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Abstract
Regulating the catch of fishing vessels is crucial for maintaining sustainable
fish populations, preventing illegal fishing, and ensuring the quality of the
fish being delivered. One effective method of controlling the catch is to have
controllers physically present at the port where the catch is being delivered.
However, vessels do not always report their destination port in a timely manner,
which limits the ability of controllers to regulate the delivered catch.

In order to improve the ability of controllers to regulate the catch, this thesis
explores how to forecast the destination ports of fishing vessels without relying
on their manually transmitted information. We utilize Automatic Identification
System (ais) data to analyze the movement patterns and behaviors of fishing
vessels in our dataset, and extend existing work on vessel trajectory predictions
using machine learning, to forecast the destination ports of fishing vessels.
Additionally, we develop a statistical baseline model to compare our results
against.

Our results demonstrate that both models correctly predict the destination port
of a given vessel in the majority of times, with the accuracy of the machine
learning approach increasing as more input data is added. The statistical base-
line mode performs better with vessels that do not visit a variety of ports, while
the machine learning approach provides a better overall assessment, and thus
appears to be the more promising approach. Both models have the potential
to be improved considerably by incorporating more input features.
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1
Introduction
The fishing industry is one of Norway’s most valuable industries, exporting
millions of tons of fish each year to other countries. The industry is driven by
fishing vessels being out in the sea catching fish, and then selling their catch.
This process continues until the vessels have reached their quota, which is the
limit of how much fish they are allowed to catch.

When the fishing vessels are done with the fishing for their current trip, they
head to a port where they can deliver and/or sell their catch. To ensure that the
catch of a vessel is within the regulations that are set by the authorities, e.g., the
amount of fish they have caught or if the species caught are allowed, controllers1
can travel to a port to control the catch of incoming fishing vessels. However,
due to the large number of ports in Norway, each with various amounts of
activity, it is not feasible to have controllers deployed at each one, nor all the
time. Therefore, the controllers have to choose when and where they should
be located when they are to perform controls, which can be based on which
vessels are heading in, and where.

Today, the controllers use a combination of methods to collect information
about what vessels are likely to arrive to which ports. These methods include:
monitoring the GPS activity of vessels which are nearby the desired locations
through Automatic Identification System (ais) messages, monitoring the Elec-
tronic Reporting System (ers) messages the vessels transmit, and making

1. People whose job is to control that the catch of a fishing vessel satisfies the regulations

1



2 chapter 1 introduction

phone calls to other companies, or ports, to figure out if they have info about
what fishing vessels are heading in, when, and where. By having multiple
possible information channels, it is not easy to obtain accurate information
quickly, which is essential for the controllers to be able to move to the corrects
ports when a vessel they find interest in to control is heading in.

The aim of this thesis is to investigate how to accurately predict the ports
fishing vessels are heading for to deliver their catch, by utilizing the AIS data
of the vessels. Obtaining accurate predictions will help the controllers make
easier decisions on which port ports they should travel to, so that they can
regulate the catch of the incoming vessels that they want, instead of having
the risk of being located at the wrong port when a vessel they want to control
comes in.

1.1 Problem Definition

If we are able to predict the port which a fishing vessel in heading to, the
controllers are able to travel to that same port to control the catch on board
of the vessel. The current solution to this problem is by manually collecting
information from multiple different information channels. Hence, we want to
investigate if it can be automated.

The thesis problem is therefore defined as the following:

How can we use AIS data and machine learning to predict the
destination ports of fishing vessels? We aim to investigate if com-
bining AIS data with machine learning can make more accurate
port predictions than a statistical baseline model.

1.2 Scope and Limitations

This thesis is based on publicly available data from different sources within the
fishing industry in Norway, and thereby introduces some limitations, in addition
to those we have applied to reduce the overall scope of this project.

• Norges Råfisklag covers the Norwegian cost north of Nordmøre, where
most fishing vessels deliver their catch. Covering such an extensive Re-
gion of Interest (roi) is beyond the scope of this thesis, as our aim is to
assess the feasibility of our approach for predicting destination ports of
vessels. Therefore, we reduce the roi to the area illustrated in Figure 1.1,
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restricting it to only include the county of Troms and Finnmark. Conse-
quently, we focus exclusively on vessels heading towards ports within
this region, and only consider AIS messages transmitted within this roi.
This specific area was chosen because fishing vessels often fish close to,
or within, this region, which also contains a diverse range of ports.

• Because we use publicly available data, we are limited to only those
fishing vessels included in this data, which are vessels with a minimum
length of 15 meters.

Figure 1.1: Region of interest with location of ports included

1.3 Contributions

This thesis makes the following contributions to solve the problem defined in
the thesis statement:

• An extension to existing preprocessing methods, specifically aimed at
fishing vessels.

• A simple statistical baseline model for predicting the destination port of
a vessel.

• An algorithm for predicting the destination port of a vessel, based on the
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predicted trajectories from a deep learning model.

• A tool for visualizing the predicted trajectories and destination ports.

1.4 Outline

• Chapter 2 describes relevant topics related to the work done in this thesis.

• Chapter 3 presents some related work to this thesis, and the field of
predicting AIS trajectories.

• Chapter 4 describes the design choices we have made, and an overview
of the preprocessing of the datasets.

• Chapter 5 goes into detail on how we implemented the different compo-
nents in our work.

• Chapter 6 presents how we evaluated our approach, and the results from
our benchmarks against our baseline model.

• Chapter 7 discusses relevant topics and alternative approaches, as well
as future work.

• Chapter 8 concludes the work done in this thesis.



2
Background
This chapter describes the fundamental technologies and topics related to this
thesis. Section 2.1 and Section 2.2 cover two messaging systems used by fishing
vessels: AIS and ERS. Section 2.3 and Section 2.4 introduces the core libraries
used throughout this project, and Section 2.5 gives an overview of the different
file formats utilized.

2.1 Automatic Identification System (AIS)

Automatic Identification System (ais) is an identification system used by ves-
sels,which continuously transmits messages with information such as longitude,
latitude, Speed Over Ground (sog), Course Over Ground (cog), etc. to other
AIS receivers within range. Such receivers can be other vessels, satellites, or
dedicated AIS receivers at the shore.

The system was originally created as an anti-collision tool between vessels,
but is today additionally used for monitoring vessel activity, which is useful for
Search and Rescue (sar), Vessel Traffic Service (vts) to identify and monitor
vessels at risk, or detecting illegal activities[1, 2]. The AIS system uses dedicated
Very High Frequency (vhf) channels to transmit the messages, and has an
average range of 40 nautical miles (but this can vary greatly depending on the
conditions and type of AIS system being used).

5



6 chapter 2 background

AIS is not required for all vessels, but in the eu and Norway all vessels above 15
meters in length (inclusive) are required to use AIS. The messages are automat-
ically sent by the system, and consists of three categories of information: static,
dynamic, and voyage-related. Static information includes Maritime Mobile
Service Identity (mmsi), International Maritime Organization (imo) number,
and radio call sign, which all are identification sequences for the vessel, as well
as information about the size of the vessel. Dynamic information is longitude,
latitude, SOG and COG, which we are using in this thesis. Voyage-information
contains fields such as draft, estimated time of arrival, and destination, and
is the only information in the AIS messages that can be altered. In practice,
the quality of this information varies, and fields may be empty. It is generally
not legal to turn off the AIS, however, there are certain exceptions when be-
ing "invisible" is permitted, such as when ships travel in areas where piracy
occurs[3].

In this thesis, we use the AIS data to train a deep learning model to predict
the future trajectory of fishing vessels. For each trip vessels have made within
a time-period, we sort the AIS by MMSI to create tracks for each vessel, which
form the training data of the model.

2.2 Electronic Reporting System (ERS)

In addition to fishing vessels using AIS, they are also required to use Electronic
Reporting System (ers). ERS is a system where the crew of the vessel has to
manually send messages containing fishing-specific information, in contrary
to AIS where the messages are automatically transmitted. The usage of this
system is regulated by the ERS regulation[4], and covers topics such as what
messages to send, which information is required in the message types, and
when to send the messages. Fishing vessels above 10 meters in length are
currently required to send ERS messages, but this requirement is set to be
reduced from 10m to 8m in 2025[5].

There are many types of ERS messages, and most of the fields in an ERS
message are repeated in the different messages types. These recurrent fields
relate to the ID of the vessel and message, and timestamps. The most common
ERS message types are Departure report (dep), Detailed Catch and Activity
report (dca), and Port report (por), and are the ones which are used in this
thesis. The ERS datasets are publicly available[6] for vessels with a length of
15 meters or more, from 2011 and until today.
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2.2.1 Departure report (DEP)

The dep message, as shown an example of in Listing 2.1, is a message which
is transmitted when the fishing vessel is departing from a port. This message
contains information about at the estimated time the vessel departed from the
port, the GPS position it is heading to, and the species code of the fish species
it is aiming to catch. In this thesis, we utilize the departureTime field in the
DEP messages to identify the latest possible timestamp a vessel is located at
the destination port from its previous fishing trip.

{
"id": 2,
" messageVersion ": 1,
" messageType ": "DEP",
" radioCallSign ": " RADIO87 ",
" vesselMaster ": " Tester ",
" transmissionTime ": "2010 -02 -22 T16 :10:00.000+01:00 ",
" storedTime ": "2010 -02 -22 T19 :12:41.000+01:00 ",
" modifiedTime ": "2010 -02 -22 T19 :12:41.000+01:00 ",
" recordNumber ": 56,
"group": "T",
" registeredByFmc ": false ,
"port": "NOAAF",
" departureTime ": "2010 -02 -22 T16 :10:00.000+01:00 ",
" predictedStartTime ":

↩→ "2010 -02 -22 T16 :10:00.000+01:00 ",
" predictedStartPosition ": {

" latitude ": 0.75,
" longitude ": 34.0

},
" plannedSpecies ": "ACH",
" catchOnBoard ": [

{
" speciesCode ": "ACH",
" quantity ": 123,
"unit": "KG"

},
{

" speciesCode ": "ALB",
" quantity ": 765,
"unit": "KG"

}
]

}

Listing 2.1: Example of ERS DEP message
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2.2.2 Detailed Catch and Activity report (DCA)

Another ERS message type, and the most common one, is the dca message.
This message is sent between the DEP and POR messages sent by a fishing
vessel, and contains information about the activity of the vessel. There are
primarily two different types of activities a vessel conduct when sending the
DCA message, steaming (STE) or fishing (FIS). When the messageType is STE,
the vessel is sailing, and not fishing. This message usually only contains the
identification and timestamps, which are the fields above the departureTime
field in Listing 2.1. This message type also contains a catchOnBoard field if
there is any fish on board, also seen in Listing 2.1.

When a DCA message has the messageType field set to FIS, it indicates that the
vessel has finished its fishing activity. Themessagewill then contain information
about each of the hauls that have been made, each with information such as at
what time the fishing started, the GPS position of the start and end of the haul,
how long the fishing operation went on for, what species was caught, and the
quantity of each species. This message can cover multiple hauls, as this DCA
message is only required to be sent once every 24 hours.

We use the DCA messages of a vessel to be able to determine at what time the
last haul of the trip occurred for a vessel, as after the last haul the vessel will
head for a port. The time when the fishing ended is the earliest point where we
start collecting AIS data of the vessel to construct its track until it has arrived
at a port.

