
The Faculty of Science and Technology
Department of Computer Science

A Data Gathering System for the Arctic Tundra

Jørgen Aleksander Larsen
Master’s thesis in Computer Science INF-3981 – June 2024

Supervisors

Main supervisor: John Markus Bjørn-
dalen

UiT The Arctic University of Norway,
Faculty of Science and Technology,
Department of Computer Science

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2024 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

To my parents.

“Debugging is like being a detective in a crime movie where you’re also the
murderer.”

–Filipe Fortes

“A good programmer is someone who always look both ways before crossing a
one-way street.”

–Doug Linder

Abstract
Climate change has emerged as an important topic over the past decade, and
one of the areas most susceptible to change is the Arctic Tundra. Monitoring
the environment features a variety of challenges; it’s remote location, manual
monitoring equipment and required permission to depart on expeditions. A
solution to this is the use of a wireless sensor network to allow more automatic
gathering of data. Many algorithms to increase the life span of nodes have
been proposed over the years, such as LEACH and PEGASIS. However, these
make assumptions that does not fit the Arctic Tundra.

This thesis proposes a system design which minimizes message propagation
as it aims to overcome the networking challenges, while also limiting energy
consumption. The system consists of two types of nodes; normal sensor nodes,
and relay nodes which communicates with a base station. Relay nodes will
inform others of its presence and set paths are created through the system so
all nodes can propagate their data. Some of the challenges with simulating
such a system is explored, and it is implemented on top of an event-based
simulator.

Experiments are run to evaluate the energy consumption of the system using a
combined energy model from LEACH and ESDS, as well as the scalability of the
simulator. The results showcase that most of the energy is expended by being
awake, and a very small part is due to sending messages. Additionally, it means
that the proposed system is mainly viable for smaller networks with sparsely
placed nodes. No real conclusion can be made about the model scalability
results, other than increasing the simulated time will increase the simulation
run-time. As an example, a year can be simulated by running for approximately
30 minutes.

Finally, due to messages being such a small part of the energy consumption,
this opens up for many interesting approaches. The main one presented being
mesh networks, as this allows algorithms such as LEACH and PEGASIS to
overcome the networking assumptions as the problems of routing is handled
in an underlying network layer.

Acknowledgements
I would like to thank my advisor John Markus Bjørndalen for providing sup-
port and encouragement during the rough patches of this thesis. Also, thank
you for the many long discussions about the topic and chit-chats during our
meetings.

Thank you to the friends I made along the way for all the collaborations and
fun throughout the years.

Thank you to my family for their endless support during this period.

Contents
Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xiii

List of Listings xv

1 Introduction 1
1.1 Thesis Statement . 3
1.2 Scope and Limitations . 3
1.3 Contributions . 3
1.4 Outline . 4

2 Background 5
2.1 Wireless Sensor Network 5
2.2 Network Routing Types . 5
2.3 Mesh Networks . 6
2.4 Event-based Programming 6
2.5 Asyncio . 7

3 Related Work 9
3.1 LEACH . 9
3.2 PEGASIS . 10
3.3 TEEN . 10
3.4 Clock Synchronization between Observational Units in the

Arctic Tundra . 11
3.5 Simulators . 11

4 Simulator 13
4.1 Prototyping . 13
4.2 Existing Simulators . 14

vii

viii contents

4.3 Simulator Design . 14
4.4 Programming Language . 17
4.5 Event Implementation . 17
4.6 Event Queue Implementation 17
4.7 Configuration . 18

5 Data Gathering System 19
5.1 LEACH as Inspiration . 19
5.2 Assumptions when Designing the System 20
5.3 System Architecture . 20

5.3.1 Hardware Assumptions 21
5.3.2 Topology . 22
5.3.3 Node Isolation . 22
5.3.4 Routing . 23
5.3.5 Node Life-cycle . 23

5.4 Design . 24
5.4.1 Message Handling 24
5.4.2 Energy Model . 24

5.5 Implementation . 25
5.5.1 Network and Node Grid 25

5.6 Events . 25
5.6.1 Energy calculations 26
5.6.2 Messages . 26
5.6.3 Phase simulation . 27
5.6.4 Node Runtime Behaviour 27
5.6.5 Configuration . 28

5.7 Version Numbers . 29

6 Evaluation 31
6.1 Environment . 31
6.2 Experiment 1: Energy Expended in real systems 31

6.2.1 Methodology . 31
6.2.2 Goal . 33

6.3 Experiment 2: Simulator Scalability 34
6.3.1 Methodology . 34
6.3.2 Goal . 34

6.4 Results . 35
6.4.1 Experiment 1: Energy expended in real systems . . . 35
6.4.2 Experiment 2: Simulator Scaling 41

7 Discussion 45
7.1 Message Energy Cost . 45
7.2 Mesh Networking . 46
7.3 Network setup fitting the current system 47

contents ix

7.4 Simulator scaling . 49
7.5 Effect of being an Intermediary Path Node 50
7.6 Dead Paths . 51
7.7 The problem with creating all events before running the queue 51
7.8 System and Simulator Coupling 52
7.9 Why simulating the Arctic is hard 52
7.10 Asyncio . 52
7.11 Lowest length vs fewest hops 53
7.12 Hardware evolution . 54
7.13 Node Placement . 55

8 Future Work 57
8.1 Mesh Network . 57
8.2 Energy Models . 57
8.3 Hardware . 58
8.4 Implementation Improvements 58

9 Conclusion 61

List of Figures
4.1 Simulator Flow . 16

5.1 System Architecture . 21
5.2 Network Topology . 22

6.1 Position of all nodes in a dense setup. RN = Relay Node, N =
Node . 32

6.2 Position of all nodes in a sparse setup. RN = Relay Node, N
= Node . 33

6.3 1 Relay node and 20 Normal nodes connected together. RN
= Relay Node, N = Node 34

6.4 Dense setup 24 Hours. Y does not start at 0. 35
6.5 Dense setup 720 Hours (1 Month). Y does not start at 0. . . 36
6.6 Dense setup 8760 Hours (1 Year). Y does not start at 0. . . . 37
6.7 Sparse setup 24 Hours. Y does not start at 0. 38
6.8 Sparse setup 720 Hours (1 Month). Y does not start at 0. . . 39
6.9 Sparse setup 8760 Hours (1 Year). Y does not start at 0. . . . 40
6.10 Timer Scaling . 41
6.11 Event Scaling . 42

7.1 Dense configuration with all possible paths. RN = Relay Node,
N = Node. 47

7.2 Dense configuration with chosen paths. RN = Relay Node, N
= Node. 47

7.3 Sparse configuration with all possible paths. RN = Relay Node,
N = Node. 48

7.4 Sparse configuration with chosen paths. RN = Relay Node, N
= Node. 48

7.5 Energy scaling for sending messages over a distance. 54

xi

List of Tables
5.1 Variables used in equations for energy consumption 24

6.1 Dense setup 24 Hours, Mean and Deviation for all Nodes . . 35
6.2 Dense Setup 720 Hours, Mean and Deviation for all Nodes . 36
6.3 Dense setup 8760 Hours, Mean and Deviation for all Nodes . 37
6.4 Sparse setup 24 Hours, Mean and Deviation for all Nodes . . 38
6.5 Sparse setup 720 Hours, Mean and Deviation for all Nodes . 39
6.6 Sparse setup 8760 Hours, Mean and Deviation for all Nodes 40
6.7 Timer and Event Count from Experiment 1 42

xiii

List of Listings
5.1 Node Setup . 27
5.2 Node Behvaiour . 28
5.3 YAML configuration file . 28

xv

1
Introduction
Climate change is an increasingly discussed topic over the past decade as a
focus on sustainability on earth becomes a bigger focus. One of the areas
most susceptible to change is the Arctic Tundra. The average temperature has
risen significantly, causing ice to melt, and ground and soil to spring forward.
This allows new invasive species to infiltrate the ecosystem and push other
species to new areas. The changing weather causes the snow to change in
consistency, affecting some of the species. Therefore, it is important to monitor
these changes so we can further research the effects they cause.

Monitoring the Arctic Tundra features a variety of challenges. First is its re-
mote location, often requiring long expeditions spanning several days of travel.
Secondly, much of the monitoring equipment used requires field personnel to
manage updates and collect data. This is a result of equipment often being
conservative with its hardware and not having proper communication capabili-
ties[1]. Finally, departing on these expeditions requires permission whichmight
take several years to acquire[2, 3]. The Distributed Arctic Observatory[4] (DAO)
is a project aimed at solving such problems with Climate-ecological Observatory
for Arctic Tundra[5] (COAT) as a use case.

A Wireless Sensor Network (WSN) is an important paradigm in use to monitor
environments and gather necessary data. This is a collection of sensor units
which communicate and propagate data between themselves over a network
to a base station. These networks can consist of hundreds of nodes.

1

2 chapter 1 introduction

One of the challenges WSNs face is power consumption. This is also one of the
major problems sensors face in the Arctic Tundra. The location makes nodes
unable to include a constant power source, instead relying on battery power.
Replacing these batteries require monumental effort.

Algorithms such as LEACH[6] (Low-Energy Adaptive Clustering Hierarchy)
aims to reduce the power consumption and increase the lifetime of sensor
nodes. However, one of the problems with many of these algorithms is their
assumption of all nodes being in range of each other and a base station. This
is often not the case in an environment such as the Arctic Tundra, where
networking capabilities are limited. This shows the need for a system that can
tackle these problems.

One of the biggest difficulties with the Arctic Tundra is how to test proposed
solutions to these problems. In other words, how to test systems aimed at
solving them. The ideal way to test a system is to build and deploy it, as
this gives the most accurate data. However, this is often not feasible due to
the requirements of acquiring hardware, implementing the system on it, and
travelling to deploy the nodes.

Instead, cheap but similar hardware can be acquired to create simple prototypes
on, such as a Raspberry Pi. The other alternative is to create a pure software
prototype on a normal computer. This software prototype can either be creating
local servers for a simulation using an actual network, or it can be implemented
in a simulator. This gives the options of either running a real-time simulation,
or a simulated time simulation. The difference is that a real-time simulation
needs to wait for downtime, whereas a simulated time one can skip over it.
One of the problems with running simulations is that many assumptions are
made about the environment and problems are often abstracted away. This is
a trade-off that needs to be kept in mind.

