
Faculty of Science and Technology
Department of Computer Science

Fault-Tolerant Distributed Declarative Programs

Moritz Jörg
Master’s thesis in Computer Science INF-3981 — June 2024

Supervisors

Main supervisor: Weihai Yu UiT The Arctic University of Norway,
Faculty of Science and Technology,
Department of Computer Science

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2024 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

“A distributed system is one in which the failure of a computer you didn’t even
know existed can render your own computer unusable.”

–Leslie Lamport

“One of my most productive days was throwing away 1000 lines of code.”
–Ken Thompson

“The problem with object-oriented languages is they’ve got all this implicit
environment that they carry around with them. You wanted a banana but
what you got was a gorilla holding the banana and the entire jungle.”

–Joe Armstrong

Abstract
In our increasingly interconnected digital landscape, the constant generation
and consumption of data on various computing devices present challenges for
ensuring constant accessibility, particularly in intermittent network scenarios.
The emerging focus on distributed systems is aimed at not only managing sub-
stantial data volumes but also guaranteeing storage on devices for low latency
and high availability. A paradigm known as local-first software prioritize the
storage of data on end-user devices as opposed to relying solely on centralized
cloud services.

The intersection of Conflict-free Replicated Data Type (crdt)s and Datalog,
exemplified by Consistency as Logical Monotonicity (calm), establishes that
monotonic logic programs guarantee eventual consistency without the need for
coordination. This synergy enables robust reasoning about data consistency and
parallelism, paving the way for the Partitioned and Replicated Asynchronous
Datalog (prad) runtime. Transforming sequential Datalog programs into
distributed one, prad ensures that the distributed program meets the specified
availability, parallel, and fault-tolerance requirements. To achieve this, prad
augments Datalog programs with semiring data provenance and equips the
provenance expressions with a crdt.

One limitation of the current prad runtime is that it lacks a recovery mech-
anism. In the event that a site going offline or crashing, the data on that site
is lost and the system’s fault-tolerance is compromised. To address this issue,
a repair mechanism can be implemented to restore or replicate the lost site.
This comes with the added benefit of increasing the systems fault-tolerance
and availability.

The main contribution of this thesis is the development of a novel approach to
repairing a prad program at runtime. The repair mechanism is designed to
restore an offline site by leveraging our Lightweight Commit (lwc)s with the
help of the Causal Length Set (Cl-Set) crdt. It is draws inspiration from the
Git and Pijul distributed version control systems, and applying their principles
to the prad runtime. The repair mechanism is designed to be lightweight and
efficient, ensuring that the system can repair failures without compromising

iv abstract

performance. Our approach differs from previous work in that we do not
rely on vector clocks or sequence numbers. Instead, we utilize the Cl-Set
crdt to accommodate messages that may be delivered out of order or are
duplicated.

The approach is evaluated through a series of experiments, in which the per-
formance of the repair mechanism is compared to that of the existing prad
runtime and multiple alternative approaches. The results demonstrate that the
repair mechanism is both efficient and lightweight, and that it can restore a
site in a reasonable amount of time, thereby confirming the viability of our
approach for edge devices.

Acknowledgements
I’d like to thankmy supervisor,Weihai Yu, for his guidance and support through-
out this process. I’m grateful to you for your enthusiasm and encouragement.
Without it, I might have chosen a less daunting topic for my thesis. Thank you
for giving me the chance to work on this thesis.

I want to thank my classmates for their friendship and support throughout the
process. We have had many discussions about the thesis, and your feedback
has been invaluable. Special thanks to Marius, Sondre and Øyvind for always
asking questions and challenging my assumptions. Thanks to my coworkers for
providing much-needed distractions and support.

Finally, I want to thank my family for their unwavering support and encourage-
ment. I couldn’t have done it without you. Thank you for always being there
for me.

Contents
Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xiii

List of Listings xv

List of Definitions xvii

List of Abbreviations xix

1 Introduction 1
1.1 Problem definition . 2
1.2 Scope, limitations and assumptions 3
1.3 Contributions . 3
1.4 Context . 4
1.5 Methodology . 4
1.6 Thesis Outline . 6

2 Theoretical Framework 7
2.1 Algebraic Structures . 7

2.1.1 Lattice . 7
2.1.2 Join Decomposition 8
2.1.3 Provenance Semirings 9

2.2 Local-first Software . 10
2.3 Consistency . 10
2.4 CRDT . 11

2.4.1 Operation-based CRDT 11
2.4.2 State-based CRDT 12
2.4.3 Delta-state CRDT 13
2.4.4 Grow-Only Counter 13

vii

viii contents

2.4.5 LWW-Register . 14
2.4.6 Grow-Only Set . 15
2.4.7 CL-Set . 16

2.5 Datalog . 17
2.5.1 Logic Programming 17
2.5.2 Syntax . 18
2.5.3 Semantics . 19
2.5.4 CALM . 20
2.5.5 Datalog with Negation 21
2.5.6 Stratified Datalog 21
2.5.7 Evaluation Strategies 22

2.6 Fault-Tolerance . 22
2.6.1 Failure Models . 23
2.6.2 Approaches to Fault Tolerance 24

3 Design 25
3.1 PRAD Overview . 25

3.1.1 Architecture . 28
3.1.2 Datalog𝑝 . 32
3.1.3 Distribution Policies for Program Execution 34
3.1.4 Coordination-Free Replication and Eventual Consistency 35
3.1.5 Replication and Parallel requirements 36

3.2 Communication Strategies 36
3.3 Fault-Tolerance . 39

3.3.1 System model . 40
3.4 Replication & Restoration 40

3.4.1 Basic Replication . 40
3.4.2 Stateless Repair . 41
3.4.3 Lightweight Commits 42

3.5 Lowering recovery overhead 44
3.5.1 Choosing the time to trim 44

4 Software Engineering Methods 47
4.1 Agile . 47
4.2 Test-Driven Development 48
4.3 DevOps . 49

4.3.1 Collaboration . 49
4.3.2 Automation . 49
4.3.3 Monitoring . 49

5 Implementation 51
5.1 Elixir Background . 51

5.1.1 BEAM & OTP . 52
5.2 PRAD Extension for Failure Handling 53

contents ix

5.2.1 Basic Replication . 55
5.2.2 Stateless Restore . 56
5.2.3 Lightweight Commit Generation 57
5.2.4 Repair API Usage . 58

5.3 Trimming Algorithm . 59

6 Experiments 61
6.1 Experimental Setup . 61
6.2 Repair Time . 62
6.3 Repair using Cl-Map . 69
6.4 Lightweight Commit Cost 70
6.5 Impact of Delta Trimming 71

7 Discussion & Future Work 77
7.1 Challenges during Development 77

7.1.1 Invisible or Missing Deltas 77
7.1.2 Communication Overhead 79
7.1.3 Upstream or Peer for Repair 80
7.1.4 Latency for Local Operations 80

7.2 Future Work . 80
7.2.1 Storage Options . 81
7.2.2 Asynchronous vs Synchronous messages 82
7.2.3 System Structure . 82
7.2.4 Composite Cl-Map 84
7.2.5 BEAM GC interference 84

8 Conclusion 85
8.1 Related Work . 85

8.1.1 Fault Tolerance Approaches 85
8.1.2 Checkpoints and State Reconciliation 86

8.2 Concluding Remarks . 87

List of Figures
3.1 PRAD Architecture. 29
3.2 Example PRAD Site. 31
3.3 Example Edge facts. 33
3.4 Communication Strategy 1-1. 37
3.5 Communication Strategy N-N. 38

6.1 Time to repair using Replication. 63
6.2 Memory usage for repair using Replication. 64
6.3 State size for repair using Replication. 65
6.4 Active Processes with Replication. 66
6.5 Memory Usage with Replication. 66
6.6 Garbage Collection with Replication. 67
6.7 Time to repair using Restoration and Replication. 68
6.8 Time to repair using Replication (No delay). 68
6.9 Time to repair using Stateless Restore (Project). 69
6.10 Time to repair using Stateless Restore (Join). 70
6.11 Time to repair using LWC (Project). 71
6.12 Trim versus no trim (Full Replication). 72
6.13 Time to trim (Full). 73
6.14 Time to trim (Full). 74
6.15 Time to trim (Partial). 75

7.1 GenServer Communication Example. 83

xi

List of Tables
3.1 Relations in the database schema. 26
3.2 Relations at each site. 26

xiii

List of Listings
2.1 Example implementation of a Grow-Only counter. 14
2.2 Example implementation of a LWW register. 15
2.3 Example implementation of a Grow-Only set. 16
2.4 example implementation of a Cl-Set crdt. 17
2.5 Example query with negation. 21

3.1 Rule 1 Edge . 26
3.2 Rule 2 Path . 26
3.3 Rule 3 Query for Foo . 26
3.4 Site Configuration Rules (* denotes a wildcard) 27
3.5 Site Configuration Rules for Home Devices 27
3.6 Example Rule Q . 36

5.1 Example Datalog Program 54
5.2 Example of complete Site 1 state. 54
5.3 Example of complete Site 3 state. 55
5.4 Minimal example of a basic repair using replication. 56
5.5 Example of the Replication and Restoration APIs 58

6.1 Project Datalog Program . 62
6.2 Join Datalog Program. 62

xv

List of Definitions
2.1 A poset P is a set together with a binary relation ≤ that satis-

fies, for all a, b, c ∈ P: (i) a ≤ a (reflexivity), (ii) if a ≤ b and
b ≤ a then a = b (antisymmetry), (iii) if a ≤ b and b ≤ c then
a ≤ c (transitivity). 7

2.2 A join-semilattice is a partially ordered set where every subset
has a LUB [9] . 8

2.3 A lattice is distributive if the operations ⊔ and ⊓ distribute
over each other. That is: 𝑥 ⊓ (𝑦 ⊔ 𝑧) = 𝑥 ⊔ 𝑦 ⊓ 𝑥 ⊔ 𝑧. 8

2.4 A lattice state 𝑥 ∈ L is join-irreducible if it cannot be written
as the join of any finite set of states, except for itself. In other
words an elementary state. Written as J (L) 8

2.5 A join decomposition of a lattice state 𝑥 ∈ L is a set of join-
irreducible states 𝐷 such that 𝐷 ⊆ J (L). 8

2.6 A monotonic join semilattice is a join semilattice that has
the following properties: (i) Merging two states computes the
LUB of both states i.e. 𝑠 ·𝑚 (𝑠′) = 𝑠 ⊔𝑠′. (ii) States is inflation-
ary across updates. 𝑠 ≤ 𝑠 · 𝑢. 8

2.7 A distributed system is eventually consistent if it satisfies the
following properties: Eventual delivery: If one replica has re-
ceived an update, then it will be eventually delivered to all
replicas. Convergence: Replicas that have received the same
updates will eventually reach an identical state. Termination:
All method executions terminate. 10

2.8 A distributed system has strong eventual consistency[15] if it
is eventually consistent, and if all replicas have received the
same updates, they will have the same state (Strong conver-
gence). 11

2.9 A program has a consistent, coordination-free distributed im-
plementation if and only if it is monotonic. 11

xvii

List of Abbreviations
api Application Programming Interface

beam Bogdan/Björn’s Erlang Abstract Machine

calm Consistency as Logical Monotonicity

cap Consistency, Availability, Partition Tolerance

cd Continuous Deployment

ci Continuous Integration

crdt Conflict-free Replicated Data Type

devops Development and Operations

edb Extensional Database

erts Erlang Run-Time System

ets Erlang Term Storage

glb Greatest Lower Bound

idb Intensional Database

json JavaScript Object Notation

lub Least Upper Bound

lwc Lightweight Commit

ods Open Distributed Systems

xix

xx list of abbreviat ions

otp Open Telecom Platform

prad Partitioned and Replicated Asynchronous Datalog

sec Strong Eventual Consistency

sql Structured Query Language

tdd Test-Driven Development

uit University of Tromsø – The Arctic University of Norway

vcs Version Control System

1
Introduction
We continuously generate and consume a vast amount of data on our com-
puting devices, which can be both online or offline at times. However, certain
applications require the data to be accessible at all times, even when the devices
are intermittently disconnected from the network. This has led to an increased
focus on designing distributed systems that not only handle large volumes of
data, but also provide low latency and high availability in the face of network
partitions and intermittent connectivity. With the ability to recover at runtime
without interruption ensures minimal loss of performance, correctness, and
availability.