2.2.3 Port report (POR)

The por message type, which an example of can be seen in Listing 2.2, is an
ERS message that is sent when a fishing vessel is heading in towards a port.
Some fields that are specific to this message type are predictedTime, which is
an estimated timestamp when the vessel will be at the landsite of the port, and
transferQuantity, which is the quantity of the catch onboard which is being
delivered at the port specified in the message. The port field in the message is
the international code of the port that the vessel is heading to, with landsite
specifying the landsite, as a port can have multiple landsites within a given area.
The landsite field is a text input field filled in by the crew of the vessel, which
makes it prone to typing errors, or alternative names of the landsites.

We use the POR messages in this thesis to identify which vessels to retrieve AIS
data for, based on their radio call sign identification (which we map to their
MMSI number to pair with the AIS data). We also use the specified predicted
time to get an estimate of when the vessel has arrived at the port, which
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combined with the AIS tracks and next DEP message gives a better indication
of when the AIS track should end.

{
"id": 7,
" messageVersion ": 1,
" messageType ": "POR",
" radioCallSign ": " RADIO70 ",
" externalRegistration ": "T-1-H",
" vesselName ": "Test",
" vesselMaster ": " Tester ",
" transmissionTime ": "2010 -02 -17 T14 :33:00.000+01:00 ",
" storedTime ": "2010 -02 -25 T14 :35:34.000+01:00 ",
" modifiedTime ": "2010 -02 -25 T14 :40:33.000+01:00 ",
" rescindedTime ": "2010 -02 -17 T14 :33:00.000+01:00 ",
" recordNumber ": 20,
"group": "T",
" registeredByFmc ": false ,
"port": "NOLYN",
" landsite ": "kaia",
" predictedTime ": "2010 -02 -17 T14 :30:00.000+01:00 ",
" quantityOnBoard ": [

{
" speciesCode ": "COD",
" quantity ": 270,
"unit": "KG"

},
{

" speciesCode ": "HAD",
" quantity ": 64,
"unit": "KG"

}
],
" transferQuantity ": [

{
" speciesCode ": "COD",
" quantity ": 270,
"unit": "KG"

},
{

" speciesCode ": "HAD",
" quantity ": 64,
"unit": "KG"

}
]

}

Listing 2.2: Example of ERS POR message
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2.3 Pandas

Pandas[7] is a powerful python data-analysis toolkit which was created in 2008.
In 2009, it became open-source, and has since then been contributed to by the
community, and is still being improved today. The library supports operations
such as: reading and writing data between in-memory data structures and
data formats (such as CSV, text files, etc.), dataset operations such as group by
and merging, and slicing of large datasets.

The pandas dataframe is a data structure which supports these operations, and
uses vectorization on the internal arrays used to create the dataframe to speed
up the applied operations. Core algorithms of the pandas library are written i
Cython[8] (C-extensions for python) to improve the speed when operating on
data.

The pandas version used in this thesis is 2.2.2[9], and is used during the
preprocessing of both the ERS- and AIS datasets.

2.4 Folium and Flask

Folium[10] is an open-source map visualization library for python, which builds
on the mapping strengths of the Leaflet.js[11] JavaScript library. It allows for
data to be manipulated using the python library, and then rendered as a Leaflet
map in HTML. The development of Folium started in May 2013, and is still in
active development today, with more than 150 contributors in total.

Flask is a lightweight web application framework for python which is designed
to both set up simple web applications, but also have the ability to scale up to
more complex applications. It started out as a wrapper around the Werkzeug1
and Jinja 2 libraries, before today being one of the most used python libraries
for web application development, used in 1.8 million projects[12].

In this thesis, we use Folium v0.16.0 to visualize our data, which together with
Flask v3.0.3 form a simple web application where predicted trajectories and
destination ports can be inspected in a map.

1. https://werkzeug.palletsprojects.com/en/3.0.x/
2. https://jinja.palletsprojects.com/en/3.1.x/

https://werkzeug.palletsprojects.com/en/3.0.x/
https://jinja.palletsprojects.com/en/3.1.x/


2.5 data formats 11

2.5 Data Formats

Data can be represented in multiple different ways based on how the data is
going to be used. Some formats are easier to interpret, while others are more
space efficient. This section will cover some of the data formats used in this
thesis.

2.5.1 JavaScript Object Notation (JSON)

JavaScript Object Notation (json) is a lightweight data-interchange format
which is easy for humans and computers to understand and create[13]. The
data format is used to represent structured data, and often used when data is
transmitted in web applications.

JSON stores its data in key-value pairs, where an arbitrary amount of these
pairs construct an object. JSON can store multiple of these objects, with each
object being independent of each other, meaning that objects can have different
amounts and types of key-value pairs[14, 15]. This enables both complex and
nested data to be stored within the JSON format.

Listing 2.3 shows an example of how some information contained with AIS
messages can be displayed in JSON. The values can be retrieved by accessing
the corresponding keys, e.g., to retrieve the MMSI number 123456789 the key
mmsi is used.

[
{

"mmsi": 123456789,
" timestamp ": "2024 -01 -01 T08 :00:00 ",
" latitude ": 18.98760,
" longitude ": 69.67740,
"sog": 13.5,
"cog": 0.1,

},
{

...
}

]

Listing 2.3: Example JSON data

This thesis uses the JSON data format when retrieving AIS tracks of fishing
vessels. This data is then further used for training, validation, and testing of
our models to predict the headed port for a fishing vessel.
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2.5.2 Comma-separated values (CSV)

One of the downsides with the JSON data format is that it is not space efficient,
which limits its use when large amounts of data are to be stored. An alternative
format to store the data in such a case is to use Comma-Separated Values
(csv). The CSV format is often used when the data can be structured in a
tabular and flat(non-nested) way.

Listing 2.4 shows an alternative representation of the data from Listing 2.3
using the CSV data format. Instead of having key-value pairs, each column
represents the value of the "key" defined in the header (note that the header
is not required, but useful for describing the contained data). Each column
is separated by a separator, which in this particular example is a semicolon.
The separator can however vary, but is commonly either a semicolon or a
comma.

mmsi; timestamp ; latitude ; longitude ;sog;cog
123456789;2024 -01 -01 T08 :00:00;18.98760;69.67740;13.5;0.1
...

Listing 2.4: Example CSV data

The raw ERS data that is collected for this thesis uses the CSV data format. We
also store AIS messages in the CSV data format. The pandas[7] python library
is used for reading and writing data in the CSV format, and we use dataframes
from the pandas library to perform vectorized operations on the data.

2.5.3 Python Object Serialization

Pickle[16] is a python-specific object serialization module which implements
binary protocols for serializing and deserializing python objects. The seri-
alization process is often called "pickling", and the deserialization process
"unpickling".

During serialization of a python object with Pickle, a set of rules are followed to
convert the object into a pickle-compatible byte-stream. Any python object can
be serialized, even custom ones, as the only requirement is that the object has to
be reconstructable. A pickled python object consists of a sequence of opcodes3
and followed by arguments. These byte-sequences are interpreted by a tiny
virtual machine which perform memory operations to its stack and memory
based on the opcodes from the pickled object. When the virtual machine

3. https://github.com/python/cpython/blob/3.12/Lib/pickle.py

https://github.com/python/cpython/blob/3.12/Lib/pickle.py
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reaches the STOP opcode, the original python object is located on the stack of
the virtual machine, and returned as the deserialized python object[17].

The pickle format is used in this thesis to store the arrays for the training,
validation and test sets, which contains fishing vessel trajectories constructed
from their AIS messages.





3
Related Work
Predicting the behavior of vessels based on their AIS transmissions is a field
which has been researched for many years, although not as much with port
prediction in mind, especially for fishing vessels. This chapter presents some
of the related work to this thesis.

3.1 AIS data-driven ship trajectory prediction
modelling and analysis based on machine
learning and deep learning methods

In 2023, the paper AIS data-driven ship trajectory prediction modelling and analy-
sis based on machine learning and deep learning methods [18] was published. The
aim of the paper was to analyze the performance of ship trajectory prediction
methods to find their advantages and disadvantages in different prediction
scenarios. The authors analyze and compare five machine learning methods,
and seven deep learning methods, where the chosen methods were the most
popular ones used in papers between 2000 and 2023 involving ship trajectory
prediction[19]. The following five machine learning methods are analyzed in
the paper:

• Kalman Filter (kf)

15
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• Gaussian Process Regression (gpr)

• Support Vector Regression (svr)

• Random Forest (rf)

• Back Propagation Network (bp)

The following seven deep learning methods were evaluated:

• Recurrent Neural Network (rnn)

• Long Short-Term Memory (lstm)

• Bi-directional LSTM (bi-lstm)

• Gate Recurrent Unit (gru)

• Bi-directional GRU (bi-gru)

• Sequence to Sequence (seq2seq)

• Transformer

The conducted tests were done using three separate AIS datasets at different
locations along the coast of China: a port area, a complex traffic area, and an
area around a promontory. In total, the datasets consist of 15 000 trajectories,
and 17 000 000 data points (AIS messages). The size of the three datasets
differ, and is categorized as small, medium, and large by the authors of the
paper.

To evaluate the performance of the machine- and deep learning methods, six
evaluation metrics were used:

• Mean Squared Error (mse)

• Mean Absolute Error (mae)

• Symmetrical Mean Absolute Percentage Error (smape)

• Final Displacement Error (fde)

• Fréchet Distance
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• Average Euclidean Distance

The six evaluation methods were used for each model to measure the error
rate of the predictions made by the model compared to the true trajectory of
the vessel. The test-datasets contains 10% of the original trajectories. From
the results presented in the paper, the best overall performing models are the
Transformer, bi-gru and gru model, with all of them being deep learning
models. The worst-performing models is the bp neural network, followed by
rnn and gpr. Overall, the deep learning methods perform better, with the
difference in error rate increasing for complex trajectories.

The model performing the best on the different datasets varied depending
on the size of the dataset (as well as the complexity of the trajectories in the
datasets). The transformer model performed the 4th best on the small AIS
dataset, best at the medium-sized, and 3rd best at the large-sized dataset. The
accuracies of the predicted trajectories for the transformer model were 91%,
92%, and 91% respectively.

Since the transformer model is one of the most accurate methods for predicting
trajectories, and the source code1 of the tested model is publicly available
on GitHub, we utilize the transformer model in this thesis to forecast the
trajectories of fishing vessels.

3.2 TrAISformer – A Transformer Network with
Sparse Augmented Data Representation and
Cross Entropy Loss for AIS-based Vessel
Trajectory Prediction

In the TrAISformer paper[20] the authors propose an approach using a gen-
erative transformer[21] architecture to forecast vessel trajectories based on
AIS data. The aim of the work presented in the paper is to achieve accurate
long-term predictions for vessel trajectories. In addition to presenting the trans-
former model, the paper introduces a new loss function used during training
of the model.

TrAISformer is a modified transformer network, with the transformer part
adapted from minGPT2, designed to extract long-term temporal patterns from

1. https://github.com/CIA-Oceanix/TrAISformer
2. https://github.com/karpathy/minGPT

https://github.com/CIA-Oceanix/TrAISformer
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AIS trajectories. The model was originally trained on an AIS dataset provided
by Danish Maritime Authority (dma) and uses the new cross-entropy loss
function during training. The dataset used to train and evaluate TrAISformer
consists of messages transmitted by cargo and tanker vessels in Kattegat. Prior
to preprocessing, their dataset comprised of roughly 710 million AIS messages
in total.

