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Abstract
Enhanced accuracy of building detection algorithms has the potential to benefit
a wide array of applications, including urban planning, environmental moni-
toring, and disaster response efforts. However, building extraction algorithms
struggle with robustness due to among others, occlusions from vegetation and
shadows of nearby tall buildings, complex building shapes, and a large distribu-
tional shift between datasets that come in varying spatial resolutions, resulting
in their dependency of dataset-specific and user specified parameters. Towards
addressing this shortcoming, we hypothesize that the model’s uncertainty can
be leveraged to increase the robustness and efficacy of these algorithms. As a
first step towards evaluating this hypothesis, we propose an improved version of
the current state-of-the-art that incorporates quantification of the model uncer-
tainty. We further show that leveraging these uncertainty methods by guiding
the vertex selection process through the use of a dynamic threshold improves
the stability across datasets. Results on two datasets demonstrate that incor-
porating uncertainty has the potential to significantly improve the robustness
of the previous state-of-the-art method. Additionally, the dynamic threshold,
while offering a more modest improvement, showcases the potential of actively
leveraging uncertainty measures to improve the model performance.





Acknowledgements
I would like to express my sincere gratitude to all those who have supported
and guided me through the course of my master’s program. Firstly, I extend my
heartfelt thanks to my supervisor, Michael Kampffmeyer, for your unwavering
guidance, insightful feedback, and encouragement. I am also deeply grateful to
all my friends, whose camaraderie truly enabled me to persevere. In particular,
Tobias and Iver has made this journey a very fun one; I truly appreciated
the long discussions about food, politics, and everything in between. And to
Rebecca, for your endless encouragement and help. Your support has meant
the world to me.

Lastly, I would like to thank my loving and supporting family, who has always
had a time and space for me, providing the best conditions for my success. Your
belief in my has been my greatest motivation.





Contents
Abstract i

Acknowledgements iii

List of Figures ix

List of Tables xi

List of Abbreviations xiii

1 Introduction 1
1.1 Key challenges . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

I Background and Literature Review 5

2 General theory of Neural Networks 7
2.1 Perceptrons . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Learning perceptrons weights . . . . . . . . . . . . . . . . . 9
2.3 Optimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Momentum . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Adam Optimizer . . . . . . . . . . . . . . . . . . . . 13

2.4 Multi Layer Perceptrons . . . . . . . . . . . . . . . . . . . . 14
2.5 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Activation Functions . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7.1 Common Regularization Techniques . . . . . . . . . 18
2.7.2 Dropout . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Convolutional Neural Networks 21
3.1 Basics of Convolutions and Pooling . . . . . . . . . . . . . . 21
3.2 Architecture Components . . . . . . . . . . . . . . . . . . . 23

v



vi contents

3.2.1 Backpropagation . . . . . . . . . . . . . . . . . . . . 24
3.3 Deep Learning Architectures in Computer Vision . . . . . . . 25

3.3.1 Deeper architectures . . . . . . . . . . . . . . . . . . 25
3.4 Methods for Semantic Image Segmentation in Deep Learning 26

3.4.1 Semantic segmentation Architectures . . . . . . . . . 27

4 Existing Architectures for Building Footprint Extraction 29
4.1 Polygonal Extraction: A Shift From Segmentation . . . . . . 29
4.2 End-to-End Learned Polygonal Extraction . . . . . . . . . . . 30
4.3 Hybrid Methods . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Hierarchical Supervision . . . . . . . . . . . . . . . . . . . . 32

4.4.1 Addressing Mask Reversibility . . . . . . . . . . . . . 33
4.4.2 Learning Line Segments . . . . . . . . . . . . . . . . 33
4.4.3 Learning Hierarchical Representations . . . . . . . . 34
4.4.4 Polygon extraction . . . . . . . . . . . . . . . . . . . 35

5 Uncertainty Estimation in Deep Learning 37
5.1 Uncertainty in Deep Learning . . . . . . . . . . . . . . . . . 37
5.2 Bayesian Approaches to Uncertainty . . . . . . . . . . . . . 38
5.3 Dropout as Bayesian Approximation . . . . . . . . . . . . . 40

5.3.1 Implementation and Applications . . . . . . . . . . . 41
5.3.2 Bayesian Convolutional Neural Networks . . . . . . . 42

II Proposed Methodology 43

6 Uncertainty Guided Building Extraction 45
6.1 Error Propagation of Vague Borders . . . . . . . . . . . . . . 45
6.2 Stochastically Sampling Segmentation and Vertex Maps . . . 47
6.3 Dynamic Uncertainty Based Polygon Refinement . . . . . . . 48

6.3.1 Sensitivity to Parameters During Inference . . . . . . 48
6.3.2 Dynamic Threshold Selection . . . . . . . . . . . . . 50

III Experiments 53

7 Experimental Setup 55
7.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.1.1 Field Dataset . . . . . . . . . . . . . . . . . . . . . . 56
7.1.2 AICrowd dataset . . . . . . . . . . . . . . . . . . . . 57

7.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . 58
7.3 Implementation Details . . . . . . . . . . . . . . . . . . . . 60

8 Experiments and Results 63



contents vii

8.1 Bayesian Ensemble of Predictions . . . . . . . . . . . . . . . 63
8.1.1 Results Using Dropout . . . . . . . . . . . . . . . . . 64
8.1.2 Results using Monte Carlo Dropout . . . . . . . . . . 65
8.1.3 Distance Between Mask and Polygon Predictions . . . 68
8.1.4 Effects of Increasing Stochastic Forward Passes . . . . 70
8.1.5 Effects of Data Distribution . . . . . . . . . . . . . . 71
8.1.6 Ground Range Effects . . . . . . . . . . . . . . . . . 71

8.2 Uncertainty Scaled Border Threshold . . . . . . . . . . . . . 74
8.2.1 Uncertainty Guidance for Norwegian Homes . . . . . 74
8.2.2 Dynamic Vertex Selection on Large Dataset . . . . . . 76

8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.3.1 The Need for Higher Quality Segmentation Maps . . 79
8.3.2 Spatial Resolution Independent Evaluation Metrics . 80
8.3.3 Use of Uncertainty Maps From Segmentation and Off-

set Maps . . . . . . . . . . . . . . . . . . . . . . . . 80

9 Conclusion 81

Bibliography 83





List of Figures
2.1 Visualization of perceptrons in parallel. . . . . . . . . . . . . 8
2.2 Gradient descent example with derivative and update rule. . 11
2.3 Example of two-class problem of OR and XOR. . . . . . . . . 14
2.4 Example illustration of early stopping as a regularization tech-

nique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Illustration of an 6 × 6 image being convolved with a 3 × 3
kernel to produce a 4 × 4 feature map. . . . . . . . . . . . . 22

3.2 Illustration of Max Pooling using a 2 × 2 kernel with stride 2. 23
3.3 Example of semantic segmentation mask of a building. . . . 26

4.1 Example output from HiSup [17] before generating polygons. 34

6.1 Predicted vertices and polygons with ground truth polygons.
Example of missing vertex. . . . . . . . . . . . . . . . . . . 46

6.2 Ensemble of predictions using Monte Carlo Dropout . . . . . 47
6.3 AP evaluation metric with different distance thresholds. . . . 49
6.4 Vertex selection process of MaV-Attr. . . . . . . . . . . . . . 50

7.1 Example images of the Field dataset. . . . . . . . . . . . . . 56
7.2 Examples from the AICrowd mapping challenge dataset [61]. 58

8.1 Qualitative comparison of predictions using a single predic-
tion versus an ensemble of 10. . . . . . . . . . . . . . . . . 66

8.2 Uncertainty maps of predictions from Figure 8.1. . . . . . . 67
8.3 Comparison of distance threshold using a single prediction

and 10 MCD predictions. . . . . . . . . . . . . . . . . . . . 68
8.4 Comparison of DP simplification polygons of the predicted

mask (top row) against the generated polygon using MaV-Attr. 69
8.5 Analysis to see how performance is affected of the number of

MC simulations used in predictions. . . . . . . . . . . . . . . 70
8.6 Example to illustrate an inherent problem when the spatial

resolution increase. . . . . . . . . . . . . . . . . . . . . . . 71

ix



x list of figures

8.7 Comparison of the true ground range error accepted by MaV-
Attr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.8 Evaluation of our benchmark outlined in Figure 8.3 to our
dynamic threshold selection algorithm. . . . . . . . . . . . . 75

8.9 The same as Figure 8.8, but the relevant sections are enhanced. 76
8.10 Qualitative analysis of our dynamic threshold selection algo-

rithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.11 Comparison of evaluation metrics on the AICrowd dataset

[61] using our dynamic version of MaV-Attr. . . . . . . . . 78
8.12 Enhanced version of Figure 8.11 that emphasize relevant re-

gions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



List of Tables
8.1 Evaluation results comparing the benchmark [17], against us-

ing standard dropout with weight scaling, and MCD, for mod-
els trained on the Field dataset. . . . . . . . . . . . . . . . . 64

8.2 Evaluation results comparing the benchmark [17] with stan-
dard dropout and MCD. . . . . . . . . . . . . . . . . . . . . 65

8.3 Overview of values used in our analysis, including values from
datasets of experiments conducted in [17]. . . . . . . . . . . 73

8.4 Comparison between MaV-Attr and our proposed modifica-
tion leveraging uncertainty evaluated on the Field dataset. . 74

8.5 Comparison between MaV-Attr [17] and our proposed dy-
namic threshold modification to MaV-Attr. . . . . . . . . . . 76

xi





List of Abbreviations
acm Active Contour Model

afm Attraction Field Map

agnn Attentional Graph Neural Network

al Active Learning

ann Artificial Neural Network

ap Average Precision

ar Average Recall

asm Active Skeleton Model

bce Binary Cross Entropy

bnn Bayesian Neural Network

c-iou Complexity Aware Intersection over Union

ce Cross Entropy

cnn Convolutional Neural Network

dcnn Deep Convolutional Neural Network

dl Deep Learning

dnn Deep Neural Network

dp Douglas-Peucker

xiii



xiv l ist of abbreviat ions

dsm Digital Surface Model

eca Efficient Channel Attention

fcn Fully Convolutional Network

fcnn Fully Connected Neural Network

ffl Frame Field Learning

gcn Graph Convolutional Network

ggnn Gated Graph Neural Network

gis Geographical Information Systems

gnn Graph Neural Network

iou Intersection over Union

kl Kullback-Leibler

lsd Line Segment Detection

mav-attr Mask-and-Vertices Attraction

mc Monte Carlo

mcd Monte Carlo Dropout

mcmc Markov Chain Monte Carlo

ml Machine Learning

mlp Multilayer Perceptron

ms coco Microsoft Common Objects in COntext

mse Mean Squared Error

mtl Multi-Task Learning

nms Non Maximum Suppression



l ist of abbreviat ions xv

nn Neural Network

nr Norwegian Computing Center

relu Rectified Linear Unit

rgb Red, Green, and Blue

rnn Recurrent Neural Network





1
Introduction
The increase in availability of on-demand, high-resolution optical satellite
imagery, combined with the widespread adoption of Deep Learning (dl) tech-
niques for image analysis, has opened up new possibilities for various indus-
tries. Fields such as vegetation monitoring, agriculture, and forestry mapping
[1, 2, 3, 4, 5, 6], urban planning, and land use [7, 8], environmental monitoring
[9], and disaster management [10] have all benefited from these advance-
ments.

In urban mapping, the use of Deep Convolutional Neural Networks (dcnns) to
extract building footprints has become a growing research focus [11, 12, 10, 13, 14,
15, 16, 17]. Despite significant progress, building detection from high-resolution
satellite imagery remains a complex and challenging task. Traditional methods
often depend on manual labor, such as digitizing or applying simple image
processing techniques, which are time-consuming and prone to human error
[18, 19, 20, 21]. The varying shapes, sizes, and orientations of buildings, along
with occlusions from vegetation and shadows,make precise delineation difficult.
Additionally, the dynamic nature of urban environments requires methods that
can adapt to changes and provide accurate, up-to-date information [22]. dl
offers the potential to automate this process, reducing labor and time while
providing more precise and consistent results.

Recent developments have shown that segmentation masks can limit certain
downstream applications. To address this, dl algorithms such as [12, 13, 15,
17, 23, 24, 25], have been developed to produce vector polygons directly from
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2 chapter 1 introduction

segmentation masks. These vector polygons are compatible with modern Geo-
graphical Information Systems (gis) software, whereas traditional segmenta-
tion models require an additional vectorization step that can introduce signifi-
cant ambiguities near building edges. The reformulation of the problem to a
vector extraction one, has the potential to tailor solutions that leverage inher-
ent properties in images of buildings, such as walls, corners, and orientations
[12, 13, 14, 17].

Due to challenges in the transformation of a binary mask into a vector repre-
sentation that maintain precision and robustness, the architectures have been
distinguished into two broad categories. Direct extraction of polygons in an
end-to-end manner, that leverage inherent properties in the vector representa-
tion, for instance, by mimicking the graph-view of polygons employing Graph
Neural Networks (gnns) [25], or by sequentially processing each vertex us-
ing Recurrent Neural Networks (rnns) [23, 24, 25, 15]. These methods tend
to struggle with complex building shapes, not being able to detect holes in
buildings, such as courtyards, are generally harder to train, and often require
multiple iterations during inference.

The remaining category of architectures uses segmentationmaps in conjunction
with additional information, such as edges or vertices, before a separate step
combines these into a polygon [13, 17], some methods also employ a final
refinement step [12]. While these methods tend to be simpler in their processing
chains, using easier polygon generation algorithms, they lose the end-to-end
learned nature. Additionally, errors from the segmentation mask prediction
often tend to propagate to later stages, without correction.

1.1 Key challenges

We identify two categories of key challenges. We begin by considering those
related to the dataset. Buildings come in many shapes, sizes and orientations,
a dl based solution needs to be robust in its ability to produce consistent pre-
dictions. However, buildings with problematic characteristics such, as rounded
shapes, and holes, are often underrepresented in most datasets, and are in
general hard to accurately delineate. This leads to poor performance on build-
ings that have complex shapes, where a human counterpart would have an
easier time. Another problem arise when the building footprints are occluded
by shadows from other tall structures or vegetation. While recent dl models
show promising results for partly occluded buildings [15, 17], the issue prevails,
and is a common pitfall for many automated algorithms.

The other category deals with issues related to the frameworks itself. The
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usefulness of vector polygons are limited by their quality. Common challenges
in these architectures stem from their reliance on the segmentation mask
which, like the traditional methods, suffer when building edges have significant
ambiguities. The work of [17] specifically address the issue ofmask reversibility,
that is, the problem with imprecise borders in the learned segmentation maps
during the conversion into a vector representation, however the considerable
gap in qualitative performance between their predicted segmentation masks,
and polygons, suggests the issue still remains. While these new methods
have shown impressive performance, they often tend to be less robust as their
vectorization scheme assumes a correct prediction of a set of vertices, which are
subsequently merged through different merging schemes involving hand-tuned
hyperparameters.

1.2 Contribution

In this thesis, we hypothesize that both the above-mentioned challenges can be
addressed by leveraging the model uncertainty. In particular, we address the
issue of mask reversibility by improving the robustness of an existing model,
by reformulating their network into a Bayesian Neural Network (bnn), to
incorporate recent developments in Bayesian inference methods [7, 26, 27,
28, 29], we can quantify the uncertainties in the predictions, in an attempt
of improving its robustness and precision in building extraction. We propose
an improved version of the current state-of-the-art, that model the epistemic
uncertainty of the architecture using Monte Carlo Dropout (mcd). We further
leverage the quantified uncertainty to guide the vertex selection process by a
dynamic threshold modification to the framework, with inspiration from [30].
Thus, actively leveraging the uncertainty provided through the mcd process.
To evaluate our contributions, we conduct experiments on a novel, proprietary
high-resolution dataset recorded by Field, and provided to us by the Norwegian
Computing Center (nr).

To summarize, our contributions are:

1. Incorporating Monte Carlo Dropout into the current state-of-the-art [17],
to quantify uncertainty in the model, and improve its robustness.

2. We further employ a dynamic threshold to guide the vertex selection
process by actively leveraging the epistemic uncertainty of the model.

3. Evaluating the current state-of-the-art Deep Learning model on a propri-
etary, novel Norwegian dataset.
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Through the work in this thesis, we are taking a first step towards validating
our hypothesis, and demonstrating the potential of leveraging uncertainty in
this area as well as outlining promising directions that can be explored in this
domain.