Using a simulator also has its own set of challenges, especially when it comes
to choosing one. Many options exist today such as NS3[7], OMNeT++[8] or
Simpy[9]. These are all simulators with different abstraction levels, some are
more fine-grained and complex than others. What these all have in common
is them being discrete event simulators. Simpy is more generic, whereas NS3
and OMNeT++ are more fine-grained packet-level simulators with a focus
on networking. One of the problems with these simulators is their complexity,
making it hard to create proper environments matching that of the Arctic
Tundra.

1.1 thesis statement 3

1.1 Thesis Statement

The main reason LEACH cannot be directly utilized in the arctic is due to how
the algorithm ignores the networking challenges of the Arctic. However, it is
interesting because it is aimed at lowering the energy consumption of nodes. To
further help understand these problems, the thesis is focused on the following
problem statement:

This thesis aims to explore the challenges of propagating sensor data
throughout a sensor network in an environment like the Arctic Tundra
while keeping in mind how the energy consumption is affected.

1.2 Scope and Limitations

The scope of this thesis is focused around designing a system to propagate
data between nodes. No actual sensor data is being simulated, instead the
typical size of a message is used in relevant calculations. This means that the
sensing part of nodes is abstracted away, and any implementation instead uses
a test message. More of the system specific scope will be presented in chapter
5 where system design is covered.

When first designing the system, a bigger scope was set where data is being sent
from multiple clusters to a base station. However, due to time constraints, the
final scope ended up being focused on the internals of a single cluster.

This thesis also presents some of the challenges of simulating a system in
the Arctic. While it is not the main contribution of this thesis, the work was
significant enough to designate a chapter for it, this being chapter 4.

1.3 Contributions

The contributions of this thesis can be seen in two parts, a data gathering
system and the simulator. It can be summarized as follows:

• Propose a design for a data gathering system in the Arctic Tundra.

• An event-based simulator to study the proposed system.

• An experiment to study the energy consumption of the data gathering
system.

4 chapter 1 introduction

• An experiment to evaluate the scalability of the simulator.

• A discussion around the results of the experiments, as well as the overall
design choices made for both the system and the simulation.

1.4 Outline

The thesis is organized in the following way:

Chapter 1 - Introduction: Has just introduced the motivation of the project,
along with a problem statement and contributions.

Chapter 2 - Background: Presents some background knowledge which is useful
to know for this thesis.

Chapter 3 - Related work: Presents work in areas related to this thesis.

Chapter 4 - Simulator: Introduces some of the challenges around prototyping,
and presents the design and implementation of the simulator.

Chapter 5 - Data Gathering System: Presents the architecture, design and
implementation of the proposed system of this thesis.

Chapter 6 - Evaluation: Presents the methodology, goal and results of the
experiments run.

Chapter 7 - Discussion: Discusses various topics around the results, the pro-
posed system, it’s weaknesses, and other interesting areas.

Chapter 8 - Future Work: Presents some of the future work which can be
done, both academically and for the implementation.

Chapter 9 - Conclusion: Concludes the thesis.

2
Background
2.1 Wireless Sensor Network

A wireless sensor network is a collection of smaller sensor nodes which can
measure and gather information about the surrounding environment. These
nodes usually have very limited hardware capabilities in the form of available
memory and battery lifetime. Each node transfers data to a base station, which
can be an access point or a form of handheld device[10]. The transfer can
happen either through direct communication or a mesh network.

There are two kinds of WSNs. The first one is an unstructured network. This
is a dense collection of nodes which are mostly placed randomly in the field.
The second one is a structured network. This is a more sparse collection of
nodes, where each node is placed in an intentional and pre-planned loca-
tion[10].

2.2 Network Routing Types

There are two different ways of allowing nodes to communicate with each other.
The first one is if all nodes are in range of each other and can be referred to as
a single-hop routing. Nodes can communicate directly over cable or wirelessly
over radio.

5

6 chapter 2 background

The second one is referred to as multi-hop routing and is utilized if nodes
cannot communicate directly. This is done by having intermediate nodes act
as relays to forward messages to other intermediate nodes or the target node.
One of the most common schemes is to minimize the hop-count of messages,
but many other factors can also be used to choose the path taken, such as
energy levels or signal strength[11].

2.3 Mesh Networks

A mesh network is an example of a system which utilizes multi-hop routing
where nodes forwards traffic due to limited range. The system generally consists
of mesh routers and mesh clients. Each node in the system is both a host
and a router. A wireless mesh network operates dynamically and automatic,
meaning it organizes and configures itself to maintain connectivity between
nodes[12].

2.4 Event-based Programming

In computer science the word event is very vague as its meaning is dependent
on the context. An event is often defined as an occurrence of some kind, and
this occurrence can take many forms. For an operating system, this could be
movement or the click of a mouse. Applications on top of the OS can then
respond to these events however they like. Design patterns such as "subject-
observer" is based on events, and is used when an observer wants to know about
the events of a subject, much like in a publish-subscribe system[13].

Tarkoma has a focus on publish-subscribe systems, but defines an event as a dis-
crete state transition[14]. Much like Faison, Tarkoma also connects conditions,
events and notifications together. If something happens which matches a condi-
tion, and subsequently a notification is created, then that is an event[13].

In programming languages, events often has its own definition as well. Accord-
ing to Faison, events are often associated with delegates, event variables and
handlers in .NET. Whereas in Java, it is associated with event sources, event
objects and handlers[13]. These terms closely related to event-based program-
ming. Much like is described with the subject-observer pattern, it often means
some form of loop is polling for events in a queue, and sources will create these
events. A handler is used to react appropriately[15].

2.5 asyncio 7

2.5 Asyncio

Asyncio is a library in Python used for asynchronous programming. It is specif-
ically used to write concurrent code. It is important to note that it does not
use threads for parallel programming nor multiprocessing. Instead, it operates
inside a single process. It uses coroutines which can be scheduled concur-
rently.[16].

The concept it utilizes is asynchronous programming. The important part of
this is that a routine can pause while waiting for the result of some action it
has taken. During this pause, other routines in the schedule can be run. This
is what allows for concurrency to take place, as multiple actions can overlap
through this paradigm[16].

Asyncio implements this concept of concurrency by utilizing generators in
Python and adds the keyword combination of async/await. A function can be
defined as async and the await action allows it to yield control of the single
thread to a different coroutine[16].

3
Related Work
3.1 LEACH

Low-Energy Adaptive Clustering Hierarchy[6] (LEACH) is a protocol aiming
to decrease the total energy consumption of wireless sensor networks and
increase the lifetime of the nodes in the system. The algorithms make some
assumptions about hardware such as using a first-order radio model, and each
node being able to reach a base station.

The paper proposes a clustering algorithm consisting of a few different phases;
advertisement, cluster set-up, schedule creation and data transmission. Nodes
will randomly elect themselves as cluster heads and send out election messages.
Nodes will accept the cluster with the strongest radio signal. Each cluster will
then send out a schedule for each cluster member, giving them a time slot to
send their data. Each node will send their data and go to sleep. These phases
define a round in the system.

Many variations of this algorithm exist, and it is a widely researched area of
energy conservation in wireless sensor networks. Some examples of this is
LEATCH[17], which defines a two-level cluster hierarchy. This means that there
is a super cluster which contains many smaller cluster heads from the original
LEACH protocol. Another example is LEDCHE-WSN[18], this variation assumes
there are many different clusters, and each cluster has a set sink node which
can communicate with the base station.

9

10 chapter 3 related work

The system in this thesis differs greatly from LEACH and LEATCH in the sense
that this thesis breaks the assumption of all nodes being able to communicate
with the base station. However, a similarity can be seen with LEDCHE-WSN
which utilizes a sink node. This serves the same purpose as the relay nodes
proposed in chapter 5 by connecting the base station with the cluster.

3.2 PEGASIS

Power-Efficient Gathering in Sensor Information Systems[19] draws inspiration
from LEACH to further enhance the energy efficiency of a WSN. It builds upon
the same assumption as LEACH where each node can reach a base station
or any other node. It works by forming a chain between neighboring nodes
and having data transmit between the links. A random node in this chain is
responsible for sending the data in each round. This is important to ensure
that nodes dies at random locations. When a node dies, the chain is rebuilt by
simply bypassing it.

PEGASIS is similar to the system in this thesis in the sense that chains are
formed between nodes to forward data. But again, the assumption of reaching
all nodes is not the same. Additionally, PEGASIS forms chains where the
destination changes, whereas the system in this thesis forms chains in a multi-
hop manner for a specific destination. This being a relay node.

3.3 TEEN

Threshold sensitive Energy Efficient sensor Network[20] (TEEN) is a protocol
which targets reactive networks. LEACH and PEGASIS can be described as
proactive networks, meaning they constantly monitor the environment at set
intervals, whereas TEEN reacts to changes in the environment. TEEN also
operates in a hierarchical cluster formation, where data aggregates up the
cluster-levels until it reaches the base station.

The protocol defines two values, a hard threshold and a soft threshold. The
hard threshold is set as the condition a sensed attribute has to reach before the
transmitter is turned on and data is reported. The soft threshold is a used as a
minimum difference that the previous sensed value and the new value has to
reach before transmitting data. The first threshold eliminates unwanted data,
and the second threshold limits reporting when there only are small changes
in the environment.

3.4 clock synchronization between observational units in the
arctic tundra 11

The most important difference between TEEN and this thesis is TEEN being
a reactive network and this thesis being a proactive network. There is little
similarity, but TEEN showcases an important alternative to research on wireless
sensor networks and the various applications it can be used for.

3.4 Clock Synchronization between
Observational Units in the Arctic Tundra

"Clock Synchronization between Observational Units in the Arctic Tundra"[21]
is a master’s degree written at the University of Tromsø - The Arctic University
of Norway, by Sigurd Karlstad. As the title alludes to, this degree focuses on
exploring clock synchronization between the nodes. This topic is completely
abstracted away in this thesis, but is a very important problem to cover in
the Arctic Tundra as nodes are required to operate in tandem. The thesis
presents work collaborated on between two students, and the overall work
done showcases a larger system aimed towards the Arctic Tundra. This means
it also includes a system design and how it can be implemented using servers
and processes, compared to this thesis using an event-based queue.

3.5 Simulators

Many of the simulators mentioned in the introduction can also be seen as
related work, as it is a relevant part to this thesis. However, these simulators
are briefly described and related to this thesis in chapter 4.2 and are therefore
not described here.

4
Simulator
This chapter describes some of the challenges faced when prototyping a system,
and briefly presents some of the existing simulator options. It also presents the
design and implementation of the simulator.