Local-first software [1] is a method of designing software that prioritizes stor-
ing data on end-user devices over relying solely on centralized cloud-based
services. The primary objective is to guarantee offline functionality, and seam-
less synchronization upon reconnection, even in the event of network failures.
This leads us to a fundamental problem in distributed systems, known as the
Consistency, Availability, Partition Tolerance (cap) theorem [2].

The cap theorem establishes that a distributed system is unable to simulta-
neously guarantee the three desired properties: consistency, availability, and
partition tolerance. Consistency is defined as the condition where all nodes
observe the same data at the same time. Availability signifies a guarantee
that every request receives a response indicating whether it was successful or
unsuccessful. In contrast, partition tolerance implies that the system continues
to operate despite arbitrary message loss or failure of a portion of the system.

1

2 chapter 1 introduction

In adopting a local-first approach, we are prepared to forego strong consistency
in favor of availability and partition tolerance. Conversely, a weak or eventual
consistency model may be more appropriate in certain circumstances.

To achieve eventual consistency a well-established technique is to use Conflict-
free Replicated Data Type (crdt). crdt’s are data structures that allow
multiple replicas to be updated and merged without coordination between
the replicas. This ensures that the replicas converge towards a common state,
when the same set of updates has been applied (strong eventual consistency).
These properties guarantee the availability and eventual consistency of data
across a variety of devices.

The management of data is typically carried out by databases’ management
systems, which are accessed through declarative data manipulation and query
languages such as Structured Query Language (sql) and Datalog. The connec-
tion between crdt and Datalog is exemplified by the concept of Consistency
as Logical Monotonicity (calm) [3]. This states that monotonic logic programs
are guaranteed to be eventually consistent, without the need for coordination
between nodes. This enables the use Datalog as a query language for crdt’s,
and the reasoning about the consistency of the data.

Elixir is a developing programming language on top of Erlang for systems due
to its inherent support for concurrency and fault-tolerance. In the industry,
companies such as Discord [4] and WhatsApp [5] have adopted the underly-
ing Erlang virtual machine to build highly scalable systems with millions of
users. The lightweight processes and actor model can obviate the necessity for
complex locking mechanisms, with message passing serving as the principal
means of communication between processes.

This makes Elixir an ideal candidate for the exploration of fault-tolerant dis-
tributed systems. It is hypothesized that the extension of Elixir with Partitioned
and Replicated Asynchronous Datalog (prad) will provide a powerful tool for
the construction of resilient and fault-tolerant Datalog programs.

1.1 Problem definition

There is currently work being done at the Open Distributed Systems (ODS)
group at the University of Tromsø – The Arctic University of Norway (uit)
on prad [6], an extension to Datalog, which can turn a conventional Datalog
program into a distributed one, thereby enabling the data to be partitioned and
replicated across multiple sites. The data are always accessible at the devices,
even when they are offline. The programs are eventually consistent. In other

1.2 scope, l imitations and assumptions 3

words, when the devices are connected, the results generated by the distributed
program, will eventually be equivalent to those produced by a non-distributed
Datalog program.

One of the key design goals of prad is to ensure fault tolerance through
replication. In the event that a replica is unavailable, a prad program may
continue to operate, albeit with a reduced replication degree and a diminished
capacity to withstand site-level failures. The current implementation of prad
lacks a recovery mechanism, which means that in the event of site crash, the
data on that site is lost. A potential recovery mechanism should retain minimal
metadata or have a method of garbage collection to prevent the data from
growing indefinitely.

We focus on extending the prad runtime fault-tolerance with a recovery
mechanism that allows sites to recover from failures. The primary goal of this
thesis is to achieve the following stated goal:

The thesis aims to investigate the feasibility of repairing prad pro-
grams at runtime to maintain the fault-tolerance requirements.

1.2 Scope, limitations and assumptions

This thesis focuses on the repair mechanism for the prad runtime, specifically
the restoration of failed sites. The sites are not terminated abruptly, instead they
are programmatically set to a failed state. However, the sites are treated if they
have crashed, and are unreachable. We try to reflect on the possible implications
of our approach, and the potential limitations of our implementation.

We perform a set of simple experiments aimed at evaluating the viability and
the performance of the proposed repair mechanism. The experiments are not
exhaustive, and it should be noted that the results are not generalizable to all
scenarios. The repair mechanism is only evaluated on insertions, but it could
be adapted to accommodate deletions as well.

1.3 Contributions

This thesis is a contribution to the ongoing unpublished work at the Open
Distributed Systems (ods) group on the prad runtime. With the design and
implementation of a repairmechanism for the prad runtime,we aim to provide
a fault-tolerant extension for the prad runtime. Section 3.1 is written with as

4 chapter 1 introduction

part of unpublished work and its inclusion is intended to provide context for
the reader.

The primary contributions of this thesis are as follows:

• An implementation of a repair mechanism for the prad runtime, that
allows sites to restore from failures using replication.

• An implementation of site restoration from upstream or peer sites, uti-
lizing the Causal Length Set crdt and Lightweight Commit (lwc)’s to
more efficiently restore sites.

• Support for both ‘project’ and ‘select’ operations in the repair mechanism,
to ensure that the data is eventually consistent across sites.

• A Delta Trimming mechanism for the prad runtime, that ensures that
metadata is not growing indefinitely.

1.4 Context

This thesis was completed within the context of the ods group at University of
Tromsø – The Arctic University of Norway (uit). The Open Distributed Systems
(ods) group facilitates research in the field of distributed applications of various
kinds,with an emphasis on interoperability and adaptability issues. The group’s
research agenda includes support for next-generation applications, mobility,
composition-based web applications, real-time collaboration and information
exchange. Specific issues include the adaptability, context-awareness, applied
security, privacy, and collaborative editing of these applications.

A recent publication from the ods group related to crdt’s is ‘Toward Repli-
cated and Asynchronous Data Streams for Edge-Cloud Applications’ by Qayyum
and Yu [6]. This paper presents a novel approach to the design of a replicated
and asynchronous data stream system for edge-cloud applications. The system
is based on the principles of crdt’s, and presents some interesting challenges
in terms of fault-tolerance and recovery for the future.

1.5 Methodology

In their article ‘A Framework for the Discipline of Computer Science’ Comer et
al. [7] present an intellectual framework for the field of computer science. This

1.5 methodology 5

was subsequently endorsed and approved by the ACM Education Board.

Computer science and engineering is the systematic study of algorith-
mic processes their theory, analysis, design, efficiency, implementation
and application that describe and transform information.

The final report identifies three distinct paradigms of computer science research:
theory, abstraction, and design and implementation.

• The theoretical paradigm is the examination of the qualities of algo-
rithms and data structures. It is a highly abstract mathematical discipline.
Theory is focused on demonstrating the accuracy of algorithms and
assessing their time and space complexity. The initial step is to charac-
terize the objects of study by defining them. Subsequently, hypotheses
are formed about possible relationships between objects with theorems.
Subsequently, these hypotheses are then subjected to rigorous testing
through proofs to determine whether the relationships are indeed true.
Finally, the results are interpreted.

• The abstraction (modeling) paradigm is grounded in the experimental
scientificmethod,which proposes that scientific advancement develops by
forming hypotheses, creating models and predictions, and subsequently
assessing them through experimentation. Finally, the data is collected
and analyzed to determine the validity of the predictions made were
correct.

• The design paradigm is based on the principle of abstraction, and is
concerned with the development of systems that are capable of solving
real-world problems. The focus of this paradigm is on the creation of
requirements and specifications for a given problem, and evaluating the
design through experimentation. In an iterative process, the design is
refined and improved until the requirements are met, at which point a
specification is produced.

The three paradigms are not mutually exclusive and frequently overlap and
are employed in conjunction with one another. The intertwined nature of the
paradigms makes it challenging to distinguish between them and identify a
single paradigm as the primary driver of a specific research project.

This thesis primarily employs the design paradigm, with some overlap into
the theoretical paradigm. The challenge is to design a repair mechanism
for the prad runtime that is both efficient and fault-tolerant. We state the
requirements for the approach, and employ an iterative process to refine the
design until the requirements are met as closely as possible.

6 chapter 1 introduction

1.6 Thesis Outline

The remainder of this thesis is organized as follows:

Chapter 2: Theoretical Framework provides the necessary background for
understanding the rest of the design and implementation. It covers the domains
of crdt, Consistency, Datalog, Provenance, and Fault-Tolerance.

Chapter 3: Design outlines the design of the repair mechanism and the ac-
companying trimming algorithm. It also provides an overview of the prad
runtime architecture.

Chapter 4: Software Engineering Methods describes the methods and tools
used to explore the problem. It covers the topics of agile and test-driven
development.

Chapter 5: Implementation describes the challenges and solutions encoun-
tered during the implementation of the repair mechanism and trimming algo-
rithm.

Chapter 6: Experiments investigates the solutions proposed in the previous
chapter, and evaluates them through experimentation.

Chapter 7: Discussion & Future Work discusses the results of the evaluation.
It also discusses the challenges of recovering from failures in a distributed
system, and the implications of the results. It also outlines potential future
work and improvements to the system.

Chapter 8: Conclusion concludes the report by summarizing the results
and contributions of the thesis. It also compares the approach to existing
work.