The TrAISformer model utilizes the latitude, longitude, speed over ground,
and course over ground as input features for each AIS message in the input
trajectory. However, instead of the AIS input features being represented as a
standard four-dimensional real-value vector, they are represented using four-
hot encoding[22, 23], which consists of four concatenated one-hot encoded
vectors (one for each AIS input feature). Each four-hot encoded vector is then
paired with a high-dimensional embedding vector before being fed into the
transformer network.

The results presented by the authors show a significant improvement over
existing machine learning and deep learning models, both for short-term and
long-term prediction. The prediction error is calculated by measuring the
haversine distance between the predicted and true locations of the vessel. The
mean prediction error of the model is reported as 0.48, 0.94, and 1.64 nautical
miles for 1, 2, and 3-hour ahead predictions. This error is calculated using the
best-of-N principle, where the best predicted trajectory out of 𝑁 = 16 is used
in the calculation. The input length during this evaluation is three hours, based
on our re-run of the benchmark of the TrAISformer model.

In this thesis, we train the TrAISformer model on our own dataset, consisting
of AIS messages from a custom ROI. The AIS messages we use belong to
fishing vessels heading towards ports located in Troms and Finnmark, Norway,
to deliver their catch. To predict the destination port of a vessel, we use the
TrAISformer model to predict trajectories for the vessel as the first step. These
trajectories are then used as input for our port prediction algorithm, which
provides a probabilistic prediction on which port the fishing vessel is heading
towards to deliver its catch. Both the source code3 of the TrAISformer model,
and the code they used for preprocessing⁴ AIS data, are publicly available on
GitHub.

3. https://github.com/CIA-Oceanix/TrAISformer
4. https://github.com/CIA-Oceanix/GeoTrackNet

https://github.com/CIA-Oceanix/TrAISformer
https://github.com/CIA-Oceanix/GeoTrackNet
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3.3 Trajectory pattern extraction and anomaly
detection for maritime vessels

This paper[24] from 2021 focuses on extracting trajectory patterns for maritime
vessels. The authors analyze these patterns using methods presented in the
paper to make various predictions. The first group of trajectory analysis predicts
the arrival port, arrival time, and trajectory of a vessel based on its AIS messages.
The second type of trajectory analysis detects anomalous behavior of maritime
vessels, also based on AIS messages.

In regard to port prediction, multiple conventional classifiers are used, such
as decision tree, random forest, and multilayer-perceptron. A lstm model
adopted from [25] is also tested. The AIS input features include latitude, longi-
tude, speed over ground, and course over ground, similar to the TrAISformer
model. The arrival port label is represented using one-hot encoding.

To enhance the accuracy of the classifiers, clustering is used, with DBSCAN[26]
performing the best among the tested clustering algorithms. Ten clusters are
created, and for each cluster, a version of the classifier is trained. This results
in ten differently-trained versions of the classifier, each responsible for making
predictions within its geographical region.

The results are measured using 10-fold cross-validation. The random forest
classifier performed the best among the tested classifiers, achieving a port
prediction accuracy of 86%. However, its per-port accuracy reveals that there
is a significant difference in accuracy based on which port the AIS trajectory is
heading towards, with accuracies as low as 8% and 11% for certain ports. The
LSTM model had an overall accuracy of 65%, but its accuracies were the most
consistent across all ports.

The authors of this paper aim to solve a similar challenge to this thesis: pre-
dicting destination ports based on AIS trajectories, although not for fishing
vessels. The AIS input features used in their models are the same as in this
thesis, achieving accuracies of 86% and 65%. The main difference between
their work and this thesis is the deep learning models used for the AIS trajectory
predictions. According to Section 3.1, the transformer model achieves a higher
accuracy in AIS trajectory predictions. Higher accuracy trajectory predictions
should lead to a greater port prediction accuracy, due to the trajectories being
more accurate. However, the results are not directly comparable, as ours and
their number of ports varies, 68 vs. 8, and their ports are relatively spaced out
over a region which is of equal size, or slightly larger, than ours.





4
Design
This chapter describes the design and design choices made in regard to predict
the destination port of fishing vessels. In Section 4.1 the behavior of fishing
vessels are described, and how we can utilize AIS and ERS to create a dataset
of vessel trajectories heading for a port. Section 4.2 gives an overview of the
preprocessing steps to create this dataset. Section 4.3 and Section 4.4 covers the
design of two unique models aiming to predict the destination port of vessels,
which in Chapter 6 are benchmarked and compared against each other.

4.1 Extracting the Vessel Trajectories

This section describes key observations in regard to the trajectories of fishing
vessels, and how we combine different messaging systems used by fishing
vessels to extract the part of the trajectory where the vessel is heading towards
a port.

4.1.1 The Nature of Trajectories for Different Vessels

Previous work on AIS trajectories of vessels have been working on cargo vessels,
or similar vessel types which deliver goods from location A to location B. These
voyages have a specific destination in mind, and a pre-planned route where
the aim is to reach the destination port in the most efficient way possible. The

21
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trajectories of such voyages will therefore be more or less straight-lined when
possible, with minimal deviation from the planned route (unless something
unexpected happens).

Trajectories of fishing vessels however, as illustrated in Figure 4.1, does not
behave in the same way as other ships. In the figure, the red lines indicate
that the fishing vessel were only sailing (also called steaming), while the blue
lines indicate that the vessel were conducting fishing activity. Comparing the
trajectories of the fishing vessel while fishing and cargo vessels, there are no
similarities in the trajectories, as the trajectory of the fishing vessel perform
seemingly random movements. Comparing the trajectory of the fishing vessel
while steaming to a cargo vessel’s trajectory however, there is a resemblance
of similarity in the parts of the trajectory of the fishing vessel when it departs
from the port, and when it is heading towards it. This is because after the last
fishing haul is over, the vessel has a destination port in mind, and similarly to
other vessel types, want to head in towards the port efficiently.

Figure 4.1: Trajectory example of a fishing trip

Using these observations, it is possible to conclude that training any model on
the whole trajectory of a fishing vessel will most likely not be effective, because
of the random nature of the trajectories when the vessels are fishing. However,
the part of the trajectory which is after the last fishing haul of the trip is possible
to train a model on, as at this time the vessel will mostly likely already know
which destination port it is heading for. The trajectory of the vessel at this
stage will then be similar to any other vessel types with a destination in mind:
streamlined. Because of this, we only want to use the part of a fishing vessel’s
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trajectory after the last fishing haul is over when determining its destination
port.

4.1.2 Combining Vessel Reporting Systems

There are two main challenges when it comes to define where in a trajectory a
fishing vessel is starting to head towards a port: finding where the last fishing
haul ended, and determining when the vessel has reached the port. Multiple
papers have been written about the subject of pinpointing where a vessel has
been fishing, based on only its AIS trajectory [27, 28, 29]. Their solutions are
based on utilizing the abnormal patterns arising during fishing, compared to
when the vessels are only steaming, which also can be seen in Figure 4.1.

To determine when the vessel has reached its destination port, it is possible
to look at the speed, and the duration spent within a region, to identify when
the vessel is anchored. If the locations of the possible destination ports are
available, the distance between the port and the vessel can be measured as
well, to identify when it has reached the port.

While these both are viable options to solve the challenges when extracting
the correct part of a fishing vessel’s trajectory, the ers messages transmitted
by fishing vessels can be used also to solve both of these challenges. The last
dca message transmitted by the vessel before a por message reveals when
the last fishing haul ended. Therefore, the time of this message can be used
as an indicator for when the fishing haul ended (because the message is sent
after the haul is over). It would also be possible to use the coordinates of where
the haul ended as an alternative method, but these are not necessarily precise
enough to combine with the AIS messages without applying some accepted
error margin between the ERS coordinates and the AIS coordinates.

To determine where the trajectory stops, i.e., that the destination port has been
reached, a combination of the ERS message types por and dep are used. The
POR message gives an indication for when the vessel will reach its destination
port, but is not accurate enough in its own to be used as the timestamp for
when the AIS trajectory stops. Therefore, we also use the succeeding DEP
message, which indicates the next departure of the vessel, because we know
with certainty that in the time interval between the given arrival estimate, and
the start of the vessel’s next trip, the vessel will have reached its destination port.
Using Equation 4.1, the mid-timestamp is calculated between the estimated
arrival time and the timestamp of the next departure.
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mid-timestamp =
<POR estimated timestamp> + <DEP timestamp>

2
(4.1)

Because there is a high likelihood that the vessel will be at the port at this
given time, the most recent AIS message sent before this timestamp is defined
as the end of the trajectory. This approach of finding the end of the trajectory
gives a high likelihood that the vessel will be at its destination port, but it is not
guaranteed in the case where the estimated time is wrong by a large margin.
Potentially, if the estimated time is a long time before the arrival, or a long time
after the time of the next departure, the vessel can be outside the area of the
port. While this were not an issue in the dataset we used, additional measures
were added to ensure that the end of a trajectory was inside a five-kilometer
radius of a port. This geographical check also removes the fishing vessels which
steamed through our roi on its way to another destination port.

4.2 Dataset Preprocessing

Because this thesis works with raw data which originates from different systems,
preprocessing is required to extract and merge the data such that only the vital
information is left. The following section gives an overview of the preprocessing
of this data.

4.2.1 ERS Dataset

The raw ERS dataset is retrieved from the Directorate of Fisheries[6], and
contains the ERS messages transmitted by vessels larger than 15 meters within
the Exclusive Economic Zone (eez) of Norway. The dataset does not contain all
the possible ERS message types, only dep, dca, por, and tra. In this dataset
there are 4 500 000 ERS messages transmitted between January 1st 2016 and
December 31st 2023. Using the definition of a fishing trip from Section 4.1,
where a fishing trip is required to contain at least a DCA (with fishing activity
conducted, not only steaming), POR andDEPmessage, the ERS dataset contains
to 170 000 fishing trips within Norway’s eez, before being combined with the
AIS messages.
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4.2.2 AIS Dataset

The AIS dataset, consisting of 745 000 000 messages, are fetched from the
Application Programming Interface (api) of Kystdatahuset1. All AIS messages
transmitted within our defined roi, within the timeframe January 1st 2016 to
December 31st 2023, are collected where the speed of the vessels were at least
0.5 knots. Messages where the vessels have a speed less than 0.5 knots are not
retrieved, because they are likely either moored, or close to docking at a port.
Including such messages in the dataset would increase its size significantly,
as the close-to-shore transmission rate can be as low as a couple of seconds
between each message, and does not change or impact the overall trajectory
of the vessel. It only increases the number of messages that has to be removed
at a later data-processing stage. Subsection 4.2.4 describes the process of how
the AIS tracks are constructed when combined with the ERS messages of the
vessel.

4.2.3 Destination Ports Dataset

In Norway, there are 244 different facilities2 within the geographical region
that Norges Råfisklag covers where fishing vessels can deliver their catch. Most
of these locations have ports where the vessels dock, but some are fish farms or
shops. Our port dataset consist of facilities within our defined ROI, but has also
been manually reviewed down to 68 unique ports where vessels can deliver
their catch. Ports which are close to each other are downsampled to a single
port, because they either share the dock, or are so close to each other that a
controller is able to move the short distance to the other port, without losing
the possibility of controlling the catch of the vessel. This downsampling is only
done for ports where there is no practical significance for the controllers.