4.1 Prototyping

As mentioned in the introduction, there are many different ways to create a
prototype of a system. Each way comes with its own set of pros and cons, as
well as challenges and complexities. This thesis wants to explore the energy
consumption of a system. Therefore, a physical prototype running on proper
hardware is out of the question due to both costs and time constraints. Emulat-
ing the system using server processes is less expensive but still time-consuming,
meaning testing 24 hours of run-time for the system requires 24 real hours.
This limits the possible length of time we can run the system.

To solve this, an event-based simulator can be used. It is a good fit for a dis-
tributed monitoring system as they often report data at set intervals and powers
off to save energy. This can be modelled as events and used to manipulate the
simulated run-time such that if nothing happens it jumps to the next event,
which may be hours in the future.

One of the trade-offs for using such a simulator is the ease at which kind

13

14 chapter 4 simulator

of data can be obtained. Obtaining energy data is much simpler as it has
to be modelled, but running benchmarks to obtain information about CPU
and memory requirements is much harder, but not necessarily impossible.
Simulations like this also requires implementing various abstractions such as
the network. This may cause information leakage between abstraction layers
which doesn’t exist in the real world. It is important to be aware of these and
understand how they can affect the results.

4.2 Existing Simulators

There exists many different discrete event simulators. As mentioned previously,
NS3[7], OMNeT++[8] and Simpy[9] are all possible simulator options. Both
OMNeT++ and NS3 are written in C++ and are defined as packet level
simulators. Due to the combination of these being a lower abstraction level
than needed, as well as being in an unfamiliar language, they were deemed
too complex to utilize for this thesis. Simpy was also briefly explored, but due
to its generic nature it was hard to relate the various types of resources and
concepts to create abstractions such as networks and broadcast pipes.

Researchers at the Cyber Physical Lab at UiT has also worked closely on prob-
lems with simulating systems for the Arctic Tundra and has published a paper
about a framework called "Extensible Simulator for Distributed Systems"[22]
(ESDS). The progress of this tool was learned about towards the middle of
work with this thesis, and was explored as an option to utilize for the system
described in the next chapter.

ESDS is highly relevant to this thesis and was close to being a good fit. However,
some of the problems encountered was it seemingly being strict on a node only
having a single role such as sender or receiver instead of both. Additionally, the
system in the next chapter utilizes multi-hop routing. Each of the links would
then have to be defined in ESDS’ configuration files.

Due to the problems above, this thesis implements the simulation from scratch
instead of using any of the presented simulators.

4.3 Simulator Design

As alluded to from before, an event-based simulator is implemented due to
being a good fit for the Arctic Tundra. An event queue is implemented and each
event defined manually instead of relying on an existing framework. Parts of

4.3 simulator design 15

the simulation also take inspiration from ESDS. Firstly is the approach where a
node’s runtime behavior is defined in an execute function and evaluated during
runtime to fill the queue. A similar paradigm is utilized here, but instead of
evaluating this function at runtime, it is instead executed to fill the event queue
before starting the simulator. This means that when the queue is empty, the
simulation is complete without the need for much of the synchronization logic
ESDS utilizes.

Figure 4.1 showcases a simple flowchart of the simulator. The program process
starts, and the event queue is filled. Events are fetched, and if one exists, the
simulated time is updated and the event is processed. Once no more events
are in the queue, the simulation is complete.

16 chapter 4 simulator

start

Fill queue

Event in Queue?

Update Time

Process Event

End

YES NO

Figure 4.1: Simulator Flow

4.4 programming language 17

4.4 Programming Language

The simulator is implemented using Python. The reason for this is Python
being a familiar language used a lot during previous years at UiT. It is not a
compiled language and is interpreted at runtime. This makes it a good choice
for implementing prototypes, as testing various approaches is a simple task
without much overhead. Its simplicity has also caused its adoption by scientists
and statisticians, making it a very good choice for this thesis.

4.5 Event Implementation

The simulator implements a generic event class which functions as a base for
all the events to inherit. This includes a timestamp, the node which created
the event, a content attribute, and a type field which simply contains the type
of event as a string. The type attribute is mainly used to differentiate between
events. It also features a generic print function which changes based on the
type.

The main reason for defining events as classes is to have each type include
an execute function where the functionality of the event is implemented. This
makes it easy to add new types of events without having to define and expand a
large event handler function to perform this task. Instead,when fetching events,
this execute function is simply called without any other logic required.

4.6 Event Queue Implementation

The most important part of the simulator is to ensure that events are handled
in the correct order. As this is a time-based simulation, the natural choice is to
sort events based on a timestamp. This is done by utilizing Asyncio’s Priority
Queue. This takes a tuple as an input and always tries to sort on the first
element. This gives us a tuple in the form of (timestamp, event object).

However, if two events have the same timestamp it will iterate to the next
element, a class object in this case. This requires implementing a "less-than"
magic method for the generic event class as otherwise Python will throw an
exception. This allows for adding a priority within events if needed, however
this is solved in other ways as will be explained in the next chapter. Therefore,
the current implementation simply returns a boolean to stop the exception
being thrown.

18 chapter 4 simulator

4.7 Configuration

The simulator itself has its configuration defined in a file named "config.py".
This file contains multiple flags used to toggle various print options, as well
as logging to files. Many of these are simply for debugging and to help isolate
problems by not flooding all types of prints in the terminal or files. However,
there are a few other variables related to the simulator such as network delay,
node up-time and simulation time in hours. These are highly coupled to the
implementation of the system itself and will therefore be mentioned in the
next chapter. It also contains some other variables such as energy models and
message size, which is also related to the system itself.

5
Data Gathering System
This chapter begins by introducing how LEACH was used as inspiration, before
presenting the assumptions used when designing the system. The architecture
part will define the node types, as well as hardware, topology, routing and
its phases. The design covers the energy model and messages. Finally, the
implementation covers the network grid and events, along with implementation
specific details from the previous sections.

5.1 LEACH as Inspiration

This thesis originally set out to explore the challenges of using the LEACH
algorithm in the Arctic Tundra. However, as mentioned in the introduction,
the network assumptions made by LEACH[6] ignores some of the crucial
challenges faced in the area. The most important one being the assumption
that all nodes has a direct connection to all the other ones and a base station.
In the Tundra nodes are not expected to have this connection due to limited
network capabilities, which plays a crucial part in the algorithm.

Some work was done on a simple emulation of LEACH using local servers and
network. However, the aforementioned challenges quickly appeared, causing
a reevaluation of the approach. This resulted in designing a new system from
scratch to get around these problems. Additionally, problems with synchroniza-
tion quickly became apparent due to how LEACH operates in rounds.

19

20 chapter 5 data gathering system

An example of this is when a node wakes up in LEACH, it checks if it becomes
a cluster head. If yes, then it broadcasts an election message, and all the other
nodes needs to be in the start of the phase where they are waiting for this
message. It then completes all its phases as described in the related work
chapter and starts a new round by checking if it should be a cluster head
again.

5.2 Assumptions when Designing the System

With the problems prompted by LEACH, a set of assumptions needs to be
specified as a frame around the system. First, all nodes will not be in range of
each other or a base station, but should at least see one other node. Secondly,
a message should be able to reach any node through forwarding. Third, all
nodes are synchronized and operate in tandem. Finally, nodes are assumed to
be heterogeneous, meaning that they don’t necessarily need to have the exact
same hardware. This is important for the next section.

As alluded to in chapter 1.2 (scope and limitations), a complete data gathering
system is assumed to consist of a base station which gathers all the data in a
centralized storage and can send this data to the rest of the world by having
proper internet access. Spread throughout a section of the Arctic Tundra are
multiple clusters which gain access to the base station by utilizing some form of
hardware with better communication capabilities, or multi-hop communication
through other clusters.

This thesis will focus on the internals of a single cluster and some of the
challenges this faces. The system design aims to minimize the amount of
messages required. This is due to the networking challenges, as well as wanting
lower energy consumption.

5.3 System Architecture

A cluster is assumed to include an area of around 500x500 meters where various
types of nodes can be placed. This system defines two different types, which
is why nodes are referred to as heterogeneous.

• A normal node is an observation unit whose main goal is to gather sensor
data from the environment and store it.

• A relay node can also function as an observation unit and be equipped

5.3 system architecture 21

with sensors, but it is not a requirement. The important distinction is
that the relay node is assumed to be equipped with more communication
hardware to help reach the base station.

R

R

R

N
N

N

N

N

N

N

N
N

N

Figure 5.1: System Architecture

Figure 5.1 shows a simple example of how a cluster can be set up. It features
three central relay nodes which are responsible for gathering all the data. As
well as a set of normal nodes which reads the sensors and forwards this data
through intermediate nodes until it reaches a relay.

5.3.1 Hardware Assumptions

Another important assumption is what kind of hardware the nodes utilizes,
specifically for communication and networking. Due to the assumption of lim-
ited networking capabilities, inspiration is taken from LEACH[6] to utilize a

22 chapter 5 data gathering system

first order radio-model. This means that communication happens over radio
frequencies. Broadcasting is assumed to happen on a well known open fre-
quency for all nodes to listen to. When sending messages to specific nodes,
CSMA (carrier-sense multiple access) MAC can be used much like LEACH, for
example based on the target node’s id. However, this is abstracted away in the
simulation, as the problem of efficient channel management is not a focus of
this thesis.

5.3.2 Topology

Due to constrained networking capabilities and limited radio range, a form of
multi-hop routing is required for nodes to be able to communicate. Figure 5.2
is an example of how the network topology looks like for nodes. Something
like a partial mesh-like topology structure where messages can be forwarded
through other nodes can solve this problem. This can also be seen in the
proposed system architecture in figure 5.1 through the arrows connecting the
nodes. It is important to note that the system does not utilize a mesh network,
which will be explained later in the routing section.

N

NN

Figure 5.2: Network Topology

5.3.3 Node Isolation

To support the goal of minimizing the amount of messages being sent, the
system does not utilize pings and health-checks between nodes. This means
that each node cannot build a local view of the network, and has limited
knowledge of which nodes are in range and no knowledge of their current
status such as battery. As a result, no routing algorithm requiring dynamic
state information about other nodes can be utilized, and they cannot make an
active choice in which node to communicate with.

5.3 system architecture 23

5.3.4 Routing

On top of the assumptions mentioned earlier, nodes are also assumed to be
placed with intent in the Tundra, much like a structured WSN. Therefore, a
structure like figure 5.1 can be expected where relay nodes are centralized in
the cluster. This does not necessarily need to be a required assumption due to
messages always being able to reach any node through forwarding, meaning it
could also be on the edge in scenarios where this might prove beneficial.