2
Theoretical Framework
This chapter presents the theoretical framework necessary to comprehend the
inner workings of prad. We will begin by introducing the fundamental alge-
braic structures utilized in the thesis, namely p-semirings and join-semilattices.
Subsequently, the concepts of local-first software and the consistency guaran-
tees it can provide will be explained. Moreover, the fundamental principles
of Conflict-free Replicated Data Type (crdt)s and an optimization for state-
based crdts, known as delta-state crdts, are explained. This is followed by
an introduction to the concepts and terminology of Datalog, and finally, the
notion of fault-tolerance in distributed systems.

2.1 Algebraic Structures

We will now proceed to introduce and provide definitions for the algebraic
structures that serves as the foundation of prad.

2.1.1 Lattice

Definition 1. A poset P is a set together with a binary relation ≤ that
satisfies, for all a, b, c ∈ P: (i) a ≤ a (reflexivity), (ii) if a ≤ b and b ≤ a
then a = b (antisymmetry), (iii) if a ≤ b and b ≤ c then a ≤ c (transitivity).

7

8 chapter 2 theoretical framework

Here the relation ≤ is called the partial order. Further a poset (P, ≤) is called
a lattice [8] if every subset of P has a Least Upper Bound (lub) and a Greatest
Lower Bound (glb) with respect to ≤.

Definition 2. A join-semilattice is a partially ordered set where every subset
has a lub [9]

Further a join is defined as the Least Upper Bound (lub) and written as ⊔,
while a meet is defined as the Greatest Lower Bound (glb) and written as
⊓.

It follows that ⊔ is:

• 𝑥 ⊔ 𝑦 = 𝑦 ⊔ 𝑥 (commutativity)

• 𝑥 ⊔ (𝑦 ⊔ 𝑧) = (𝑥 ⊔ 𝑦) ⊔ 𝑧 (associativity)

• 𝑥 ⊔ 𝑥 = 𝑥 (idempotence)

Definition 3. A lattice is distributive if the operations ⊔ and ⊓ distribute
over each other. That is: 𝑥 ⊓ (𝑦 ⊔ 𝑧) = 𝑥 ⊔ 𝑦 ⊓ 𝑥 ⊔ 𝑧.

2.1.2 Join Decomposition

The subsequent step is to define a join-irreducible state

Definition 4. A lattice state 𝑥 ∈ L is join-irreducible if it cannot be written
as the join of any finite set of states, except for itself. In other words an
elementary state. Written as J (L)

With this we can define the join decomposition of a state.

Definition 5. A join decomposition of a lattice state 𝑥 ∈ L is a set of
join-irreducible states 𝐷 such that 𝐷 ⊆ J (L).

Adding to this, we define a monotonic join semilattice.

Definition 6. A monotonic join semilattice is a join semilattice that has
the following properties: (i) Merging two states computes the lub of
both states i.e. 𝑠 ·𝑚 (𝑠′) = 𝑠 ⊔ 𝑠′. (ii) States is inflationary across updates.
𝑠 ≤ 𝑠 · 𝑢.

Finally, assuming eventual delivery and termination, any object that satisfies the

2.1 algebraic structures 9

monotonic join semilattice property has strong eventual consistency [10].

2.1.3 Provenance Semirings

A semiring is an algebraic structure, denoted by the set ⟨𝑆, +, ·, 0, 1⟩, where 𝑆
is a set with two binary operators + and ·, and two elements 0 and 1 in 𝑆 . This
structure must satisfy the following properties:

1. (𝑆, +) is a monoid with identity element 0.

2. (𝑆, ·) is a monoid with identity element 1.

3. Addition is commutative.

4. · left- and right-distributes over +.

5. 0 is the annihilator of ·.

Moreover, a semiring is a commutative-semiring [11] if for all 𝑎, 𝑏 ∈ 𝑆 , 𝑎 · 𝑏 =

𝑏 · 𝑎.

In order to ensure provenance, it is necessary to annotate the facts in a database.
This allows the derivations of facts by values of a commutative semiring to be
tracked. These values get propagated through a query, using the properties of
the semiring to keep track of information as follows:

• + interprets as union of provenance information.

• · interprets as joins of provenance information.

• 0 ∈ 𝑆 are false assertions and 1 ∈ 𝑆 are true assertions.

In the context of provenance, our interest lies in the provenance semiring [6],
which is a commutative semiring with additional properties:

• + and · are idempotent.

• + applies to the empty and infinite sets.

A problem with algebraic semiring operations is that they only offer incomplete
support for negation in Datalog. With the p-semiring prad can express the
minimum representation of dependencies of facts in the database.

10 chapter 2 theoretical framework

2.2 Local-first Software

The concept of Local-first software represents a significant paradigm shift in
the way we think about software. Today the majority of software and services
operate within cloud, with data stored on centralized servers. This results in
the loss of ownership and agency for users, who become dependent on the
service provider. There are no copies of the data stored locally, and the users are
at the mercy of the service provider to keep their data safe and available.

In contrast to traditional software architectures, local-first software, prioritizes
data storage on the end-user devices. This approach involves minimal repli-
cation to the cloud, which is considered a secondary concern. Such software
is identified by a set of ideals, which are as follows: Low latency, Multi-device,
High availability, Secure and Privacy-preserving. As previously discussed by
Kleppmann et al. [1], crdt are the fundamental multi-user data structures
for realizing local-first software. They allow for data to be replicated across
multiple devices, without the need for coordination between the replicas and
with the guarantee of eventual consistency.

2.3 Consistency

This section investigates the concept of consistency in the context of replication
and partitioning in distributed systems. If data objects A and B are replicated
on multiple machines, they are considered consistent if all observers see the
same value for A and B. This strong consistency can also be understood as
linearizability or serializability, which is traditionally solved by either using
consensus algorithms such as Paxos [12] i or the Two-Phase Commit Proto-
col [13]. However, both of these approaches entail a trade-off in terms of
coordination between the replicas, which can significantly impede the system’s
performance, as evidence by the findings of Hellerstein and Alvaro [14].

A weaker form of consistency, such as eventual consistency, allows for replicas
to diverge temporarily. Updates are propagated asynchronously between the
replicas, and when no new updates are submitted, all replicas will eventually
converge to the same value. However, since these updates can be made con-
currently, conflicts arise and a conflict resolution mechanism is needed.

Definition 7. A distributed system is eventually consistent if it satisfies
the following properties: Eventual delivery: If one replica has received an
update, then it will be eventually delivered to all replicas. Convergence:
Replicas that have received the same updates will eventually reach an
identical state. Termination: All method executions terminate.

2.4 crdt 11

If we instead opt for a compromise between strong and eventual consistency,
we can use Strong Eventual Consistency (sec). This guarantees that when two
replicas have received the same set of update, they will have the identical state,
and any conflicts will be resolved coordination-free.

Definition 8. A distributed system has strong eventual consistency[15] if it
is eventually consistent, and if all replicas have received the same updates,
they will have the same state (Strong convergence).

A coordination-free system enables scalability and performance that are not
possible with traditional consistency mechanisms, which slow down computa-
tion [16]. As identified by Hellerstein [17], monotonicity is a key property of
coordination-free systems to establish consistency. This property is covered in
the calm theorem:

Definition 9. A program has a consistent, coordination-free distributed
implementation if and only if it is monotonic.

It originates as a formulation for consistency in distributed logic programs, but
can be applied to crdts to provide efficient and safe query execution [3].

2.4 CRDT

A Conflict-free Replicated Data Type (crdt) is a data abstraction designed
to be replicated across multiple replicas. Each replica is updated and queried
locally, without the need for coordination between the replicas. Updates are
asynchronously gossiped between the replicas and merged when received.
However, replicas can temporarily diverge. crdts guarantee strong eventual
consistency, as defined in 8, ensuring that replicas converge deterministically
and coordination-free to the same state when the same set of updates have
been applied.

Two distinct types of crdts can be identified: state-based (Convergent) and
operation-based (Commutative) CRDTs. In the following sections, we will pro-
vide explanations for both types. Some parts of our explanations are based on
the work by Shapiro et al. [18].

2.4.1 Operation-based CRDT

In operation-based CRDTs, convergence is achieved through the propagation
of update operations between the replicas. This process results in the commu-

12 chapter 2 theoretical framework

nication of only the most recent operations between replicas. When a replica
receives an update operation, it is applied reliably to the local state. In addition
to requiring the update operations to be reliably delivered, in certain cases they
must also be in a specific order to ensure convergence. This order is typically
a causal order.

In order for the replicas to converge in cases without a causal order, all update
operations must be commutative. If the update operations may be applied in
any order, then all update operations must be commutative and idempotent. To
guarantee that the update operations are delivered in a consistent order to all
replicas, a reliable multicast protocol is needed. This is typically implemented
using the Reliable Broadcast protocol [19], which enables replicas to exchange
messages in a causal order.

2.4.2 State-based CRDT

In a state-based CRDT replicas synchronize by sending their entire state to the
other replicas, rather than the update operations performed. When a replica
receives the state of another replica, it merges the received state with its own.
The possible states of the CRDT can be represented as a join-semilattice as
defined in 2. The merge function of two states 𝑠1 and 𝑠2 is defined as the lub
of the two states, and written as 𝑠1 ⊔ 𝑠2. Consequently, the merge function
must be commutative, associative and idempotent. Moreover, the state must
be increasing monotonic, which is necessary to ensure that the state is always
moving towards the lub of all states. This is defined as a monotonic join-
semilattice in 6. With these properties the replicas will converge as long as they
have received the same updates.

One disadvantage of state-based CRDTs are that they require the entire state to
be transmitted between the replicas, even if only a small part was updated and
replicas already hold most of the information. Which is especially true for large
data structures such as graphs and JSON objects. Consequently, state-based
CRDTs are usually used for file systems and databases, where updates are
less frequent and updates are larger. For smaller and more frequent updates,
operation-based CRDTs are more suitable. Conversely, state-based CRDTs work
trivially with dynamic systems, where the set of replicas can change over time.
While operation-based CRDTs require complex mechanism, and are frequently
limited to predefined set of participants (which is compatible with Causal
Broadcast).

2.4 crdt 13

2.4.3 Delta-state CRDT

As previously stated, state-based CRDTs require the entire state to be sent
between the replicas. In particular, for large data structures, and given the
ever-increasing state of CRDTs, this can give rise to issues with regard to
performance and scalability.

One potential optimization to improve the efficiency of state-based CRDTs
is to only send the difference between the states, instead of the entire state.
This is called a delta-state CRDT. There are currently two main approaches
to implementing delta-state CRDTs. Firstly, the join-semilattice state can be
handled as the join of multiple smaller delta-states. These are generated by
delta-mutators [20], which encode the difference in state since the last syn-
chronization. Provided that all deltas are propagated and joined at the replicas,
they will converge to the same state. This approach is employed in the Akka
framework 1.

