Reactive Power Profiles Over Time') 

plt.legend(loc='upper left', bbox_to_anchor=(1, 0.5))  # Position the legend outside the plot 

plt.grid(True) 

plt.tight_layout(rect=[0, 0, 0.75, 1])  # Adjust the plot area to make room for the legend 

plt.savefig('time_series_reactive_power_profile.png') 

plt.show() 
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Appendix C 

      SVM Code  

 

import pandapower as pp 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.svm import SVR 

from sklearn.model_selection import train_test_split, GridSearchCV 

from sklearn.preprocessing import StandardScaler 

 

# Create an empty network 

net = pp.create_empty_network() 

 

# Adding buses 

buses = ['110 kV bar', '20 kV bar', 'bus 2', 'bus 3', 'bus 4', 'bus 5', 'bus 6'] 

bus_ids = [pp.create_bus(net, name=bus, vn_kv=110 if '110' in bus else 20, type='b') for bus 

in buses] 

 

# External grid connection 
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pp.create_ext_grid(net, bus=bus_ids[0], vm_pu=1.02) 

 

# Create an empty list for line IDs 

line_ids = [] 

 

# Add lines 

line_data = {'length_km': 1, 'std_type': "NAYY 4x150 SE"} 

connections = [(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1)] 

[line_ids.append(pp.create_line(net, from_bus=bus_ids[f-1], to_bus=bus_ids[t-1], 

**line_data)) for f, t in connections] 

# Add lines 

line_data = {'length_km': 1, 'std_type': "NAYY 4x150 SE"} 

connections = [(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1)] 

[line_ids.append(pp.create_line(net, from_bus=bus_ids[f-1], to_bus=bus_ids[t-1], 

**line_data)) for f, t in connections] 

 

# Transformer 

pp.create_transformer_from_parameters(net, hv_bus=bus_ids[0], lv_bus=bus_ids[1],  

                                      i0_percent=0.038, pfe_kw=11.6, vkr_percent=0.322,  

                                      sn_mva=40, vn_lv_kv=22, vn_hv_kv=110, vk_percent=17.8) 

 

# Add loads 

loads = {'p_mw': 1, 'q_mvar': 0.2} 

[pp.create_load(net, bus=bus_ids[i], **loads) for i in range(2, 7)] 

 

# Run optimal power flow 

pp.runopp(net, verbose=True)  
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bus_ids = net.bus.index 

 

# Generate time series data for 288 time steps 

n_timesteps = 288 

time_steps = np.arange(n_timesteps) 

load_variation = 0.1  # ±10% of the initial load 

 

# Create time series for each load based on the OPF results 

np.random.seed(0)  # For reproducibility 

load_profiles_p = {} 

load_profiles_q = {} 

for load in net.load.index: 

    base_p = net.load.at[load, 'p_mw'] 

    base_q = net.load.at[load, 'q_mvar'] 

    load_profiles_p[load] = np.random.normal(base_p, base_p * load_variation, n_timesteps) 

    load_profiles_q[load] = np.random.normal(base_q, base_q * load_variation, n_timesteps) 

 

# Time series arrays for the simulation results 

vm_pu_time_series = np.zeros((n_timesteps, len(bus_ids))) 

q_mvar_time_series = np.zeros((n_timesteps, len(bus_ids))) 

 

# Running OPF for each time step 

for t in time_steps: 

    for load in net.load.index: 

        net.load.at[load, 'p_mw'] = load_profiles_p[load][t] 

        net.load.at[load, 'q_mvar'] = load_profiles_q[load][t] 
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    pp.runopp(net) 

    vm_pu_time_series[t, :] = net.res_bus.vm_pu.values 

    q_mvar_time_series[t, :] = net.res_bus.q_mvar.values 

 

# Data scaling and SVM training/testing 

scaler = StandardScaler() 

 

# Hyperparameter grid for tuning 

param_grid = { 

    'C': [0.1, 1, 10, 100], 

    'gamma': [1e-4, 1e-3, 1e-2, 0.1, 1] 

} 

 

for idx, bus_id in enumerate(bus_ids): 

    # Split and scale the data 

    X_train, X_test, y_train, y_test = train_test_split( 

        time_steps.reshape(-1, 1), q_mvar_time_series[:, idx], test_size=0.25, random_state=42) 

    X_train_scaled = scaler.fit_transform(X_train) 

    X_test_scaled = scaler.transform(X_test) 

     

     

    grid_search = GridSearchCV(SVR(kernel='rbf'), param_grid, cv=5, n_jobs=-1, verbose=2) 

    grid_search.fit(X_train_scaled, y_train) 

     

    # Train the SVM model  

    best_C = grid_search.best_params_['C'] 

    best_gamma = grid_search.best_params_['gamma'] 
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    svm_regressor = SVR(kernel='rbf', C=best_C, gamma=best_gamma) 

    svm_regressor.fit(X_train_scaled, y_train) 

     

    # Predict the values 

    y_pred = svm_regressor.predict(X_test_scaled) 

     

    # Plot actual vs predicted values 

    plt.figure(figsize=(10, 5)) 

    plt.scatter(X_test, y_test, color='blue', label='Actual Reactive Power') 

    plt.scatter(X_test, y_pred, color='red', label='Predicted Reactive Power', alpha=0.7) 

    plt.xlabel('Time Step') 

    plt.ylabel('Reactive Power (MVAR)') 

    plt.title(f'Actual vs Predicted Reactive Power for Bus {net.bus.at[bus_id, "name"]} - Tuned 

Model') 

    plt.legend() 

    plt.grid(True) 

    plt.show() 
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