Because nodes does not ping each other, the system has to utilize pre-set
paths between relays and normal nodes. This is done by having all relay
nodes broadcast an election message. Each node receiving this message will
rebroadcast and forward it until all other nodes has received it. While the
message propagates, each node it passes through will append itself to the
message so receivers learns the exact path to the relay. As there can be multiple
relay nodes, this information is used to choose which election message to
accept. To help the goal of minimizing message propagation, nodes will choose
the path with the least amount of hops. It also currently discards any other
possible path and only stores the final choice.

It is important to note that while it is named an election message, it does
not bear much resemblance to a traditional election as it does not have to be
accepted. A node’s role is chosen before being placed and cannot be changed
during run time. Instead, it simply makes itself available and informs other
nodes of its presence.

5.3.5 Node Life-cycle

Due to how the routing is set up, a typical node life-cycle can be differentiated
into two different phases; a setup phase and a main phase. The setup phase
is where the relay nodes will broadcast their election messages. This phase is
driven by the relay nodes and sets up the network state for the whole system
by creating all the data paths between nodes. The setup phase is only entered
a single time at the start of a node’s life.

The main phase is where a node spends the majority of its time. This phase is
driven by the normal nodes and is also the simplest phase. The only respon-
sibility of the system in this phase is to ensure that nodes wake up, sends its
data to a relay node and goes to sleep again. Currently, relay nodes will only
wake up and listen for messages in this phase. However, as mentioned earlier,
it can be equipped with sensors and store the data to its local storage as it does
not need to report it to other relay nodes.

24 chapter 5 data gathering system

5.4 Design

5.4.1 Message Handling

There are two types of messages utilized by the system. The first type is an
"election message" as mentioned earlier. This message is only sent by relay
nodes. It includes a path of nodes it has passed through, the id of the current
sender and the id of the original sender. The second type is a "data message".
This message is only sent by normal nodes. It contains the path to the relay
node as well as the sensor data to be delivered, along with the id of the original
sender and the destination id. The reason this message contains the path is
that it is dynamically updated as it travels. The message itself dictates where
to travel and not the node it arrives at, as each node only knows its own path,
which might differ from a neighbors’ path.

Each node has a message handler which will check for the type of message
and act accordingly. To ensure that messages aren’t being sent around in loops
indefinitely in the system, each message is assigned a unique id. Whenever
a node receives a message, it will save this id. If it already has this saved, it
simply drops the message. If it isn’t saved, it will act according to the message
type and either rebroadcast the election message, or send the data message
to the next node in the path. Additionally, when the election message arrives,
it will update its state accordingly if the saved path is longer than the new
path.

5.4.2 Energy Model

E_elec 50 nJ/bit (Amount of joule per bit used by sender and receiver)

E_amp 100 pJ/bit/m2 (Amount of power required
by amplifier to transmit signal over a set distance)

K Bits (Amount of bits used during transmission)
d2 Distance (Squared distance in meters to transmit message)

Table 5.1: Variables used in equations for energy consumption

The energy model used is based on a combination between the LEACH[6]
and the ESDS[22] papers. LEACH provides a model and numbers to calculate
how much energy is expended to send a message over a distance, as well as
how much is used when receiving a message. Equations 5.1 and 5.2 shows the
formulas used for this. Table 5.1 contains explanations for each of the symbols.
ESDS provides an assumption for howmuch energy is expended during a nodes
up-time and estimates it to be 0.4 watts. The sum of these two are combined

5.5 implementation 25

to provide a final count of energy expenditure.

𝐸𝑠𝑒𝑛𝑑 = 𝐸𝑒𝑙𝑒𝑐 ∗ 𝐾 + 𝐸𝑎𝑚𝑝 ∗ 𝐾 ∗ 𝑑2 (5.1)

𝐸𝑟𝑒𝑐𝑣 = 𝐸𝑒𝑙𝑒𝑐 ∗ 𝐾 (5.2)

5.5 Implementation

5.5.1 Network and Node Grid

Server processes and a real network is not available due to the system being
built on top of an event-based simulator. This means networking has to be
simulated and is done by creating a class. Each node is registered in a list
upon initialization. The class defines a broadcast and send API for nodes to
utilize.

The system simulates nodes by placing them inside a grid. Each node has a
defined set of x and y coordinates for their position, as well as a range vector
to simulate the edge of their radio signal. This vector is the Euclidean distance
between origo and the radio range in both the x and y direction. The grid size
is assumed to be 500x500 meters to match the architecture. When utilizing the
broadcast API, a node will iterate over the list in the network and calculate the
Euclidean distance between itself and all other nodes. If this distance exceeds
the range, the message is not sent. The same check applies to the send API,
but it also matches based on node id.

5.6 Events

The system defines four different events; broadcast, send, sleep and wakeup.
When a node tries to either broadcast or send a message, it creates an instance
of the corresponding event and adds it to the event queue. The event itself
then accesses the network class’ API to perform the related action. The sleep
and wakeup events simply toggle a sleep flag in the node, which is used to
ensure that the send or broadcast event does not perform the action if a node
is asleep.

As mentioned in the simulator chapter, a "less-than" magic method is required

26 chapter 5 data gathering system

to ensure that no exceptions are thrown. This method can be used to create
a priority for each event in the case of a duplicate timestamp. However, this
is not utilized in the implementation. Adding such a priority can solve two
problems. The first problem would be to prevent a node’s actions from being
executed in the wrong order. However, the burden of ensuring this ordering is
on the user when defining its behavior.

The second problem is related to chaining events. As a consequence of multi-
hop routing, when a send or broadcast event is executed, the receiving node’s
message handler will act accordingly and potentially create a new send or
broadcast event. This means that a single event may end up creating multiple
new events to be executed. To ensure that these are executed in the correct
order, the given timestamp to the new event is slightly increased to simulate
network delay. Due to how both of these problems are handled, there is no
need for a priority among the event types.

5.6.1 Energy calculations

As mentioned earlier, the numbers used for energy calculations are based on
ESDS[22] and LEACH[6]. This means that there is no need to simulate sensor
data, as the size is part of the equations used. Therefore, the actual size of
messages being sent between nodes is irrelevant. This solution is in part due to
the actual messages being sent in the simulator being in the 100-300 bit range,
which is vastly different from the 2000 bit size used.

The energy calculations are done in different parts of the code. The energy
for receiving messages is incremented in the message handler. The energy
spent sending a message is handled inside the actual event’s execution. This
is because the check for a node’s sleeping status is also included there. This is
done because a node cannot send a message while sleeping, and so the energy
should not be expended. Finally, calculating the up-time is a two-part step
which includes both the sleep and wakeup events. When a node wakes up its
timestamp is saved, and when it goes back to sleep the amount of time awake
is multiplied with the estimated watt usage to get the amount of joules. This
is a viable solution as a node does not die in this implementation, otherwise
this would have to be checked before and after any action is taken to ensure
enough energy was present.

5.6.2 Messages

Messages are implemented using JSON and are passed between node instances
through the use of events and the network class. As mentioned earlier, these

5.6 events 27

messages do not contain large amounts of sensor data as it might have in a
real system, but instead a simple test message for debugging.

The unique id used to prevent duplicates utilizes the uuid library from Python.
This does not consider its efficiency, but it allows for all nodes in range to
eventually get the message, compared to using a decreasing hop count as
messages propagate through the network. For election messages, each node
appends its id to the path list in the message. For data messages, each node
removes the last id in the path before sending the message to the corresponding
node. This allows the implementation to check for an empty path list to ensure
that the message has arrived at the relay node.

5.6.3 Phase simulation

The current implementation of the system requires the two phases to be run
two separate times through the event loop. As mentioned earlier, the event
loop expects all events to be added to the queue before running. The reason for
this is the implementation of the data message. It currently expects the path to
be included in the message before being sent. However, without having ran the
setup phase, this state does not exist. Therefore, each phase has to be simulated
separately, but with its state being saved in between runs. This is handled in
the main loop and does not require the complete thesis implementation to be
run twice.

5.6.4 Node Runtime Behaviour

The current implementation provides a very simple API for defining a node’s
behavior. It is limited to four functions, where two of them are wakeup and
sleep, one is for electing itself as a relay, and one is for sending sensor data.
Listing 5.1 and 5.2 shows examples of the current implementation of each phase.
Two functions are needed due to the implementation specific behavior around
each phase. These functions are responsible for filling the queue with events
before the event loop starts executing.

Specifically, the main function, which is responsible for the main phase, is
heavily inspired from ESDS[22] and their examples. It performs a wakeup and
send every hour. It is important to note that the delay between wakeup and
send is given at least a second to ensure order. The send also happens in the
first half of a node’s uptime to ensure that this network delay does not end up
dropping messages due to nodes falling asleep.

async def setup (s e l f) :

28 chapter 5 data gathering system

await s e l f . wakeup(0)
i f s e l f . i s _ r e l a y :

await s e l f . e l e c t _ s e l f (1) # type : i gno r e

await s e l f . s l eep (30) # A l l nodes s l e e p
Listing 5.1: Node Setup

async def main(s e l f) :
for hour in range (1 , HOURS+1) :

await s e l f . wakeup(hour ∗3600)
i f not s e l f . i s _ r e l a y :

await s e l f . send_sensor_data (random . rand in t (
hour∗3600+1 , hour∗3600+ in t (UPTIME/2)−1))

await s e l f . s l eep (hour∗3600 + UPTIME)
Listing 5.2: Node Behvaiour

5.6.5 Configuration

To define the system setup itself and the positioning of all the nodes, a con-
figuration written in YAML is utilized. This YAML file is passed as an input to
the simulator and is read to create all the nodes. This makes it easy to set up
various different clusters and allows for flexible testing. Each node contains
an x and y position in the grid, as well as a flag to confirm if it’s a relay node
or not. An example of how the YAML file is structured can be seen in listing
5.3.

nodes :
− id : 0

x : 250
y : 230
re l a y : True

− id : 1
x : 270
y : 260
re l a y : Fa l se

− id : 2
x : 230
y : 270
re l a y : Fa l se

Listing 5.3: YAML configuration file

5.7 version numbers 29

As mentioned in the simulator chapter, part of the configuration is handled
through the config.py file. Some of these are specific to the system. This includes
the network delay, how long a node spends awake, and how many hours the
simulation should run. The latter one is very specific to the implementation
of a node’s behavior. Finally, the variables from the energy model can also be
changed as needed, as well as the range of the node.

5.7 Version Numbers

Below is a list of the version numbers for all libraries and packages used. This
is combined for the simulator and the data gathering system. Most of the items
are fetched from the requirements file generated by pip.