1.3 Outline

We begin Part I by building a foundation in Neural Networks (nns), in Chapter 2,
exploring how a mathematical function is able to adapt to data, and thereby
learn. We also discuss regularization techniques, which will be important for
our method. Chapter 3 brings forth Convolutional Neural Networks (cnns),
and dcnns to highlight how nns process images efficiently. The chapter
will also present key frameworks that in practice extract information dense
representations thatmodern complex frameworks use. The chapter also touches
on subjects that are vital in building detection, such as segmentation, and the
architectures which are common for such tasks. Chapter 4 delves into related
works in building footprint extraction, explaining their key novelties. The
reader should pay particular attention to Section 4.4, where the framework
which will be modified in our method is presented. The last chapter, Chapter 5,
provides an outline of uncertainty estimation in dl, explaining concepts such
as mcd, and how this produces uncertainty maps of the predictions.

Part II presents our novelty, and motivates our use of uncertainty maps to
refine a building detection algorithm. It is then followed by the experiment in
Part III, that begins with a description of the datasets, evaluation metrics and
implementation details before presenting our results. We round this chapter
off with presenting ideas for future extensions that we see fruitful.



Part I

Background and Literature
Review
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2
General theory of Neural
Networks

nns are computational models with an interconnected network of artificial
neurons, inspired by the neurons found in the human brain. With similarities
to how the brain uses electrical impulses to exchange and process information
using neurons [31], Artificial Neural Networks (anns) consist of interconnected
nodes (or artificial neurons) arranged in layers. Each connection between the
nodes is associatedwith a weight that determines the strength of the connection.
The power of nns lies in their ability to learn patterns and relationships from
data. By adjusting the weights controlling the strength of the connections
between neurons during a training process, nns can learn to make accurate
predictions, classify objects, generate text and even simulate art.

In this section, we will dive into the fundamental concepts of nns. Starting
with its most basic building block, the perceptron, in Section 2.1, and explore
how these models are trained to perform complex tasks through a process of
learning and optimization. Section 2.2 explain how the perceptron can learn
from data, before the topic of optimization algorithms is brought up in Sec-
tion 2.3. At this point we extend the idea of a perceptron into a layer of multiple
perceptrons, by introducing the Multilayer Perceptron (mlp) in Section 2.4.
We then introduce the backpropagation algorithm (Section 2.5) before look-
ing at activation functions and rounding the chapter off with regularization
algorithms in Section 2.7.

7



8 chapter 2 general theory of neural networks

2.1 Perceptrons

The perceptron was developed as a means to answer how information is stored
or remembered, and how does this information affect the response to some
stimuli by a biological system [31]. Functionally, we use it as a processing
element, that given some input 𝑥 𝑗 , 𝑗 = 1, . . . , 𝑑 mapped to a single output vari-
able 𝑦 while associating a weight𝑤 𝑗 between each input-to-output connection,
following the format of [32],

𝑦 =

𝑑∑︁
𝑗

𝑤 𝑗𝑥 𝑗 +𝑤0𝑥0,

or
𝑦 = 𝒘𝑇𝒙 .

(2.1)

Figure 2.1: Parallel perceptrons, denoted by 𝑦𝑖 , 𝑖 = 1, . . . , 𝐾 , receiving inputs from
𝑥 𝑗 , 𝑗 = 1, . . . , 𝑑 .𝒘𝑖 denotes the weight of the connection from the input to
the output 𝑦𝑖 . By only using the gray input to output matches, we see the
form of a single perceptron. Illustration is inspired by [32].

Equation 2.1 has an additional bias unit, which we always set to 1. Then we may
rewrite the perceptron as the bottom equation, having modified the input as
𝒙 = [1, 𝑥1, . . . , 𝑥𝑑 ]𝑇 . A visualization of this structure is found by only studying
the gray colored elements of Figure 2.1. A single perceptron, like the one from
Figure 2.1, and given optimized weights, is able to separate two classes, by
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applying for instance the sign function to its output, then choosing a class
based on the sign of the output. Extending this idea to multiple classes, by
using multiple perceptrons in parallel,

𝑦𝑖 = 𝒘𝑇
𝑖 𝒙 (2.2)

where each perceptron is receiving the same input, but weighting them differ-
ently. The weights determine the information flow by gating the inputs. Now, to
use this layer of multiple perceptrons in classification, we would simply assign
the predicted class to be the output max𝑘 𝑦𝑖 . In addition to say something about
the posterior probabilities, we would apply the softmax function in Equation 2.3
[32].

𝑦𝑖 = softmax(𝒘𝑇
𝑖 𝒙) =

exp𝒘𝑇
𝑖 𝒙∑

𝑘 exp𝒘𝑇
𝑘
𝒙

(2.3)

From Equation 2.3 we see how the output of a perceptron is scaled by the
outputs of the other perceptrons at the same level.

2.2 Learning perceptrons weights

To find the optimal weights for the perceptron, we use an iterative approach
of incremental adjustment. We can imagine the hyperplane defined by the
perceptron trying to separate 𝐾 classes from initial random weights, being
completely random. By quantifying how far from correctly labeling the input
samples the perceptron were over several attempts, we are able to say some-
thing about the direction the weights will need to be adjusted to improve the
classification accuracy.

The loss function is a statistical measure of closeness between a prediction
from ourmodel and the true value from the dataset we are attempting to model.
There are not really any strict rules for what a loss function needs to look like,
as long as it quantifies the error of predictions. Based on the problem, it is
common to employ two different types of loss functions. If the problem deals
with aligning to continuous true quantities by modelling a linear relationship
between a dependent variable 𝒚 from independent variables 𝒙𝑖 , the problem
is a regression problem, and benefits from a loss function tailored for the task.
The most common loss function used in regression is the Mean Squared Error
(mse),
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MSE(𝒚, 𝒚̂) = 1
𝑛

∑︁
𝑖

(𝒚 − 𝒚̂)2, (2.4)

where𝒚 is the observed, true values, and 𝒚̂𝑖 is the predicted values. On the other
hand, if we are predicting the class label, mse will do a poor job of capturing
the inter-class disparity compared with a suited function such as Cross Entropy
(ce), which we can observe from the scalar valued output of Equation 2.4.
Computing the ce between the true class (𝒚𝑡 ) of a sample (𝒙𝑡 ,𝒚𝑡 ), and the
predicted value, 𝒚̂𝑡 gives us a measure of dissimilarity between the predicted
and true class. When we are dealing with multiple classes, we encode the
true class as 𝑦𝑡𝑖 = 1 if the sample belongs to class 𝑖 and 0 otherwise. The
cross-entropy is computed as,

CE(𝒙𝑡 ,𝒚𝑡 ) = −
∑︁
𝑖

𝑦𝑡𝑖 log𝑦
𝑡
𝑖 . (2.5)

Binary predictions use a modified version of the ce loss function, Binary
Cross Entropy (bce). While inputs to the ce function are softmax activations
(Equation 2.3), inputs to a bce function come from the two class special case
of the softmax function, the sigmoid function,

𝜎 (𝑧) = 1
1 − 𝑒−𝑧 , (2.6)

where, 𝑧 for instance, to match our previous example would be 𝑧 = 𝒘𝑡
𝑖𝒙. The

bce function would receive 𝜎 (𝑧) as input and is defined as,

BCE(𝒙𝑡 ,𝒚𝑡 ) = −[𝑦𝑡 log 𝒚̂𝑡 + (1 −𝒚𝑡 ) log 1 −𝒚𝑡 ] . (2.7)

For our perceptron to be able to learn, we need a couple of elementary building
blocks. Loss functions are one of these building blocks which we need to use
in combination with the other concepts we will discuss in the remaining parts
of this chapter. We will now discuss a strategy to optimize our perceptron
parameters.
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Figure 2.2: Visualization of gradient descent algorithm, for finding local minima. The
top curve could for instance define a loss-space, whereas the bottom curve
is its derivative. Similarly, colored points along the curve represent real-
izations. By applying a gradient descent updating algorithm, the position
of the point move towards a local minimum. Movement illustrated by re-
ducing the opacity of the similarly colored point.

2.3 Optimizers

Gradient descent is an algorithm used in optimizing parameters to a complex
and often intractable function. We use gradient descent to optimize the param-
eters of a nn to the loss space. The ultimate goal is to navigate this loss space for
a differentiable loss function, sometimes also termed cost function. We specifi-
cally describe gradient descent in this section, however the problem may also
be formulated as a maximization problem, requiring gradient ascent, instead
of our current minimization objective. The loss space is often highly complex
as its topology is determined by the loss function used, dataset, model’s param-
eters, number of perceptrons used, etc. To optimize the model’s parameters,
gradient descent formulates a way to minimize the objective function, which
we demonstrate: say we have some loss function 𝑓 , and would like to optimize
our weights such that with the output from the model 𝒚̂, and ground truth 𝒚
we find the global minima of 𝑓 , i.e.,
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𝒘∗ = argmin
𝒘

𝑓 (𝒚̂,𝒚 | 𝒘), (2.8)

where 𝒘∗ represent the optimal parameters. In practice, this is done using the
update rule,

𝒘𝑛+1 = 𝒘𝑛 − 𝜂
𝜕𝑓 (𝒚̂,𝒚 | 𝒘𝑛)

𝜕𝒘𝑛

, (2.9)

using 𝑛 = 1, . . . , 𝑁 update steps. The hyperparameter 𝜂, in practice referred
to as the learning rate, determines how to scale the gradient 𝜕𝑓 each step
length per update iteration. An important remark to make is that we use the
negative gradient as this means to update by taking a step downhill, since the
gradient of 𝑓 represents the direction of steepest increase of 𝑓 . A subtle but
important distinction to make is that gradient descent computes gradients of
the whole dataset at once. A useful variation is called stochastic gradient descent,
and updates the weights once per sample or over a randomly selected subset,
or batch in the dataset. This leads to stochastic gradient descent acting as an
estimate of gradient descent. Stochastic gradient descent is less computationally
expensive in exchange for a lower rate of convergence. Every time the update
algorithm has seen all the samples in the dataset, we say that it has reached
one epoch, hence, gradient descent updates one step once per epoch, while for
stochastic gradient descent it would depend on the batch size. Both algorithms
are examples of optimizers, a category of algorithms used in Machine Learning
(ml) to find the optimal network parameters. To get an idea of the motion
produced by the optimizer, Figure 2.2 displays an example where the gradient
descent algorithm is applied. For each point along the top curve, we update
their position by taking a step in the opposite direction of the derivative, bottom
curve, of their current position. This way, we can guarantee to always move
downwards, until this is no longer possible. For instance, if a point reaches
a saddle point, or local minima, where the derivative is zero, the algorithm
would be stuck. For optimal training of network parameters, however, we are
concerned with finding the global minima.

2.3.1 Momentum

Momentum is a modification introduced to circumvent converging to bad local
minima or saddle points. To demonstrate, we first introduce an analogy for
gradient descent where a person walking down a large mountain, always
following the steepest path of descent, one step at a time, but with limited
visibility, therefore the person is never sure when he has reached the foot of
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the mountain. The analogy explains stochastic gradient descent by capturing
its limitations. However, now consider a heavy boulder rolling down the same
mountain. The person walking would have stopped on the saddle point of the
mountain ridge between two peaks. The boulder is however able to build up
momentum andmoves past small troughs and ridges. Likewise, by remembering
the change in weights between each update step, [33] demonstrated the use
of an acceleration term, we provide an updated version of their forumlation
as,

𝒎𝑛 = 𝛽𝑚𝑛−1 + (1 − 𝛽) 𝜕𝑓 (𝒚̂,𝒚 | 𝒘𝑛)
𝜕𝒘𝑛

𝒘𝑛 = 𝒘𝑛−1 − 𝜂𝒎𝑛

(2.10)

Their motivation was to develop an optimizer which had the convergence
speed of an algorithm using the second derivative, but simpler to compute and
implement for parallel processing. Momentum alleviates both problems with
getting stuck in bad local minima and helps speed up convergence, besides,
with momentum, the risk in using larger learning rates are fewer.

2.3.2 Adam Optimizer

With the already discussed optimizers, the issue of sensitivity to learning rate,
and the slow convergence rates remain. Methods such as AdaGrad [34], RM-
Sprop [35] and Adam [36] tackle this by adaptively adjusting the learning
rate. In their paper [34], they emphasize difficulties for infrequent, but highly
informative features, that due to their rarity, are weighted less. They devise a
method which adapts the learning rate for each weight component indepen-
dently, giving infrequently occurring features high learning rates, in practice,
forcing the learner to notice once the rare feature occur [34]. RMSprop can be
viewed as an extension of AdaGrad, which keeps a moving average, exponen-
tial decay, of the squared gradients instead of accumulating it during training.
In practice, it decays the learning rate, and emphasize more recent gradient
values.

Adam adapts the learning rate for each parameter, based on past gradients
magnitudes, accumulating squared gradients for each parameter, subsequently
reducing problems with sparse gradients. From RMSprop it borrows the idea
of exponential decay of squared gradient, which prevents the learning rates
from becoming too small. The algorithm is defined as,
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𝒘𝑛 = 𝒘𝑛−1 −
𝜂𝑚̂𝑛√
𝑣𝑛 + 𝜖

𝜕𝑓 (𝒚̂,𝒚 | 𝒘𝑛)
𝜕𝒘𝑛

𝑚̂𝑛 =
𝑚𝑛

1 − 𝛽𝑛1
𝑣𝑛 =

𝑣𝑛

1 − 𝛽𝑛2
𝑚𝑛 = 𝛽1𝑚𝑛−1 + (1 − 𝛽1)

𝜕𝑓 (𝒚̂,𝒚 | 𝒘𝑛)
𝜕𝒘𝑛

𝑣𝑛 = 𝛽2𝑣𝑛−1 + (1 − 𝛽2)
(
𝜕𝑓 (𝒚̂,𝒚 | 𝒘𝑛)

𝜕𝒘𝑛

)2
(2.11)

Where𝑚 and 𝑣 represent the first and second moment estimates, respectively.
While 𝑚̂ and 𝑣 is introduced as bias correction that contract initialization of
moment estimates, providing more stable initial steps of training. In practice,
it is widely used and perform well for most datasets.

We will now look at more complex configurations of perceptrons, where we
stack them into layers, to create a nn.

2.4 Multi Layer Perceptrons

Figure 2.3: Example of two-class problem of OR and XOR. The OR function can be
discriminated using a linear classifier, however the XOR problem needs a
non-linear discriminant to correctly classify the points into their respective
blue and red categories.

When stacking multiple perceptrons in series, interconnecting each neuron,
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we construct a mlp. The mlp is useful in that perceptrons by themselves
are not able to solve classification problems like the XOR problem depicted
in Figure 2.3, where the discriminant needs a non-linear function to separate
the blue and red dots. The stacked perceptrons between the input and final
output layers in a mlp are referred to as hidden layers, and these allow the
mlp to produce non-linear discrimination functions. Mathematically, we may
formulate it as,

𝒛1 = 𝜎 (𝒘𝑇
1𝒙),

...

𝒛𝑖 = 𝜎 (𝒘𝑇
𝑖 𝒛𝑖−1),

...

𝒚 = 𝜎 (𝒘𝑇
𝐿𝒛𝐿−1),

(2.12)

for a network of 𝐿 layers. The amount of hidden layers in the network is
referred to as its depth. In practice, for a Deep Neural Networks (dnns) it
is more common to discuss the number of parameters, i.e., the amount of
adjustable parameters captured in the weight matrices of the networks. mlps
are useful in that they, from the universal approximation theorem, are able to
approximate any continuous function, given the appropriate weights [32]. This
means that they have the potential to model any function to an arbitrary degree
of accuracy, so long it contains enough neurons in the hidden layer.

2.5 Backpropagation

We have previously discussed how a simple perceptron can be trained using
gradient descent. Based on its closeness to the ground truth, it receives a gra-
dient update. However, mlps have stacked layers with nonlinearities between
them

While a simple perceptron can be trained using gradient descent by directly
updating its weights based on the difference between its output and the
ground truth, mlps present a more complex challenge. With stacked layers
and nonlinear functions, mlps introduce a hierarchy of transformations that
obscure the direct relationship between the input and the output. This mean
we need a systematic approach to compute gradients of the loss function
with respect to the network parameters. For this task, the backpropagation
algorithm is able to efficiently propagate the gradients backwards through the
network, enabling effective training of mlps and nns by iteratively adjusting
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their weights to minimize the predition error.