An alternative approach involves the utilization of join-decompositions [21]. In
this approach, the deltas are referred to as join-irreducible states, as defined
in 4. Every element in a join-semilattice can be decomposed into a set of
join-irreducible states. Consequently, any state can be represented as the join
of a set of join-irreducible states. This further reduces the redundancies in the
state, as the join-irreducible states are the smallest possible states. However,
this approach also introduces an overhead in terms of computation of the
aforementioned join-irreducible states.

prad adopts delta-state CRDTs, which are more efficient and scalable than
state-based CRDTs. Moreover, they are more suitable for dynamic systems,
where the set of replicas can change over time, which is a must for a distributed
system.

Subsequently, we will present a selection of the most common CRDTs used in
practice. These are all state-based CRDTs, which can be composed to create
more complex data structures such as JSON objects and graphs.

2.4.4 Grow-Only Counter

A typical example of a trivial state CRDTs is the grow-only counter. The repli-
cated counter permits only monotonically increasing increments. The state
of each replica can temporarily diverge, but will converge to the same state
when the state is merged. Similar to vector clocks, a grow-only counter is

1. https://doc.akka.io/docs/akka/current/typed/distributed-data.html#delta-crdt

14 chapter 2 theoretical framework

simply a map of a unique replica identifier and a partial counter value. Each
replica maintains the number of increments it has performed locally and stores
it as a map entry. The value of the counter is then the sum of all the partial
counter values. The merge function of two replicas is defined as the maximum
of the two partial counter values for each replica identifier. This ensures that
the counter will converge to the same value, as long as the same number of
increments have been performed on both replicas. As some readers may have
observed, this approach is similar to Vector Clocks [22], which are used to track
causality between events in distributed systems.

Listing 2.1 shows a simple implementation of a grow-only counter in Elixir.

Listing 2.1: Example implementation of a Grow-Only counter.

defmodule GCounter do
def new , do: %{}

def increment (c, id , v \\ 1) do
Map. update (c, id , v, &(&1 + v))

end

def merge(c1 , c2) do
Map.merge(c1 , c2 , fn _id , v1 , v2 -> max(v1 ,

v2) end)
end

def value(c), do: Map. values (c) |> Enum.sum ()
end

2.4.5 LWW-Register

A registermaintains a single value, and can be updated by any replica by writing
a new value to it. One of the most common registers is the Last-Writer-Wins
register CRDT. As the name implies, the register gives precedence to the most
recent write operation, which also is the value it stores. To guarantee this
precedence, the register holds a timestamp for the latest write operation. It
is assumed that these timestamps are unique, totally ordered and generated
in an increasing monotonically order. The merge function of two replicas is
defined as the greater of the two timestamps, and the value of the replica with
the greatest timestamp, according to the defined total order. Ties between
replicas timestamps are resolved by comparing the replica identifiers, such as
peer IDs. Listing 2.2 shows a straightforward implementation of a LWW-register
in Elixir.

2.4 crdt 15

Listing 2.2: Example implementation of a LWW register.

defmodule LWWReg do

defstruct v: nil , t: nil

def new(v, t), do: % __module__ {v: v, t: t}

def merge(r1 , r2), do: update (r1 , r2.t, r2.v)

def update (r, v, t) do
cond do

r.t == t && r.v != v -> raise "err"
r.t <= t -> new(r.v, r.t)
r.t > t -> r

end
end

def get(r), do: r.v
end

2.4.6 Grow-Only Set

Sets are among of the most common data structures. A set is a collection
of unique elements, which can be mutated by adding or removing elements.
However, the two operations are not commutative, and we would need a
causal order between them to ensure convergence. The most straightforward
approach is to utilize a grow-only set, which can only be mutated by adding
elements. The merge function is defined as the union of the two sets, written as
merge(𝑆,𝑇) = 𝑆 ∪𝑇 . Moreover, a union of two sets is commutative, associative
and idempotent, which together with a partial order makes the state form
a monotonic join-semilattice. This guarantees that the set will converge to
the same state, as long as the same set of elements have been added to both
replicas. Grow-only sets are an example of an anonymous CRDT, as they do not
require a unique identifier for each replica and the operations are not specific
to a single replica. An example of a named CRDT are causal CRDTs such as
the Add-Wins Set [23]. See Listing 2.3 for an example implementation of a
grow-only set.

The next step is the 2P-Set, which is a set that can be mutated by adding and
removing elements. It achieves this by using two grow-only sets, one for adding
elements and one for removing elements (the tombstone set). Which shows
that CRDTs can be composed to create more complex data structures.

16 chapter 2 theoretical framework

Listing 2.3: Example implementation of a Grow-Only set.

defmodule GSet do
def new , do: MapSet .new ()

def value(s), do: s

def add(s, v), do: MapSet .put(s, v)

def merge(s1 , s2), do: MapSet .union(s1 , s2)

def lookup ?(s, v), do: MapSet . member ?(s, v)
end

2.4.7 CL-Set

In this context, we introduce the Causal Length set, which was defined in [24].
Similar to the aforementioned CRDTs, the CL-set is a variation designed to
address the primary issue of general-purpose CRDTs, namely causality between
updates. Each element within the set is associated with a Causal Length, which
is used to determine whether an element is present in the set. It’s an anonymous
CRDT, which means that it does not require a unique identifier for each replica.
This is ideal for dynamic systems, where the set of replicas can change over
time.

An element is present in the set if the Causal Length is odd, and absent if it is
even. It can be observed that additions and removals are causally dependent,
as an element must be added before it can be removed. Moreover, an element
can only be added to the set if it is not already present in the set, and removed
if it is present in the set.

An example implementation of a Cl-Set in Elixir can be found in Listing 2.4.
Each element in the set is associated with a Causal Length, which is used to
determine whether an element e is present in the set s. An element is present
in the set if the Causal Length is odd, and absent if it is even. The keys in the
map are the elements in the set, while the values are the Causal Lengths. Any
element not present in the set has a default Causal Length of 0. We can see
that additions and removals are causally dependent, as an element must be
added before it can be removed.

The insertion of an element e is done by incrementing the Causal Length of
e by 1, if it is not already present in the set. In the event that the element in
question is already present in the set, the addition will be ignored.

2.5 datalog 17

A removal of an element e is done by incrementing the Causal Length of e by 1,
if it is already present in the set. If e is not present in the set, the removal will
be ignored. If it is present, then its Causal Length is odd and incrementing it
by 1 will result in its removal from the set.

Finally, the merge function is defined as a union of the two sets, where the
Causal Length of each element is themaximum of the two Causal Lengths.

Listing 2.4: example implementation of a Cl-Set crdt.

defmodule CLSet do
def in_set ?(s, e), do: Map.get(s, e, 0) |> Crdt.

is_odd ()

def add(s, e) do
unless in_set ?(s, e) do

Map. update (s, e, 0, &(&1 + 1))
end

end

def remove (s, e) do
if in_set ?(s, e) do

Map. update (s, e, 0, &(&1 + 1))
end

end

def merge(s1 , s2) do
Map.merge(s1 , s2 , fn _k , v1 , v2 -> max(v1 ,

v2) end)
end

end

2.5 Datalog

2.5.1 Logic Programming

Logic programming is a programming paradigm that is based on formal logic.
It’s used to express facts and rules about a problem domain, and then use a
logical inference engine to derive new facts from the existing ones. This enables
the implementation of highly sophisticated functionality, including the absence
of side effects, no explicit control flow and strong termination and correctness
guarantees. A logic program consists of a finite set of facts and rules, which are

18 chapter 2 theoretical framework

used to derive new facts. The facts are assertions of the world in the problem
domain, while the rules are logical implications that allow us to infer new facts
from existing ones.

Logic programming languages can be classified according to their expressive-
ness, with the least expressive being Relational algebra. The next step is Datalog,
which is often considered as an extension of relational algebra, with the addi-
tion of recursion. Furthermore, Datalog can be extended with negations, which
is referred to as Stratified Datalog. Finally, if we wish to express algorithms
beyond polynomial time, we can use Prolog. Prolog is Turing complete, but it
comes at the cost of losing the guarantees of termination and correctness.

The remainder of this section we will focus on Datalog and its extensions, as
this is the language used in prad. We will start by introducing the syntax
and semantics of Datalog, and then continue by explaining the extensions of
negations and stratification.

We will now present the syntax and semantics of Datalog, as well as relevant
terminology.

2.5.2 Syntax

In this section, we let V be an infinite domain of variables, and D be an equally
infinite but disjoint domain of values. Datalog consists of atoms and terms. A
term 𝑥𝑖 is either a variable from V or a value/constant from D. An atom 𝑅(𝑥)
is a function 𝑅 along with a tuple of terms 𝑥 = (𝑥1, . . . , 𝑥𝑛). An atom with only
constants is called a ground atom.

A Datalog schema is a set of relation names, and every function 𝑅 has an
associated arity 𝑛, which is the number of terms in the tuple.

A Datalog program is a set of finite Datalog rules, each of which is a Horn clause
of the form:

𝑅1(𝑥1) ← 𝑅2(𝑥2), . . . , 𝑅𝑛 (𝑥𝑛) (2.1)

Here, 𝑛 ≥ 1, 𝑅1, . . . , 𝑅𝑛 are relation names and 𝑥1, . . . , 𝑥𝑛 are tuples of terms.
Further, Every variable in 𝑥 must also appear in at least one of the other
tuples 𝑥𝑖 [25]. The head of the rule is 𝑅1(𝑥1), while the body is formed by
𝑅2(𝑥2), . . . , 𝑅𝑛 (𝑥𝑛).

2.5 datalog 19

Given a valuation V, an instantiation of a rule via substitution is defined
as:

(𝑅1(⊑(𝑥1))) ← (𝑅2(⊑(𝑥2))), . . . , (𝑅𝑛 (⊑(𝑥𝑛))) (2.2)

In this context, ⊑(𝑥𝑖) represents the substitution of the terms in 𝑥𝑖 according
to ⊑.

Continuing, let P be a datalog program. An extensional relation are relations
stored only in the body of the rules, since they are stored in the database. An
intensional relation are relations occurring in both the head and body of the
rules, since they are computed from the extensional relations. The extensional
schema, denoted 𝑒𝑑𝑏 (P) is the set of extensional relations in P, while the
intensional schema, denoted 𝑖𝑑𝑏 (P) is the set of intensional relations in P. The
schema of P is the union of the extensional and intensional schema, denoted
𝑠𝑐ℎ𝑒𝑚𝑎(P) = 𝑒𝑑𝑏 (P) ∪ 𝑖𝑑𝑏 (P).

Furthermore, in order to guarantee that the set of facts which can be derived
from a program is finite, we require that the rule is safe. A rule is safe if all of
its variable is range-restricted, which means that a variable in the head of the
rule must also appear in the body of the rule, or be equivalent to a variable
that does.

2.5.3 Semantics

The semantics of Datalog can be defined in three different, but equivalent
ways.