• Python 3.8.10 (Including asyncio as part of the standard library)

• attrs 23.2.0

• cattrs 23.2.3

• contourpy 1.1.1

• cycler 0.12.1

• exceptiongroup 1.2.1

• fonttools 4.52.4

• importlib-resources 6.4.0

• kiwisolver 1.4.5

• matplotlib 3.7.5

• numpy 1.24.4

• packaging 24.0

• pillow 10.3.0

• pyparsing 3.1.2

• python-dateutil 2.9.0.post0

30 chapter 5 data gathering system

• PyYAML 6.0.1

• six 1.16.0

• typing-extensions 4.12.0

• zipp 3.19.0

6
Evaluation
This chapter starts with presenting the methodology and goal of both experi-
ments that were run. It then presents the results for each of them.

6.1 Environment

As has been explained through this thesis, the system has been implemented
on top of an event based simulator. This simulator has been run on an HP
Envy x360 laptop. It features a 2.3 GHz processor with 4 cores and 16 GB of
memory.

6.2 Experiment 1: Energy Expended in real
systems

6.2.1 Methodology

This experiment is performed by setting the behavior of nodes to wake up
once every hour, send its sensor data, and then go to sleep. It is executed on
two different setups, which can be seen in figures 6.1 and 6.2. The first figure
showcases a dense setup with many nodes close together. The second figure

31

32 chapter 6 evaluation

showcases a sparse setup with fewer nodes. These setups are assumed to use
a 500x500 meter grid, and each node has a 100-meter range for their radios.
Three variations are run; 24, 720 and 8760 hours (or 1 day, 30 days and 356
days) for both.

0 100 200 300 400 500
Meters

0

100

200

300

400

500

M
et

er
s

0
12

3

4

5

6

7

8

9

10

11

12

13

14

15

1617

18

1920

21

22

23 24

25

26

27

28 29

30

31

32

33

34

35

36

RN
N

Figure 6.1: Position of all nodes in a dense setup. RN = Relay Node, N = Node

6.2 experiment 1: energy expended in real systems 33

0 100 200 300 400 500
Meters

0

100

200

300

400

500

M
et

er
s

0
12

3

4

5

6
7

8

9 10
11

12

13

14

15

16

RN
N

Figure 6.2: Position of all nodes in a sparse setup. RN = Relay Node, N = Node

6.2.2 Goal

The goal of this experiment is to showcase the energy expended by each node
in the system. The following metrics will be presented:

• Energy in joule.

– Total Energy.

– Energy spent idle (meaning it is awake, but not doing anything).

– Energy spent sending messages (the specific action of sending).

– Energy spent receiving message (the specific action of receiving).

– Energy expended while asleep is assumed to be low enough to be
ignored.

34 chapter 6 evaluation

6.3 Experiment 2: Simulator Scalability

6.3.1 Methodology

This experiment is also performed by setting the behavior of nodes to wake
up once every hour and send its sensor data before going to sleep again. It is
executed on a set of systems organized in a line, which can be seen in figure
6.3. The actual experiment tests systems with 1-5, 10 and 20 nodes. The lower
count systems simply shorten the line. All experiments are only run for 1 hour.
This experiment will also present the relevant data from the setups run in the
previous experiment.

0 100 200 300 400 500
Meters

0

100

200

300

400

500

M
et

er
s

0 1 2 3 4

5

678910

11

12 13 14 15 16

17

181920
RN
N

Figure 6.3: 1 Relay node and 20 Normal nodes connected together. RN = Relay Node,
N = Node

6.3.2 Goal

The goal of this experiment is to showcase the scalability of the simulator. The
following metrics are used:

• Time spent running simulator.

6.4 results 35

• Event Count.

6.4 Results

6.4.1 Experiment 1: Energy expended in real systems

Mean Standard Deviation
Energy 588.169 J 0.115 J
E_Recv 0.00605 J 0.00937 J
E_Send 0.164 J 0.115 J
E_Idle 588.0 J 0.0 J

Table 6.1: Dense setup 24 Hours, Mean and Deviation for all Nodes

0 5 10 15 20 25 30 35
Node id

587.8

587.9

588.0

588.1

588.2

588.3

588.4

588.5

588.6

Jo
ul

e

Energy expended per node
send
recv
idle

Figure 6.4: Dense setup 24 Hours. Y does not start at 0.

Figure 6.4 and table 6.1 shows the energy expended for a dense system running
for 24 hours, note that the y-axis does not start at 0. On average, nodes spent
588 J being idle with a standard deviation of 0.12 J. 0.006 J on sending messages

36 chapter 6 evaluation

with a standard deviation of 0.009 J. And 0.16 J on receiving messages with a
standard deviation of 0.12 J.

Mean Standard Deviation
Energy 17296.673 J 3.448 J
E_Recv 0.113 J 0.264 J
E_Send 4.560 J 3.451 J
E_Idle 17292.0 J 0.0 J

Table 6.2: Dense Setup 720 Hours, Mean and Deviation for all Nodes

0 5 10 15 20 25 30 35
Node id

17290

17292

17294

17296

17298

17300

17302

17304

17306

17308

Jo
ul

e

Energy expended per node
send
recv
idle

Figure 6.5: Dense setup 720 Hours (1 Month). Y does not start at 0.

Figure 6.5 and table 6.2 shows the energy expended for a dense system running
for 720 hours, note that the y-axis does not start at 0. On average, nodes
spent 17297 J being idle with a standard deviation of 3.45 J. 0.11 J on sending
messages with a standard deviation of 0.26 J. And 4.56 J receiving messages
with a standard deviation of 3.45 J.

6.4 results 37

Mean Standard Deviation
Energy 210308.694 J 41.943 J
E_Recv 1.352 J 3.209 J
E_Send 55.342 J 41.983 J
E_Idle 210252.0 J 0.0 J

Table 6.3: Dense setup 8760 Hours, Mean and Deviation for all Nodes

0 5 10 15 20 25 30 35
Node id

210250

210275

210300

210325

210350

210375

210400

210425

Jo
ul

e

Energy expended per node
send
recv
idle

Figure 6.6: Dense setup 8760 Hours (1 Year). Y does not start at 0.

Figure 6.6 and table 6.2 shows the energy expended for a dense system running
for 8760 hours, note that the y-axis does not start at 0. On average, nodes
spent 210308 J being idle with a standard deviation of 41.94 J. 1.35 J on sending
messages with a standard deviation of 3.21 J. And 55.34 J receiving messages
with a standard deviation of 41.98 J.

38 chapter 6 evaluation

Mean Standard Deviation
Energy 588.155 J 0.110 J
E_Recv 0.004 J 0.005 J
E_Send 0.151 J 0.110 J
E_Idle 588.0 J 0.0 J

Table 6.4: Sparse setup 24 Hours, Mean and Deviation for all Nodes

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Node id

587.8

587.9

588.0

588.1

588.2

588.3

588.4

588.5

588.6

Jo
ul

e

Energy expended per node
send
recv
idle

Figure 6.7: Sparse setup 24 Hours. Y does not start at 0.

Figure 6.7 and table 6.4 shows the energy expended for a sparse system running
for 24 hours, note that the y-axis does not start at 0. On average, nodes spent
588 J being idle with a standard deviation of 0.11 J. 0.004 J on sending messages
with a standard deviation of 0.005 J. And 0.15 J on receiving messages with a
standard deviation of 0.11 J.

6.4 results 39

Mean Standard Deviation
Energy 17296.282 J 3.297 J
E_Recv 0.102 J 0.151 J
E_Send 4.179 J 3.310 J
E_Idle 17292.0 J 0.0 J

Table 6.5: Sparse setup 720 Hours, Mean and Deviation for all Nodes

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Node id

17290

17292

17294

17296

17298

17300

17302

17304

17306

17308

Jo
ul

e

Energy expended per node
send
recv
idle

Figure 6.8: Sparse setup 720 Hours (1 Month). Y does not start at 0.

Figure 6.8 and table 6.5 shows the energy expended for a sparse system running
for 720 hours, note that the y-axis does not start at 0. On average, nodes spent
17296 J on being idle with a standard deviation of 3.30 J. 0.10 J on sending
messages with a standard deviation of 0.15 J. And 4.18 J on receiving messages
with a standard deviation of 3.31 J.

40 chapter 6 evaluation

Mean Standard Deviation
Energy 210303.954 J 40.125 J
E_Recv 1.237 J 1.834 J
E_Send 50.717 J 40.273 J
E_Idle 210252.0 J 0.0 J

Table 6.6: Sparse setup 8760 Hours, Mean and Deviation for all Nodes

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Node id

210250

210275

210300

210325

210350

210375

210400

210425

Jo
ul

e

Energy expended per node
send
recv
idle

Figure 6.9: Sparse setup 8760 Hours (1 Year). Y does not start at 0.

Figure 6.9 and table 6.6 shows the energy expended for a sparse system running
for 8760 hours, note that the y-axis does not start at 0. on average, nodes spent
210304 J being idle with a standard deviation of 40.13 J. 1.24 J on sending
messages with a standard deviation of 1.83 J. And 50.71 J on receiving messages
with a standard deviation of 40 J.

6.4 results 41

6.4.2 Experiment 2: Simulator Scaling

1 2 3 4 5 10 20
Amount of normal nodes

0.001

0.002

0.003

0.004

0.005

Ti
m

e
Sp

en
t

Time spent running 1 Relay + x nodes

Figure 6.10: Timer Scaling

Figure 6.10 displays the timing results of the experiment. For the lower end
there are small jumps before a more distinct line is formed between 5, 10 and
20 nodes.

42 chapter 6 evaluation

1 2 3 4 5 10 20
Amount of normal nodes

0

50

100

150

200

250

300
Ev

en
t C

ou
nt

Event Count for 1 Relay + x nodes

Figure 6.11: Event Scaling

Figure 6.11 displays the event count results of the experiment. It shows a
non-linear increase in the amount of events as more nodes are added.

Timer Event Count
Dense 24h 0.491 s 3329
Dense 720h 17.920 s 94505
Dense 8760h noprint 1239.819 s 1147745
Dense 8760h print 1735.734 s x
Sparse 24h 0.181 s 1477
Sparse 720h 6.047 s 41845
Sparse 8760h noprint 150.145 s 508165
Sparse 8760h print 259.504 s x

Table 6.7: Timer and Event Count from Experiment 1

Table 6.7 displays both the event count and the timers from the first experiment
as an addition to the results of the second experiment. Simulating a dense
system for 24, 720 and 8760 (without/with print) took 0.5, 17.9, 1239 and 1935
seconds. Simulating a sparse system for the same hours took 0.1, 6, 150 and 259

6.4 results 43

seconds. For the 1 year long simulations this equates to about 20 and 29 minutes
for the dense setup, and 2.5 and 4 minutes for the sparse simulation.