4.2.4 Assembling the Tracks

For each of the 170 000 fishing trips defined by the ERS messages, the vessel’s
trajectory heading towards its destination port is reconstructed. AIS tracks are
assembled by collecting the AIS messages transmitted between the last fishing
haul of the vessel and its arrival at the port. However, because the ERS dataset
consists of messages transmitted within Norway’s eez, and not exclusively
our roi, additional preprocessing steps are required. These preprocessing
steps ensure that the finalized dataset is of sufficient quality. These steps are
described in detail in Chapter 5.

1. https://kystdatahuset.no/
2. https://rafisklaget.no/mottakskartet

https://kystdatahuset.no/
https://rafisklaget.no/mottakskartet
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After preprocessing, the dataset consists of 2 000 000 AIS messages, distributed
across 17 000 unique tracks. These tracks are randomly distributed into three
subsets: training, validation and test sets, containing 80%, 10%, and 10% of the
total tracks, respectively. There are no duplicate tracks across these subsets.
The training and test sets are used for training and evaluating both the baseline
model and the transformer model, while the validation set is only used during
the training stage of the transformer model.

4.3 Baseline Model

In order to evaluate the performance and effectiveness of using a deep learning
approach to predict the ports fishing vessels are heading for, a simple statistical
baseline model has been developed to compare against. The baseline model is
lightweight, and developed with simplicity in mind. The goal of this model is
to test if complex models are required to accurately being able to predict the
port which fishing vessels are heading for.

The architecture of the baseline model is illustrated in Figure 4.2. The model
uses a mapping between the MMSI number and the ports which the vessel
has headed to previously. A probability is attached to each port to indicate the
probability of it being headed to by the vessel. The probabilities are determined
in the training phase of the model. The training and evaluation of this model
uses the same dataset as the deep learning model to assure fairness in the
comparison of the two models.

4.3.1 Training the Model

The training process of the baseline model can be divided into two stages. The
first stage in the training of the model is responsible for creating the initial
mapping between the MMSIs and the ports, i.e., setting up the architecture
shown in Figure 4.2. For each AIS track, the MMSI and destination port are
extracted and put into their respective mapping location. At the end of this
training stage, each MMSI entry in the model will store the destination ports
of the vessel, and the number of times the port was visited by it.

In the second stage of the training, the probabilities for each MMSI visiting
each of the destination ports are calculated. The probability for a single MMSI
number of the vessel visiting a port is given in Equation 4.2. The formula
calculates the probability by looking at how many times a port was visited out
of the total number of visits. The sum of all observed port-visits for a single
vessel is equal to 1.



4.3 baseline model 27

Baseline Model Architecture

MMSIs
258483000

257122130

257806000

257021970
Probabilities (257122130)
Port A 0.68

Port B 0.22

Port C 0.06

Port D 0.04

Figure 4.2: Baseline model architecture

port_probability =
n_port_visits
n_total_visits

(4.2)

When each port has been given a value between 0 and 1, indicating the
probability of each port for the given MMSI, the ports are ordered by their
probability in descending order.

4.3.2 Predicting the Destination Port

Because of how the baseline model is set up, retrieving the most probable
destination port for a vessel is efficient and fast. A MMSI number is required to
make a prediction. The MMSI number is used as the lookup key by the model
to access the destination ports and their corresponding probabilities. As the
training phase orders the ports in descending order based on the frequency in
which they have been visited, the port that the fishing vessel is most likely to
have as its destination is located at index 0. The second most probable port is
at index 1, etc. In cases where the MMSI does not exist in the training set, the
model is not able to make a prediction on which port is most likely to be the
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vessel’s destination port. When the MMSI exists, the highest probability port
is predicted as the destination port of the vessel, regardless of the location of
the vessel.

4.4 Deep Learning Model

This approach’s process of predicting the destination port of a vessel given its
recently transmitted AIS messages is divided into two main stages: predicting
the future trajectory of the vessel, and decide which the predicted trajectory is
heading towards. For the first stage, the TrAISformer[20] deep learning model
is used. For the second stage, the main method to decide which port a vessel
is heading for is by measuring the distance to the possible destination ports.
However, due to challenges arising for using an approach only measuring the
distance to the ports, additional design measures are added to improve the
accuracy of the port predictions.

4.4.1 Trajectory Prediction using TrAISformer

While the underlying structure of how the TrAISformer model remains un-
changed from what is presented in the original paper[20], the configuration of
the model has been changed slightly to suit the dataset used for training and
evaluation. One of such changes is the minimum speed requirement, which
is changed from 1.5 knot to 0.5 knots. The speed requirement were required
for the model to not cut the training tracks too far away from the shore/ports,
as fishing vessels will travel with a speed of less than 1.5 knots when they get
closer to their desired port. These close-to-port messages are something we
want when we are going to decide which port the vessel is heading for. Because
of this same reason, the removal of AIS messages closer than one nautical mile
to the shore is not applied, as our goal is to find the destination port of the
vessel, and not only the future trajectory of it.

Originally, the predictions of the TrAISformer code were only given in a context
of evaluation of accuracy. However, since we need these for port prediction
purposes, a changewas necessary so that the trajectories could be retrieved from
the model. This change is necessary to make it possible to create predictions
for single tracks which in a production environment would arise from outside
the dataset the model uses for training, validation, or testing.

When the model makes a prediction for a given input track, it produces 𝑁
predicted tracks as output. These tracks are unique due to temperature being
incorporated into the model, which adds some randomness to the predictions.
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𝑁 is an adjustable parameter, which is set to 16 in the original paper. This
thesis uses the same 𝑁 = 16 for the number of predictions made for a single
input track, although any other number could be used, preferably > 10 so that
it is possible to make probabilities for the possible destination ports in the port
prediction step.

Figure 4.3 and Figure 4.4 show 𝑁 = 10 predictions made for a single input
track. The track given as input is colored as a white line, and consists of 12
AIS messages in both figures (corresponding to one hour of movement for the
vessel). The red colored track which ends at a port in both figures is the actual
trajectory the vessel took when heading to the port. The other-colored lines
are the 𝑁 predictions made by the TrAISformer model given the white input.
This color-coding consists throughout the figures where trajectory predictions
are made.

Figure 4.3: Example where the look-ahead time is not too far off

For both Figure 4.3 and Figure 4.4 the look-ahead time, i.e., how far ahead
in time the model predicts the trajectory of the vessel, is set to 2.5 hours
(corresponding to 30 data points). Both the input and output data to/from the
model is given as a time series, but visualized as lines for easier interpretability
of the trajectories. Figure 4.5 shows the actual output from the model, with
the raw output (figure a), and with smoothening applied (figure b). The
smoothening is applied, using a moving average, for all predicted output tracks
to make them more similar to actual vessel trajectories. Subsection 5.3.2 goes
into further details about the moving average algorithm.

The figures (Figure 4.3 and Figure 4.4) highlight one of the main issues when
it comes to deciding how far into the future the model should predict the



30 chapter 4 design

Figure 4.4: Example where the look-ahead time is very far off

trajectory of the vessel. While the look-ahead time for the predictions in
Figure 4.3 end not too far from a port (the closer the better), the same look-
ahead time for the predictions in Figure 4.4 show that there is no universal
look-ahead time which can be used to make the TrAISformer model predict
trajectories which end at a port.

Two possible solutions were considered to the problem of deciding how far into
the future the model should predict the vessel trajectories. The first solution
involves incrementally increasing the look-ahead time of the model with some
step size (e.g., 10 minutes). The advantage of such method is that the predicted
trajectory will never become too long, as at some time the trajectory will be
close to a port. This removes the problem of some tracks requiring a farther
look-ahead time than others to reach a port.

The disadvantage of such an approach is the time and computing resources
required to make a prediction for a single vessel where the vessel is far from
a port. This method could also have unwanted behavior when the predicted
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(a) Without moving average applied

(b) With moving average applied

Figure 4.5: Single-Prediction output (blue dots) from TrAISformer model, visualized
with/without moving average
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trajectory is close to a port, similar to the example in Figure 4.3, as it could
seem like the vessel is heading towards the port being passed by. The issue
arises when deciding if a port that is close to the trajectory is the destination
port, or if in some arbitrary time in the future the trajectory will be close to the
actual destination port. Additionally, this approach would be slow if the vessel
is far from the destination port, as for each time step predicted an algorithm
would have to check if the trajectory is at the destination port.

The second solution makes the model predict far ahead immediately, such
that the predicted trajectory likely at some point will have headed to the
destination port. If the vessel is close to shore at the time of prediction, the
predicted trajectory will likely head to the port, and eventually past it. The
advantage of this solution is that only a single far-ahead prediction is required
to be made, and the port prediction algorithm then only have to find where in
this trajectory the vessel behaved as if it were anchoring at a port. This would
solve the main issue from the first solution, as at any point in the trajectory
where the predicted position of the vessel is close to a port, the future path
of the trajectory would still be known (unless at the end of the predicted
trajectory, but then the vessel is likely too far from shore for make an accurate
prediction).

The disadvantage with this solution is that the model will in most cases predict
parts of the trajectory past the destination port, often ending up on land, or
close to another port by random chance. An example of such behavior is shown
in Figure 4.6. In this example, and similar cases which can occur if the model
attempts to predict farther ahead in time than the time it takes for the vessel to
reach the port, it shows that the model is not trained on how the trajectory of
the vessel should behave. Therefore, the next predictions spread, have abnormal
geometric shapes, or even head on land. This issue however can be omitted
with extra steps in the port prediction algorithm.

Because of the cost in the first solution to incrementally increase the length
of the 𝑁 predicted tracks, checking for each iteration if the predicted tracks
are at a port, the second solution was chosen as the strategy when predicting
the trajectories of a vessel. The model is set to predict ∼8.5 hours ahead for
all predictions it makes, independently of the current location of the vessel
and distance to any port. This time corresponds to 100 data points of time
series output from the model, and during testing resulted in the port prediction
algorithm to locate at least one port for each vessel in more than 90% of the
test cases, with an input track length of 30 minutes. This means that for the
remaining cases, the coordinates of the input track were most likely more
than 8.5 hours from shore. This percentage reduces when more input data is
collected, as the vessels get closer than 8.5 hours to shore.
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Figure 4.6: Predicting the trajectory past when the vessel reaching the port

It is possible to make predictions further ahead than 8.5 hours, but increasing
this time frame also increases the inaccuracy of the predicted trajectories.
Additionally, vessels this far out in the sea might not have finished their fishing
activities. From the standpoint of a controller, knowing the destination port of
a vessel 6, 8, or 10 hours in advance does not necessarily make a difference, as
this is sufficient time to move to the port if it is near the area where they are
performing controls. It should however be noted that there is nothing wrong
with increasing or decreasing this value.

4.4.2 Destination Port Prediction

The TrAISformer model outputs 16 different predicted trajectories for a single
vessel, each being time series consisting of data points with the attributes:
latitude, longitude, speed over ground, and course over ground. For each tra-
jectory, the steps shown in Figure 4.7 are taken in order to decide which port
the predicted trajectories are heading for. Because each trajectory is handled
independently, the number of unique ports all the trajectories are heading for
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may vary between 0 and 16.