We now introduce the notion of forward and backward passes. During an
iteration of training, the forward pass is the part of the algorithm where we
apply the model to a input 𝒙, as in Equation 2.12, and produce our prediction 𝒚.
We then use the loss function to compare our prediction, with the ground truth
𝒚̂. Now we are ready to do the backwards pass. To do this, we need to compute
the gradients. These represent the sensitivity of the loss function to changes in
the model parameters, and are essential for guiding the optimization process.
We compute the gradient of the loss with respect to the output by,

𝛿𝐿 =
𝜕L
𝜕𝒚

⊙ 𝜎 ′(𝑾𝑇
𝐿𝒛𝐿−1), (2.13)

where ⊙ is the Hadamard product, that performs element-wise multiplication,
and 𝜎 ′(·) is the derivative of the activation function. For each hidden layer
𝑖 = 𝐿 − 1, 𝐿 − 2, . . . , 1, we compute the gradient of the loss with respect to the
output of the previous layer, and use it to compute the gradient with respect
to the weights,

𝛿𝑖 = (𝑾 𝑖+1𝛿𝑖+1) ⊙ 𝜎 ′(𝑾𝑇
𝑖 𝒛𝑖−1) . (2.14)

After computing the gradients, the next step is to update the parameters of
the network accordingly using a chosen optimization algorithm, discussed in
Section 2.3. For instance, using stochastic gradient descent to update each
parameter:

Δ𝑾 𝑖 = 𝜂𝛿𝑖𝒛
𝑇
𝑖−1

Δ𝒃𝑖 = 𝜂𝛿𝑖

While it took some time to arrive at a functioning mlp that is able to learn
patterns and adapt to data,we will now investigate problems related to gradient
flow in nns.

2.6 Activation Functions

The choice of activation function in a nn has significant impacts on its perfor-
mance. Activation functions introduce non-linearity into the network, which
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is what enables it to model complex relationships in the data. Looking back
at Equation 2.12, if we were to remove the nonlinearity 𝜎 , the entire network
would collapse into,

𝒚 =𝑾𝑇
𝐿𝑍𝐿−1 =𝑾𝑇

𝐿 ·𝑾𝑇
𝐿−1𝒛𝐿−2 = · · · =𝑾𝑇

𝐿 ·𝑾𝑇
𝐿−1 · · ·𝑾

𝑇
1 ,

which of course is a linear function, and is only able to model linear rela-
tionships in the data. Furthermore, different tasks may benefit from different
activation functions, and understanding them can help tailor the nn to specific
applications. Some commonly used activation functions, are the sigmoid func-
tion, which was introduced earlier in Equation 2.6, which is commonly used in
binary classification tasks, since it squashes input values to a range between 0
and 1. The hyperbolic tangent (tanh),

tanh (𝑥) = 𝑒𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥 , (2.15)

is similar to the sigmoid, but squashes its input to the range of -1 to 1, and can be
preferred used in hidden layers because of its zero-centered outputs, meaning
that during backpropagation, the updates to the weights are not biased towards
any particular direction. Another very common choice is the Rectified Linear
Unit (relu) activation function,

ReLU(𝑥) = max (0, 𝑥), (2.16)

or the Leaky ReLU,

Leaky ReLU(𝑥) =
{
𝑥, if𝑥 > 0,
𝛼𝑥, if𝑥 ≤ 0.

(2.17)

relu is a common choice not only for its simplicity, but it helps mitigate a more
serious problem in dnn, namely the problem of vanishing gradients.

Vanishing and Exploding Gradients. During training with backpropaga-
tion, we recall Equation 2.14, which computes gradients using the derivative of
the activation function. When the derivative of the activation function 𝜎 ′(·) is
less than 1, the gradients can diminish exponentially as they propagate through
each layer. If we consider the chain of gradients from the output layer 𝐿 to the
input layer:
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𝛿𝐿 =
𝜕L
𝜕𝒚

⊙ 𝜎 ′(𝑾𝑇
𝐿𝒛𝐿−1),

𝛿𝐿−1 = (𝑾𝐿𝛿𝐿) ⊙ 𝜎 ′(𝑾𝑇
𝐿−1𝒛𝐿−2),

𝛿𝐿−2 = (𝑾𝐿−1𝛿𝐿−1) ⊙ 𝜎 ′(𝑾𝑇
𝐿−2𝒛𝐿−3),

...

𝛿1 = (𝑾2𝛿2) ⊙ 𝜎 ′(𝑾𝑇
1𝒙),

(2.18)

If 𝜎 ′(·) is less than 1, each multiplication in the chain reduces the gradient’s
magnitude exponentiallywith the numberof layers,hence the gradients become
very small in the earlier layers, which leads to minimal updates to the weights,
which slows or stalls the learning process. In the opposite case, when the
derivative of the activation function is greater than 1, the gradients can grow
exponentially as they propagate backward through each layer. This can cause
unstable weight updates during training, and cause the model to diverge from
its optimization goals.

2.7 Regularization

For nns, regularization is a set of techniques that aims to improve the nns
ability to generalize, which is its ability to perform well on new and unseen
data. dnns have a high capacity to learn complex patters from data, however
this also makes them prone to overfitting, which is the term used when the
model learns not only the underlying pattern but also noise and outliers in the
data. We see overfitting when the network performs exceptionally well on the
training data, but poorly on unseen data [37].

Broadly speaking, we may say that in regularization trades performance on the
training data for the test data. These techniques are essential in modern dnns
by enforcing constraints to the learning process, to ensure the model learn the
most relevant features and ignores noise.

2.7.1 Common Regularization Techniques

While there are many different ways to constrain the training process to
encourage generalization, we choose to highlight three common ones.

L1 and L2 Regularization. By adding a penalty term to the loss function,
proportional to the absolute value of the model parameters, we discourage the
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model from relying too much on any single parameter. This is L1 regularization.
If we instead penalize using the square of the model parameters we have L2
regularization. Given some cost function, we may write these as,

L̃ = L + 𝜆
∑︁
𝑖

|𝑤𝑖 |,

L̃ = L + 𝜆
∑︁
𝑖

|𝑤2
𝑖 |.

(2.19)

For L1 and L2 regularization, respectively.

Data Augmentation is the process of applying a set of random transfor-
mations, for instance, rotations, translations, or flips. This helps the model to
learn features that are invariant to the used transformations and improve the
robustness of the model. Augmentation of the dataset is an efficient way to
produce more data, because the best way to improve the performance of dl
models, is to train it on more data [37].

Figure 2.4: Example illustration of early stopping as a regularization technique by
using a measuring performance on a validation dataset.

Early Stopping is the technique where we measure the performance of
the model during training on a validation dataset that the model has not
seen. When the validation error diverges, while the training error continues to
converge, as seen in figure Figure 2.4, we discontinue training. This way we
may directly intervene when the model overfits to the data.
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2.7.2 Dropout

An effective way to prevent overfitting during training is through the use of
dropout. Introduced by [38, 39], dropout involves randomly "turning off" a
subset of neurons during each training iteration. This means that for each
forward and backward pass, some neurons are ignored, and only a subset of
the network is used. This improves the nns ability to generalize by preventing
co-adaptations, where neurons rely on specific activations from other neurons
to themselves activate for a given input. As an analogy we may think of dropout
as an office where each task can be performed by several employees, but no
single employee is indispensable. On any given day, a random subset of the
employees might take a day off. The remaining employees must still ensure
that all tasks are completed, forcing each employee to be versatile and capable
of handling multiple roles, rather than relying on a specific colleague to always
handle certain tasks. Similarly, in training a nn with dropout, we force the
network to develop redundant representations of the data, ensuring that no
neuron relies too much on another [38, 39].

Dropout may be viewed as having trained an ensemble of many distinct net-
works with shared weights. During training, each forward pass can be thought
of as sampling a different subnetwork [40]. However during inference, we
approximate the effect of averaging the predictions of all possible subnetworks
using "inverted dropout", where all neurons are used, but their outputs are
scaled down by the dropout rate. The more accurate approximation of all pos-
sible subnetworks is by sampling a subset of nns with dropout and averaging
their predictions, however it is computationally expensive for representative
sample sizes [39]. We will discuss how this more accurate mc variant can be
leveraged for uncertainty estimation in Chapter 5.



3
Convolutional Neural
Networks

In this chapter we discuss cnns and dcnns, from the basic convolutions and
pooling to deep segmentation models. We begin Section 3.1 by defining the
convolution operation, before discussing how a cnn is structured in Section 3.2.
In Section 3.3 we present seminal cnn architectures before defining how cnns
are used in segmentation models.

3.1 Basics of Convolutions and Pooling
A convolution is a fundamental operation in cnns, where a small matrix,
a kernel or filter, slides over the input image to produce a feature map, as
shown in Figure 3.1. Mathematically, the convolution involves element-wise
multiplication and summation of the filter and the patch of the input image
that it covers. In the context of nns, we use this operation to allow the network
to detect features such as edges, textures, and patterns in the input image. By
using different filters, which in fact store the learnable weights of the cnn,
the network can learn to detect various types of features. As the network goes
deeper, the convolutions capture more abstract and complex patterns.

The idea of convolutions stems from signal processing,where a one-dimensional
signal would be convolved with a filter to extract certain properties about the

21
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Figure 3.1: Illustration of an 6 × 6 image being convolved with a 3 × 3 kernel to
produce a 4 × 4 feature map. The kernel slides across the image, filling in
the values of the feature map iteratively.

signal. For instance, if we use a filter 𝒉, with entries, [1/3, 1/3, 1/3], then apply
this to a signal, we have created a moving average filter, that averages over
values of the input signal. Likewise, if we extend the idea of a average filter to
say, a 3 × 3 kernel, then slide it over an image, we effectively blur together a
3 × 3 area of the input image, in our output. The particular filter is known as
a box blur filter.

Padding. On inspection of Figure 3.1 we see that the output feature map is
downsampled from a 6 × 6 input size to a 4 × 4 output size. This is because
we made a choice of starting the sliding of the kernel, to where it fit perfectly
within the input image. While this works for downsampling, cnns tend to
add zeros, averages, or a clone of the value of the boundary pixel along all
edges of the image, such that the kernel is able to have its center aligned with
the proper edge of the input. This process is referred to as padding, and if we
pad the input to where the center of the kernel aligns with the image, and
the kernel only slides one pixel at a time, we preserve the size of the input.
However, padding the input can produce boundary artifacts, where if we use
for example zero-pad the image, the kernel will multiply and sum lower values
along the borders.

Stride. Another method that affects the size of the feature output map is
stride. Like a person walking, stride refers to the walking motion of the kernel
across the image. The common default setting is a stride of one, where the



3.2 architecture components 23

kernel moves itself by one pixel per iteration of the convolution. If the stride
is increased to two, the kernel would walk two pixels, for the toy example in
Figure 3.1, the produced feature map would end up with a shape of 3 × 3. The
output shape of the feature map for a convolution with stride zero, is left as an
exercise for the reader.

Figure 3.2: Illustration of Max Pooling using a 2×2 kernel with stride 2. The maximum
values of each interaction between the input and kernel are carried on.

Pooling is a technique used to reduce the spatial dimensions of the feature
maps, thus decreasing the number of parameters, and computational load in
the network. The two most common types of pooling are max pooling, and
average pooling. Max pooling takes the maximum value from each patch of
its input, while average pooling calculates the average value. When used in
cnns, pooling operations are usually placed right after a convolutional. In
addition to saving computations, they provide approximate invariance to small
translations, making the network less sensitive to the exact location of features,
and help in controlling overfitting by its parameter reduction, which simplifies
the model [37].

3.2 Architecture Components

cnns are typically made up of convolutional layers, which in turn, are made
up of multiple filters that apply convolutions to the input, generating several
feature maps. When we apply multiple filters to the same image, each filter
captures different aspects of the image, where each filter in a stack are referred
to as the channels of the convolutional layer. Thus, we end up with as many
feature maps - different representations of the input - as there are channels in
the convolutional layer. In the convolutional layer, activation functions typically
follow the convolution, to introduce a non-linearity. A common choice is the



24 chapter 3 convolutional neural networks

relu activation function. Pooling layers, which is the last step in convolutional
layers, downsample the feature maps to reduce the dimensionality and compu-
tational complexity [37]. For example, a simple cnn architecture might include
a sequence of convolutional layers, followed by a pooling layer. Many popular
architectures will use this downsampling in conjunction with increasing the
number of channels as the feature maps grows smaller, but deeper, through a
series of convolutional and pooling layers. Hence, convolutional layers provide
efficient ways of processing image data for nns.

One of the key advantages of convolutional layers is parameter sharing. Unlike
fully connected, classical mlp layers, where each neuron has its own weights,
in convolutional layers, the same filter is used across different parts of the
input. This reduces the number of parameters significantly, and allows the
model to learn spatially invariant features [37]. Parameter sharing ensures
that the model is more efficient and less prone to overfitting, making it well
suited for grid-like data, such as images, where the same patterns can be
found in different locations. cnns also exploit the inherent spatial hierarchy
in images through their use of multiple convolutional layers. Early layers
typically capture low-level features such as edges and textures, while deeper
layers capture high-level features such as shapes and objects. This hierarchical
feature learning is important for building complex representations needed for
tasks like classification and segmentation, which we will see later. By reducing
the spatial dimensions and increasing the depth of the feature maps, cnns
can effectively capture spatial relationships and hierarchical structures of its
inputs.

3.2.1 Backpropagation

In general terms, for cnns, the backpropagation algorithm from Section 2.5,
is modified to account for the convolution operation. Unlike Fully Connected
Neural Networks (fcnns) where each weight is updated individually, the
cnn update the parameters of the filters used in the convolutional layers. A
challenge in backpropagating gradients through convolutional layers, is how to
compute the gradients with respect to the filter weights. The equivalent chain
rule gradient computation is done by sliding the filters over the input data,
and computing gradients for each position, using the transposed convolution,
or deconvolution. This operation is essentially the reverse of the convolution
operation used in the forward pass. But instead of applying the filters to
the input data, transposed convolution involves applying the gradients to the
output feature maps to compute gradients for the filter weights, allowing the
cnn to update the filter weights correctly.
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3.3 Deep Learning Architectures in Computer
Vision

Common early cnn architectures such as LeNet [41], and AlexNet [42] demon-
strate the practical use of these layers in image recognition tasks. LeNet, is one
of the earliest cnns, and used a combination of convolutional layers consisting
of convolutions, the tanh activation function and average pooling layers, that
were followed by fully connected layers, developed for recognizing handwrit-
ten digits [41]. AlexNet, won the ImageNet image classification competition
in 2012, and demonstrated the power of stacking more layers, making the net-
work deeper. They used smaller kernels than LeNet, which had 5 × 5 kernels,
by instead using 3 × 3 kernels, followed by max pooling layers [42]. Both
architectures have significantly advanced the field of dl in computer vision
tasks.

3.3.1 Deeper architectures

Deeper networks have the potential to learn more complex representations,
and achieve higher performance [43, 44, 45]. However, the degradation problem
addressed by [43], is the counterintuitive observation that by adding layers, the
network performs worse. They outline this by pointing out that the problem
does not stem from overfitting, as the training error increased, suggesting
that the model’s capacity to learn diminishes beyond a certain point. The
degradation problem indicates that the optimizer struggles to find the optimal
weights as the network gets deeper, even though the expressivity of the network
should be higher.

To address this problem, they introduce shortcut connections that bypass one
or more layers. The shortcuts allow the network to learn residual functions,
which can be described as the differences between the desired output and the
input to a layer, rather than directly trying to learn the entire transformation.
Their reasoning is based on the hypothesis that it is easier for a dcnn to learn
the residual mapping than the original. The shortcut connection also improves
the flow of gradients through the network, which mitigates issues related to
vanishing gradients. They present the ResNet framework, which pushed the
possible depths in networks significantly.
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3.4 Methods for Semantic Image Segmentation
in Deep Learning

Figure 3.3: Example of semantic segmentation mask of a building.

Semantic image segmentation is a fundamental task in computer vision, that
involves partitioning an image into multiple segments or regions based on
certain criteria. Unlike object detection, which traditionally have focused on
localization of objects with bounding boxes, semantic segmentation assigns a
label to each pixel in an image, indicating the object or region that the pixel be-
longs to. Through pixel-wise classification, it allows for a greater understanding
and analysis of the contents in the image. It is thus important in applications
such as autonomous driving, by correctly detecting e.g., pedestrians or cyclists,
medical image analysis, with the ability to efficiently analyze MRI data, and
scene understanding. Semantic segmentation differs from instance segmenta-
tion, which in addition to classifying pixels, also distinguish between different
instances of the same class.

Functionally, a semantic segmentation mask of a input image will classify each
pixel to a predefined label. For instance, Figure 3.3 demonstrates a binary
segmentation example of multiple buildings, where the brighter colored pixels
are where themodel is confident of a foreground object,while themodel believes
dark-colored pixels belong to the background. By applying a threshold, we get
the class labels for each of the pixels. This general idea demonstrated on a
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binary segmentation map, also extends to multiple classes, however the model
then outputs its prediction mask with the same shape as the input, height ×
width, and the number of channels of the output tensor matches the number
of classes.