For the event counts this equated to 3329, 94505 and 114775 events in the dense
system, and 1477, 41855 and 508165 events. Printing has no effects on the event
count.

7
Discussion
This chapter first discusses the results of the experiment measuring the energy
consumption of nodes. It covers the effect of messages having a low cost and
how mesh could be utilized instead. It also looks at how the dense setup fits
mesh networking, and the sparse setup fits the current system. Then, the results
from the scaling experiment is discussed, before various topics such as being
part of an intermediary path, dead paths, implementation problems, system
coupling and a few more are covered.

7.1 Message Energy Cost

One of the most notable results of the first experiment in the evaluation section
is how the energy consumption is split between idle up-time, sending, and
receiving messages. With the current energy model, almost all of the energy is
spent by a node being awake. This can be decreased by lowering the up-time
of a node. The problem with doing that has to do with the abstracted away
synchronization. Lower up-time means less time for nodes to do their work,
and increasing the chance that a node goes to sleep before others can finish.
This is a very important trade-off, and the up-time has been set to at least
60 seconds to account for this. Abstracting away synchronization makes it
simpler to simulate, but it opens up the possibility of minimizing up-time to
the extreme, as it does not need to account for clock skew.

45

46 chapter 7 discussion

Another consequence of the majority of the energy consumption being from
idle up-time is that sending messages is very cheap. Therefore, the intended
goal of minimizing the amount of messages sent is actually less important than
expected, as the energy consumed is far below what was assumed. This opens
up many possibilities for improving the system, one of the main ones being
ping messages. This allows each node to obtain information about the overall
network state, as well as the state of neighboring nodes. The information
can then be used by more complex routing protocols to further optimize the
network traffic and fix the problem of dead paths, which will be discussed
later in this chapter. However, it is still important to note that there are limited
network capabilities, and it may still stand out as a reason to utilize this
approach.

7.2 Mesh Networking

When minimizing messages is no longer crucial, it opens up the possibility of
mesh networks, as nodes can now ping and update each other. Limited network
capabilities is also one of the use cases for mesh, to widen a network’s range.
The advantage of using a mesh network is that assumptions where each node
must be able to see the whole network can now be fulfilled. This is done by
each node thinking it has a direct connection to all other nodes, but instead
there is an underlying protocol forwarding messages through other nodes to
reach its destination. This allows for many of the well researched protocols
such as LEACH[6] or PEGASIS[19] to be implemented and run in the Arctic
Tundra. It could be very interesting to see what effect this has on the energy
levels in the system.

Mesh networks can be a good fit if the wireless sensor network is similar to
the dense setup used in the experiments. Figure 7.1 shows how the dense
configuration looks when a line is drawn between all nodes within range of
each other. Each node has multiple routing options, and it can therefore prevent
scenarios where a single node is responsible for forwarding messages for many
others. This means that there is not a single point of failure in the routing. For
comparison, figure 7.2 shows how the current algorithm sets the paths. Uneven
battery drain can also be prevented by carefully selecting the mesh routing
algorithm. An option could be one where each node builds the whole network
state in memory, or one where multiple paths between nodes are saved.

7.3 network setup fitt ing the current system 47

0 100 200 300 400 500
Meters

0

100

200

300

400

500
M

et
er

s

0
12

3

4

5

6

7

8

9

10

11

12

13

14

15

1617

18

1920

21

22

23 24

25

26

27

28 29

30

31

32

33

34

35

36

RN
N

Figure 7.1: Dense configuration with all possible paths. RN = Relay Node, N = Node.

0 100 200 300 400 500
Meters

0

100

200

300

400

500

M
et

er
s

0
12

3

4

5

6

7

8

9

10

11

12

13

14

15

1617

18

1920

21

22

23 24

25

26

27

28 29

30

31

32

33

34

35

36

RN
N

Figure 7.2: Dense configuration with chosen paths. RN = Relay Node, N = Node.

7.3 Network setup fitting the current system

Drawing all possible paths for the dense system shows that mesh could be a
very good fit for sensor networks with many nodes. By doing the same with
the sparse setup, each node has a lot less options when communicating. When

48 chapter 7 discussion

comparing figure 7.3 and 7.4, there are only a few paths removed. Fewer nodes
spread out over larger distances obviously means less options for routing, or
even only a single path being available, as is the case for the sparse setup.
Therefore, we can conclude that the system this thesis has proposed is a good
fit for a sparse system, as many of the connected paths only have a single point
of failure anyways. However, if it is utilized in a dense setup, the other paths
are not utilized and it can be seen as a worse fit.

0 100 200 300 400 500
Meters

0

100

200

300

400

500

M
et

er
s

0
12

3

4

5

6
7

8

9 10
11

12

13

14

15

16

RN
N

Figure 7.3: Sparse configuration with all possible paths. RN = Relay Node, N = Node.

0 100 200 300 400 500
Meters

0

100

200

300

400

500

M
et

er
s

0
12

3

4

5

6
7

8

9 10
11

12

13

14

15

16

RN
N

Figure 7.4: Sparse configuration with chosen paths. RN = Relay Node, N = Node.

7.4 simulator scaling 49

7.4 Simulator scaling

The second experiment covers both run time and event scaling. Figure 6.10
shows that there is no real pattern in scaling for time spent simulating in
smaller systems. The possible problem here is that the run-time is so small that
underlying factors such as performance drift in hardware affects the results.
This could be due to other programs running, or bad luck in OS scheduling
where it prioritizes other processes. However, there is an increase in time spent
simulating the system, but it does not have a recognizable pattern. As such,
there is no probable conclusion to be drawn from this experiment other than
time increasing as the system size increases.

Before continuing, it is important to note that all simulations were run while
printing each event being fetched from the queue. This behavior is adopted
from ESDS[22] as they also do the same. It is relatively common knowledge that
IO operations (including printing) are slow in most programming languages,
and especially Python. Therefore, the one-year-long simulations were also run
without any prints to showcase the time it could save. For example, a dense
setup goes from 29 minutes to about 20 and a half minute, and a sparse setup
goes from about 4 minutes to about 2 and a half minutes.

A better example to explore how the simulators running time scales is by looking
at the data from the dense and sparse configurations used in experiment 1.
First of all, an increase from 24 hours to 720 hours is 2900%, and from 720
hours to 8760 hours is about 1117%. In comparison, the dense configuration
had an increase of 3553% from 24-720 hours and 9696% from 720-9760 hours
with prints, and 6826% without prints. For the sparse configuration, there was
an increase of 3255% from 24-720 hours and 4196% from 720-9760 hours with
prints, and 2385% without prints.

These percentage increases shows that there is no one-to-one correlation
between increasing the simulated time and the time spent simulating. It only
tells us that there is a non-linear increase greater than 1 as all steps has a bigger
increase in time spent than the increase of hours simulated.

For events,figure 6.11 shows that there is an increase similar to exponential (note
that it is not an exponential graph, but this type of shape is often mentioned
as exponential in general). Looking at percentages from experiment 1 again,
the dense configuration has an increase of 2744% from 24-720 hours, and 1114%
between 720-8760 hours. The sparse configuration has an increase of 2744%
for 24-720 hours, and an increase of 1115% from 720-8760 hours. This shows
us that the correlation between hours simulated and event count has a very
similar increase. This is expected behavior due to how the experiment is set
up, where each node sends a single message per hour. Therefore, adding more

50 chapter 7 discussion

hours adds a set amount of new events to process. This also means that there is
no difference in percentage increase between a dense configuration increasing
from 24 to 720 hours, and a sparse configuration doing the same.

To summarize, there is no recognizable pattern for timer scaling, but event
scaling is similar to exponential. However, when looking at the values them-
selves, we see the benefit of using an event-based system. A sparser system can
simulate a year over 4 minutes, and a denser system can simulate it over 29
minutes. It is to note that a dense system has 37 nodes and a sparse has 17, so
there is a significant time increase when increasing the node count. However,
this is still a lot of time saved when trying to evaluate certain numbers over
long periods, or ensuring that the protocol seems to operate as expected.

It is important to note that bugs in hardware and underlying software such as
operating systems may happen, and small implementation errors may occur.
This kind of information can only be obtained by actually implementing and
deploying the system in the wild, which is one of the downsides of simula-
tion.

7.5 Effect of being an Intermediary Path Node

In the dense configuration, some nodes ends up being a part of the path for
multiple edge nodes. To see what effect this has, the nodes with id 18 and 15
can be compared. Node 18 is an intermediary for three other nodes, whereas
node 15 is connected directly to the relay. By looking at the resulting file for
a run, we can get the amount of messages each node has sent and received,
although this is not presented part of the results in the previous chapter. Node
18 has sent 99 messages and received 111, and node 15 has sent 27 and received
30 over a 24-hour period. These numbers make sense as it sends out 24 data
messages and rebroadcasts 3 election messages while also receiving it from 10
other nodes in range.

Looking at the energy levels, node 15 spent 588.113 J total and node 18 spent
588.416 total. Both spent 588 being idle, as such there is only a difference of
about 0.3 J. Node 18 spent 0.011 J on receiving 111 messages and 0.4 J on
sending 99 messages. Node 15 spent 0.0029 J on receiving 30 messages and 0.11
J on sending 27 messages. This is a difference of about 0.17% and is essentially
negligible with the current energy model, which further supports the point that
the goal of minimizing messages is not an important focus. The total energy
difference between the nodes is about 0.05%. This difference stays the same
for both 720 and 8760 hours of simulated time as well.

7.6 dead paths 51

7.6 Dead Paths

One of the major problems with the current implementation is that there is no
fail-safe in how it handles the routing. The setup phase is only run once at the
very start of a node’s lifetime, and there are no recovery options. For example,
if an intermediate node dies it does not try to rebuild the path, and any of the
alternate paths it has seen are already discarded. This essentially means that
each path has a single point of failure, multiple nodes will be affected, and a
significant loss of sensor data may occur. It also means that it will suffer from
the same problems as a sparse system, where it essentially only has a single
path despite being a part of a dense system with many nodes close by.

Additionally, the system does not use acknowledgements, as it assumes radio
signals will always reach its target if in range. Therefore, a node has no way
of knowing if any of the nodes in its path has stopped working. Furthermore,
each node has chosen an individual path, so these acknowledgements would
need to be propagated to the sending node. This is a problem specific to this
approach, as it will continue to try and send messages even if nodes further
in its path are dead. This problem could be circumvented by trying to rebuild
paths through neighboring nodes. However, this is a problem because it does
not necessarily know if that node can reach a relay node.