Predicting the Destination Port of a Trajectory

Predicted Trajectory

Smoothen Points with
Moving Average

Iterate over each Point
in the Predicted Track

by Timestamp

Only Use Points Where
Predicted Speed <= 0.6

Point is in Radius of
a Port

No Points are in Radius
of Any Port

Predict Closest Port
as Destination Port

If radius is not maxIf radius is max

Increment Port
Radius by 1 km

Cannot Predict
Destination Port

Figure 4.7: Diagram of the program flow to predict a destination port for a track

One of the main challenges the port prediction algorithm aims to solve is how
to differentiate if a vessel is heading for a specific port, or just passing by it.
An important difference in these two scenarios is the speed of the vessel. A
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vessel approaching a port will reduce its speed when it is getting closer to
its destination port, while a vessel passing by a port will maintain its current
speed. Using Figure 4.8 as an example, the blue trajectory will have its speed
lower the closer it is to the port it is heading for, while the black trajectory will
maintain its speed, because it is heading for another port.

Figure 4.8: Predicted trajectories heading towards different ports

The difference in speed when a vessel is approaching a port, contrary to passing
by it, is reflected in the dataset the TrAISformer is trained on. Therefore, the
model is not only useful for predicting vessel trajectories, but also its speed
(and course, as this is another attribute in the training data). The lowest speed
occurring in the training dataset is 0.5 knots, and this is the approximate speed
the model will predict for a vessel when it is closing in on a port. Therefore, the
first step in the port prediction algorithm is to filter out the data points where
the predicted speed of the vessel is more than 0.5 knots (we use 0.6 knots to
have some leeway, as the predicted speed is not always exactly 0.5 knots when
closing in on a port).

The remaining data points in the predicted trajectory will be those where
the vessel has a predicted speed <= 0.6 knots. These points can come from
different parts of the predicted trajectory, so one must decide which point(s)
belong to the vessel approaching its destination port, and not because of other
reasons where it may lower its speed. If the vessel is too far from shore when
its trajectory is being predicted, the predicted trajectory might also not reach
any port at all.
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A simple solution to choose the destination port would be to choose the closest
port at the first occurrence where the speed is less than 0.6 knots, but this
could be an inaccurate prediction if the transformer model predicts the vessel
will slow down when being very far from shore, or if it slows down for other
reasons, without being at the destination port.

Instead, we define a radius for each of the ports, so that each port is the center
of a circle-shaped area. With this, a port can only be considered as a destination
port if a data point from the vessel’s predicted trajectory is located inside this
circle. However, one issue with this approach is to decide the size of the radius
for each port. The predicted trajectories do not stop at the exact location of a
port, but often in the surrounding area, so the radius should not be too small,
or else the trajectory will miss it. The radius should also not be too large, as
this can cause overlapping areas between different ports, making it harder to
decide which one the trajectory is heading towards.

Because of the issue with the size of the radius, the port prediction algorithm
starts with a small radius for each port (because if a trajectory is within a small
radius, it is more likely to have headed for that specific port). If no parts of the
predicted trajectory are within any port’s area at any point in time, the radius
is increased for all the ports. The algorithm is then repeated, checking if any
parts of the trajectory are within the now larger radii of any ports.

The increasing of the size of the areas surrounding the ports continue until
a maximum radius has been reached for the areas. If there still are no parts
of the predicted trajectory located within the area of any ports, the algorithm
considers the uncertainty to be too large to predict a destination port for this
single predicted trajectory (because each trajectory is handled independently,
and the TrAISformer model outputs 16 trajectories for each input). The algo-
rithm not predicting a destination port can occur if the predicted trajectory is
inaccurate, i.e., not heading close to any ports, or if the vessel is more than 8.5
hours from shore. The reason for both these cases are likely that the input to
the TrAISformer model is too small, and can be solved by retrieving more AIS
messages from the vessel.

When a destination port, or no port, has been predicted for each of the 16
trajectories predicted by the TrAISformer model, the probability of the vessel
visiting each port is calculated. The probability of a port being the vessel’s
actual destination port increases based on how many of the 16 trajectories were
predicted for that particular port. Ports where none of the trajectories were
predicted to visit are given a probability of 0.



5
Implementation
This chapter describes the implementation details of important components of
this thesis. The preprocessing and construction of AIS tracks is described in
Section 5.1 and Section 5.2. In Section 5.3 the implementation details of the
destination port prediction algorithm is covered. Section 5.4 describes the inner
workings of the web application used for visualizing predicted trajectories and
ports in an interactive map.

5.1 Dataset Preprocessing

This section goes into further details about the initial preprocessing of the raw
ERS and AIS data, before the construction of AIS tracks.

5.1.1 Preprocessing Raw ERS Data

The dca, por and dep ERS messages originate from different CSV files
when downloaded from the Directorate of Fisheries[6]. Dataframes from the
pandas[7] python library are used to store and perform operations on the raw
ERS data.

Figure 5.1 illustrates the process of cleaning the ERS datasets to only contain
relevant fields for the purpose of defining the start- and stop time from when

37
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a vessel is done fishing until it has reached a port. For each ERS message type,
which unprocessed are originally stored in separate CSV files, the relevant fields
are extracted. The ID of a message, as well as the radio call sign for the vessel
transmitting the message, are common fields for all the ERS message types.
Each ERS message type additionally have a unique field which is extracted.
For POR messages, this is the field giving the estimated time of arrival at its
destination port. For the DEP messages, this unique field is the departure time
of the vessel, i.e., the timestamp when the vessel left the port.

ERS Dataset Cleaning Process

ERS Message Type

Extract Relevant Field(s)

Drop NA Messages

Drop Duplicates

Sort by Time

Remove Duplicate ID Messages

Figure 5.1: Diagram of the process of cleaning the ERS dataset
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In the DCA messages, there are two important fields, which describe the
timestamp where the fishing haul started, and the duration of the fishing haul.
Using these two fields, the time when the fishing haul ended can be deduced,
and is extracted from this message type. However, not all the DCA messages
contain this field, because the DCA message type is split into two categories of
activity, STE (steaming) and FIS (fishing). STE messages do not contain any
fishing haul information, and is therefore filtered out before deducing the stop
time of the fishing haul.

Duplicate messages, or messages containing NA entries in the extracted fields,
are removed from the ERS datasets. Messages with duplicate IDs are reduced
to only a single message. This occurs especially for the DCA messages, as if
multiple fishing hauls are included in the same DCAmessage there are multiple
equal-ID entries in the CSV files, because the CSV file format does not support
nesting of data. DCA messages are only required to be sent once every 24 hours,
so information about multiple hauls is often included in these messages.

As there are no fields in the ERS messages which can be used to identify which
ones have been transmitted during the same trip (across DCA-, DEP-, and POR
messages), the extracted time fields, as well as the radio call signs are used. A
left outer join operation is performed with the POR and DCA messages, with
the radio call sign being the field which has to match for two messages to
be considered being joined together, using the pandas built-in merge_asof 1
function. It will attempt to match each POR message with a DCA message,
based on the fishing haul stop time (in the DCA messages) and the estimated
time of arrival (in the PORmessages). The DCAmessage which has its haul stop
time the closest, and earlier than, the ETA in the POR message gets matched
with it. Because the left outer join operation includes PORmessages which have
not been matched with any DCA messages in the output, these non-matched
entries are removed afterward. The result from this operation contains pairs
of POR and DCA messages, where the DCA fishing occurred first, followed by
the POR.

The outer left join operation is also performed between the result of the previous
join operation (POR and DCA) and the dataset containing the DEP messages.
However, because the DEP messages are intended to not be for the same trip
(i.e., the start of the trip the DCA and POR occurred on), but rather the next trip,
the join operation searches forward for the DEP message sent after the POR
by the vessel. Entries which did not have any match were also removed after
this join. The resulting dataset from these join operations yield entries with
information from a DCA-, POR-, and DEP message, where the events (fishing,

1. https://pandas.pydata.org/docs/reference/api/pandas.merge_asof.
html

https://pandas.pydata.org/docs/reference/api/pandas.merge_asof.html
https://pandas.pydata.org/docs/reference/api/pandas.merge_asof.html
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arriving at port, leaving port) corresponding to those message types occurred
in that sequential order for the vessel.

5.1.2 Preprocessing Raw AIS Data

The API where the AIS data is fetched from allows for a polygonal region to
be defined, such that only AIS messages transmitted within this region are
included in the response. Some additional steps of filtering are also applied
to ensure better quality of the data, as shown in Figure 5.2. Messages with
NA fields, and duplicates, are both removed from the dataset. The sog of the
vessel should be within the speed range 0.5-30 knots to not be filtered out, and
the cog of the vessel must be within 0 and 360 degrees. This filtering ensures
that messages with unnaturally high or low values are included in the dataset
(in regard to the lower speed limit, it is set to remove messages where the
vessel is almost standstill). The messages that pass these stages of filtering are
stored in CSV files for further usage, which is when they are matched with the
ERS messages to assemble the AIS tracks of the vessel heading to a port.

5.2 Constructing AIS Tracks

The preprocessing steps taken from having raw and separate ERS- and AIS
datasets, to achieving a dataset containing assembled AIS tracks for each fishing
trip, are illustrated in Figure 5.3. The following sections describe each of the
steps of this process in more depth.

5.2.1 Matching ERS- and AIS Messages

The start time of an AIS track for a vessel is defined as the time when the
vessel is done with its last fishing haul. The stop time for the AIS track is
defined by the formula in Equation 5.1. The start- and stop time define the
time-interval where the vessel is steaming towards a port, and AIS messages
transmitted by the vessel in that time period are collected and sorted by time
to construct the AIS track of the vessel. Because ERS uses the radio call sign
as the identifier of who sent a message, and AIS uses MMSI, the radio call
signs of the vessels are translated into MMSI during this matching process. A
lookup table is built and used during this process to optimize the performance
of repeated lookups.
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AIS Pre-processing steps

Fetch AIS Messages
Sent Within ROI

Drop NA Messages

Drop Duplicates

0,5 < SOG <= 30

0 <= COG <= 360

Store Messages

Figure 5.2: Diagram of AIS preprocessing steps

mid-timestamp =
<POR estimated timestamp> + <DEP timestamp>

2
(5.1)
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Pre-processing steps

Combine ERS DCA, DEP Messages
Sent on the Same Fishing Trip

Raw AIS Messages
Within ROI

Store AIS Messages Sent
Inside ERS Time Invervals

Remove AIS Messages Sent
More than 2 Hours Apart

From Each Other

Length Validation

Verify Track Ends
Close to a Port

Interpolation and
Normalization

Raw ERS POR Messages Raw ERS DCA Messages Raw ERS DEP Messages

Add to Dataset

Figure 5.3: The preprocessing steps to create the final dataset
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ERS fishing trips which does not match with any AIS messages are removed
from the dataset, as the vessel has been fishing and delivering its catch outside
the roi when this occurs. The remaining ERS and AIS messages in the dataset
will thus be messages which have been transmitted during trips inside our roi.
However, not all of these trips end at a port located inside our ROI, but rather
pass through our region on its way to another port. Therefore, if the last AIS
message of the fishing trip does not end within a five-kilometer radius of a port
within our ROI, it is reasonable to expect that the vessel were passing through
our region to deliver fish somewhere else.