Model-theoretic

The model-theoretic semantics of Datalog is based on first-order logic, where the
Datalog rules are interpreted as logical constraints. Consequently, the database
instance that satisfies all the constraints is designated as amodel of the program.
LetP be a Datalog program, andD be a database instance. ThenD′ is a model
of P if and only if D′ extends D and satisfies all the rules in P. Nevertheless,
there can be multiple models of a Datalog program. In this context we are
interested in the minimal model of the program.

For a Datalog program P and a database instanceD over edb (P). A modelD′
of P is an instance over schema (P) such that D′ extends D and satisfies all

20 chapter 2 theoretical framework

the rules in P. The semantics of P onD, is the minimal model of P, containing
D, if it exists [25].

In other words, the results of a Datalog program should satisfy all the rules
and be the smallest possible set of facts.

Fixpoint-theoretic

The least fixpoint semantics of Datalog is based on the immediate consequence
operator TP for a Datalog program P. It applies all the rules in P to a database
instance D, and adds the immediate consequences to D. An atom 𝑅 is an
immediate consequence of a program 𝑃 if 𝑅 is grounded in 𝐷 or a 𝑅1 ←
𝑅2, . . . , 𝑅𝑛 is a ground instance of a rule in 𝑃 , and 𝑅2, . . . , 𝑅𝑛 are in 𝐷. 𝑇𝑃 is
then applied iteratively to D until no more new facts can be derived, and the
result is the least fixpoint of P. This is equivalent to the minimal model of P
in the model-theoretic semantics.

These semantics are useful for bottom-up evaluation ofDatalog programs.

Proof-theoretic

Alternatively, if we wish to evaluate the Datalog program top-down, we can use
the proof-theoretic semantics. Which defines the result of a Datalog program
as the set of atoms that can be proved from the rules and the database instance.
A proof is a tree of atoms, where the root is the atom to be proved, and the
leaves are the facts in the database instance.

The set of atoms that can be proved from a database instance D using the
rules in a Datalog program P is precisely P(D) [25].

2.5.4 CALM

As previously stated in definition 9,monotonicity is a key property of coordination-
free systems to establish consistency, it’s the calm theorem. It originates from
the calm conjecture, which states that in Datalog, when a program is ex-
pressible in queries that are monotonic and the data is inflationary, then there
exists an eventually consistent and coordination-free implementation of the
program [17]. The calm conjecture was later formally proven by Ameloot et
al. [26].

In prad with the Cl-set CRDT, we can apply the calm conjecture to ensure

2.5 datalog 21

that the program is eventually consistent and coordination-free, since the Cl-set
is inflationary for both addition and removal of elements.

2.5.5 Datalog with Negation

Negation is a powerful tool in logic programming, allowing us to ask for the
absence of a fact or inference. However, this approach also introduces some
issues with the semantics of Datalog, as it can lead to non-termination and
inconsistency especially when combined with recursion. The following query,
presented in listing 2.5. It can be observed that the query 𝐶ℎ𝑖𝑙𝑑 (𝑎𝑙𝑖𝑐𝑒) will
result in non-monotonic behavior, as it will infinitely recurse between the two
rules.

Listing 2.5: Example query with negation.

human(alice).

Adult(X) :- human(X), not child(X).
Child(X) :- human(X), not adult(X).

In the light of iterative evaluation of rules, the initial status of the negated
atoms is that they are true. However, as the rules are evaluated the negated
atoms will become false. To avoid recursion, we can organize the rules into
layers or strata.

2.5.6 Stratified Datalog

A Datalog program 𝑃 is stratified if its rules can be partitioned into strata,
𝑃1, 𝑃2, . . . 𝑃𝑛 such that the following conditions hold:

1. All rules mentioning relation 𝑅 in a non-negated atom are in the same
stratum 𝑃 𝑗 , with 𝑗 ≥ 𝑖.

2. All rules mentioning relation 𝑅 in a negated atom are in the same stratum
𝑃 𝑗 , with 𝑗 > 𝑖.

By applying rules exhaustively within each stratum, it is possible to avoid non-
monotonic behavior. However, not every Datalog program can be stratified. The
stratified evaluations of rules terminate in a finite number of steps (bounded
by the number of possible facts), upholding the monotonicity of Datalog. At
present prad does not support stratified Datalog, but it is a potential extension
to the system.

22 chapter 2 theoretical framework

2.5.7 Evaluation Strategies

This section we will present some evaluation strategies used by Datalog engines.
We will start by introducing the naive evaluation strategy, and then proceed to
the semi-naive evaluation strategy.

The naive evaluation strategy is the simplest evaluation strategy, and is based
on the fixpoint semantics of Datalog (bottom-up). It evaluates the rules in a
Datalog program iteratively, starting from the extensional relations. At each
iteration, the rules are evaluated, and the immediate consequences are added
to the database instance. This process is repeated until no further new tuples
can be derived, at which point the result is the least fixpoint of the program as
discussed in the section2.5.3. One potential issue with this evaluation strategy
is that we can end up deriving the same tuples on multiple occasions, which
could be highly inefficient.

The semi-naive evaluation strategy [27] is an optimization of the naive evalu-
ation strategy. Its objective is to reduce the number of redundant derivations.
The input tuples computed in the previous iteration of a recursive program
are stored in a delta, are used as input to the current iteration to compute
the new tuples. If and only if the new tuples are not already present in the
delta, are they used as input to the subsequent iteration. This ensures that
only new tuples are derived, and that the same tuples are not derived multiple
times.

Let 𝑅 be an IDB relation in a Datalog program P, and 𝑅𝑖 be the set of tuples
of 𝑅 in iteration 𝑖 ≥ 1. Every iteration 𝑖 it computes the new tuples Δ𝑅𝑖 =

𝑅𝑖 − 𝑅𝑖−1. Then Δ𝑅𝑖 is used to compute the new tuples in the next iteration
𝑅𝑖+1 = 𝑅𝑖 ∪ Δ𝑅𝑖 . This is repeated until Δ𝑅𝑖 = ∅. The result is the least fixpoint
of the program.

The semi-naive evaluation strategy also minimizes the amount of communica-
tion between the nodes, as it only sends the new tuples Δ𝑅 to the other nodes
at every iteration. This strategy is used by prad, which permits the valuation
of rules in a variety of orders and on multiple occasions, without deriving the
same tuples multiple times. This approach allows for the execution of prad
programs without the need for coordination.

2.6 Fault-Tolerance

In the context of distributed system design, it is important to consider the fault-
tolerance of the system. It is inevitable that a system will eventually encounter

2.6 fault-tolerance 23

a failure, and it must be able to handle it. A distributed stream processing
system must be capable of handling failures, including those resulting from
node crashes, network partitions, and message loss. This section will present
some common failure models and approaches to fault tolerance in distributed
systems.

2.6.1 Failure Models

In a distributed stream processing system, there are several possible failure
models that must be considered. Both the processes and the network may fail,
and the system must be capable of handling these failures. In the literature,
there are four main categories of failures: Crash failures, Omission failures,
Timing failures and Byzantine failures [28, p.430].

Crash failures are the most straightforward type of failure in distributed systems.
The system halts, but is working correctly up until the point of failure. It is
noteworthy that, following the system halts, it will no longer respond to any
messages. This is readily detected by the other sites in the system, and recovery
is typically straightforward.

Omission failures are more complex than other types of failures, as the sys-
tem can still work correctly, but it may not receive or send messages. Two
distinct types of omission failures can be identified: send omissions and receive
omissions. In a send omission, a process fails to send a message, while in a
receive omission, a process fails to receive a message. In general, these are
caused by network partitions or input buffer overflows. The detection of these
failures is more complex, as it would require some form of timeout or heartbeat
mechanisms.

Next are Timing failures, which are caused by the system working, but not
responding within a certain time frame. This can be caused by network con-
gestion or overloaded servers, which results in a performance issue rather than
a fault. This primarily affects the availability of the system, and is applicable
to synchronous systems.

Finally,Byzantine failures represent the most complex type of failure, the system
appears to be working correctly, but is sending incorrect messages. This can be
caused by software bugs, hardware failures or malicious attacks. It is the most
challenging to detect, and may require complex mechanisms such as voting
or consensus algorithms. Examples of Byzantine failures include IoT sensor
malfunction and malicious attacks.

24 chapter 2 theoretical framework

2.6.2 Approaches to Fault Tolerance

There are several approaches to fault tolerance in distributed systems, but the
most common methods are redundancy and replication. The system is designed
to be resilient failures, and continue to work correctly even if some components
fail. Replication can be divided into two categories: Active replication and
Passive replication [28, p.391]. In Active replication, all replicas are active and
execute the same operations in parallel. A synchronous mechanism is used
to ensure that all replicas agree on the result. In Passive replication, only
one replica is active, while the others are passive and only become active if
the primary replica fails. The operations are then propagated to the other
passive replicas. The mechanism is asynchronous, and it is frequently used in
distributed systems.

3
Design
This chapter provides an overview of the existing approach for a coordination-
free parallel and replicated Datalog extension prad [6]. This chapter presents
a method for augmenting Datalog with semiring (p-semiring) provenance to
provide distributed execution. Furthermore, we present a method for equipping
the aforementioned p-semiring with Cl-Set CRDT for coordination-free and
eventually consistent Datalog. We present how distributed execution plans are
generated to meet parallel and fault-tolerant requirements. This will lead us to
investigate how it handles faults at the site level. The required properties for a
fault-tolerant system are presented. We will present our approach to maintain
fault-tolerance requirements in a distributed setting, as well as our strategy for
minimizing communication bandwidth.

3.1 PRAD Overview

In order to describe the prad runtime, we employ a classical transitive-closure
Datalog program. The database schema comprises six Extensional Database
(edb) relations, as shown in Table 3.1.

The𝐸𝑑𝑔𝑒 relation contains the edges of the graph,where each tuple represents a
direct edge between stations. The 𝑃𝑎𝑡ℎ data structure contains paths traversing
the edges. The relations 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝐸𝑈 and 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑈𝑆 contain the stations in
Europe and the United States of America, respectively. 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝐹𝑜𝑜 contains

25

26 chapter 3 design

Relation Attributes

𝐸𝑑𝑔𝑒 𝐹𝑟𝑜𝑚,𝑇𝑜

𝑃𝑎𝑡ℎ 𝐹𝑟𝑜𝑚,𝑇𝑜

𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝐸𝑈 𝑆𝑡𝑎𝑡𝑖𝑜𝑛

𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑈𝑆 𝑆𝑡𝑎𝑡𝑖𝑜𝑛

𝑃𝑎𝑡ℎ𝐹𝑜𝑜 𝐹𝑟𝑜𝑚,𝑇𝑜

𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝐹𝑜𝑜 𝑆𝑡𝑎𝑡𝑖𝑜𝑛

Table 3.1: Relations in the database schema.

the stations that the entity 𝐹𝑜𝑜 travels to. The 𝑃𝑎𝑡ℎ𝐹𝑜𝑜 data structure contains
the paths among the stations in 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝐹𝑜𝑜.