3.4.1 Semantic segmentation Architectures

While there exist many dl architectures which are able to do semantic seg-
mentation, we will in this section highlight three of the seminal ones that have
pioneered the field. The final one is also used to extract features in our later
experiments.

Fully Convolutional Network The architecture Fully Convolutional Net-
work (fcn), proposed by [46] extended the abilities of regular cnns for
semantic segmentation by generating segmentation masks at the same image
resolution as the input image. Similar to a cnn used for regular classification,
the architecture use convolutional layers to create a dense representation of
the data that capture spatial relationships and local patterns, but replaces the
final fully connected layers from the dense representation with a upsampling
procedure. The deconvolutions converts the low-resolution feature maps back
to the original image size to produce pixel-level segmentation maps. They
do this by using deconvolutions, which reverses the downsampling done by
the earlier convolutional and pooling layers. The transposed convolution is
upsampled by inserting zeros between the pixels of the dense feature map,
before convolving with a filter, which upsamples the input. As the upsampled
representations could be very coarse, they used skip connections to merge fea-
ture maps from earlier layers, during upsampling, which helps with preserving
details by combining low-level spatial information with high-level semantic
information.

U-Net The U-Net is a architecture that was originally developed for biomed-
ical image segmentation by [47], but has since been widely adopted, due to its
ability to produce precise and detailed segmentations. It is characterized by its
U-shaped architecture, that consist of a contracting path, the encoder, and an
expansive path, the decoder. This design allows the network to capture context
and localization efficiently. The encoder is a usual cnn feature extractor, that
creates a dense representation of the data, like the cnn used in the fcn. Also,
similar to the fcn, the decoder, use deconvolutions to upsample the represen-
tations in the same stepwise manner as the encoder, in addition to receiving
skip connections for every upsampling. This improved its localization ability,
maintaining high-resolution information through the network. The detailed
fusion of features helps in producing finer segmentation outputs with more
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accurate boundaries compared with the simpler skip connections used in fcn.
The architecture’s ability to generalize from limited data made it well suited
for use in the medical field, where access to detailed data is restricted.

High-Resolution Network (HRNet) Is a state-of-the-art framework de-
signed for tasks that need high-resolution representations, proposed by [48].
They achieve this by maintaining a high-resolution feature representation
through the network, unlike the encoder-decoder bottleneck architectures
mentioned above, and others such as [49]. It is still able to capture low-level
features by using multiple parallel branches, where each correspond to a dif-
ferent resolution. The branches interact and exchange information by using
multi-scale fusion, where features from different resolutions are combined mul-
tiple times. This ensures that the high-resolution representation is enriched
with representations from lower levels, while efficiently preserving spatial
relations.



4
Existing Architectures for
Building Footprint
Extraction
We well now investigate the existing architectures that have been developed
with the means of improving building footprint extraction. We begin this
chapter by discussing the need for tailored model outputs, and a shift away
from binary segmentation maps, here we will distinguish two main categories
of solutions, before discussing a few selected models more thoroughly. The
reader should pay extra attention to Section 4.4, which is later modified and
evaluated in our experiments in Chapter 8.

4.1 Polygonal Extraction: A Shift From
Segmentation

Extracting building footprints from overhead images is a complex and challeng-
ing task with significant implications for urban planning, agriculture, environ-
mental monitoring, and disaster management. The goal is to relieve the manual
labor involved, and provide up-to-date information about rapidly changing ur-
ban environments [10]. However, this task is complicated due to factors such
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as occlusions from vegetation and nearby tall structures, varying shapes and
sizes.

Traditionally, the task has been approached as a pixel-wise semantic segmen-
tation problem [12], using established frameworks such as the U-Net [47], and
HR-Net [48] to detect buildings. Instance segmentation has also been used in
methods like the Mask R-CNN [50], where the network initially extract bound-
ing boxes, before classification and producing a binary segmentation mask for
each bounding box. Although these methods have shown promise, they often
produce inaccurate building masks, with irregular boundaries [12, 17].

In recent years, there has been a shift towards extracting building footprints
in a polygon, vector format. From the paradigm shift, the need for refined and
regular representations of buildings became apparent. While segmentation
models generally are able to maximize their accuracy, this does not translate to
useful representations. By this, we mean that a binary mask output may quan-
titatively produce good accuracies, however on inspection of the predictions,
walls are represented by irregular curves, due to low confidence along the
borders of the masks. Subsequently, while there exist methods for generating
polygonal representations from binary segmentation masks, for instance using
contour detection by the marching squares algorithm [51], followed by dp sim-
plification [52], these representations often produce highly complex polygons,
with too many redundant vertices [17, 13, 15, 12].

The methods which output polygonal representations can be broadly catego-
rized in to two approaches: end-to-end learned methods and hybrid meth-
ods.

4.2 End-to-End Learned Polygonal Extraction

Directly learning building vector representations from overhead images lever-
age the power of dl to perform the entire extraction process in a single, unified
model. While this category is broad, the developed methods tend to build on ar-
chitectures that process information using graphs or recurrent representations.
For instance, a polygon consists of connected vertices, hence rnns could be
used in recurrently predicting vertices in a polygon, one by one. This is the pro-
cedure of Polygon-RNN [23], and Polygon-RNN++ [24], which from a predicted
bounding box use a cnn-rnn architecture to sequentially produce vertices of
the object outline. PolyMapper is another cnn-rnn method which specifically
is designed for building extraction, with the addition of road predictions. By
viewing a polygon as an undirected graph where every vertex has at most two
edges, it makes sense to employ gnns, as is done in the Curve-GCN [25]. The
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Curve-GCN, as the name suggests, use a Graph Convolutional Networks (gcns)
to simultaneously predict all vertices from an initial polygon generated using a
cnn feature extractor. Their gcn iteratively offset each vertex into their final
position. Interestingly, Polygon-RNN, Polygon-RNN++, and Curve-GCN are in
addition to detection of buildings by themselves, also able to interactively, with
human supervision, speed up the labeling process for creating accurate ground
truth labels. When compared with more recent methods, they can be difficult
to train and due to their recurrent nature, need multiple inference iterations.
Additionally, none of the aforementioned architectures are able to correctly
vectorize buildings with holes.

Recently, [15] proposed PolyWorld, which from a set of cnn-extracted vertices
and visual feature descriptors - that associate embedded information into each
vertex - before a Attentional Graph Neural Network (agnn) predicts an equal
set of vertex offsets and matching descriptors. The matching descriptors are
then used in a optimal connection network that use the Sinkhorn algorithm [53],
to produce a permutation matrix that connects vertices, forming polygons. As
we will see for hybrid models, connecting accurately predicted vertices without
knowing which vertex connects to another is a recurring issue, with creative
solutions. PolyWorld [15] is at the time of writing, only surpassed by [17] in
terms of performance, but is able to produce regular and simple polygons, but
fail in certain cases where buildings have complex shapes [17].

4.3 Hybrid Methods

The other category, are characterized by needing multiple steps. A common
paradigm is to initially predict binary segmentation masks and sometimes
additional information, before vectorizing these. Some methods add an extra
refinement process; refining vertex positions, or simplifying polygons by remov-
ing vertices [17]. These methods address the issues with inaccurate segmen-
tation borders, by leveraging Multi-Task Learning (mtl), that simultaneously
predict multiple tasks inherent to the problem, e.g., vertices, orientations, line
segments. To regularize the contributions from the segmentation maps, that
are known to have inherent issues. For instance, Frame Field Learning (ffl)
by [13], predicts a frame field in addition to the segmentation mask, using
what mathematically is a degree four vector field, where two of the vectors
are constantly opposite. This has the effect of always having one of the vectors
tangent for building edges, and both vectors tangent for corners, effectively
constraining polygons to more rigid shapes, avoiding rounded corners. To
combine the predicted frame field with their segmentation map, they devise a
modified Active Contour Model (acm) [54], termed the Active Skeleton Model
(asm), that modifies acm to work with frame fields instead of contours [13].
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Opposed to end-to-end learned methods, ffl is easier to train, and while the
predictions are performed once, the asm needs active optimization during
inference, causing a speed penalty.

Anothermethod that addresses themask reversibility [17] in building extraction,
that is, the issues caused by imprecise borders produced by segmentation maps,
is proposed by [12]. Their method also leverage mtl, however they specifically
segment building area and border as separate tasks, to force discrepancy
between the area and border. Additionally, the model also outputs an edge
orientation. A distinct selection module filters the three outputs of the model
to create an initial polygon, later refined using their vertex refinement method,
that using a ResNet backbone trained in conjunction with a Gated Graph Neural
Network (ggnn), where the initial polygon positions are used in extracting
corresponding "depth-wise" features of the backbone embedding, to embed
visual descriptor for each vertex. These are then used by their ggnn to offset
each vertex. While the addition of a ggnn and additional feature extractor
during polygon refinement brings additional complexity during training, their
approach in addressing the issue of mask reversibility by predicting the contour
of the building is a clever way to improve the borders produced by conventional
segmentation models. Additionally, the vertex selection network leverage the
edge orientation prediction by discarding the vertex if its previous consecutive
vertex have a significantly differing orientation, which provide an efficient
method for accurately filtering redundant vertices. While their model is able to
achieve competitive results, it also struggles with buildings that have numerous
short edges, and severely occluded [12].

4.4 Hierarchical Supervision

In this section, we introduce the Hierarchical Supervision (HiSup) architecture
by [17], which we will later modify to incorporate uncertainty into, as we
outline in our method in Chapter 6.

Hierarchical Supervision attempts to leverage inherent information in overhead
images, which they divide into three categories: low-level information of build-
ing corners, represented by vertices, mid-level edge information, that connect
the vertices, and represents building walls, and high-level shape information
gathered in a semantic binary map. Their motivation, like the aforementioned
architectures, is dealing with imprecise border maps generated from the seg-
mentation output, which they identify as a limiting factor for hybrid models
[17].
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4.4.1 Addressing Mask Reversibility

In addressing mask reversibility, they regularize each task of their mtl ar-
chitecture by enabling cross-level interactions between these. The mid-level
geometries use Attraction Field Maps (afms) from [55, 56], to learn the edge
connections between the low-level vertices, and emphasize building edges for
the high-level segmentation network through cross-level interactions. Thus,
each learning task interacts with the mid-level geometry using Efficient Chan-
nel Attention (eca) [57], which builds on the attention mechanism, where the
model learns to use features from the mid-level 𝐹afm, to weight channels in
each of the other levels that the network should pay extra attention to. This
enforces that each of the levels learn the same thing, but implicitly weighs the
opinion of the middle level more, since the high and low level does not project
their features onto it. The authors implement eca by the equations,

𝐹𝑒seg = 𝜎 (C1D(GAP(𝐹mid + 𝐹seg))) · 𝐹seg + 𝐹seg,
𝐹𝑒ver = 𝜎 (C1D(GAP(𝐹mid + 𝐹ver))) · 𝐹ver + 𝐹ver.

(4.1)

In Equation 4.1, 𝐹𝑒seg, and 𝐹𝑒ver, refer to the enhanced high, and low-level geome-
tries, respectively, while C1D(·) is the 1-D convolution. GAP(·) refer to global
average pooling.

4.4.2 Learning Line Segments

In accurately capturing line segments in polygons, [17] employ a tactic devised
by [55, 56], in their work in Line Segment Detection (lsd). Which is an impor-
tant topic, with applications in scene understanding, and 3D reconstruction, in
addition to object detection. Their motivation stems from that lsd is hard to
formulate in a way that can leverage the full potential of dcnns [55].

They highlight the factual similarity between region representation and bound-
ary contour representations, and leverage this by reformulating lsd as the
equivalent region coloring problem. Thus allowing semantic segmentation
models to simply predict afms. To introduce afms, we first investigate the
region-partition map of an image, which assigns every pixel to only one line
segment. Imagine this as coloring each pixel of an image in the same color if
their closest line segments are the same. Now, for every pixel 𝑝, and its corre-
sponding projection 𝑝∗ onto its assigned line segment in the region-partition
map, we define the 2D attraction vector for the pixels to be,
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A(𝑝) = 𝑝∗ − 𝑝. (4.2)

Hence, the afm stores the 𝑥 and 𝑦 coordinates of each attraction vector in a
two channel image. While [55] goes on to demonstrate how to collapse this
representation back into a line segment, the authors of [17] found that by
predicting the afm, thus discarding the next step of lsd, worked best. HiSup
further use the afm for their mid-level geometrical features, and inflicting its
understanding of the scene to the other levels, effectively regularizing them in
accordance with itself.

4.4.3 Learning Hierarchical Representations

Figure 4.1: Example output from Hierarchical Supervision [17]. The left column dis-
plays the two segmentation masks predicted. Where the segmentation
mask on top highlighted as Mask is the pure segmentation prediction from
the model, which is discarded during polygon generation. Remask is the
segmentation mask produced from the afm intermediate prediction, and
is kept for generation of polygons. The center column contain predicted
vertices. The model distinguishes concave from convex vertices. The final
column shows the vertex offset maps, which are also distinguished into
horizontal and vertical offsets. The polygon generation mav-attr uses a
combination of these maps to produce polygons.
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The HiSup framework train three simultaneous tasks, two of which produce
segmentation maps. While this may come across as confusing, during inference,
they discard the task which only focus on segmenting the image into a binary
map, by instead constructing a new feature representation from the predicted
afms, effectively only using afms as an intermediate stage. This new feature
representation is concatenated with the initial feature map extracted from
the backbone before predicting its own segmentation map, which they argue,
will enhance building contours. To align this segmentation mask with the
original one, which is discarded during inference, the mask loss of their model
is the sum of the bce loss from each predicted segmentation map. While we
question the discarding of the original segmentation map, their ablation study
demonstrates that it produces better building contours [17]. From the ground
truth annotations, we may compute the true afm, which during training is
compared with the predicted afm using an 𝑙1 loss function.

To learn the vertex representation from the feature map enhanced using eca
with themid-level geometries, the network predicts a convex and concave vertex
heatmap, which is compared with the ground truth vertex positions using ce.
They use a offset map extracted directly from the backbone, with two channels,
one for each direction - horizontal, and vertical - which is multiplied with the
ground truth vertex heatmap and compared with the product of the true offset
and true vertex heatmap using 𝑙1 loss. This provides an effective method to
achieve sub-pixel accuracies, because the vertex heatmap only extracts pixel
position of vertices. The different final outputs of the model can be viewed in
Figure 4.1.

4.4.4 Polygon extraction

To extract vertices from the vertex and offset maps, the authors propose a
polygon extraction and simplification routine, which they name Mask-and-
Vertices Attraction (mav-attr). This process consist of an initialization and
simplification process, where the initial vertices come from the predicted
heatmap𝑯 with the offsets of the vertices 𝑶 , and the predicted building mask 𝑺.
The initial regions, are extracted by applying a threshold 𝜏𝑣 = 0.008, followed
by Non Maximum Suppression (nms), and a gathering of the extracted regions,
from the vertex maps, during this process the offsets are also used to translate
the vertices. We denote the set of refined vertices 𝑉 .

Given the above described initial polygon representation, the authors have a
4-step simplification process, as the initial polygon is simply the contour of the
segmentation map, with many redundant intermediate vertices. The process
is described as,
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1. Matching each vertex 𝑥𝑖
𝑘
, for the 𝑘-th vertex of the 𝑖-th initial polygon to

the closest vertex in 𝑉 , using the Euclidean distance,

𝜋 (𝑘, 𝑖) = arg𝑗 min
𝒗∈𝑉

∥𝒙𝑖
𝑘
− 𝒗 𝑗 ∥2, (4.3)

where 𝜋 (𝑘, 𝑖)maps indices from the boundary pixels of the initial polygon
to the closest vertex in 𝑉 .

2. Then finding all non-minimal pixels with unique indices, hence only
storing the pixels with the minimal distance to a vertex, for the pixels
that share a vertex.

3. The remaining pixels are removed if their distance to a vertex is greater
than a threshold of 𝜏𝑑 = 5.

4. Adjacent edges of polygons that are parallel to a threshold of 10◦ are
merged.

In summary, the work presented in [17] demonstrates a capable architecture
which leverages multiple levels of input geometries to better predict separate
tasks in a mtl setting. Learning multiple levels of geometries tailored for
the task’s specific nuances, has been previously explored in different works
[13, 12]. However, engineering sensible features which better the accuracy
of the network is far from trivial. Their approach has demonstrated higher
accuracies than previous works, while being able to retain simple polygons
with acceptable numbers of redundant vertices used in the final polygon. We
build further on their ideas in later chapters, where we leverage uncertainty
to further address consistent building shapes, and a more robust architecture.
We also modify the mav-attr polygon generation method described above by
guiding the fixed threshold 𝜏𝑑 using uncertainties.