5.2.2 Removing Outlier Messages

Due to reasons such as bad AIS signal, the estimated time of arrival being off,
or the speed of the vessel being below 0.5 knots in the middle of the track,
there can be a time span larger than two hours between two succeeding AIS
messages. This makes the interpolation of the track, which happens at a later
stage of preprocessing, remove the track, because the gap is deemed too large
to perform interpolation. Often, this gap occurs early in the track, or after the
vessel has reached the port, meaning that the tracks are still valid. To prevent
the unnecessary reduction of the size of our dataset, which reduces our dataset
almost in half, a preprocessing step was added to reduce the number of tracks
removed because of two hours gaps.

If the time-interval between two AIS messages are more than two hours, and
the messages are located in the middle of the AIS track, it will most likely not
pass the length validation in the next preprocessing step if being cut. However,
if this occurs with messages on either end of the track (at the start or the end),
the remaining messages may still form a track which is long enough to pass
the length validation. Therefore, if at any point in the track the time-interval
between two AIS messages is more than two hours, the track is cut at that
location.

When the two-hour gap is in the beginning of the AIS track, every message
before the gap is removed. When this gap is located at the end of the AIS track,
it is not suitable to remove every message before the gap, as the vessel might
already be close to the port. In that case, the part of the track after the gap is
removed instead, leaving the part of the trajectory where the vessel is heading
from its last fishing location towards shore.

There is still some loss in number of tracks compared to the starting amount due
to the gaps, because some tracks will be too short when the gap is around the
middle of the track (where cutting the track makes it shorter than 4 hours, or
20 messages, which is the minimum requirement to pass the length-validation).



44 chapter 5 implementation

The number of tracks removed by interpolation is however significantly smaller
after introducing this step, compared to before it being added.

5.2.3 Track Verification

AIS tracks should not be too short when used during training, as longer tracks
provide more value in regard to the navigational behavior of fishing vessels.
The requirement used in [20] is that a trip should be at least 4 hours long, and
consist of minimum 20 AIS messages. This requirement is also applied to our
dataset, meaning that AIS tracks which does not fulfill this requirement are
removed. While this reduces the size of our dataset, it still retains a substantial
enough size to train a transformer model with.

The last AIS track verification before a track is considered valid, and added to
the final dataset, checks if the AIS track ends within five kilometers of any port
in our ROI.

5.2.4 Interpolation and Normalization

Interpolation is performed to even out the frequency of AIS messages in a
single track. The interpolation process is the same as the one used during
preprocessing in GeoTrackNet[22, 23] and TrAISformer[20]. The code for the
interpolation process is available on GitHub23. The tracks are interpolated
such that there is a five-minute interval between each AIS message in the track.
Because of the high frequency transmission rate of AIS, especially close to shore,
the interpolation reduces the total number of messages in the track.

For the TrAISformer model to be able to use the AIS tracks, the latitude,
longitude, speed over ground, and course over ground in the AIS messages must
be normalized. The min-max normalization method defined in Equation 5.2 is
used to normalize the values, because all the minimum- and maximum values
are known prior to normalization. The min- and max value of the latitude
and longitude is constricted to the coordinates of the polygon (bounding box)
which the AIS messages are retrieved from, the speed is between 0 and 30, and
the course of a vessel should only be between 0 and 360 degrees.

2. https://github.com/CIA-Oceanix/GeoTrackNet/blob/master/data/
dataset_preprocessing.py#L204-L222

3. https://github.com/CIA-Oceanix/GeoTrackNet/blob/master/utils.py#
L192-L239

https://github.com/CIA-Oceanix/GeoTrackNet/blob/master/data/dataset_preprocessing.py#L204-L222
https://github.com/CIA-Oceanix/GeoTrackNet/blob/master/data/dataset_preprocessing.py#L204-L222
https://github.com/CIA-Oceanix/GeoTrackNet/blob/master/utils.py#L192-L239
https://github.com/CIA-Oceanix/GeoTrackNet/blob/master/utils.py#L192-L239
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min_max(x) =
𝑥 −min_val

max_val −min_val (5.2)

5.2.5 Dataset Format

Listing 5.1 is an example of the format of the dataset after preprocessing.
Each element in the list contains information about a single trip by a vessel.
The mmsi and traj entries in the dictionary are required by the TrAISformer
model during training, with the latter consisting of a list of normalized AIS
messages (latitude, longitude, SOG, and COG). The port entry in the dictionary
maps to a tuple with the coordinates of the port the vessel headed to for that
particular track, and the haversine distance[30] between the last AIS message
and the closest port in kilometers. The port entry is used solely for evaluating
the port-prediction algorithm, and not when predicting the trajectories of the
vessels.

[
{

"mmsi": 123456789,
"traj": [(AIS Message 1), ..., (AIS Message N)],
"port": ((lat , lon), <distance to port >),

},
{

...
}

]

Listing 5.1: The format of the dataset

5.3 Destination Port Prediction

The destination port of a fishing vessel is forecast based on the predicted
trajectories output from the TrAISformer deep learning model. This section
delves into the implementation details of how the destination port is chosen,
based on these predicted trajectories. Figure 4.7 from Chapter 4 shows an
overview of all the steps taken to determine a destination port.

5.3.1 Converting the TrAISformer Output Values

The 𝑁 trajectories which the TrAISformer model predict for a single vessel is
output as a time series with the AIS attributes: longitude, latitude, speed over
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ground (knots), and course over ground.

The data points are ordered sequentially in time, such that the first data point
is the predicted AIS message five minutes after the last AIS message in the
input, the second data point ten minutes after, etc. The attributes for each data
point is normalized, thus Equation 5.3 is used to denormalize the min-max
normalization applied to all four AIS attributes.

denorm(x) = 𝑥 (max_val −min_val) +min_val (5.3)

5.3.2 Smoothening the Predicted Trajectory with Moving
Average

Because the data points of the predicted trajectory for a vessel are not as smooth
as real trajectories, smoothening is applied to the coordinates. This aims to
reduce the distance from potential outliers in the predicted trajectory, allowing
the port prediction algorithm to focus on the overall directional heading of the
predicted trajectory rather than potentially being affected by a single outlier
which accidentally fall within the radius of another port’s area.

A trajectory consists of a sequence of 2D coordinates, SOG and COG. Only the
coordinates are targeted by the smoothening. Before averaging the coordinates,
the trajectory is extended by duplicating the edge coordinates by the floor value
of
window_size

2
. The window size is the total number of coordinates included

in the calculation of each coordinate’s new value. We use a window size of 5,
as it leads to trajectories being more natural, while not completely removing
the smaller turns.

Once the trajectory has been extended by duplicating the edge values, the x- and
y-values are split into individual arrays. The discrete, linear convolution is then
calculated on both arrays using NumPy’s convolve⁴ function. The convolution
operation requires two one-dimensional arrays: the first is the array of values
to be smoothened, and the second is an array of weights, corresponding to
the size of the sliding window. Since all coordinates in a trajectory should be
equally weighted, the weights are set to

1
window_size

.

During the convolution, each coordinate in the x- and y-arrays is replaced

4. https://numpy.org/doc/stable/reference/generated/numpy.convolve.
html

https://numpy.org/doc/stable/reference/generated/numpy.convolve.html
https://numpy.org/doc/stable/reference/generated/numpy.convolve.html
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by the average of its neighboring coordinates within the window. The result
is a sequence of smoothened coordinates for the x- and y-values, which are
recombined to restore the coordinates of the trajectory. This version of the
trajectory will be more smooth than it initially was. The size of the sliding
window can be adjusted to control the level of smoothing: increasing the
window size results in a smoother trajectory, while decreasing it results in a
rougher trajectory.

5.3.3 Predicting the Destination Port for Each Track

For a single predicted trajectory from the TrAISformer model, each data point
the trajectory consist of is iterated through when the port the trajectory is
heading for is being decided. This means that the position of the vessel is
checked every five minutes. The haversine distance formula[30], defined in
Equation 5.4, is used to calculate the distance 𝑑 between the predicted position
of the vessel and each of the available ports. The distance is used to determine
if the vessel is within the defined circular area of any port. If a vessel in within
the area of multiple ports, the distance is used to decide which one the vessel
is the closest to.

𝑑 = 2𝑟 arcsin ©­«
√︄
sin2

(
lat2 − lat1

2

)
+ cos(lat1) cos(lat2) sin2

(
lon2 − lon1

2

)ª®¬
(5.4)

The radius of the area surrounding each individual port is set to two kilometers
initially. This means that for a port to be considered as a destination port
by the port prediction algorithm, the predicted trajectory must be within
two kilometers of it (in addition to having a predicted speed less than 0.6
knots).

The radius is incremented by one kilometer if no port is predicted for the
current radius (i.e., if no port is predicted when the radius is two kilometers,
meaning that no part of the trajectory where the speed is less than 0.6 knots
is within this range of any port, the algorithm repeats using a radius of three
kilometers, etc.). The maximum radius is set to five kilometers. If no port is
predicted when this maximum radius is reached, the algorithm doesn’t make a
prediction, as the vessel is most likely more than 8.5 hours from shore, or taking
an abnormal path which it cannot make an accurate prediction for.
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5.3.4 Assigning Probabilities for each of the Ports

The TrAISformer model is set to predict 𝑁 = 16 trajectories for a single
input. Each trajectory has a destination port predicted, unless it is decided
that the uncertainty is too large to predict a port, which leads to a none-
prediction.

The probability of a port is decided based on how many of the trajectories were
predicted to visit that port, given by Equation 5.5.

prob(port) =
n_visited
N

(5.5)

If 9 of the 16 trajectories had port 𝑋 predicted as the destination port, the
probability of that port being the vessel’s destination port is

9
16

= 0.56. The
sum of the probabilities for each port is always equal to 1. It is possible to
configure the TrAISformer model to predict more trajectories than 16, which
would give a more fine-grained overview of the port probabilities, due to each
predicted trajectory having less of an impact on the overall probability of the
port it heads for.

5.4 Web Application for Visualization of Data

To gain a deeper understanding of the data being worked with, a simple
web application was developed using Flask[12] and Folium[10]. This applica-
tion’s primary function is to visualize predicted vessel trajectories, true vessel
trajectories, and ports in an interactive map.

When the server receives a request for a trajectory, the index of the trajectory
in the test set and the length of the input to the TrAISformer model is given.
Subsequently, the port prediction algorithm processes the output trajectories
from the TrAISformer model, enabling the visualization of port probabilities,
and the predicted destination port, in the map.

Before being plotted into the map, the trajectories are denormalized and
smoothened. In the map, the input provided to the TrAISformer model, along
with the predicted trajectories and the ports with a non-zero probability, are
visualized. Because the TrAISformermodel always predicts 8.5 hours in advance
of the last input received, any trajectory segments beyond port arrival are
omitted to reduce noise in the map.
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Every figure which includes a map in this thesis is created using this web
application, with the figures from Section 6.5 in Chapter 6 showing the full
capability of it.





6
Evaluation
This chapter presents the performance of the two models used in this thesis, as
well as the port prediction algorithm. A comparison is also made between the
baseline model and the approach consisting of the TrAISformer model and port
prediction algorithm. Visualization examples of the port predictions using the
latter approach are also presented, with the varying cases that may arise.

6.1 Setup

6.1.1 Dataset Details

The dataset used for training, validation, and testing comprises 361, 284, and
280 unique vessels, respectively. Vessels from one subset may occur in the other
datasets as well, but all the AIS tracks are unique (e.g., a vessel may have a
track in the training set, while also have another track in the validation or test
set). The original dataset was split into training, validation, and test sets in
sizes of 80%, 10%, 10%, containing 13735, 1716, and 1718 AIS tracks. The dataset
contain a total of 370 unique fishing vessels.