The Datalog program 𝑃𝑎𝑡ℎ𝑠 generates all paths from the edges in accordance
with Rules 3.1 and 3.2.

Listing 3.1: Rule 1 Edge

Path(X, Y) :- Edge(X, Y).

Listing 3.2: Rule 2 Path

Path(X, Y) :- Edge(X, Z), Path(Z, Y).

Moreover, Rule 3.3 queries the paths from the stations for 𝐹𝑜𝑜.

Listing 3.3: Rule 3 Query for Foo

PathFoo (X, Y) :- StationFoo (X), StationFoo (Y), Path(X, Y).

The aforementioned Rules and Relations are run in a distributed setting and
are available on the following sites:

Site Relations

𝑆𝑒𝑟𝑣𝑒𝑟𝐸𝑈 𝑆𝑖𝑡𝑒

𝑆𝑒𝑟𝑣𝑒𝑟𝑈𝑆 𝑆𝑖𝑡𝑒

𝑆𝑒𝑟𝑣𝑒𝑟 𝑆𝑖𝑡𝑒

𝐶𝑙𝑖𝑒𝑛𝑡𝐹𝑜𝑜 𝑆𝑖𝑡𝑒

Table 3.2: Relations at each site.

The 𝑆𝑒𝑟𝑣𝑒𝑟𝐸𝑈 and 𝑆𝑒𝑟𝑣𝑒𝑟𝑈𝑆 relations contain the stations in Europe and the
United States of America, respectively. The 𝑆𝑒𝑟𝑣𝑒𝑟 variable contains the servers

3.1 prad overview 27

on which the distributed Datalog program is executed. The𝐶𝑙𝑖𝑒𝑛𝑡𝐹𝑜𝑜 relation
contains the devices associated with the Foo entity.

prad extension to Datalog programs incorporates a relation for site configu-
ration, which specifies which the sites responsible for each relation. The site
configuration relation is defined as follows:

Cfg(Relation, Attribute, Site)

With the following site configuration rules:

Listing 3.4: Site Configuration Rules (* denotes a wildcard)

Cfg(Edge, To, X, Y) :- StationEU (X), ServerEU (Y).
Cfg(Edge, To, X, Y) :- StationUS (X), ServerUS (Y).
Cfg(PathFoo , *, *, Y) :- ClientFoo (Y).

The configuration rules for the site specify that the 𝐸𝑑𝑔𝑒 to European stations
is available on the 𝑆𝑒𝑟𝑣𝑒𝑟𝐸𝑈 sites, while the 𝐸𝑑𝑔𝑒 to American stations are
available on the 𝑆𝑒𝑟𝑣𝑒𝑟𝑈𝑆 sites. The final rules specify that the 𝑃𝑎𝑡ℎ𝐹𝑜𝑜

relation is available on all of Foos devices. Depending on whether each 𝑆𝑒𝑟𝑣𝑒𝑟
only contains one site value, the site configuration rules can be used to specify a
partition of relation 𝐸𝑑𝑔𝑒 on𝑇𝑜 attribute. In the event that the 𝑆𝑒𝑟𝑣𝑒𝑟 relation
contains multiple site values, the site configuration rules can be used to specify
a replication of relation 𝐸𝑑𝑔𝑒 on 𝑇𝑜 attribute, ensuring that the relation is
available on e.g. all European sites.

Moreover, the site configuration rules specify that the 𝑃𝑎𝑡ℎ𝐹𝑜𝑜 query result is
replicate to ensure it is available on all devices belonging to Foo. The result of
the query is updated as long as the 𝑃𝑎𝑡ℎ program is running and 𝐹𝑜𝑜s devices
are online. In the event that a device goes offline, the result of the query is still
available on the other devices. Furthermore, 𝐹𝑜𝑜 can specify how it wants to
propagate the result of the query to its devices.

Suppose that the relations 𝐶𝑙𝑖𝑒𝑛𝑡𝐻𝑜𝑚𝑒𝐹𝑜𝑜 contains the home devices of Foo,
e.g. IoT devices. Then we can modify the site configuration rules as shown in
Listing 3.5.

Listing 3.5: Site Configuration Rules for Home Devices

PathHomeFoo (X, Y) :- PathFoo (X, Y)
PathIoTFoo (X, Y) :- PathHomeFoo (X, Y)

Cfg(PathHomeFoo , *, *, Y) :- ClientHomeFoo (Y).

28 chapter 3 design

Cfg(PathIoTFoo , *, *, Y) :- IoTHomeFoo (Y).

In accordance with the site configuration rules set in Listing 3.5, the result of
the query is available on all of Foos home devices. The query result is initially
collected at the 𝐶𝑙𝑖𝑒𝑛𝑡 and then subsequently propagated to the 𝐼𝑜𝑇 devices.
This prevents 𝐼𝑜𝑇 devices from engaging in resource-intensive computations
and from actively participating in the network communication.

Suppose that for the 𝑃𝑎𝑡ℎ𝑠 program, the input facts are in the relation 𝐸𝑑𝑔𝑒
and the output facts are in the relation 𝑃𝑎𝑡ℎ𝐹𝑜𝑜. Then intermediate relation
𝑃𝑎𝑡ℎ, is not included in the input or output facts, and lacks a site configura-
tion. At runtime, we can specify the parallel and fault-tolerant requirements
for the program execution in the 𝑃𝑎𝑡ℎ𝑠 program. The parallel requirements
specify how the program can be executed in parallel, and the fault-tolerant
requirements specify how many site failure it can tolerate. In accordance with
the aforementioned requirements, the system is capable of regenerating the
site configuration for network sites as specified in the 𝑆𝑒𝑟𝑣𝑒𝑟 relation.

3.1.1 Architecture

The high-level architecture of prad-runtime is depicted in Figure 3.1. The
system is composed of a two-layer architecture. The upper layer is referred to
as the Application Relation Layer (APP). The APP layer is comprised of a set
of relations analogous to those found in conventional relational database. The
relations may be either base relations (edb) or derived relations (Intensional
Database (idb)). This is the location where applications can update and
query the data stored in the relation. This is in accordance with the schema
of the application database schema. The bottom layer is referred to as the
Augmented-Relation layer (AUG). The AUG layer is a superset of the APP layer.
It associates each relation in the APP layer with a set of metadata based on the
two algebraic structures, the p-semiring and the ClSet crdt. Moreover, the
AUG layer is responsible for maintaining the consistency requirements and to
execute incremental maintenance of both base and derived data.

The interrelationship between the aforementioned layers can be described as
relatively straightforward. Any query to the APP layer can be satisfied without
triggering the AUG layer. Nevertheless, an update to the APP layer will prompt
the AUG layer to ensure consistency with the former. In Figure 3.1, applications
at sites 𝑠1 and 𝑠2 make concurrent update to the relation 𝑅1 in the APP layer.
Subsequently, the updates are then augmented with metadata in the relation
𝑅1. The two relations are both locally stored on each site, which allows them to
send each other their local updates, when both are online. Synchronization is

3.1 prad overview 29

Figure 3.1: prad Architecture.

30 chapter 3 design

achieved using an anti-entropy procedure at the AUG layer. These updates are
either the whole state or a set of join-irreducible states, from Section 4. When a
site receives a remote update, it will merge the update into its local relation 𝑅1,
and then with the de-augmented update the APP layer with the new relation
𝑅1. The system ensures that when two sites 𝑠1 and 𝑠2 have received the same
set of updates, they will have the same 𝑅 and 𝑅 states, regardless of the order
in which the updates were received.

Sites 𝑠1 and 𝑠2 transmit their updates to downstream sites 𝑠𝑢 . Upon receipt of the
updates, site 𝑠𝑢 will incrementally update its local augmented relation, denoted
by𝑅𝑢 , and then the APP relation, denoted by𝑅𝑢 , with the de-augmented update.
The system ensures that the relation state of 𝑠𝑢 is consistent with the states of
𝑠1 and 𝑠2 as if they were in a non-distributed setting.

In prad a relation is a set of tuples, which again contain multiple values. The
augmented relations are represented as CL-sets 2.4.7, which are sets of tuples
with provenance information. Therefore, the tuples in the relations are CL-set el-
ements. Which means that the tuples are tuples of values and a set of associated
provenance information. The implications of this are that the aforementioned
operations are defined according to the CL-set semantics.

A more detailed view of the prad site is presented in Figure 3.2. It consists of
three main components: the Compilation, the Runtime, and the Storage Layer.
The Compilation component is responsible for parsing the inputs, which are
the user query, the edb (Rules) and the new idb (Facts). Next, the distribution
policy is created, which is a function that maps each site to a set of facts in the
schema. Subsequently, it defines a communication strategy, which essentially
is the manner in which the upstream and downstream sites communicate. To
this end, it gathers information about the sites states from the Storage Layer
metadata. The Compilation component then generates the execution plan for
the program, and sends it to the Runtime component.

The Runtime component is responsible for executing the program, it does this
by applying the rules in the program to the local instance of the site using semi-
naive evaluation. The local facts are stored in the Erlang Term Storage (ets)
inside the Storage Layer. Once the site has reached a local fixpoint, it sends
the derived facts to the downstream sites or, alternatively, to the user.

3.1 prad overview 31

Figure 3.2: Example prad Site.

The general methods for interacting with the system are to either update
or query tuples. Updates are done by the insertion of a new tuple or the
modification an already existing tuple. A tuple can only be inserted if it does
not already exist in the relation. This implies that it could already exist in the
derived relation with an even causal length. Subsequently, an insertion would
then increment the causal length. It is noteworthy that new tuples are always
inserted with a causal length of 1. As said above, tuples may only be updated
or deleted if it has an odd causal length.

The components are explained in greater detail in the subsequent sections.

32 chapter 3 design

3.1.2 Datalog𝑝

In general, the provenance of an idb fact indicates the manner in which the
fact is derived. Green et al. [29] introduced a general framework of semiring
provenance, which 𝐷𝑎𝑡𝑎𝑙𝑜𝑔𝑝 is a special instantiation of. 𝐷𝑎𝑡𝑎𝑙𝑜𝑔𝑝 augments
Datalog with a p-semiring, explained in Section2.1.3. The following section,
will demonstrate the transformation of a typical Datalog program 𝑃 , into a
𝐷𝑎𝑡𝑎𝑙𝑜𝑔𝑝 program ¥𝑃 .