5
Uncertainty Estimation in
Deep Learning

This chapter will present and discuss the theory of uncertainty estimation in
dl. We will indulge in concepts justifying the use of uncertainty estimation
and implementation choices which will later be used in our own methodology
presented in Chapter 6. First, we introduce uncertainty in deep learning, why
it is of importance in general, and for our subgenre of building detection
in Section 5.1. Second, we present Bayesian approaches to uncertainty in
Section 5.2, before Section 5.3 elaborates on how dropout is used in Bayesian
approximation.

5.1 Uncertainty in Deep Learning

Understanding and quantifying uncertainty in dl models is essential for ac-
curate building and object detection. By evaluating model uncertainty, we
can significantly enhance decision-making, ensuring both reliable and precise
delineations. This is particularly crucial in areas like urban planning and dis-
aster management, where incorrect delineation of building boundaries can
have severe consequences [10]. Uncertainty estimation helps identify areas
where the model may be prone to errors, allowing for targeted improvements
and increased robustness against outliers. It also enhances model reliability
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by indicating when predictions can be trusted and when further validation is
necessary. Moreover, incorporating uncertainty measures makes our systems
more robust, allowing them to handle diverse and complex environments with
greater confidence.

Epistemic and Aleatoric uncertainties. Imagine you are baking a cake
for a party, but you can’t quite remember if you added the sugar. There is a
fundamental difference between not knowing because you simply forgot - a
knowledge problem - and not knowing because you’re unsure how the cake will
rise - a randomness problem. Similarly, in philosophy, the notions of epistemic
and aleatoric uncertainty distinguish between our uncertainty due to a lack
of knowledge, which we could theoretically resolve with enough information,
termed epistemic uncertainty, and uncertainty due to inherent randomness
in outcomes, termed aleatoric uncertainty [58]. As is highlighted by [29], in
our field aleatoric uncertainty refers to the inherent noise in the data, while
epistemic refers to the uncertainty in the model parameters. In understanding
why a dnn makes one prediction over another, we need methods in modelling
the epistemic uncertainty of our models.

5.2 Bayesian Approaches to Uncertainty

Bayesian methods offer a well established framework for quantifying uncer-
tainty by capturing inherent ambiguity in predictions. However, the use of
fully Bayesian approaches in large nns are computationally demanding and
suffer from challenges related to scalability [26]. To address this, research
has been done into approximate Bayesian inference in dl models. One such
approach, which we will delve into further in the following section, involves
leveraging dropout as a Bayesian approximation. In this section, we provide
a brief overview of Bayesian methods in uncertainty estimation, and their
significance in the field.

Bayesian inference is a method where Bayes’ theorem is used to update
the probability for a prior belief as more evidence or information becomes
available. It is a fundamental approach to statistics for incorporating prior
knowledge, along with new data, to draw conclusions.

Bayes’ theorem can be expressed as:

𝑃 (𝜃 |𝑋 ) = 𝑃 (𝑋 |𝜃 )𝑃 (𝜃 )
𝑃 (𝑋 ) (5.1)

where 𝑃 (𝜃 |𝑋 ) is the posterior probability of the model parameters 𝜃 given
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the data 𝑋 . 𝑃 (𝑋 |𝜃 ) is the likelihood of the data given the model parameters.
𝑃 (𝜃 ) is the prior probability of the model parameters. 𝑃 (𝑋 ) is the marginal
likelihood or evidence.

The theorem in Equation 5.1 gives us a way to update our beliefs about the
model parameters as we observe more data. Fornns, Bayesian inference allows
us to measure the uncertainty in the model parameters, and its predictions.
However, applying Bayesian inference directly to dnns is challenging as the
design choices are non-trivial [26].

Challenges of Bayesian Neural Networks. While bnns modify classi-
cal nns by using a distribution over the weights, instead of point estimates,
which provides a statistically founded way to incorporate uncertainty, in a
framework robust to overfitting. This approach suffer from an intractable pos-
terior, due to the need for integrating over all possible weight configurations,
where for instance, in variational inference, we align an approximate posterior
distribution 𝑞(𝜃 ) with the true posterior distribution 𝑃 (𝜃 |𝑋 ), by minimizing
the Kullback-Leibler (kl) divergence, which can be expensive [59, 26].

Challenges of BayesianNeuralNetworks. While bnns modify classical
nns by using a distribution over the weights instead of point estimates, which
provides a statistically founded way to incorporate uncertainty and offers
robustness to overfitting, this approach suffers from an intractable posterior.
The need for integrating over all possible weight configurations makes exact
inference computationally prohibitive. For instance, in variational inference,
an approximate posterior is aligned with the true posterior, but this process
can be computationally expensive and complex to implement [26].

Approximate Bayesian Inference. To make Bayesian methods more
tractable, [27, 26, 29, 28] have developed approximate inference techniques.
Variational inference and Markov Chain Monte Carlo (mcmc) methods are
commonly used approaches, but can still be computationally expensive and
hard to implement [26]. The use of dropout as a Bayesian approximation, have
been a practical alternative which remains relatively inexpensive, which we
will discuss in detail in the next section. Dropout, which traditionally was
used as a regularization technique [38, 39], can be interpreted as performing
approximate Bayesian inference in nns, and is an efficient way to estimate
uncertainty.
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5.3 Dropout as Bayesian Approximation

By leveraging dropout during both training and inference, we can approximate
the posterior distribution over the model’s weights, allowing us to quantify
the uncertainty in its predictions. This approach is known as mcd, and has
been shown to be effective in several applications, while being computationally
efficient and allows for quantifying model uncertainty [28, 60]. In this section,
we will delve deeper intomcd, exploring its theoretical foundations, implemen-
tation, and applications in uncertainty estimation for deep learning models.
Note that we will follow the notations and theoretical justification presented
in both [26], and [28], which provide a simple, yet informative description of
mcd.

The idea behind mcd is fairly simple. We are interested in the posterior
distribution 𝑝 (𝑾 |𝑿 , 𝒀 ) over the models weights𝑾 . We assume to have training
data 𝑿 , and ground truth labels 𝒀 . As previously discussed, this distribution is
intractable, therefore we use variational inference to approximate the posterior
distribution, using 𝑞(𝑾 ) through minimizing the kl divergence,

KL(𝑞(𝑾 ) | | 𝑝 (𝑾 |𝑿 , 𝒀 )) =
∑︁

𝑾 ∈W
𝑞(𝑾 ) log

(
𝑞(𝑾 )

𝑝 (𝑾 |𝑿 , 𝒀 )

)
. (5.2)

Then, for every layer 𝑖, we have,

𝑾 𝑖 = 𝑀𝑖 · diag(𝑧𝑖),
𝑧𝑖, 𝑗 = Bernoulli(𝑝𝑖), for 𝑗 = 1, . . . , 𝐾𝑖

(5.3)

which defines the variational distribution for every layer. In Equation 5.3,
the unfamiliar 𝑀𝑖 is the variational parameters, or weights, before applying
dropout. 𝑧𝑖, 𝑗 denotes Bernoulli distributed random variables, with probabilities
determined by the dropout probability 𝑝𝑖 , which determines the probability of
removing the contributions 𝑗 of the weight matrix per layer.

These modifications make sense for bnns, that are nns where we have placed
a prior distribution over its weights. A common implementation is by using
Gaussian prior distributions over the weights in each layer,𝑝 (𝑾 𝑖), where,

𝑾 𝑖 ∼ N(0, 𝑰 ),

and assuming point estimates for the bias vectors 𝑏𝑖 . Predictions are for a new
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input 𝒙∗ generated by integrating over all possible weight configurations,

𝑝 (𝒚∗ |𝒙∗,𝑿 , 𝒀 ) =
∫

𝑝 (𝒚∗ |𝒙∗,𝑾 ) 𝑝 (𝑾 |𝑿 , 𝒀 ) 𝑑𝑾 ≈
∫

𝑝 (𝒚∗ |𝒙∗,𝑾 ) 𝑞(𝑾 ) 𝑑𝑾 ,

(5.4)

where we have approximated the integral using the approximate posterior, that
we subsequently approximate using mc integration,

𝑝 (𝒚∗ |𝒙∗,𝑿 , 𝒀 ) ≈ 1
𝑇

𝑇∑︁
𝑡=1

𝑝 (𝒚∗ |𝒙∗,𝑾 𝑡 ), (5.5)

using 𝑾 𝑡 ∼ 𝑞(𝑾 ), using 𝑇 mc samples. The procedure of Equation 5.5 is
defined as mcd [26].

5.3.1 Implementation and Applications

Following the above description, variational inference in bnns can be imple-
mented simply by adding dropout layers to a nn. Where the stochasticity
introduced by dropout in each forward pass may be viewed as a realization
from the posterior distribution over the model’s weights, where they collapse
into distinct subnetworks. During inference,we use Equation 5.5 which perform
mc integration over the approximating distribution [26]. By training a network
using dropout, we enforce a constraint on the network, which forces it to
learn redundant representations of the data. This is an effective regularization
technique as have been discussed in Subsection 2.7.2.

During inference mcd performs multiple stochastic forward passes with
different subsets of neurons activated. In practice, this means that an ensemble
of subnetworks makes their distinct predictions, before averaging the result
using Equation 5.5. This way we are able to model the epistemic uncertainty
of the network by also finding the variance of the ensemble’s predictions. For
object detection tasks where segmentation maps are used, on image inputs,
we gain insight into the exact areas the model is uncertain about.

The study conducted by [39] propose the use of weight averaging with dropout
disabled during inference, to get fast and accurate predictions, by scaling down
the weights of the network with the dropout probability 𝑝𝑖 , to approximate a
combination of the models. However, [28] demonstrate that their large model
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benefits to a larger extent bymc sampling. Besides, the weight scaling approach
is unable to model uncertainty.

5.3.2 Bayesian Convolutional Neural Networks

An exciting consequence of the findings discussed in previous sections, is
the simple procedure of dropout, with which little modification to existing
dcnns, several of which were already using "standard dropout". Highlighted
in [26], their modifications to LeNet were able to significantly outperform
the standard dropout procedure. This work was later extended to even deeper
frameworks of encoder-decoder segmentationmodels [28] that also highlighted
the use of uncertainty maps for scene understanding. They provide a model
termed Bayesian SegNet, a Bayesian adoption of the earlier SegNet architecture
[49].

Bayesian SegNet [28] introduced key contributions to the field. One important
insight was that a fully Bayesian network, which applies dropout layers after
each convolutional layer, is not necessarily the most effective approach. In-
stead, they demonstrated that strategically applying dropout in specific layers,
the central 6 in the bottleneck, proved most beneficial for evaluation perfor-
mance.

Another significant contribution of Bayesian SegNet [28] was its use of uncer-
tainty maps for scene understanding. By leveraging dropout during inference,
the model can generate multiple predictions and quantify the uncertainty in
these predictions, with averaging and variance. These uncertainty maps pro-
vide valuable information about the confidence of the model in different regions
of the image, which is important for applications like autonomous driving and
medical imaging where understanding model confidence is vital. They found
that along borders of objects, the uncertainties were large. Additionally, when
the model predicts wrong, the uncertainty is generally high, they observe an
inverse relationship between class accuracy and the uncertainty. This approach
to uncertainty was further explored in the paper [29]. They discuss the types
of uncertainties — aleatoric and epistemic — that are important in computer
vision tasks, and how these uncertainties can be quantified and utilized to
improve model performance and robustness.



Part II

Proposed Methodology
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6
Uncertainty Guided
Building Extraction

Understanding the limitations of recent deep learning models, such as the
Hierarchical Supervision (HiSup) [17] architecture, is crucial for advancing the
accuracy and robustness of building footprint extraction. This chapter aims to
dissect specific shortcomings and propose innovative strategies to address them.
Section 6.1 will discuss shortcomings and limitations in the current state-of-the-
art, such as low confidence borders of the binary map which is an inherent issue
with segmentation maps, where occlusions additionally magnify this effect. In
improving the robustness of the framework we address the usage of uncertainty.
We further demonstrate our approach to leverage the uncertainty by devising
a modified version of the mav-attr algorithm from [17] in Section 6.3.

6.1 Error Propagation of Vague Borders

Facilitating accurate polygonization require precise segmentation maps. As
shown in Figure 4.1 the current state-of-the-art approach, while producing
accurate segmentation maps, struggles to produce high-confident predictions
along the borders of buildings. Accurately annotating the borders of buildings
is a difficult task, where we expect there to be some margin of error. Other
conditions that will have an impact on the accuracy of the border can be occlu-
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sion from vegetation, and parts of buildings which are not accounted for in the
ground truth annotations, e.g., balconies, as well as sides of buildings which are
slanted away from the imaging sensor, such that its features are even harder
to capture from single images. This margin of error can be imagined to propa-
gate into the dl models during training, which in turn predicts borders with
lower confidence. The errors caused by the ambiguity in the border prediction
consequentially may cause large errors for downstream tasks. In the case of
HiSup, one component that is particularly dependent on the precise boundary
segmentation is mav-attr, as described in Subsection 4.4.4. In particular, it
suffers from low confidence borders as it excludes certain vertices from being
included in the final polygon due to the distance between the contour of the
segmentation map and a vertex being too great.

Figure 6.1: Generated vertices and polygons from the example predictions shown in
Figure 4.1. The leftmost figure contains the segmentation mask referred
to as Remask (in Figure 4.1), conditioned on prediction confidence greater
than 0.5. The red vertices have confidence greater than 𝜏𝑘 = 0.008, which
is the default setting also used in [17]. Those with confidence lower than
𝜏𝑘 are discarded, while nms is applied to the remaining ones. The center
figure contain the polygons produced by mav-attr, overlaid onto the
predicted segmentation map without a threshold to highlight ambiguities
in the border between foreground and background. The leftmost figure
displays the ground truth polygons on top of the input image.

An example of this is illustrated in Figure 6.1, where the center and bottom
polygons are missing a vertex. The vertex however is present and has been
predicted by themodel. However,mav-attr discards it for being too far from the
predicted contour, and since the generated polygon is purely drawn between
vertices, the method produces a suboptimal result.

A more robust segmentation of the boundary region, and quantification of the
uncertainty within this prediction thus has the potential to improve the overall
performance of the model. Furthermore, from a user’s perspective, quantifying
this uncertainty has the advantage to relay the model uncertainty, thereby
building trust in the model.
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6.2 Stochastically Sampling Segmentation and
Vertex Maps

Figure 6.2: Outline the proposed approach to perform Bayesian approximation by
performing multiple stochastic forward passes, enabling an ensemble of
models. The figure only highlights two predictions, while in fact, Figure 4.1
displays all the outputs which would be combined in this setting.

If we assume that the margin of error between the vertices of the ground truth
annotation polygons and the ideal building corners in the image follows a
distribution. Then a method such as mcd, described in Section 5.3 would for
each stochastic forward pass theoretically sample from this distribution. For
a single corner of a building, multiple forward passes with dropout enabled
would be thought to be sampling from the Gaussian distribution.

To facilitate more robust outputs of the model we employ the theory discussed
in Chapter 5, and propose a modified version of the Hierarchical Supervision
framework [17], inspired by mcd (as discussed in Section 5.3). This is to allow
performing multiple stochastic forward passes, sampling both segmentation
and vertexmaps from the posterior distribution over the weights of the modified
model, using dropout during testing, leveraging an ensemble of predictions.
We follow the general setup of [28] by stacking the sampled segmentation and
vertex maps, as shown in Figure 6.2, then using their respective depth-wise
mean for prediction, and the variance to describe the uncertainty.

Modified framework. During model training, we include dropout layers
in both the backbone feature extractor and the Hierarchical Supervision ar-
chitecture. The backbone used is the same as the one that was used by the
original authors, which is described in Section 3.4. Within each convolutional
block, which there are four of in the largest configuration - built up of con-
volutional layers and batch normalization operations followed by the relu
activation function - we place a dropout layer with 𝑝dropout as the dropout
probability. The transitional layers, which are responsible for both upsampling
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and downsampling the convolution streams also include a dropout layer with
the same dropout probability. The main model described in Section 4.4 which
use the feature maps extracted by the backbone are also modified with dropout
layers. The authors of [17], in parallel, apply three blocks consisting of 3 × 3
convolutions followed by batch normalization and relu activation function to
extract feature maps for the segmentation task, afm task and vertex task. We
include a dropout layer, as before, after each batch normalization layer, before
the activation function is applied. To align the segmentation predictor and
vertex predictor, the authors then employ eca to enable cross-level interactions
between the parallel tasks. We modify eca by inserting a dropout layer before
the attention activations are computed of the cross-level interactions.