The number of ports each vessel has visited varies, with the distributions shown
in Figure 6.1, Figure 6.2, and Figure 6.3. The x-axis represents the number of
unique ports a vessel has visited, while the y-axis represents the number of
vessels that have visited the same number of unique ports. For example, from
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the figure of the histogram from the training data, Figure 6.1, 47 vessels have
visited only a single port (one or more times).
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Figure 6.1: Histogram of number of unique ports visited by vessels in training set
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Figure 6.2: Histogram of number of unique ports visited by vessels in validation set
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Figure 6.3: Histogram of number of unique ports visited by vessels in test set

6.1.2 Hardware

The measurements from this chapter were conducted on an Ubuntu 22.04.3
LTS system equipped with an Intel(R) Xeon(R) CPU E3-1275 v6 @ 3.80GHz
CPU, and an NVIDIA GeForce GTX 1080 Ti GPU with 12 GB of memory. The
GPU operates with CUDA version 11.4, which necessitates the use of PyTorch
version 2.1.2 for compatibility.

6.2 Baseline Model

The following section highlights the performance of the baseline model in
terms of prediction accuracy and time usage. The port prediction accuracy is
measured using two different metrics, while the time usage is measured during
training, evaluation, and making a prediction.

6.2.1 Port Prediction Accuracy

Table 6.1 shows the accuracy of the baseline model on the test set. The Most
Probable Port column represents the accuracy of the model where it correctly
predicts the destination port of the vessel, meaning that the most probable
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Most Probable Port Top Three Most
Probable Ports

Accuracy 0.4796 0.7328
Correct 824 1259

Total Predictions 1718 1718

Table 6.1: Baseline model port prediction accuracies

port, according to the model, was the actual destination port of the vessel for
that trip. The second column, Top Three Most Probable Ports, shows that in 73%
of the test cases the correct destination port of a vessel is amongst its top three
most probable ports, according to the model. This means that in approximately
26% of the cases, the vessel’s destination port was its second or third most
visited port.

Out of the 1718 tracks in the test set, the baseline model predicted the wrong
port in 893 cases, affecting 231 out of 280 different vessels. This means that only
49 vessels always chose the port they have visited the most in the past as their
destination port during the test. This does however not necessarily mean that
all of them only deliver their catch at a single port, but that delivering catch at
the other ports is less frequent, and those tracks not necessarily occurring in
the test set.

While Table 6.1 presents the prediction results on the primary dataset, which
is used by the deep learning model + port prediction algorithm, the baseline
model was tested on two additional datasets. The two datasets are re-shuffled
versions of the AIS tracks located in the primary dataset, such that tracks that
are in the training set of the primary dataset might be in the validation set or
test set instead for these datasets. The proportions of the training, validation
and test set remain the same as the primary dataset, and the baseline model
is retrained when measuring its performance on the two alternative datasets.
The results are shown in Table 6.2, and shows that the accuracy of the model
only varies slightly.

6.2.2 Time Usage

Because the baseline model is simplistic, both training and making predictions
with is fast. The time usage, shown in Table 6.3, was measured by running each
operation (training, evaluating, and predicting) five times, and calculating the
average time spent.

The measured times for all three operations of the model demonstrate that
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Most Probable Port Top Three Most
Probable Ports

Accuracy 0.4913 0.7352
Correct 844 1263

Total Predictions 1718 1718

Most Probable Port Top Three Most
Probable Ports

Accuracy 0.4889 0.7276
Correct 840 1250

Total Predictions 1718 1718

Table 6.2: Baseline model port prediction accuracies on the test-dataset, and a
re-shuffled version of the same dataset

Training Evaluation Predict a Single Port
Number of Tracks 13735 1718 1
Mean Time (ms) 8.6543 2.1578 0.0051

Table 6.3: Time usage of the baseline model to train, evaluate, and predict

the simplicity of the model offers greater speed than more complex solutions,
due to the lack of heavy computation required. Also, no special hardware
is required to run this model in a real-time environment. The fast training
time allows for the model to be continuously updated, as retraining is a fast
operation to perform. Additionally, measurements indicate that predicting the
destination port of a vessel is done instantly, while being correct approximately
50% of the times.

6.3 TrAISformer Trajectory Prediction

In this section, the TrAISformer deep learning model is evaluated. The accuracy
of the predicted trajectories is measured using varying input lengths, as well as
the time usage to compare against the baseline model. These measurements
do not include port predictions, only trajectory predictions.

6.3.1 Mean Trajectory Prediction Accuracy

Figure 6.4 presents the accuracy of the TrAISformer model on our dataset,
with the accuracy given as the mean error of all 16 predicted trajectories for
each input track. The lines are color-coded based on the time span of the
input. An input length of 0.5 hours provides the model 6 AIS messages of input
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before making the prediction, while an input length of 4 hours provides 48 AIS
messages in this time span (5-minute time interval between each message, due
to interpolation).
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Figure 6.4: Mean prediction accuracy for trajectory predictions with various input
lengths

The graph shows that the model predicts more accurately with more input
data, as expected. The largest improvement occurs between 0.5 hours of input
and 1 hour of input, indicating that less than 1 hour of input is insufficient for
making trajectory predictions more than 1.5-2 hours ahead in time.

Comparing our mean accuracy with the mean accuracy of the original dataset
used in TrAISformer paper[20] reveals that the model perform better on our
dataset. For their dataset, using one hour of AIS input, the mean errors of
the model were 4.44 km, 9.07 km, and 14.80 km for 1, 2, and 3-hour ahead
predictions (during our re-run, without using the best-of-N principle when
calculating the mean error), respectively. The only change between the two
evaluations is the dataset, as the transformer model is unchanged. Our training
set contains approximately 3500 more AIS tracks, and our ROI is larger, being
307 490 km2 compared to approximately 47 000 km2 in the original dataset.
Exploring the impact of the ROI is left as future work.
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6.3.2 Time Usage

The time usage has been measured for training and predicting different number
of trajectories with the TrAISformer model. Table 6.4 presents the measured
times. Training takes a little over two hours on the hardware specified in
Subsection 6.1.2 with our dataset. For all tests, three measurements were taken,
with the presented results are the average times. The prediction times do not
include the time taken to load data between the CPU and GPU.

Training Predict Trajectories Predict Trajectory
Number of Tracks 1718 16 1
Mean Time (s) 7436 9.231 0.800

Table 6.4: Time usage of the TrAISformer model to train, evaluate, and predict

While the TrAISformer model uses 9 seconds to predict 16 trajectories for
a single input, it is still feasible to use in a production environment for the
controllers. The decision of which port should be controlled, because a vessel
is heading there, do not need to be made within seconds. This allows for the
use of methods which do not provide results in sub-second times. Retraining
the model is also not very time-consuming, and can also be improved by using
newer hardware.

6.4 Port Prediction Algorithm

The performance of the port prediction algorithm is measured and reported in
the following sections. The accuracy of the model is measured, and compared
against the baseline model, as well as the time usage.

6.4.1 Accuracy

The prediction accuracy port prediction algorithm, using trajectories predicted
by the TrAISformer model, is shown in Figure 6.5. The input lengths used for
the TrAISformer model are 0.5 hours, 1 hour, 1.5 hours, 2 hours, 3 hours, and 4
hours, which corresponds to 6, 12, 18, 24, 36, and 48 AIS messages of input. For
each input track from the test dataset, 16 trajectory predictions are generated.
These trajectories are passed to the port prediction algorithm, which predicts
the destination port based on the behavior of the predicted trajectories.

The accuracies in Figure 6.5 indicates how often the destination port predicted
as the most probable one corresponds to the actual destination port of the
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vessel. Figure 6.6 shows how frequently the actual destination port is among
the top three most probable ports (instead of just the most probable one) for the
baseline model and the TrAISformer model + port prediction algorithm.
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Figure 6.5: Port prediction accuracy comparison with baseline model
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Figure 6.6: Accuracy for the true destination port being among the top three most
probable ports
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Both graphs demonstrate that the accuracy of the combination of the trans-
former model and the port prediction algorithm increases with the length of the
input. The accuracy of the baseline model remains constant because it solely
relies on a vessel’s MMSI as input, and not AIS. The baseline model performs
better when there are fewer AIS messages available to use as input for the TrA-
ISformer model, as its predicted trajectories become more inaccurate. These
low-input scenarios favor the baseline model, as it relies on the past history
of the vessel, while scenarios with high amounts of input available favors the
TrAISformer model.

In both graphs, incorrect destination port predictions for a given input stem
from two main reasons: either the model predicts the wrong destination
port, or it is not confident enough to predict a port. In about 8-13% of port
predictions do not result in any predicted port (depending on the input length,
where more input results in less occurrences of no ports being predicted),
slightly impacting the accuracies showed in both Figure 6.5 and Figure 6.6. The
results excluding cases where no port is predicted, focusing solely on correct
or incorrect predictions, are depicted in Figure 6.7 and Figure 6.8.
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Figure 6.7: Port prediction accuracy with only correct/wrong predictions

6.4.2 Time Usage

The time usage of the port prediction algorithm is presented in Table 6.5.
Measurements were conducted three times, and the average times are reported.
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Figure 6.8: Accuracy for the true destination port being among the top three most
probable ports, with only correct/wrong predictions

In the first measurement, the algorithm predicts a destination port using the
16 trajectories generated by the TrAISformer model for a single vessel. The
reported mean time is 37 ms for the port prediction, although this value is
highly dependent on how much the radius of the area surrounding the ports
have to be increased. If a destination port is chosen early in the algorithm,
because the trajectories approach close to the location of the port (hence not
having to increase the radius), the prediction time is typically around 15-20
ms. Conversely, if no port is predicted, the average prediction time increases
to about 50 ms.

Predict Destination Port Predict Destination Port
Mean Time (ms) 37.078 9.551

Number of Trajectories 16 1

Table 6.5: Time usage of the port prediction algorithm

The prediction times are fast, because the port prediction algorithm does not
involve any complex computations. In comparison to the time taken by the
TrAISformermodel, fromwhich this algorithm receives its trajectories to predict
for, the prediction of a destination port is almost instantaneous.



6.5 visualizations of port predictions 61

6.5 Visualizations of Port Predictions

The following figures illustrate the AIS input to the TrAISformer model, the
predicted trajectories, and the probable destination ports for the predicted
trajectories. Each figure follows the following scheme:

• The input to the TrAISformer model is colored with a white line.

• The red trajectory is the true trajectory of the vessel.

• Trajectories not colored red or white are the trajectories predicted by the
TrAISformer model.

• Blue marker indicates the predicted destination port, and is based on the
predicted trajectories. The probability of that port being the destination
port is attached to the marker.

• Red marker indicates the actual destination port of the vessel, also at-
tached with the predicted probability of it being the destination port. If
there is no red marker, the correct destination port was predicted, and
the marker is instead colored blue. Red markers will have a surrounding
circle indicating a 5 km radius of the port.