7.7 The problem with creating all events before
running the queue

The current implementation of the simulator fills up the event queue before
execution. However, there are a few obvious problems with this approach. The
first problem is having to split up the setup phase and the operation phase
into two separate executions of the event queue. As mentioned earlier, the
current implementation took inspiration from ESDS[22] in how it allows a user
to define a node’s behavior. ESDS evaluates this function during run time and
inserts events accordingly. It prevents a premature exit by defining a set of
restrictions to ensure that each node completes before the event queue is empty.
The current implementation is a result of trying to circumvent the complexity
needed for such an approach, and this problem is a byproduct of that.

The second problem is related to what you can test with the system. The
current implementation makes it harder to run a simulation until a node
dies. For example, LEACH[6] provides results showing the amount of rounds
completed until the first node is out of energy. The current implementation
has no way of implementing this, as the exit condition cannot be stated in the

52 chapter 7 discussion

node’s behavior. Instead, this has to be done in the simulator or system itself
by evaluating a node’s energy every time an event is executed.

7.8 System and Simulator Coupling

Related to this is the problem that the simulator is too specialized, meaning it
is highly coupled with the implemented system on top. The implementation is
completely tailored around the system. This is not necessarily a bad thing in
itself, but testing other solutions becomes hard, if not impossible. The current
routing algorithm in the system is based on actions a node does when receiving
a message. This makes it hard to test something like a mesh network, as it
would require a significant rewrite of both system and simulator logic to allow
for this. This is under the assumption that the network class is deemed as part
of the simulator and not the system. While I allude to this being a problem,
it might also be an optimal approach. It might just need a very specifically
defined API for each component and what is expected to happen whenever any
parts of this API is called.

7.9 Why simulating the Arctic is hard

The problems discussed in the sections above are part of the reason why
simulating a system in the Arctic Tundra is so hard. First is what abstraction
level to approach the problem from. Certain assumptions have to bemade, and a
choice must be taken for how fine-grained elements such as networking is going
to be. Then the system itself has to be designed. Some of the approaches are
harder to implement on top of certain simulators than others, if not impossible.
This is due to each simulator having to make these assumptions and target
certain abstraction levels. As an example, NS3 and OMNeT++ are both packet
level simulators with a focus on networking. Simpy on the other hand, is a
completely generalized simulator which can be utilized for many other things
requiring discrete event simulation. You have to utilize its resource abstractions
to create functionality such as broadcasting between nodes.

7.10 Asyncio

A major implementation component that can be criticized is the use of Asyncio.
The only part of the system actually utilizing it is the event loop and the priority
queue. However, the priority queue is implemented on top of the standard

7.11 lowest length vs fewest hops 53

library heapq. There is no need for asynchronous or threaded programming in
this implementation as each node does not act as its own mailbox, but instead
is just state in memory which is changed as events are executed. Therefore
each node does not need its own thread as the event itself executes the action,
and the timestamps in the queue drives the simulation forward, so there is no
need to wait for other nodes to finish operating.

7.11 Lowest length vs fewest hops

This system always tries to choose the shortest path in terms of fewest hops
between nodes. However, this does not necessarily mean it travels the shortest
distance. For example, a node could choose a path where the next node is
100m away as it only sees one node in the path, instead of a node which is 50
meters away with a single hop in between. To see which of these approaches
works best, we can compare how much energy is expended when a message is
sent 100 meters at once versus 100 meters with one or two hops.

Three scenarios are defined: 1x send for 100m and 1x receive, 2x send for 50m
and 2x receive, and 3x send for 33m and 3x receive. By plotting these values
into the energy model described in chapter 5 (Data Gathering System), we get
the following values; 0.0022 J for one send and receive traveling 100m, 0.0014
for two sends and receives traveling 50m each, and 0.00116 J for three sends
and receives traveling 33m each.

This shows that it is actually more beneficial energy with the current model
to focus on traveling a shorter distance instead of focusing on fewer messages
being sent. Figure 7.5 shows that there is an exponential increase in energy
costs, meaning that an increase in range will always have an even bigger
increase in energy costs. Additionally, receiving messages is quite cheap, which
can be seen in the examples where even low ranges such as 33 meters can save
energy.

54 chapter 7 discussion

0 100 200 300 400 500
Meters

0.00

0.01

0.02

0.03

0.04

0.05
Jo

ul
e

Figure 7.5: Energy scaling for sending messages over a distance.

7.12 Hardware evolution

When designing this system, a big assumption was made where radios were
assumed to have limited range, and a lot of the inspiration was taken from
LEACH[6]. However, LEACH is a paper from the year 2000, and massive leaps
has been made within radio hardware. An example of this is LoRa radios. While
the actual range is very reliant on the environment, it is assumed to be able to
reach a few kilometers in urban areas, and even longer in rural areas.

This could be very interesting to try and utilize in the Arctic Tundra. This
means that utilizing algorithms such as LEACH or any of the newer variations
could be a real possibility within cluster in this system. It eliminates the need
for multi-hop routing and allows for single hop and direct protocols to be
utilized. One of the big pros of this is that these algorithms moves complexity
away from routing.

Another set of hardware which could be interesting to test out is using micro-
controllers operating on the ZigBee standard[23]. It is a networking standard

7.13 node placement 55

aimed at low power devices which utilizes mesh networking to ensure reliability.
Perhaps comparing these could be interesting.

7.13 Node Placement

It is important to note that this thesis and implementation only operates in a
single 2D plane along an imaginary ground. However, real nodes also operate in
a second plane, including height. This introduces the challenges of some nodes
potentially being underground, in ditches, or on top of mountains. Additionally,
there might be "radio shadows", which are small zones where the signal might
not reach. An example of this is often when a sensor is behind a dense rock,
or covered by bushes and trees. These are problems this thesis has ignored,
and despite new hardware being better, these problems might still be very
relevant. Therefore, research on multi-hop routing in this context is still very
important. Perhaps a combination of multi-hop and single-hop routing is one
of the options to solve this, where it tries direct communication first if possible,
and then falls back on forwarding through other nodes if not.

8
Future Work
This chapter discusses some of the future work can be done. It first presents
some research paths, before mentioning some implementation improvements
for the system.

8.1 Mesh Network

The discussion section has already covered this to an extent, but one of the
possible ways forward is to start exploring systems utilizing mesh networks.
They are one of the better ways to increase network size and allow for commu-
nication between nodes not in range of each other. One of the important areas
to explore is the energy consumption of nodes and looking for bottlenecks
where some nodes might be a massive hinder for the system.

8.2 Energy Models

This thesis chooses an energy model which is a simple combination between
two proposed models from other research papers. A direction to take both this
thesis or perhaps other research in general is to look at various energy models
and compare it to actual documented energy consumption. Additionally, the
low temperatures in the Arctic Tundra might have a significant effect on battery

57

58 chapter 8 future work

lifetime and this could be important to include in the model itself. Therefore,
spending more time looking into various models is important as it will lead to
more accurate results.

8.3 Hardware

One of the assumptions this thesis might have gotten wrong from the start is
the assumptions about hardware. Radios or alternate communication options
have seen large improvements, which is not apparent in research papers from
20 years ago. Therefore, even in the Arctic, the assumptions of nodes being able
to reach all other nodes could be viable. Testing out algorithms such as LEACH
or PEGASIS is an interesting approach to take for the Arctic itself. However,
this may only be true inside clusters. Some form of stronger communication
device might be required to communicate between clusters and the base station,
similar to the approach of LEDHE-WSN[18].

8.4 Implementation Improvements

There are a few improvements which can be done to this thesis if seen from
the lens of a software engineer. The first one is to replace the use of unique
ids with a form of sequence numbers instead. The reasoning for this is that a
unique id might end up being such a large integer that its size ends up being
a significant part of the message header, where it might even be bigger than
the payload. Utilizing sequence numbers will require tackling a new set of
problems. One of these is ensuring messages are dropped, but this could be
handles by utilizing hop-count and ensuring a message only has a limited travel
time. Another option is to combine the node id with a message count. This will
work in the short term for systems sending fewer messages, but it might end
up problematic in networks with massive amounts of nodes or very long life
times.

Another part that can be improved is to better define the APIs. For example,
what kind of options should the network class expose to a node, and how
does a node register in the network. This means closely defining the behavior
which a node expects. One of the limitations in this implementation is that it is
fairly coupled and doesn’t allow for easy testing of alternate implementations.
The current network class exposes a send and broadcast API, but should also
include a register function.

This can also be included for the node itself. This is something that ESDS[22]

8.4 implementation improvements 59

does well in its paper. A node has a very specific API it can utilize, which is
presented to a user. The system in this thesis does not expose APIs with this in
mind, and as such it might be confusing for a user to change the behavior of a
node. This is in addition to the two phases having to be executed separately,
so the behavior has to be defined twice.

Therefore, another improvement which can be done is to solve the problem
of the event queue. This might require an approach more similar to ESDS
where nodes are evaluated in real time and each thread fills the event queue
and waits. Threading is generally considered a heavy operation, so it could be
interesting to try and do this with asyncio instead by utilizing async/await and
yielding control of the main thread.

9
Conclusion
This thesis has presented the design for a data gathering system which aims
to tackle some of the networking challenges that wireless sensor network
algorithms face in the Arctic. Additionally, challenges with simulating such
systems has been explored, which resulted in building an event-based simulator
to study the proposed design. The main challenge the system aims to overcome
is nodes having limited range and being unable to form direct connections
to all other nodes. Some assumptions have to be made; nodes are always
synchronized, and can reach any other node through forwarding. The complete
architecture contains a base station and multiple clusters, but due to time
constraints, this thesis only focuses on the internals of a single cluster.

The design aims to minimize messages due to energy consumption and con-
strained networks, and therefore does not ping other nodes. This causes each
node to have a very limited view of the network. Two types of nodes are
defined, a normal node which gathers data, and a relay node which aims to
communicate with a base station. Two phases are defined; a setup phase where
relays broadcast an election message to inform other nodes of its presence,
and a main phase where normal nodes send their data to the relays. Paths
are formed in the setup phase and are a part of the data messages to help
each node forward correctly, eventually causing sensor data to reach relay
nodes.