Robust segmentation and vertexmaps. Allowing multiple distinct sub-
networks to contribute in an ensemble setting,we expect the final segmentation
maps to refine low confidence borders, producing a more robust contour, which
is less likely to miss vertices during the polygon generation process. The ver-
tices positions are also refined, and as we see from Figure 6.2 the heatmap of
vertices can now be considered a better estimator for the Gaussian distribu-
tion of each vertex, resulting in a sample mean closer to the true positions of
building corners. During inference, we average mcd samples from multiple
stochastic forward passes, which is shown to produce more robust predictions
than model averaging, for a representative sample size [27, 28].

6.3 Dynamic Uncertainty Based Polygon
Refinement

While Section 6.2 presents a refining procedure for the mask predictions using
mcd, this chapter addresses the problem of the fixed distance threshold inmav-
attr, which discards vertices based on the distance between a vertex and the
predicted contour. We present a modified procedure utilizing the uncertainty
maps produced from the ensemble of models to replace the fixed threshold
with a dynamic one. Subsection 6.3.1 demonstrates the problems involved
with the prior method, while Subsection 6.3.2 proposes an uncertainty guided
modification to mav-attr.

6.3.1 Sensitivity to Parameters During Inference

In addition to addressing and capture the missing vertices of Figure 6.1, we
scrutinize the fixed distance threshold, which mav-attr uses. In their paper
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Figure 6.3: ap evaluation metric with different distance thresholds 𝜏𝑑 when evaluating
the predictions of a single model. The authors of [17] defaults to using a
threshold of 𝜏𝑑 = 5. We observe that for our dataset, a threshold of 𝜏𝑑 = 10
produce even better results.

[17] the authors demonstrate how varying the threshold used in the polygon
generation procedure is needed to find the optimal parameters for each dataset.
They find that for the Inria,AICrowd and Shanghai datasets a distance threshold
of around 5 yield the highest accuracies, however the Open Cities dataset has
an 13% increase in ap when they increase the distance threshold to 11, which
they hypothesize is caused by the larger difficulty in the dataset itself. Our
own analysis conclude our model benefits from using a distance threshold of
10, as is apparent from Figure 6.3.

The effects of varying the distance threshold Figure 6.4 demonstrates
how the distance threshold impacts which vertices are selected. A simple
method for improving the final polygons can be implemented by increasing
this distance threshold, as shown in Figure 6.4 and Figure 6.3. Increasing
the threshold does however require human intervention, and an analysis of
performance over a potentially large dataset. Furthermore, the right column
of Figure 6.4 shows our persistent example, when the threshold is increased to
the optimal one, of 𝜏𝑑 = 10, as demonstrated in Figure 6.3. While the bottom
polygon adapts well with the new threshold, the center one ends up including
several redundant vertices, while the in situ image in Figure 6.1 confirms that
the 6 vertices predicted ideally would be represented using only 2 vertices.
Hence, increasing the threshold to some extent also increases the complexity
of the polygons as an unfortunate side effect.
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Figure 6.4: Example of vertex selection process in mav-attr, a continuation of the
example in Figure 6.1 which demonstrates why a vertex is discarded. The
illustration on the left displays a distance threshold 𝜏𝑑 of 5. To its right,
the threshold is increased to 10. The criteria used in selecting a vertex
is a fixed distance between the vertex position and any point along the
contour of the segmentation map, which is displayed as the yellow areas.

6.3.2 Dynamic Threshold Selection

We are thus motivated to use the uncertainty maps gained from our proposal
in Section 6.2. Although we have uncertainty maps, it is not trivial which one
to use or what combination. Many different combinations, leveraging both
the uncertainty in the segmentation map and vertex and offset maps, were
evaluated, with the goal of devising a method simple enough to inspire other
polygon generation algorithms to be able to adopt our proposal. For instance,
we attempted to slack the threshold based on the uncertainty in the borders
of the segmentation maps, giving the control of dynamic vertex selection to
the uncertainty of the segmentation maps. This method was discarded, where
we hypothesized that vertex selection using uncertainties need direct feedback
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from the predicted vertex heatmap.

Polygon initialization. Following the notation of [17] of mav-attr as out-
lined in Subsection 4.4.4 we denote the predicted mask 𝑺afm, the corresponding
vertex heatmap 𝑯 and offset map 𝑶 with their respective uncertainty maps
𝑼 𝑺 , 𝑼𝑯 and 𝑼𝑶 . For dynamic threshold selection, we define,

𝑼𝑯 = var
(
{𝑯 }𝑁𝑖=0 > 𝜏𝑣

)
, (6.1)

to be the uncertainty of the vertex predictions. Where {𝑯 }𝑁
𝑖=0 denotes the stack

of both convex and concave vertex map predictions. The variance is applied
depthwise, therefore the dimensions of themap is retained, andwe are left with
a per-pixel variance. 𝜏𝑣 is the same parameter used in the original algorithm,
set to 𝜏𝑣 = 0.008, which discards low confidence vertices in the same manner
as with the actual predictions. The rest of the initialization procedure of [17],
described in Subsection 4.4.4 is done as the original authors presents, while
we use the computed vertex uncertainty map 𝑼𝑯 during the simplification
process.

Polygon simplification. The original simplification process consists of 4
steps, where we modify step 3 (see Subsection 4.4.4) to instead dynamically
set the distance threshold for each pixel using their associated uncertainty.
Where the original method would discard pixel 𝒙𝑖

𝑘
if the distance to the closest

vertex 𝒗𝜋 (𝑘,𝑖 ) ∈ 𝑉 is greater than 𝜏𝑑 . We modify this approach to include an
additional term 𝑢𝒗 𝑗

, which is defined as,

𝑢𝒗 𝑗
= 𝑢𝑣𝑗 [𝑥,𝑦 ] =

𝜏𝑛/2∑︁
𝑚=−𝜏𝑛/2

𝜏𝑛/2∑︁
𝑛=−𝜏𝑛/2

𝑼𝑯 [𝑥 −𝑚,𝑦 − 𝑛], (6.2)

i.e., the 𝜏𝑛 × 𝜏𝑛 neighborhood of uncertainties in 𝑼𝑯 is associated with vertex
𝒗 𝑗 , to incorporate the local neighborhood of variance around the chosen vertex.
To exaggerate the effects of the neighborhood of uncertainties around the
vertex, we linearly scale 𝑢𝒗 𝑗

, to the interval (0, 𝜏𝑠). We then discard pixel 𝒙𝑖
𝑘

if,

∥𝒙𝑖
𝑘
− 𝒗 𝑗 ∥2 > 𝜏𝑑 + 𝑐𝒗 𝑗

. (6.3)

This can be interpreted using the statement, given the set of vertices 𝑉 , the
algorithmmay relax its distance threshold if the ensemble ofmodels is uncertain
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in the position of a vertex 𝒗. We now in effect have two additional parameters in
our modified algorithm. We do however hypothesize that the sensitivity to each
parameter is less than when using only a single one for the distance threshold,
as our parameters simply would scale the effect of the uncertainty guidance
of the original threshold. While a lot of different methods for leveraging the
uncertaintymaps in the segmentationmaps have been explored in development
of our method, e.g., by discarding vertices or boundary pixels based on the
pixels’ certainty, we found that scaling the distance threshold only using the
uncertainty of vertices qualitatively produce better results.

We have with this introduced two methods for refining both the predictions
of the framework presented in [17], and the polygon generation method by
leveraging the uncertainty maps produced by the first proposal. Addressing
the need for refined edge and vertex maps through the use of mcd, allows
us to rigorously express the uncertainty in both the borders of segmentation
maps and the positions of each vertex. The following chapters will present ex-
periments using the proposed methods, with both qualitative and quantitative
analysis of our proposals.
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7
Experimental Setup
The following part consists of a description of the experiments that have
been conducted, with the used setup, datasets and metrics used in measuring
the performance of our method and modifications to the framework from
[17], presented in Part II. We begin discussing the datasets used during our
experiments in Section 7.1, before presenting the evaluation metrics used to
measure the performance in Section 7.2, that will be used in Chapter 8 to
compare our method with the prior. This chapter is rounded off by discussing
the details specific to our implementation and outlining the training process
in Section 7.3.

7.1 Datasets

To accurately delineate building footprints, there is a need for vast examples
of high-resolution aerial or satellite images with accurate ground truth annota-
tions. There exist common benchmarking datasets which stem from previous
or active competitions, such as the AICrowd [61], Inria [62], Open Cities AI
Challenge 1 and the Shanghai dataset, to name a few. Both the AICrowd and
Shanghai dataset are subsets of the more extensive SpaceNet datasets and
challenge series [63]. The spatial resolution of these datasets are generally

1. Project home page can be found at: https://www.drivendata.org/competitions/60/building-
segmentation-disaster-resilience/page/150/

55



56 chapter 7 experimental setup

between 1 m to 5 cm, i.e., the datasets have vast differences in spatial resolu-
tion, large distributional shifts, varying degrees of occlusions from vegetation,
and challenges related to preprocessing and orthorectification of the images.
Additionally, the ground truth labels needed to train satisfactory dl models,
in general, require extensive effort and oversight from humans, with partially
automated techniques with human corrections have been used in some cases
[63]. In this work, we focus in particular on two datasets. The first one is a
proprietary Norwegian dataset (referred to as the Field dataset), which allows
us to test the method outside the commonly explored datasets in order to
evaluate the "in-the-wild" performance. In addition, we leverage the AICrowd
dataset, which is one of the most widely used datasets, for comparing with a
common benchmark.

7.1.1 Field Dataset

The main dataset that will be used for our experiments is produced by Field2,
and provided for this experiment by the Norwegian Computing Center (nr). It
consists of 8000 × 6000 pixel TIFF-format Red, Green, and Blue (rgb) image
mosaics, of selected parts of southeastern Akershus county in Norway. The
images are captured with a 10 cm spatial resolution, acquired both in the years
2018 and 2020. Being well suited for building detection and change detection,
as shown in [22]. The areas captured are both of densely populated, mostly
single-family homes, also including larger uninhabited forests and cropland.
The images are orthorectified, meaning the pixels are stretched to fit over a
Digital Surface Model (dsm) to account for differences in elevation caused by
the off-nadir angle they are captured at.

Figure 7.1: Example images of the Norwegian Computing Center (nr) dataset.

For our experiment, we found the 2018 dataset to be adequate, consisting of
approximately, 120000 distinct polygons of buildings. We resize the mosaics into
512×512 pixel PNG-formatted images, also cropping their accompanying TFW

2. Link to their website: https://field.group/
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files, which contain the geospatial extent of each crop and additional metadata.
To construct partitions for training, testing and validation, the dataset is split
using an 8-1-1 ratio resulting in a distribution of approximately 30 000, 3 500,
3 500 images respectively. As part of the data preprocessing procedure, we
convert the accompanying Shapefile for the 2018 version into three separate
annotation files using the Microsoft Common Objects in COntext (ms coco)
format, for each partition. For ease of use, each dataset partition is accompanied
by a smaller subset of about 10% the size of the original. We also discard cropped
images not containing any ground truth annotations.

Differing from the aforementioned other benchmarking datasets, there is a
prominent distributional shift due to the difference in vegetation and more
sparse urban development in parts of the dataset. While the other datasets
see vegetation more in the form of parks, and the occasional planted cluster
of trees, the Field dataset on the other hand, to some extent captures dense
wild forests, and long stretches of empty roads and farmland with the sporadic
shed.

7.1.2 AICrowd dataset

We are also motivated to test our proposed methods on a common dataset
with [17]. Therefore, we include the AICrowd mapping challenge dataset3 [61].
The dataset is a subset of the SpaceNet dataset [63] that originally contained
multispectral data, where the non-rgb channels have been discarded. The
images are pansharpened, a process where a channel sensitive to a larger
spectrum - including visible light - with higher spatial resolution is "colorized"
using the rgb channels. This has the effect of efficiently upsampling the spatial
resolution of the other channels, and is a common technique in modern optical
spacecraft. While the spatial resolution is not explicitly stated, the imaging
satellites used - WorldView 2 and 3 - are able to capture images in the range of
30 cm to 50 cm spatial resolution [63].

The training dataset includes 280 741 tiles of 300 × 300 pixels, while the
validation set consists of 60 317 tiles, accompanied by ms coco formatted
ground truth labels. Since this is a challenge dataset, the annotations of the
test partition has not been released, meaning we use the validation dataset for
testing. As discussed in Subsection 7.1.1, we here also have access to a smaller
version of each dataset partition to simplify testing.

From Figure 7.2 we see more densely populated suburban homes than in
Figure 7.1. There is also less vegetation, except a few buildings occluded by trees.

3. Dataset is available on: https://www.aicrowd.com/challenges/mapping-challenge
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Figure 7.2: Examples from the AICrowd mapping challenge dataset [61].

We are to some extent are able to notice a difference in the color distribution
between the dataset, likely due to being captured by satellites, meaning the
photons need to pass through a denser atmosphere than the Field dataset.
This is reflected in the data pipeline discussed in section Section 7.3 where
we normalize the color channels of the images using the mean and standard
deviation of the global dataset per channel and see the standard deviation of
the intensity per channel is 50% less for the AICrowd dataset.

7.2 Evaluation Metrics

We will now introduce the evaluation metrics that we use during our experi-
ments. To compare polygons, .

IoU is a simple metric for evaluating the overlap between two sets. In our
case of building detection, we use it to compare a detection with the ground
truth, effectively measuring the overlap of the two. We define it as,

IoU(𝐴, 𝐵) = 𝐴 ∩ 𝐵
𝐴 ∪ 𝐵 , (7.1)

to compare 𝐴 and 𝐵. A reformulation of the above equation could be the
footprint of overlap divided by the footprint of union. For a perfect overlap, an
Intersection over Union (iou) of 1 is achieved.

COCO We will rely on the evaluation metric [64], which is the official metric
of our AICrowd dataset [61], to be able to compare with existing methods. The
detection metrics are Average Precision (ap) and Average Recall (ar). The
ap summarizes the precision-recall curve by computing the average precision
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across multiple iou thresholds. We will be using the main metric that averages
iou threshold between 0.5 and 0.95, with increments of 0.05.

AP =
1
|T |

∑︁
𝑡 ∈T

tp
tp + fp

AR =
1
|T |

∑︁
𝑡 ∈T

tp
tp + fn

(7.2)

From Equation 7.2 T is the set ouf iou thresholds.

Complexity Aware IoU Is a metric proposed by [15], that addresses the
fact that in the search for better building polygons, pure segmentation models
have an advantage in that their extracted polygons have irregular shapes, with
redundant vertices. They introduce the Complexity Aware Intersection over
Union (c-iou) that penalizes, not only based on the iou, but also on the
extracted vertices and their quality.

C-IoU(𝐴, 𝐵) = IoU(𝐴, 𝐵) · (1 − ||𝜕𝐴| − | |𝜕𝐵 |
|𝜕𝐴| + |𝜕 | (7.3)

In Equation 7.3 |𝜕𝐴| denotes the number of vertices in each region.

Boundary IoU. The Boundary iou [65] is another metric that penalizes
polygons with inconsistent borders. To do this, they only consider the sets
of pixels within a distance 𝑑, known as the dilation ratio, during their iou
computation. In our experiments, we set it to 𝑑 = 0.02, similar to [17].

Boundary IoU(𝐴, 𝐵) = | (𝐴𝑑 ∩𝐴) ∩ (𝐵𝑑 ∩ 𝐵) |
| (𝐴𝑑 ∩𝐴) ∪ (𝐵𝑑 ∩ 𝐵) | (7.4)

PoLiS. The PoLiS [66] metric evaluates predicted and ground truth polygons
by measuring geometric properties such as vertex and edge comparisons, with
an increased sensitivity to small variations in shape and scale. And is an
importantmetric in our later experiment as it fundamentallymeasures different
properties from the iou based metrics. It measures the average distance
between each vertex of 𝜕𝐴 with its closest point 𝑏 within the boundary 𝜕𝐵, and
is formulated as:

PoLiS(𝐴, 𝐵) = 1
2𝑞

∑︁
𝑎 𝑗 ∈𝐴

min
𝑏∈𝜕𝐵

| |𝑎 𝑗 − 𝑏 | | +
1
2𝑟

∑︁
𝑏𝑘 ∈𝐵

min
𝑎∈𝜕𝐴

| |𝑏𝑘 − 𝑎 | | (7.5)
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7.3 Implementation Details

We present the details of our training procedure to provide a reproducible setup.
We largely base our proposals on the work done by [17], trying to produce a
framework improving on their state-of-the-art model⁴.

Backbone. We train a series of models with different configurations before
settling with one model per dataset. Similar to the proceeding capstone project
of this thesis [67], and [17], the at the time widest variant of the second version
of the backbone proposed by [48], termedHRNetV2-W48⁵. As its name suggests,
the width of the subnetworks in the last three stages are 48. This backbone
inputs images of 512 × 512 as input, explaining the choice of crop sizes used
in Subsection 7.1.1, for the Field dataset. The backbones are pretrained on
ImageNet [68], meaning the feature extractor will have some familiarity with
certain useful representations. The feature maps output from the backbone
are downsampled with a factor of 4, meaning 128 × 128, which we resize to
the original image size during inference.