• Gray marker indicates ports which are not the most probable, not the
actual destination port, but has a non-zero probability of being the desti-
nation port.
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Figure 6.9: Correct predictions when using an input length of one hour
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Figure 6.10: Wrong predictions when using an input length of one hour
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Figure 6.11: No predictions when using an input length of one hour
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(a) One hour of input (b) Two hours of input

(c) Three hours of input (d) Four hours of input

Figure 6.12: Example where increasing the amount of input eventually leads to a
correct port prediction





7
Discussion
This chapter discusses alternate methods to improve the proposed solutions in
regard to predicting the destination port of fishing vessels. It also covers issues
and improvements to the current models, as well as possible directions forward
to improve their performance.

7.1 AIS vs. VMS

An alternative to ais is Vessel Monitoring System (vms), which is designed
with the purpose of monitoring vessel activity. In Norway, vessels transmit VMS
messages every 10 minutes, with these messages containing information about
the vessel’s GPS position, speed over ground, and course over ground. The
messages transmitted by Norwegian fishing vessels longer than 15 meters are
available through the Directorate of Fisheries[31].

In addition to the difference in transmission rate between AIS and VMS, the
GPS coverage between the two systems may vary[32, 33], especially when a
vessel is far out at sea. During our preprocessing stages, gaps larger than two
hours were observed in the data, requiring the AIS tracks to be shortened
before interpolation were performed.

Because of the similarity between AIS and VMS, and since Norwegian fishing
vessels longer than 15 meters are required to use both systems[3, 34], it is possi-
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ble to combine the two systems to cover the gaps that can occur from using only
AIS[33]. Another possibility would be to use VMS instead of AIS to improve
coverage. However, this would reduce the potential for improving vessel trajec-
tory predictions by incorporating additional information into the deep learning
model, as VMS contains less information than AIS. Subsection 7.4.3 discusses
some additional features which can be incorporated into the models.

7.2 Baseline Model

The baseline model has some advantages and disadvantages when it comes
to predicting the destination ports of fishing vessels. Due to its simple imple-
mentation, the model is fast to both train and make port predictions. It is also
easy to use, as the only requirement for the model is the MMSI of the vessel
for which it should make a prediction. Moreover, it is more accurate than our
initial estimates.

One reason for its better-than-expected accuracy is that fishing vessels, partic-
ularly smaller ones around 15 meters in length, may have a limited selection
of ports they consider for delivering their catch. While there are 68 possible
ports in our dataset, these vessels might favor ports which are closer to their
home area. Additionally, these smaller vessels will also have a lower fish storage
capacity compared to larger fishing vessels, resulting in more frequent and
shorter fishing trips. This can cause a skew in the dataset which favors the
smaller vessels, thereby improving accuracy of the baseline model due to the
limited port selection.

Vessels capable of visiting many ports are one of the major weaknesses of the
baseline model. The model always assigns the highest probability to the port
the vessel has visited the most in the past. For vessels that distribute their visits
somewhat evenly across multiple ports, the model will struggle to achieve a
high accuracy in predicting the destination port. The model is also not able to
predict destination ports of vessels not occurring in its training set.

7.3 Port Prediction Algorithm

The port prediction algorithm utilizes most of the information provided by
the TrAISformer model, excluding the predicted course over ground. Since the
algorithm relies solely on the predicted trajectories and speed to forecast the
destination port, its accuracy is tied to the TrAISformer model output. When
the TrAISformer model accurately predicts the trajectories, the port prediction
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algorithm is more likely to predict the correct destination port.

However, if the predicted trajectories from the TrAISformer model deviate
from the vessel’s actual course, the port prediction algorithm cannot adjust
accordingly. Consequently, the algorithm gives probabilities for different ports
rather than solely identifying the most likely port to be visited. This approach
acknowledges that while the predicted trajectories may not always be accurate,
they represent the most probable parts based on the given input. Increasing the
input to the TrAISformer model enhances the accuracy of the port probabilities
by improving the quality of the predicted trajectories. This can be seen in
the results from Chapter 6, where the accuracy increased when the input
increased.

One potential issue can arise based on how the destination port of a vessel is
predicted. The TrAISformer model consistently forecasts trajectories 8.5 hours
ahead from the last received AIS message in the input. In some cases, this
may result in parts of the trajectories intersecting with land. When the port
prediction algorithm iterates over the predicted vessel position in a trajectory,
it does not differentiate whether the vessel is on land or in water. Consequently,
the trajectory may have crossed land before arriving at a port, as illustrated in
Figure 7.1.

Figure 7.1: Example of a destination port being predicted after the vessel has crossed
land

It could be beneficial to incorporate a step into the port prediction algorithm
which prevents trajectories that crosses land to affect the overall probabilities
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of ports being the destination port. The added step could cut off the trajectory
at the point it intersects with land, causing only the prior part of the trajectory
to be utilized when predicting a port.

Initially, machine learning approaches were considered for predicting the des-
tination port of vessels, based on previous work with AIS data[19, 35], instead
of the chosen algorithm. However, due to factors such as time, and observing
that the predicted trajectories from the TrAISformer model often closely ap-
proaches the ports, the chosen algorithm was deemed sufficient for predicting
destination ports.

While using a more advanced port prediction method has the potential to
improve accuracy, it is not currently considered as the main improvement area
of our approach, as it heavily relies on the predicted trajectories. Instead, the
primary area of improvement is considered to be predicting more accurate
vessel trajectories. A possible approach to improve this, aside from acquiring
more training data, is proposed in Subsection 7.4.3.

7.4 Future Work

Although both the proposed solutions manage to predict the destination port
of a vessel correctly in the majority of the cases, there are still improvements
which are believed to improve their performance.

7.4.1 Using a Smaller ROI

As stated in Chapter 6, our selected ROI is significantly larger compared to
the TrAISformer paper[20]. Their training set contains 770 000 AIS messages
within a 47 270 km2 ROI, whereas our training set contains 1 600 000 AIS
messages within a 307 490 km2 ROI. This results in AIS message densities of
16.27 messages per square kilometer for their dataset and 5.27 messages per
square kilometer for our dataset.

While different densities in the number of AIS messages per square-kilometer
do not necessarily affect the model’s accuracy, it is not unlikely. The largest
impact will likely be in regions where fewer vessels have traveled, as predicting
the trajectory of a vessel is more difficult if no, or few, vessels have taken the
same route. Figure 7.2 illustrates such a case. In the first image, the input to
the model (white line) follows a relatively known route, while in the second
image, the vessel takes an unexpected turn. In the first image, the input length
is one hour, while in the second image, it is two hours. The unexpected turn
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occurs because the vessel seems to be heading for more fishing (as indicated
by its true trajectory, colored red), moving along a route that is not directed
towards a port. Consequently, the model struggles to predict its trajectory
accurately, resulting in predicted trajectories which does not make sense for a
vessel heading towards a port.

(a) Vessel taking an expected route (b) Vessel taking an unexpected route

Figure 7.2: Trajectory predictions for vessel before and after taking an unexpected
turn

Smaller ROIs might yield more accurate predictions, if there is sufficient data
for the area. However, in low-traffic areas, there might not be a significant
improvement compared to using a larger ROI. The initial reason for choosing a
larger ROI was to reduce the number of models required to cover the Norwegian
coast. Investigating the optimal ROI size, and if the ROI can cover all of the
Norwegian coastline, is left as future work.
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7.4.2 Improve Trajectory Extraction using Fishing Activity
Detection

While most of the AIS tracks in the dataset contain trajectories where the
vessel is heading directly for a port, there are also a few tracks where this is not
the case. Figure 7.2 is an example of such a track. Ideally, these tracks should
not be included in the dataset, especially the training set, as the model may
struggle to predict sensible trajectories. It is challenging for the model to learn
the desired vessel behavior when they are not heading directly for a port, or
engaged in activities such as fishing, as there is no consistent pattern to follow.
Although it would be possible to manually review and remove these tracks, the
process is time-consuming given that there are more than 17 000 tracks in the
dataset.

To improve the quality of the dataset by removing trajectories not heading
directly for a port during preprocessing, machine learning can be employed.
Research papers have been published on detecting fishing activity based on
AIS tracks[28, 29], utilizing the unique patterns of AIS tracks during fishing and
steaming. This addition to the AIS preprocessing is left as future work.

7.4.3 Incorporating more Information into the Models

Both the baseline model and the TrAISformer model currently utilize the AIS
data in different ways to predict the future behavior of a vessel. The available
data is also utilized differently by the two models, although their goals are
somewhat similar. The baseline model predicts a destination port immediately,
while the TrAISformer model is one of two steps to achieve this task. However,
there are still input features that can be added to both models, which are
believed to improve their prediction accuracies. Exploring which input features
yield the most improvement, or if they indeed enhance the models, is left as
future work.

The baseline model currently relies solely on the past destination ports visited
by a vessel to make predictions, disregarding the vessel’s current location.
Incorporating the vessel’s location at the time of prediction is an essential
step to explore for this model. It could prevent the model from predicting a
destination port that is far from the vessel’s current location, and enable it to
instead predict the closer second- or third-most probable port. Additionally,
other valuable information that could improve this model includes the vessel’s
fishing locations (e.g., which catch zone from Figure 7.3 that has been fished
most recently in), the species targeted during fishing, and the departure port for
the trip. Most of this information is available in the ERS messages transmitted
by the vessel, but can also be extracted from AIS.
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Figure 7.3: Catch zones from outside the coast of Norway

The TrAISformer model utilizes more of the available AIS data than the base-
line model, by using AIS messages as input. This model is more generalizable
than the baseline model, since it does not rely on the vessel’s ID for predictions.
Similar to the baseline model, it is possible to include information such as
the vessel’s recent fishing locations, the species targeted during fishing, and
the departure port into the transformer model. Additionally, static vessel in-
formation, such as its length, found in the AIS messages, could also enhance
the transformer model. This type of information may not impact the baseline
model, as it already utilizes the vessel’s ID.





8
Conclusion
This chapter outlines concluding remarks in regard to this thesis’ problem
statement, defined in Section 1.1 in Chapter 1, as well as our findings.

8.1 Concluding Remarks

The goal of this thesis was to investigate how to predict the destination ports
of fishing vessels based on their AIS messages, as a first step towards a larger
goal of developing a system which controllers can use to improve their ability
to regulate the catch of these vessels. This thesis focused on researching and
proposing approaches which can be further developed into such a system.

Two approaches utilizing the ais of fishing vessels were proposed and com-
pared against each other. Both approaches were trained on historical AIS
trajectories within our defined region of interest in the northern part of Nor-
way. The first approach, a statistical baseline model, based itself on the past
port-visit history of each unique vessel to predict which port it is most likely
to visit next, regardless of its position. The second approach, composing of a
transformer deep learning model and a port prediction algorithm, used the
transformer model to predict the most likely trajectories of the fishing vessel.
These trajectories were used as input into the port prediction algorithm, which
forecast the destination port of the vessel given these trajectories, as well as its
probability.
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Based on our results, the statistical baseline model performs better when
predicting the destination ports of vessels which have a low variety in the
ports they visit, but is tied down to only predicting destination ports of vessels
it already knows. In comparison, the machine learning approach can predict
the destination port of any vessel, regardless of it being in the training data
or not, and has a better accuracy than the baseline model when there is more
than three hours of AIS input available.

In conclusion, while both approaches predict the destination ports of vessels
correctly in the majority of cases, the machine learning approach appears
to be the most promising approach given its results and generalizability. This
indicates that utilizing ais andmachine learning to forecast the destination port
of a fishing vessel is a viable and effectivemethod. Additionally, by incorporating
more input features into bothmodels,we expect their port prediction accuracies
to improve greatly.
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