Two experiments were run, one to evaluate the energy consumption of the
system, and one to evaluate the scalability of the simulator. The results found

61

62 chapter 9 conclusion

that idle up-time consumes the most energy, and messages are only a small part
of the total consumption. This means that more complex routing protocols can
be utilized. Specifically for dense systems, an approach using mesh networks
seem appropriate. On the other hand, the proposed system is deemed to best
fit sparser systems where nodes do not have many, if any, alternate paths.
Additionally, the scalability results showcase that there is a non-linear increase
in time spent compared to hours simulated, but it doesn’t compare to any
specific model. Event scaling on the other hand is similar to an exponential
increase, which makes sense due to how the experiment is run.

To summarize, this thesis has contributed with the design of a data gathering
system, as well as implementing it on top of an event-based simulator to study
the proposed system. A discussion around the results, the suitability of the
system, and future approaches has also been featured.

Bibliography
[1] Michael J. Murphy et al. “Experiences Building and Deploying Wireless

SensorNodes for the Arctic Tundra.” In: 2021 IEEE/ACM 21st International
Symposium on Cluster, Cloud and Internet Computing (CCGrid). 2021,
pp. 376–385. doi: 10.1109/CCGrid51090.2021.00047.

[2] Norway (except Svalbard). https://eu-interact.org/norway-except-
svalbard/. (Accessed on 2024-05-28).

[3] Svalbard, Norway. https://eu-interact.org/svalbard-norway/. (Ac-
cessed on 2024-05-28).

[4] Distributed Arctic Observatory. https://en.uit.no/project/dao. (Ac-
cessed on 2024-04-09).

[5] Climate-ecological Observatory for Arctic Tundra. https : / / coat . no/.
(Accessed on 2024-04-09).

[6] W.R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. “Energy-
efficient communication protocol for wireless microsensor networks.”
In: Proceedings of the 33rd Annual Hawaii International Conference on
System Sciences. 2000, 10 pp. vol.2-. doi: 10.1109/HICSS.2000.926982.

[7] ns-3 Network Simulator. https://www.nsnam.org/. (Accessed on 2024-
05-06).

[8] OMNeT++ Discrete Event Simulator. https://omnetpp.org/. (Accessed
on 2024-05-06).

[9] Simpy Discrete Event Simulation for Python. https://simpy.readthedocs.
io/en/latest/index.html. (Accessed on 2024-05-06).

[10] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. “Wireless sensor
network survey.” In: Computer Networks 52.12 (2008), pp. 2292–2330.
issn: 1389-1286. doi: https://doi.org/10.1016/j.comnet.2008.04.
002. url: https://www.sciencedirect.com/science/article/pii/
S1389128608001254.

[11] Douglas S. J. De Couto et al. “A high-throughput path metric for multi-
hop wireless routing.” In: Proceedings of the 9th Annual International
Conference on Mobile Computing and Networking. MobiCom ’03. San
Diego, CA, USA: Association for Computing Machinery, 2003, pp. 134–
146. isbn: 1581137532. doi: 10 . 1145 / 938985 . 939000. url: https :
//doi-org.mime.uit.no/10.1145/938985.939000.

63

https://doi.org/10.1109/CCGrid51090.2021.00047
https://eu-interact.org/norway-except-svalbard/
https://eu-interact.org/norway-except-svalbard/
https://eu-interact.org/svalbard-norway/
https://en.uit.no/project/dao
https://coat.no/
https://doi.org/10.1109/HICSS.2000.926982
https://www.nsnam.org/
https://omnetpp.org/
https://simpy.readthedocs.io/en/latest/index.html
https://simpy.readthedocs.io/en/latest/index.html
https://doi.org/https://doi.org/10.1016/j.comnet.2008.04.002
https://doi.org/https://doi.org/10.1016/j.comnet.2008.04.002
https://www.sciencedirect.com/science/article/pii/S1389128608001254
https://www.sciencedirect.com/science/article/pii/S1389128608001254
https://doi.org/10.1145/938985.939000
https://doi-org.mime.uit.no/10.1145/938985.939000
https://doi-org.mime.uit.no/10.1145/938985.939000

64 BIBLIOGRAPHY

[12] Ian F. Akyildiz, Xudong Wang, and Weilin Wang. “Wireless mesh net-
works: a survey.” In: Computer Networks 47.4 (2005), pp. 445–487. issn:
1389-1286. doi: https : / / doi . org / 10 . 1016 / j . comnet . 2004 . 12 .
001. url: https://www.sciencedirect.com/science/article/pii/
S1389128604003457.

[13] Ted Faison. Event-Based Programming. Springer, 2006.
[14] Sasu Tarkoma. “Publish/subscribe systems: design and principles.” In:

John Wiley & Sons, 2012. Chap. 1.
[15] Frank Dabek et al. “Event-driven programming for robust software.” In:

Proceedings of the 10thWorkshop on ACM SIGOPS EuropeanWorkshop. EW
10. Saint-Emilion, France: Association for Computing Machinery, 2002,
pp. 186–189. isbn: 9781450378062. doi: 10.1145/1133373.1133410.
url: https://doi-org.mime.uit.no/10.1145/1133373.1133410.

[16] Async IO in Python: A Complete Walkthrough. (Accessed on 2024-05-27).
[17] Wafa Akkari, Badia Bouhdid, and Abdelfettah Belghith. “LEATCH: Low

Energy Adaptive Tier Clustering Hierarchy.” In: Procedia Computer Sci-
ence 52 (2015). The 6th International Conference on Ambient Systems,
Networks and Technologies (ANT-2015), the 5th International Conference
on Sustainable Energy Information Technology (SEIT-2015), pp. 365–372.
issn: 1877-0509. doi: https://doi.org/10.1016/j.procs.2015.05.
110. url: https://www.sciencedirect.com/science/article/pii/
S1877050915009102.

[18] Mudathir F. S. Yagoub et al. “Lightweight and Efficient Dynamic Clus-
ter Head Election Routing Protocol for Wireless Sensor Networks.” In:
Sensors 21.15 (2021). issn: 1424-8220. doi: 10.3390/s21155206. url:
https://www.mdpi.com/1424-8220/21/15/5206.

[19] S. Lindsey and C.S. Raghavendra. “PEGASIS: Power-efficient gathering in
sensor information systems.” In: Proceedings, IEEE Aerospace Conference.
Vol. 3. 2002, pp. 3–3. doi: 10.1109/AERO.2002.1035242.

[20] Arati Manjeshwar and Dharma P Agrawal. “TEEN: ARouting Protocol
for Enhanced Efficiency in Wireless Sensor Networks.” In: ipdps. Vol. 1.
2001. 2001, p. 189.

[21] Sigurd Karlstad. “Clock Synchronization between Observational Units
in the Arctic Tundra.” MA thesis. UiT Norges arktiske universitet, 2021.

[22] Loic Guegan and Issam Raïs. “Simulation of Distributed Systems in
Constrained Environments Using ESDS: the Arctic Tundra Case.” In:
2023 IEEE International Conferences on Internet of Things (iThings) and
IEEE Green Computing & Communications (GreenCom) and IEEE Cyber,
Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData)
and IEEE Congress on Cybermatics (Cybermatics). 2023, pp. 547–554. doi:
10 . 1109 / iThings - GreenCom - CPSCom - SmartData - Cybermatics60724 .
2023.00104.

[23] Drew Gislason. Zigbee wireless networking. Newnes, 2008.

https://doi.org/https://doi.org/10.1016/j.comnet.2004.12.001
https://doi.org/https://doi.org/10.1016/j.comnet.2004.12.001
https://www.sciencedirect.com/science/article/pii/S1389128604003457
https://www.sciencedirect.com/science/article/pii/S1389128604003457
https://doi.org/10.1145/1133373.1133410
https://doi-org.mime.uit.no/10.1145/1133373.1133410
https://doi.org/https://doi.org/10.1016/j.procs.2015.05.110
https://doi.org/https://doi.org/10.1016/j.procs.2015.05.110
https://www.sciencedirect.com/science/article/pii/S1877050915009102
https://www.sciencedirect.com/science/article/pii/S1877050915009102
https://doi.org/10.3390/s21155206
https://www.mdpi.com/1424-8220/21/15/5206
https://doi.org/10.1109/AERO.2002.1035242
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics60724.2023.00104
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics60724.2023.00104

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Thesis Statement
	1.2 Scope and Limitations
	1.3 Contributions
	1.4 Outline

	2 Background
	2.1 Wireless Sensor Network
	2.2 Network Routing Types
	2.3 Mesh Networks
	2.4 Event-based Programming
	2.5 Asyncio

	3 Related Work
	3.1 LEACH
	3.2 PEGASIS
	3.3 TEEN
	3.4 Clock Synchronization between Observational Units in the Arctic Tundra
	3.5 Simulators

	4 Simulator
	4.1 Prototyping
	4.2 Existing Simulators
	4.3 Simulator Design
	4.4 Programming Language
	4.5 Event Implementation
	4.6 Event Queue Implementation
	4.7 Configuration

	5 Data Gathering System
	5.1 LEACH as Inspiration
	5.2 Assumptions when Designing the System
	5.3 System Architecture
	5.3.1 Hardware Assumptions
	5.3.2 Topology
	5.3.3 Node Isolation
	5.3.4 Routing
	5.3.5 Node Life-cycle

	5.4 Design
	5.4.1 Message Handling
	5.4.2 Energy Model

	5.5 Implementation
	5.5.1 Network and Node Grid

	5.6 Events
	5.6.1 Energy calculations
	5.6.2 Messages
	5.6.3 Phase simulation
	5.6.4 Node Runtime Behaviour
	5.6.5 Configuration

	5.7 Version Numbers

	6 Evaluation
	6.1 Environment
	6.2 Experiment 1: Energy Expended in real systems
	6.2.1 Methodology
	6.2.2 Goal

	6.3 Experiment 2: Simulator Scalability
	6.3.1 Methodology
	6.3.2 Goal

	6.4 Results
	6.4.1 Experiment 1: Energy expended in real systems
	6.4.2 Experiment 2: Simulator Scaling

	7 Discussion
	7.1 Message Energy Cost
	7.2 Mesh Networking
	7.3 Network setup fitting the current system
	7.4 Simulator scaling
	7.5 Effect of being an Intermediary Path Node
	7.6 Dead Paths
	7.7 The problem with creating all events before running the queue
	7.8 System and Simulator Coupling
	7.9 Why simulating the Arctic is hard
	7.10 Asyncio
	7.11 Lowest length vs fewest hops
	7.12 Hardware evolution
	7.13 Node Placement

	8 Future Work
	8.1 Mesh Network
	8.2 Energy Models
	8.3 Hardware
	8.4 Implementation Improvements

	9 Conclusion