Let 𝑝𝑟𝑣 be the domain of provenance expressions in the p-semiring, disjoint
from the 𝑣𝑎𝑟 and 𝑑𝑜𝑚 domains. A p-instance ¥𝐼 : 𝑈 → 𝑝𝑟𝑣 , is a function from
the set of all facts𝑈 to 𝑝𝑟𝑣 . The support of a p-instance is the set of facts whose
provenance is not zero. This is denoted by supp(¥𝐼) = {𝑓 ∈ 𝑈 | ¥𝐼 (𝑓) ≠ 0}. The
support of a p-instance is identical with the instance of the normal Datalog
program, which may be expressed as 𝐼 = supp(¥𝐼). For any fact 𝑓 ∈ 𝐼 , the
mapping 𝑓 ↦→ ¥𝐼 (𝑓) is a 𝑝 − 𝑓 𝑎𝑐𝑡 in the p-instance ¥𝐼 .

Now, we will define the manner in which the provenance values of 𝑝− 𝑓 𝑎𝑐𝑡𝑠 are
generated. For an edb fact 𝑓 , the provenance value is defined as ¥𝐼 (𝑓) = 𝑖𝑑𝑓 ,
where 𝑖𝑑𝑓 is a unique identifier for the fact 𝑓 . The domain of identifiers is
𝑢𝑖𝑑 ⊂ 𝑝𝑟𝑣 . For a normal Datalog valuation 𝜐 of rule 𝜏 in instance 𝐼 , there exists
a valuation ¥𝜐 in the corresponding p-instance ¥𝐼 , such that

¥𝐼 (𝑣 (head 𝜏)) =
∏

𝑓 ∈𝜐(body𝜏)
¥𝐼 (𝑓) (3.1)

For example, seen in Figure 3.3 if p-instance ¥𝐼 contains the two 𝑝 − 𝑓 𝑎𝑐𝑡𝑠

Edge(1, 2) ↦→ 𝑙12 and Path(2, 4) ↦→ 𝑙24, then a valuation of the second Rule
in ¥𝐼 derives a 𝑝 − 𝑓 𝑎𝑐𝑡 Path(1, 4) ↦→ 𝑙12 · 𝑙24. The union of two p-instance ¥𝐼1
and ¥𝐼2 is defined as:

∀𝑓 ∈ 𝑈 :
(¥𝐼1 ∪ ¥𝐼2) (𝑓) = ¥𝐼1(𝑓) + ¥𝐼2(𝑓) (3.2)

For instance, if ¥𝐼1 contains the 𝑝 − 𝑓 𝑎𝑐𝑡 Path(1, 4) ↦→ 𝑙12 · 𝑙24 and ¥𝐼2 contains
the 𝑝 − 𝑓 𝑎𝑐𝑡 Path(1, 4) ↦→ 𝑙13 · 𝑙34, then the union ¥𝐼1 ∪ ¥𝐼2 derives the 𝑝 − 𝑓 𝑎𝑐𝑡
Path(1, 4) ↦→ 𝑙12 · 𝑙24 + 𝑙13 · 𝑙34.

In the case that 𝑓 is neither in supp(¥𝐼1) nor in supp(¥𝐼2), the provenance
value is zero,

(¥𝐼1 ∪ ¥𝐼2) (𝑓) = 0. If 𝑓 is in supp(¥𝐼1) but not in supp(¥𝐼2), then(¥𝐼1 ∪ ¥𝐼2) (𝑓) = ¥𝐼1(𝑓).

3.1 prad overview 33

Figure 3.3: Example Edge facts.

The immediate consequence operator for program ¥𝑃 is defined as

𝑇 ¥𝑃 (¥𝐼) = ¥𝐼 ∪
⋃

𝜏∈𝑃,𝑣(body𝜏)⊆𝐼
{} (3.3)

with contents

{𝑣 (head𝜏) ↦→
∏

𝑓 ∈𝑣(body𝜏)
¥𝐼 (𝑓)} (3.4)

Now, we define an order ¥≤ on p-instances. For two p-instances ¥𝐼1 and ¥𝐼2, if
and only if ∀𝑓 ∈ 𝑈 : ¥𝐼1(𝑓) ≤ ¥𝐼2(𝑓), then ¥𝐼1 ≤ ¥𝐼2. Clearly, if ¥𝐼1 ≤ ¥𝐼2, then
supp(¥𝐼1) ⊆ supp(¥𝐼2).

Notice that the union of p-instances is identical to the LUB of the p-instances
with respect to the order ¥≤. That is ¥𝐼1 ∪ ¥𝐼2 = ¥𝐼1 ⊔ ¥𝐼2. The union of p-instances
is just like normal Datalog inflationary under ¥≤.

Another way to compare 𝐷𝑎𝑡𝑎𝑙𝑜𝑔𝑝 to Datalog, we can define Datalog in terms
of𝐷𝑎𝑡𝑎𝑙𝑜𝑔𝐴. A Datalog instance 𝐼 , a𝐴-instance is the function 𝐼𝐴 : 𝑈 → 𝑃 , for
all facts∀𝑓 ∈ 𝑈 : 𝐼𝐴 (𝑓) = (𝑓 ∈ 𝐼). Because there is a semiring-homomorphism
ℎ from p-semiring to the 𝐴-semirung according to [29]. We can use the

34 chapter 3 design

homomorphism to define a 𝐷𝑎𝑡𝑎𝑙𝑜𝑔𝑝 instance 𝐼𝑝 from a 𝐷𝑎𝑡𝑎𝑙𝑜𝑔𝐴 instance 𝐼𝐴
as

ℎ(𝑇 ¥𝑃 (¥𝐼) = 𝑇𝑃𝐴 (ℎ(𝐼𝐴))) = 𝑇𝑃 (𝐼) (3.5)

This implies that 𝐷𝑎𝑡𝑎𝑙𝑜𝑔𝑝 programs can be translated in a straightforward
manner to 𝐷𝑎𝑡𝑎𝑙𝑜𝑔𝐴 programs, with provenance values are being generated
automatically.

Given that 𝑇¥𝐼 is inflationary and the · and + operations are idempotent, for
any p-instance ¥𝐼 with finite support, the iterative application 𝑇 ¥𝑃 , starting ¥𝐼
reaches a fixpoint, denoted by ¥𝑃 (¥𝐼). The p-semiring provenance of an idb fact
𝑓 describes how 𝑓 depends on edb facts. For instance, Path(1, 4) , depends
on either 𝑙12 and 𝑙24 or on 𝑙13 and 𝑙23. While Path(1, 3) depends soley on
𝑙13.

This facilitates the straightforward monitoring of the dependencies inherent in
the derivation process, a capability that will prove invaluable in the restoration
of crashed sites.

3.1.3 Distribution Policies for Program Execution

We define a network as a finite non-empty set 𝑆 of values with 𝑆 ⊆ 𝑑𝑜𝑚

representing the sites. A distribution policy, denoted by 𝐷 over schema 𝜎 and
network 𝑆 is a function that maps each site 𝑖 ∈ 𝑆 to subsets of facts in the
schema 𝜎 . Formally, this is defined as facts𝐷 : 𝑆 → 𝑃

(
𝑈 |𝜎

)
, where 𝑆 is the

network and 𝜎 is the schema. For a given database instance 𝐼 , 𝐼 |𝑖 is the local
instance at site 𝑖, defined as 𝐼 |𝑖 = facts𝐷 (𝑖) ∩ 𝐼 . A Site 𝑖 is considered responsible
for fact 𝑓 if 𝑓 ∈ facts𝐷 (𝑖) . sites𝐷 (𝑓) is the set of sites responsible for 𝑓 .

Moreover, a prad site-configuration of a program 𝑃 is defined as a distribution
policy𝐷 that encompasses both the external database and the internal database
edb(𝑃) ∪ out(𝑃). A prad execution-policy of program 𝑃 is a distribution policy
𝐶 over schema 𝑃 that includes the site-configuration 𝐷 of 𝑃 and is consistent
with the program 𝑃 .

The distributed execution of a program 𝑃 is divided into two phases: the
execution phase and the communication phase. The execution phase is the phase
during which each site 𝑖 executes the program 𝑃 , and applies the rules in 𝑃
to the local instance 𝐼 |𝑖 to obtain a set of derived facts. The communication
phase is the phase during which the sites exchange the derived facts with the

3.1 prad overview 35

responsible sites. The communication phase is conducted asynchronously, and
the sites may exchange the facts in any order. Once a site derives no new facts
in the execution phase, the site is said to have reached its local fixpoint. The
program 𝑃 is said to have reached a global fixpoint if all sites have reached
their respective local fixpoints.

A program 𝑃 is said to be parallel-correct under a distribution policy 𝐷 if for
any instance 𝐼 , the union of all facts at all sites at the global fixpoint under the
same distribution policy 𝐷, denoted by [𝑃, 𝐷] (𝐼), is equal to the set of facts
that would be derived by the program 𝑃 in a centralized setting, denoted by
𝑃 (𝐼).

Furthermore, a distribution policy 𝐷 is said to support a valuation 𝑣 (𝜏) in 𝐼 if
there exists a site 𝑖 and a valuation 𝑣 (𝜏) ∈ 𝐼 |𝑖 . A policy is said to strongly support
a program 𝑃 if its supports all valuations within P. According to Ketsman et
al. [30] strong support is sufficient for the program to be parallel-correct.

3.1.4 Coordination-Free Replication and Eventual
Consistency

The objective of prad is to execute Datalog programs coordination-free and
eventually consistent, while the data is partitioned and replicated across net-
work sites. A Datalog𝑝 program 𝑃 as introduced in Section 3.1.2 is eventually
consistent if it is both eventually convergent and parallel correct. We have
already defined and proven parallel correctness in the previous section. We
will now define eventual convergence. A p-instance 𝐼 is said to be convergent if
the provenance expression of the fact is the identical across all sites responsible
for the fact.

A program 𝑃 is said to be convergent if for any p-instance 𝐼 , when 𝑃 reaches a
global fixpoint, 𝑇𝑃 (𝐼) is convergent. Further, since the domain of provenance
expressions is a distributive lattice, instances of the same relation partition
form a Cl-Set CRDT, which means that they are eventually convergent without
coordination.

Furthermore, a distributed execution of a Datalog program is coordination-free
if the sites do not need to communicate in the form of acknowledgement of
message delivery or coordination via consensus protocols [12] to achieve, with
each other beyond edb and idb data to reach a global fixpoint. For a Datalog
program using a semi-naive evaluation algorithm discussed in Section 2.5.7,
coordination-free executionmeans that valuations of rules can be applied in any
order and at any time, and the program will still reach a global fixpoint.

36 chapter 3 design

As previously established in Section 2.5.4, in any inflationary Datalog program,
the rules can be applied in any order and time and the program will still
reach a global fixpoint [17]. The prad runtime is an instance of a compiled
and running Datalog program 𝑃 , where each relation 𝑅, is associated with
provenance metadata.