Hyperparameters. Due to the differing input sizes of images, we vary
the batch size between the datasets. The model trained on the Field dataset
uses a batch size of 4 due to memory constraints, whilst the AICrowd trained
model use a batch size of 7. For the remaining details and hyperparameters,
we largely follow the same setup as [17]. The Adam optimizer [36], described
in Subsection 2.3.2 is used with a base learning rate of 10−4, which is decayed
by 10 after 25, 75 and 150 epochs. The AICrowd trained model is trained over
30 epochs, while the Field dataset receives 200 epochs of training. We use a
weight decay of 10−4. We also augment the data during training to introduce
additional variance. The augmentation strategies used are random rotation,
flip, and color jittering. We train the models on a single Nvidia RTX 3090 GPU,
and training takes upwards of 200 hours per model. Additional configurations
using a cyclic learning rate [69] were tested, however the basic learning rate
scheduler gave similar results and was therefore the only one used in producing
the final results. Our variant using mcd during inference, in general, use 10
stochastic forward passes during inference. For the distance threshold used in
the original version of mav-attr we use 𝜏𝑑 = 5 for the AICrowd dataset, and
𝜏𝑑 = 10 for the Field dataset. During both training and inference, we set the
dropout probability in all dropout layers to 𝑝dropout = 0.1.

For the modified version of mav-attr, that we propose in Section 6.3 has a

4. The code for HiSup can be found at: https://github.com/SarahwXU/HiSup
5. The authors have also provided wider versions, however with diminishing returns.

Code and pretrained models are available at: https://github.com/HRNet/HRNet-Image-
Classification
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parameter 𝜏𝑛 which denotes the neighborhood to consider uncertainties in for
a vertex, and we set this to 2 for both datasets, since this threshold is only
applicable to downsampled 128 × 128 pixels uncertainty maps. We further set
the scaling parameter 𝜏𝑠 = 2, hence the effect of the uncertainty guidance is
at most 2.





8
Experiments and Results
Building on our proposed methodology in Part II, we conduct in this chapter
experiments to evaluate its benefit compared to the state-of-the-art method.
Section 8.1 will present results using our improved ensemble strategy described
in Chapter 6. The results are directly followed by a discussion and comparison
with the prior state-of-the-art. Section 8.2 shifts our focus to using the uncer-
tainty of the model to dynamically relax or enforce the distance threshold,
following the method of Section 6.3. The last section of this chapter, Sec-
tion 8.3, outlines variations to our method, and where we see more research is
needed.

8.1 Bayesian Ensemble of Predictions

Table 8.1 and Table 8.2 demonstrate our quantitative results using two classes of
models, each trained on one of the datasets used in our work. The large gap in
performance between the models trained likely stem from the vast differences
between the data. The AICrowddataset consists of an approximate tenfoldmore
training examples, which may be a significant factor, we further investigate
the effects of the data distribution in the later Subsection 8.1.5.
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Table 8.1: Evaluation results comparing the benchmark HiSup architecture [17],
against using standard dropout with weight scaling, and mcd, for mod-
els trained on the Field dataset. All models are trained for 200 epochs. The
arrows next to each column label indicates whether a better result is high
or low. It is clear that the inclusion of mcd has a significant impact on the
robustness.

AP ↑ AR ↑ APb ↑ PoLiS↓ C-IoU↑ IoU↑
[17] 39.6 46.9 21.4 4.170 62.6 74.3
[17] + dropout 36.5 43.1 18.1 4.436 58.9 71.5
[17] + mcd 40.8 48.3 22.6 3.920 63.6 74.8

8.1.1 Results Using Dropout

Table 8.1 and Table 8.2 presents our results when testing a model which has
been trained using dropout layers inside the convolutional blocks. Compar-
ing with the baseline, it is clear the performance has deteriorated, which is
an unexpected result. The goal with using dropout is to regularize the nn
by forcing the network to learn redundant representations, thus preventing
co-adaptations where a single neuron is only helpful in the context of several
other neurons [38, 39], as we have elaborated on in Subsection 2.7.2. This
means that the deterioration seen on the Field dataset results may either indi-
cate that the model is not yet sufficiently trained, or could be the result of a
problematic implementation of dropout. We see both alternatives as possible,
however the model trained on the Field dataset received 200 epochs of training,
where the loss does not significantly decrease during the last 100 epochs. While
overtraining also could be a potential issue, the inclusion of dropout layers to a
large extent helps with mitigating such issues [38, 39]. Because of this, we are
open to the idea that our use of dropout layers should have been limited to a
smaller extent, for instance following the Bayesian SegNet [28] architecture in
constraining dropout layers to the Central Four Encoder-Decoder, design idea
more closely, by mainly using dropout layers during the compact stages of the
backbone bottleneck, as well as only during the convolutional blocks of the
HiSup framework. Our model also had dropout layers in the initial convolu-
tional blocks of the prediction heads, which could cause important information
to be discarded, although [28] show that their version using dropout in the last
unit before the classifier excelled in performance. Another potential configu-
ration that was not tested would be to exclusively have dropout layers in the
backbone feature extractor or exclusively in the main framework. However, we
were unfortunately not able to test more configurations to properly view these
effects.
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8.1.2 Results using Monte Carlo Dropout

Table 8.2: Evaluation results comparing the benchmark HiSup architecture [17] with
standard dropout andmcd, that have been trained on the AICrowd dataset
[61]. Note that the baseline is not directly comparable to the dropout and
mcd scores, because the model is trained for 100 epochs. Thus, we refer
the reader to Table 8.1 for a proper comparison with the baseline. While
the better trained model outperforms both modifications,mcd significantly
reduced the gap to the 100 epoch model.

Epochs AP ↑ AR ↑ APb ↑ PoLiS↓ C-IoU↑ IoU↑
[17] 100 85.3 80.9 66.3 0.738 89.6 94.1
[17] + dropout 30 58.6 60.4 41.7 1.245 70.4 77.5
[17] + mcd 30 69.7 73.2 51.8 1.155 84.4 90.2

While we suspect there to be issues with our implementation of dropout, when
activating dropout during testing and averaging the results, the performance
in all metrics improve, as seen in Table 8.1 and Table 8.2. Due to not having
a comparable baseline for the AICrowd dataset, because the model is trained
over 100 epochs, we instead compare our model trained on the AICrowd [61]
dataset between the standard dropout model, and themcdmodel. We notice a
large increase over all metrics, where the main comparison metric ap increase
by 11.1%. Additionally, the more difficult boundary sensitive apb increase by
10.1% demonstrating the superiority of mcd. For the Field dataset, we are
however able to compare results between the baseline, standard dropout and
mcd. While we have discussed the decrease in accuracies between the baseline
and the standard dropout model, there are clear improvements made when
evaluating our mcd modified model using an ensemble of 10 mc simulations.
As we will discuss in Subsection 8.1.6, the accuracies of the model trained on
the Field dataset will be consistently lower than for the models trained on the
AICrowd dataset, which is due to the difference in spatial resolution, occlusions,
and inherent differences between the datasets.

Our evaluation use 10 mc samples. This allows the model to sample from
an estimate distribution of the true position of vertices from the dataset, as
outlined in our proposed methodology Section 6.1. On inspection of Figure 8.1,
we observe predictions, where the columns contain the same images, but using
a single prediction in the top row, and the average of 10 predictions in the
bottom row. By comparing the predictions of (a) with (e), we have the situation
where the single prediction (top) has not been able to predict the buildings
to the right of the image, however when averaging over 10 predictions, the
model is able to correct its mistake since there are other predictions where
the building was detected. This is an example where the model becomes more
robust, which was our goal in using mcd, thus confirming our hypothesis.
The same figure captures an example of the opposite case, where the single
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Figure 8.1: Qualitative comparison of predictions using a single prediction versus
an ensemble of 10. The top row, images (a) to (d) are using a single
prediction of vertices and segmentation masks, while the bottom row
average predictions over 10 stochastic forward passes.

prediction has a high confidence for the top right building of (b) in Figure 8.1,
while its mcd counterpart is more uncertain, seen by the fainter color. We see
both examples are in Figure 8.2 (a) and (b), where the uncertainty is large
in both cases. The bottom input image with ground truth labels overlaid in
Figure 8.2 of (a) and (b) gives us an interesting case. (b) Reveals there is in fact
a building there, however its entire footprint is densely occluded by vegetation
and its shadows, to the point where visual inspection nearly is impossible, even
by humans. Thus, since some of the ensembles were able to detect it, mean
the ensembles as a whole is more robust, as highly uncertain footprints can
be leveraged in other settings, such as active learning. For (a), the ground
truth labels are only present on the right building, and not on the left building,
which is unfortunate. However, the uncertainty is high for the same buildings,
which would mean that some of the predictions were not able to detect these
buildings, which is peculiar, seeing how unobscured both buildings are in the
input image.

The uncertainty of the vertex heatmaps of Figure 8.2 are harder to see, but the
interested reader may magnify the images for clarity. The leftmost figure (a)
have larger values because the different predictions would have slightly varying
confidence levels in the heatmap, and disagree on the centroid position for up
to a few pixels, causing the variance to be high. Without our modifications,
the offset map would probably account for this, however a downside with
our implementation is that vertex maps are averaged before the offset map
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Figure 8.2: Uncertainty maps of predictions from Figure 8.1. The top row shows the
uncertainty of the segmentation maps, while the middle row illustrate the
uncertainty of the vertices. In the bottom row, we have the input images
with the ground truth labels overlaid in red. Due to some segmentation
maps being predicted with a difference in the low confidence areas, i.e.,
the background predictions, we observe differences in the background
color of these illustrations. The vertex uncertainty is computed by adding
the convex and concave vertex predictions before computing the variance
of each pixel. The columns of this figure correspond with the bottom row
predictions of Figure 8.1.

is applied. We instead average convex and concave vertex maps separately, in
addition to averaging the horizontal and vertical offset maps by themselves,
before applying the conversion algorithm between probability maps and vertex
vector coordinates, following [17]. Because the feature extractor backbone acts
as the eyes of our models, when the convex and concave vertex maps from a
single prediction has an offset, the offset map is supposed to correct for this.
The advantage with this is that the offset map is directly linked with the vertex
probability maps. Due to our method averaging of offset maps, we lose the
tailored maps for each prediction, which could negatively impact the precision.
On the other hand, the offset maps are only able to refine the position of a
vertex up to half a pixel at most, and are really only applicable as a method to
achieve sub-pixel coordinate representations.
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8.1.3 Distance Between Mask and Polygon Predictions

Figure 8.3: Comparison of distance threshold using a single prediction and 10 mcd
predictions. This establishes a baseline to evaluate the performance of
our proposed dynamic threshold selection algorithm. It is clear that both
curves are fairly stable above an arbitrary threshold of 40% in ap during
evaluation of the distance thresholds, while having a slight peak at 𝜏𝑑 = 10
which is the selected threshold used in our previous evaluations. The
accuracies of the blue curve serves as a benchmark for evaluating our
dynamic thresholds selection modification to mav-attr in Section 8.2.

A subject we have yet to discuss, is the difference in achieved accuracies
between the predicted mask before a polygon is generated and the generated
polygon using mav-attr. Before direct polygon prediction became feasible,
buildings were first detected using a framework such as Mask-RCNN which
was evaluated in [61], that predicts a segmentation map but does not produce
polygons by themselves. In evaluating their own model [17] compare with
Mask-RCNN by performingdp simplification [52] to generate polygons from the
predicted building contours, which were probably extracted with the Marching
Squares algorithm [51], however they do not provide further details. Their
own framework, HiSup [17], also initially predict building masks; interestingly,
these tend to achieve an even higher accuracy than the vectorized polygon
extracted from it, which we see in Figure 8.3. The green line denotes the mask
prediction’s accuracy. While the performance is better on the ap metric, when
we extract a polygon directly - without using the vertex information - the final
representation consists of too many redundant vertices, which the mav-attr
algorithm is able to remove. Figure 8.4 demonstrates our point, where the top
row contain polygons generated directly from the mask prediction using dp
simplification,while the bottom row usemav-attr. There is a large difference in
the amount of vertices used in representing the polygons between the methods,
but mav-attr is preferred from downstream tasks due to having a sparser
representation of the same polygons, which for large datasets, can translate to
enormous storage optimizations. Besides, mav-attr has the additional benefit
of regularizing its generated polygons due to finding a minimal representation
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of vertices.

However, this observation poses a question, is the prediction accuracy of the
masks the highest achievable, or close to the highest possible accuracy in any
version of polygons that mav-attr is able to generate. While our tests have never
been able to achieve accuracies that outperform the raw mask predictions,
we are not able to conclude with a definite statement. If we however assume
the mask predictions to be the absolute maximum that a polygon generation
algorithm such as mav-attr is able to achieve - from the same masks - our
other proposed method which we will come back to in Section 8.2 should only
be able to improve up to the accuracies produced using only the masks.

On inspection of Figure 8.3, the mask prediction achieves an accuracy of 41.11%
ap while the best results using 10 mc simulations is reported in Table 8.1 to
be 40.8%. Therefore, under the assumption of the previous paragraph, mcd
is able to come close to what we perceive to be the highest possible accuracies
given an unimproved mask.

Figure 8.4: Comparison of dp simplification polygons of the predicted mask (top row)
against the generated polygon using mav-attr. The numbers above each
image show the number of vertices used in representing all polygons in
the image.
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Figure 8.5: Analysis to see how performance is affected of the number of mc simula-
tions used in predictions. The figure show the performance on two metrics,
ap (red) and PoLiS [66] (blue).

8.1.4 Effects of Increasing Stochastic Forward Passes

With our proposed method, we perform another experiment analyzing the
performance of increasing the number of stochastic forward passes during
prediction between one and ten mc simulations. Figure 8.5 reports the AP and
PoLiS accuracies of this experiment. The figure only reports results with ap and
PoLiS metrics, since they fundamentally measure performance very differently,
and more metrics does not provide any additional value to the reader. We
see the performance increase is sharpest between one and three ensembles,
before the ap flattens out until it increases again after the fifth ensemble
predictions. The reported PoLiS [66] accuracies also follow the aps, but there
is a large spike when using four simulations for the prediction. It is unclear
why the performance in this metric spikes, however it could be the effect of a
subnetwork that is consistently producing predictions that significantly differs
from the rest.

Our model leveraging mcd consistently performs better than the baseline.
However, this performance comes at the cost of ten times longer to predict
segmentation, vertex and offset masks. The time it takes to perform a single
forward pass will largely depend on the number of parameters in the model
and the batch size used, however the number of parameters is constant through
all our experiments, and the batch size differs based on the available hardware
used, also the dropout layers have a minimal effect on the speed of a forward
pass. The authors of [17] report their polygonization routine mav-attr to be
the fastest of the frameworks they evaluate, and our method does not affect the
speed of mav-attr, because we are supplying the algorithm with an average of
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the predictions,meaning the computations are equal to that of their predictions,
however the total time it takes to produce a single polygon is the number ofmc
samples used multiplied with the time it takes for a single detector to produce
its prediction.

8.1.5 Effects of Data Distribution

As discussed in Section 7.1 we expect there to be a difference due to a distribu-
tional shift caused by differences in urban density, occlusions due to vegetation,
and inherent properties in the imaging sensor. We also consider lighting to be
a substantial factor, whereupon comparison of Figure 7.1 and Figure 7.2 we see
clear color and shadow differences. As briefly mentioned in Subsection 7.1.2 the
photons captured by the imaging satellite need to travel through a denser atmo-
sphere than the Field dataset which has been captured by an airborne sensor.
Another factor, not touched upon yet, is the uniformity of shadows in images
captured by the satellite. The satellite orbits in a heliosynchronous fashion -
where the lighting conditions are roughly equal at all times, with the obvious
exception caused by cloud coverage - causing long shadows stretching across
the image to be less prominent than for the airborne images that in general
could be captured at any time. We see an example of this in the rightmost image
of Figure 7.1 where shadows blend with the northeastern walls of the center
building. While we expect the nn to circumvent such conditions given enough
training examples, it adds to the uncertainty in the models’ prediction.

8.1.6 Ground Range Effects

Figure 8.6: Example to illustrate an inherent problem when the spatial resolution
increase. The problem arises when we are computing metrics based on
distances represented by pixels. This leads to exaggerating the distance
in the right figure, where the distances are in fact equal.
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In addition to the aforementioned factors discussed, we also emphasize the
effect when the spatial resolutions differ between datasets. Figure 8.6 tries to
highlight what could possibly play a large factor in the difference of perfor-
mance, when comparing the model trained on the AICrowd [61] dataset agains
the model trained on the Field dataset. While we are uncertain regarding the
exact spatial resolution of the AICrowd dataset as mentioned in Subsection 7.1.2,
we demonstrate the issues with differing spatial resolutions by assuming that
a single pixel of the AICrowd dataset represent 0.5m in the real world. At the
same time we know the pixels of the Field dataset to represent 0.1m. Given
two samples of a building, much like in Figure 8.6, where the left image has
a spatial resolution of e.g., 𝑥1 = 𝑐, while the right image has 𝑥2 = 𝑐/2. The
red circle denotes a predicted vertex, while the yellow boxes represent binary
segmentation maps. The green arrow has a length of 𝑙 = 2𝑐 and are of equal
lengths in both images. We count its distance using the number of pixels be-
tween the vertex and the mask to be 2 in the left example, and 4 in the right.
This means that the polygon generation algorithm mav-attr, which discards
or stores a vertex, based on the pixel distance, will have a harder time when
the spatial resolution is higher, because the same error in true ground distance
is not reflected in the pixel distance which the algorithm uses.

Following our explanation, we assume this explains some of the gap observed
between Table 8.1 and Table 8.2. We explain that this is due to the backbone
of the framework, which resizes all input images to 128 × 128 pixels before
predicting the positions of masks and vertices, followed by upsampling to the
original image size and filtering out redundant vertices on the upsampled
image. The filtering process use the fixed distance threshold of 𝜏𝑑 = 5, which
we here highlight as a problem when spatial resolutions differ.

The results presented in [17] reflects this to a greater extent. The authors
test their models on 4 datasets, AICrowd [61], Inria [62], Open Cities and
Shanghai datasets. While their model performs better than all others in the
relevant metrics, with similar results to Table 8.2 on the AICrowd dataset, we
observe that the datasets with much higher spatial resolution - such as the
drone captured Open Cities dataset with 4 cm to 8 cm - consistently score lower
than the low resolution datasets. Their explanation as to why this dataset is
more difficult than AICrowd, is blamed on other properties, namely occlusion
[17]. We do however agree with their reasoning, but hope our analysis will
highlight other influential reasons.

To build on our analysis, we use the recorded optimal thresholds of each of the
datasets evaluated by us, as well as in [17]. By comparing the optimal distance
thresholds presented for each model trained on each of the datasets, which is
found in Table 8.3.
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Table 8.3: Overview of values used in our analysis, including values from datasets
of experiments conducted in [17]. Note that the Open Cities dataset has
a spatial resolution of 0.04m to 0.08m, which we replace by an assumed
average spatial resolution.

Dataset Optimal 𝜏𝑑 interval Spatial Resolution [m] Image size
AICrowd [61] 4-6 0.5 300
Field 9-11 0.1 512
Inria [62] 4-7 0.3 512
Shanghai 4-6 0.3 256
Open Cities 10-13 0.06 (avg) 512

We then use the values of Table 8.3 to transform the spatial resolutions of the
original images into the effective spatial resolutions of the downsampled image
sizes of 128 × 128 pixels, which the backbone use for predictions using the
formula,

Ground range size = image size × spatial resolution

Effective spatial resolution =
Ground range size

128
Ground range accepted error = Effective spatial resolution × 𝜏𝑑

Figure 8.7: Comparison of the true errorwhichmav-attrwill accept formodels trained
on the datasets highlighted. We use a combination of our own results in
addition to those reported by [17] for our analysis.

Figure 8.7 shows these results illustrated as intervals. The interesting result is
that for the downstream tasks which use the predictions of these models, are
more interested in a low true ground range error - the actual displacement of
the vertices of the polygons - however this is not necessarily reflected in the
metrics, as shown in Table 8.2. We conclude this analysis stating that we only
can really trust comparisons of models that are trained on the same datasets,
and that while metrics such as ap and its variations (see Section 7.2) are useful
in quantifying the model performance within a dataset, it does not exclusively
reflect the useful value when we compare between datasets.
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8.2 Uncertainty Scaled Border Threshold

We now direct our focus from exclusively using mcd to evaluation of our
proposed method from Section 6.3. As have been thoroughly discussed and
illustrated in the previous section, Section 8.1 the framework benefits from
our ensemble strategy. We will in this section show how we attempted to
improve what vertices are selected bymav-attr by addressing the fixed distance
threshold, replacing it with a dynamically scaled one, using uncertainties which
we gain from our previous mcd proposal.

In finding a way to leverage uncertainties in the vertex selection process we
met large difficulties due to there being no obvious or intuitive way of using
uncertainties to modify thresholds. The proposal presented in Section 6.3 is the
result of an extensive analysis that was conducted prior to the one presented
here to modify the algorithm. As we will see, we are able to improve the
accuracies on some metrics, but the inclusion ofmcd from the previous section
resulted in the largest improvement.

As have been discussed in Subsection 8.1.6, the choice of distance threshold 𝜏𝑑
significantly differ between datasets. Hence, we expect to see vast differences
between the two during our comparison of the results between the datasets.
Subsection 8.2.1 presents our findings evaluated on the Field dataset, being
followed by Subsection 8.2.2 which perform an evaluation on the AICrowd
dataset.

8.2.1 Uncertainty Guidance for Norwegian Homes

Table 8.4: Comparison between mav-attr and our proposed modification leveraging
uncertainty evaluated on the Field dataset. We also include the distance
threshold which gave the optimal result. The same results are found both
in Figure 8.8 and Figure 8.9.

Polygon generation ap apboundary PoLiS C-IoU IoU 𝜏𝑑

mav-attr [17] 40.7 22.6 3.920 63.6 74.8 10
Dynamic threshold 40.4 22.3 3.901 64.3 74.7 11

Figure 8.8 illustrate the performance over a varying distance threshold us-
ing both the original mav-attr algorithm with predictions averaged over ten
stochastic forward passes against our proposed method where the base thresh-
old is varied in the same interval. We notice that for smaller distance thresholds,
the performance is better than the mcd counterpart, while they are similar to-
wards the optimal value of the algorithm, because of the intervals of thresholds
that perform well for earlier values of 𝜏𝑑 . Using these results we may state that
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Figure 8.8: Evaluation of our benchmark outlined in Figure 8.3 to our dynamic thresh-
old selection algorithm. The blue line denotes the benchmark using mcd
while the orange line show our modification to mav-attr using a dynamic
threshold scaled using the uncertainty of each vertex. A zoomed-in version
of the relevant thresholds are available in Figure 8.9. These accuracies are
from evaluations using the Field dataset.

this initial evaluation demonstrate a greater stability, and less dependence of
the distance threshold 𝜏𝑑 , which is a goal of the method.

By displaying only the values between a smaller threshold, as done in Figure 8.9,
we are able to more closely inspect the performance of our proposals. We see
the ap is similar between the experiments, but the more difficult metric of ap
boundary has a higher andmore stable performance before the baseline surpass
our dynamic algorithm at its optimal threshold. The same is true for both the
c-iou and PoLiS metrics. In fact c-iou performs consistently similar or better
than the benchmark for this dataset. While the PoLiS score is not always better
than the benchmark, it outperforms it at its optimal threshold.

We believe that our dynamic threshold selection improves for lower distance
thresholds than the baseline, since it chooses vertices based on the uncertainty
associated with a vertex. This uncertainty is then in our evaluation scaled
between 0 and 𝜏𝑠 = 2, which is then added to the distance threshold 𝜏𝑑 . For
consistently similarly uncertain vertices in a prediction, this could simply cause
our modified algorithm to collapse into mav-attr but with a scaled, nearly
fixed distance threshold. Which has both positive and negative consequences;
positive in that when the dynamic threshold does not work, it functions similar
to an already established polygon generation algorithm,with good performance.
On the other hand; the similarity to mav-attr means the dynamic selection is
lost and the robustness and stability seen in Figure 8.9 vanishes when using a
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Figure 8.9: The same as Figure 8.8, but the relevant parts are enhanced. The results
show that for some thresholds, our proposed dynamic threshold selection
performs better than our baseline. Of significance, we notice how the more
challenging c-iou and ap boundary perform better for thresholds below
the optimal threshold of the benchmark, PoLiS also perform better for
several thresholds.

suboptimal distance threshold.

We perform a qualitative analysis, where we consider two examples where
our modifications appears to improve the quality of the polygons, and one
example where the modifications fail. Figure 8.10 demonstrate how similar
the methods are. For each of the examples, there is only a single vertex that
has been modified. in (a) and (b) we have examples where the modifications
improve the overall extracted polygons, while (c) demonstrates the polygon of
the left building within the yellow circle to incorporate a vertex from the neigh-
boring building. While the successful cases show a sensible alternative polygon,
the overall similarity, and preciseness of the original mav-attr algorithm is
maintained.

8.2.2 Dynamic Vertex Selection on Large Dataset

Table 8.5: Comparison between mav-attr [17] and our proposed dynamic threshold
modification to mav-attr. The results of this table can also be seen in
Figure 8.11 and Figure 8.12.

Polygon generation ap apboundary PoLiS c-iou iou 𝜏𝑑

mav-attr [17] 69.7 51.8 1.155 84.4 90.2 5
Dynamic threshold 69.8 51.9 1.152 84.5 90.2 4
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Figure 8.10: Qualitative analysis of our dynamic threshold selection algorithm. The
top rows are examples where the dynamic thresholds are used, while the
bottom row shows the fixed threshold. The predictions are shown in blue,
while the red polygons represent the ground truth annotations. Columns
(a) and (b) highlight cases where our method improves the quality of
the polygon by being able to select vertices at a greater distance if the
model is uncertain in the placemen of the vertex. Column (c) highlights
a failure case, where the vertices between two buildings are too close,
causing the polygon of the left building to select an additional polygon
which should not have been there.

While our previous analysis indicates stable performance reflected on both sides
of the optimal distance threshold 𝜏𝑑 , the nn trained on the AICrowd dataset
[61] only experience this behavior on the lower side of the reflection point, as
seen in Figure 8.11. Conversely, our proposal improves robustness and stability
below the optimal threshold. Examining Figure 8.12 reveals that uncertainty
guidance improves the evaluation metrics by a small amount.

This indicates that the use of uncertainty guidance during the vertex selec-
tion process improves the accuracy of the predicted polygons. However, it is
important to highlight that while our modifications to mav-attr improve the
performance, the gains are miniscule when compared with our initial proposal
using mcd. We believe that our results demonstrate that guiding the selection
process using uncertainty is able to positively impact performance, although
the algorithm itself needs refinement. To further motivate the need for ad-
ditional modifications, we reiterate that the only uncertainty used is that of
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Figure 8.11: Comparison of evaluation metrics on the AICrowd dataset [61] using our
dynamic version of mav-attr.

the concave and convex prediction maps. With this and our results in mind,
a critique of our implementation is that there is still the possibility to use the
uncertainty of the segmentation maps and offset maps, or a combination of
these.

Illuminating again the assumptions about the distance between the direct
comparison of predicted masks and polygons, that was discussed in Subsec-
tion 8.1.3. This assumed upper boundary may limit the algorithms’ ability to
substantially improve performance, subsequently this motivates the use of un-
certainty to improve the predicted segmentation maps as well. During our
work, we experimented with alternatives that used the uncertainty map of
segmentation to also influence the distance threshold during polygon gen-
eration. However, our implementations were unsuccessful in improving the
performance on the evaluation metrics. Due to the ambiguous nature of the
task, we instead opted for exclusively scrutinizing how vertex uncertainties
could be leveraged, to demonstrate the potential use of uncertainties that are
byproducts of mcd.

8.3 Future Work

From our analysis of our proposed models, a deep insight into the inner work-
ings of building extraction has been gained. This section will present other
methods and extensions of our methods that deserve further work, and poten-
tially could prove beneficial in building detection, and the larger field of object
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Figure 8.12: Enhanced version of Figure 8.11 that emphasize the area near the optimal
threshold distance. We see that our modifications outperforms mav-attr
when choosing a distance threshold of four.

detection.

8.3.1 The Need for Higher Quality Segmentation Maps

Aligned with the assumptions made in Subsection 8.1.3 there appears to be
an upper bound of the achievable performance of generated polygons. The
extracted segmentation map appears to control this upper bound, subsequently
causing the algorithms that generate polygons to only approach this bound-
ary, not surpassing it. While this problem does not affect end-to-end learned
methods, such as [12, 15, 70], [17] performs an analysis for the algorithmic
polygon generation methods; given a segmentation mask, they evaluate four
different polygon generation methods, their own, Frame-Field asm [13], ASIP1
[71], and dp simplification [52]. None of these methods are able to surpass
the performance of the segmentation mask, although their own mav-attr is
closest.

For most buildings, the segmentation maps are of sufficient quality, however
through the use ofmcd it is possible to find examples of buildings where several
ensembles disagree, for instance as we show in the uncertainty of segmentation
in (a) and (b) of Figure 8.2. We believe an interesting approach would be to
use ideas from Active Learning (al) [60], to query an expert that receives
e.g., the bounding box of the uncertain buildings, and delineates the image.

1. ASIP refers to the title of their paper: Approximating shapes in images with low-complexity
polygons [71]
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Another approach could employ a refining nn such as the one used by [12]
which is given the bounding box and an initial prediction for it to improve on
as input. Our uncertainty of segmentation masks show greater uncertainty for
buildings that are partially occluded by vegetation, subsequently motivating
this approach.

8.3.2 Spatial Resolution Independent Evaluation Metrics

The argument in Subsection 8.1.6 highlights the unfair advantage for datasets
that have a lower spatial resolution. The problem arise when our metrics
depend on the spatial resolution, where we demonstrate that while extremely
high resolution images perform worse than lower resolution images, the in-
situ error is much less for high resolution datasets. Downstream tasks such
as gis applications require models that have a high accuracy in real world
measurements, motivating the need for evaluation metrics that measure the
true error.

8.3.3 Use of Uncertainty Maps From Segmentation and
Offset Maps

We present modifications to mav-attr that improve the robustness of the
original implementation from [17] by the use of uncertainty maps of the vertex
predictions. While the uncertainty of the segmentation maps clearly distinguish
difficult walls that are occluded by vegetation, see Figure 8.2, the confidence
threshold to produce a binary segmentation map, that we set to 𝜏 > 0.5, could
be varied to include further away vertices in the final polygon. Through our
experiments the vertex predictor in general predict many redundant vertexes
which are discarded when the segmentation map is too uncertain.

We believe that a natural next step to this project would be to explore new ways
of finding, and leveraging uncertainties in dl, as well as extending the scope
past the exclusive use of epistemic uncertainty of the model, to also investigate
aleatoric uncertainties inherent in the observations.
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Conclusion
This study focused on enhancing building detection from aerial and satellite
images by leveraging advanced Neural Network techniques and uncertainty
estimation methods. In our background theory we explored Neural Networks,
Convolutional Neural Networks, Deep Learning feature extractors such as
ResNet [43] and HRNet [48], and Monte Carlo Dropout for uncertainty esti-
mation.

We proposed two novel enhancements to existing algorithms. Firstly, we inte-
grated dropout layers into the Hierarchical Supervision, which is the current
state-of-the-art polygonal building detection algorithm by [17], enabling the
use of Monte Carlo Dropout for approximate Bayesian Inference following
[7, 30, 29, 26, 28, 27]. Second, we modified the algorithmic Mask-and-Vertices
Attraction polygon generation process by incorporating a dynamic threshold
guided by uncertainty instead of a fixed threshold.

Our experiments demonstrated that using Monte Carlo Dropout significantly
improved performance. Additionally, the dynamic threshold approach, offer-
ing a more modest improvement, further enhanced the accuracy of building
detection and the stability and robustness to the distance threshold.

While there are similar approaches leveraging uncertainty [7, 30, 28], our
approach impacts the field of building detection by demonstrating the use
of uncertainty maps in vertex selection to improve accuracies in a polygon
generation setting. Enhanced accuracy and reliability of detection algorithms

81
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have the potential to benefit various applications, including urban planning,
environmental monitoring, and disaster response efforts.

While our method showed promise, we acknowledge certain limitations. These
include constraints related to data quality and occlusion due to vegetation,
the ambiguous nature of using uncertainty during polygon generation, and
increased computational resources required for implementing ensemble strate-
gies, and uncertainty estimation.

The practical applications of our research are broad. Improved building detec-
tion algorithms are valuable for urban planners in designing and managing
city infrastructure. Environmental researchers can use these methods for mon-
itoring land use and changes over time, while disaster response teams can
benefit from accurate building detection in post-disaster damage assessments
[10].

Overall, this research contributes to the advancement of building detection
methodologies, offering new insights and practical approaches for enhancing
detection accuracy. Our findings pave the way for future innovations and
applications in this area of study.
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