3.1.5 Replication and Parallel requirements

prad programs defines where input and output facts are stored, with the
objective to make them available at the specified sites to meet the parallel
and replication degree requirements. These are included in the generated
distribution policy, as part of the execution plan. A Datalog program uses a
bottom-up evaluation strategy, where the rules consist of evaluations of the
relational algebra operations join and project. An evaluation has a parallel
degree of 𝑁𝑝 if every join operation in the evaluation can be executed on at
least 𝑁𝑝 sites. This is the foundation for other parallel join evaluations, such as
the one seen in the widely used MapReduce [31] framework. In addition, an
evaluation has a replication degree of 𝑁𝑟 if for each valuation we have at least
𝑁𝑟 sites that support it. This would mean that for a strong support of a program,
the replication degree would be greater than or equal to 1,𝑁𝑟 ≥ 1. This implies
that currently the prad system uses a static configuration of replication,
without being able to dynamically change the replication degree.

3.2 Communication Strategies

This section will describe the two communication strategies 1-1 and N-N. In the
1-1 strategy, a single partition replica of a relation joins with a single partition
replica of another relation. This implies that a fact derived at an upstream site
is sent to a single downstream site. On the other hand, in the N-N strategy,
all partition replicas of a relation joins with all partition replicas of another
relation. Consequently, a fact derived at the upstream replica is sent down to
all downstream replica sites.

Suppose for Rule 3.6 we have generated partition replicas 𝑄𝑛
𝑝,𝑟 , 𝑅

𝑛1
𝑝,𝑟 and 𝑆

𝑛2
𝑝,𝑟

where 1 ≤ 𝑝 ≤ 𝑁𝑝, 1 ≤ 𝑟 ≤ 𝑁𝑟 .

Listing 3.6: Example Rule Q

Q :- R, S.

3.2 communication strategies 37

Figure 3.4: Communication Strategy 1-1.

With the 1-1 strategy, the 𝑟 -th replica of the 𝑝-partition of 𝑅𝑘1 joins with the
same 𝑟 -replica of the 𝑝-partition of 𝑆𝑘2 . The derived facts are then dispatched to
the 𝑟 -th replica of different partitions of𝑄𝑘 . This is shown in Figure 3.4, where
the derived facts from Site 1 are sent to Site 3, and the derived facts from Site
2 are sent to only Site 4.

38 chapter 3 design

Figure 3.5: Communication Strategy N-N.

As seen in Figure 3.5, the N-N strategy is more complex than the 1-1 strategy.
With the N-N strategy, we can replace the different replica relation names𝑄𝑘

𝑝,𝑟 ,
with a single relation partition𝑄𝑘

𝑝 for each relation partition 𝑝 of𝑄𝑘 (same for
𝑅𝑘1 and 𝑆𝑘2). Such that the sites of 𝑄𝑘

𝑝 are equal to the union of all sites 𝑄𝑘
𝑝,𝑟

for 1 ≤ 𝑟 ≤ 𝑁𝑟 , denoted as:

sites
(
𝑄𝑘
𝑝

)
=

⋃
1≤𝑟≤𝑁𝑟

{
site

(
𝑄𝑘
𝑝,𝑟

)}
(3.6)

3.3 fault-tolerance 39

The derived facts are dispatched to all replicas of the different partitions of
𝑄𝑘 . This means that the derived facts from Site 1 and Site 2 are sent to all
downstream sites, Site 3, Site 4 and Site 5.

We can see that the 1-1 strategy is effectively the same as running 𝑁𝑟 instaces of
the programwith replication degree equal to 1. However, they have to be treated
differently on repair, as seen in the next section on fault-tolerance.

3.3 Fault-Tolerance

Achieving fault-tolerance in a distributed stream processing system is a chal-
lenging undertaking that requires careful consideration of the system’s archi-
tectural framework and the nature of the data being processed. In the context
of prad, in order to maintain the replication degree a fault-tolerant system
must be able to recover from site failures and network partitions, while main-
taining the correctness and consistency of the data. Moreover, since the system
is designed with local-first principles in mind, the focus is on the edge nodes
where the input and output of the system occur.

Our approach to fault-tolerance is twofold. Firstly, the objective is to minimize
the impact of site failures by utilizing a combination of lightweight commits,
along with repair and restoration mechanisms. It is not possible to relay on the
guarantee of FIFO ordering of messages, which means that it is not possible
to use only sequence numbers to ensure that the messages are delivered in
the correct order. Secondly, we seek to reduce the communication overhead
associated with repairing a site by employing our algorithm that minimizes the
amount of data that needs to be exchanged between sites to restore state.

In the context of failure detection, we adhere the Erlang philosophy of let it
crash. This implies that we do not actively attempt to detect failures, but rather
focus on failing fast and then restoring the system to a consistent state after a
failure has occurred. This approach is based on the assumption that the system
can function correctly even in the presence of failures.

The following sections present our approach to fault-tolerance in a distributed
setting, utilizing replication and restoration mechanisms. In addition, we in-
vestigate the potential for enhancing the efficacy of site repair through the
utilisation of lightweight commits. Furthermore, we will provide an illustrative
example to demonstrate the concepts presented.

40 chapter 3 design

3.3.1 Systemmodel

The following system model is assumed. A distributed system is defined as a set
of sites, 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑛}, that do not share memory. Each site, designated
by the subscript 𝑠𝑖 , is responsible for maintaining a durable state. It is possible
that some sites may experience a crash and subsequently restart to a previous
state, which may differ from the state that existed prior to the crash. A site is
capable of sending a message to any other site via an asynchronous network.
It should be noted that the network is unreliable, in that messages may be
duplicated and reordered, but will eventually be delivered and not corrupted.
This implies that the network may be partitioned, but that disconnected sites
will eventually reconnect and that we have a Crash failure model.

3.4 Replication & Restoration

A site may be inaccessible for an extended period (or be offline for sufficiently
long), and may subsequently become operational again. The execution of a
program may continue with the sites that are still operational. No action is
required as long as the number of failed sites is less than the replication degree
𝑁𝑟 . This can be designated as the tolerance level of the system. An execution
with a replication degree of 𝑁𝑟 can tolerate 𝑁𝑟 − 1 site failures. The number
of failures that the system can tolerate is reduced by one for each additional
site failure.

3.4.1 Basic Replication

Our first approach to repair a prad program execution to maintain the fault-
tolerance requirements, we can utilize passive optimistic replication. This
implies that sites propagate updates beyond the current execution to other
sites and allows for sites to temporarily diverge. During the compilation of
the program, we generate a distribution policy that specifies where and how
the data is replicated with the parallel and replication degree requirements.
Depending on the replication degree and the communication strategy as de-
tailed in Section 3.2, we can repair a site by replicating the missing data from
the other sites. For an N-N execution the site is simply replaced with the new
replica site without modifying the other sites. In the case of an 1-1 execution,
we also switch the downstream sites of 𝑠 to the new replica site to fully repair
the execution.

We first consider the case where a site 𝑠 is down with a replication degree of
𝑁𝑟 ≤ 2 and communication strategy of 1-1. In this case need a complete repair

3.4 replication & restoration 41

of an execution, since the site is the only one responsible for the data. After
site 𝑠 we make a new replica of 𝑠. Suppose that the site 𝑠 holds the relation 𝑅
(or most likely multiple relation 𝑅1, 𝑅2, . . . , 𝑅𝑛 in a partition). We create a new
site 𝑠 and populate 𝑅 with a running replica of 𝑅 from site 𝑠′, let’s call it 𝑅′.
Suppose sites 𝑢1, . . . , 𝑢𝑛 are the upstream sites of 𝑠 that generate the facts in 𝑅,
and sites 𝑑1, . . . , 𝑑𝑛 are the downstream sites of 𝑠 that consume the facts in 𝑅 in
their rule bodies. These will then be set as the new upstream and downstream
sites of the new replica site 𝑠 respectively.

If we are using a coordination-free and naive approach, the upstream sites
𝑢𝑖 re-generate all derived facts that 𝑠 was responsible for and send them to
the new site 𝑠. Respectively, 𝑠 re-generates all facts in 𝑅 and sends them to
the responsible downstream sites 𝑑𝑖 . This is done until all involved sites have
stabilized. The approach is correct, but it is costly, and is against the principle
of asynchronous and incremental execution of Datalog programs.

3.4.2 Stateless Repair

A second approach that does not rely on the site state, is to utilize the prove-
nance information (p-instance) within Cl-Map to determine which facts are
missing. Let’s focus on communication strategy 1-1, between the new replica
𝑠 and the upstream sites 𝑢. We want to use 𝑢 to update the state of 𝑅 at
𝑠. First, 𝑠 sends it Cl-Map 𝑐𝑙𝑠 to 𝑢. Upstream site 𝑢 then calculates the dif-
ference between its own Cl-Map 𝑐𝑙𝑢 and 𝑐𝑙𝑠 . This difference is denoted by
clΔ = {𝑡, ↦→ cl𝑢 (𝑡) | cl𝑢 (𝑡) > cl𝑠 (𝑡)}. We suppose that site 𝑢 has the rule
𝑅 ← 𝑅1, 𝑅2 in its program, meaning that the upstream site 𝑢 contains 𝑅1
and 𝑅2. It then filters out the facts in 𝑅1 and 𝑅2 whose provenance identifiers
are in supp(𝑐𝑙Δ). Finally, 𝑢 uses these facts to derive the missing facts in 𝑅 for
𝑠 with the semi-naive evaluation algorithm and sends them to 𝑠. This process
is repeated for all upstream sites 𝑢 of 𝑠.

The newly constructed replica site 𝑠 is capable of generating the requisite
derived facts for the downstream sites𝑑 in amanner analogous to that described
above. The difference clΔ can be reused to determine which facts are missing
in the downstream sites 𝑑. Subsequently, 𝑠 can use clΔ =

⋃
1≤𝑖≤𝑛 clΔ𝑑𝑖 which

is the union of the differences between the Cl-Maps of the downstream sites
𝑑𝑖 and 𝑠, this is equivalent to the most recent state of 𝑅 at 𝑠. To generate
new derived facts for all the downstream sites 𝑑1, . . . , 𝑑𝑛 of 𝑠. Even though
a downstream site 𝑑 may have received the facts from 𝑠 that it already has
received from 𝑠 or other sites before, it will not affect the correctness of the
execution. The downstream site 𝑑 will simply ignore the duplicate facts as
discussed in Section 3.1.3. This holds true as each site has either a edb or idb
table with an associated Cl-Map. We basically build a dependency graph of

42 chapter 3 design

the Cl-Maps to determine which edb tables the specific idb tables on a site
depends on.

The second approach allows to further minimization of the communication
overhead and the amount of data that needs to be exchanged to repair a
downstream site 𝑑. To repair a downstream site 𝑑, it is sufficient to send the
derived facts, the heads to the downstream sites, since they contain all the
information needed to generate the bodies.

3.4.3 Lightweight Commits

prad adheres on local-first principles, meaning that data is stored and pro-
cessed at the edge. This means that sites go offline and online frequently and
can stay offline for extended periods of time. The system must be capable to
restore the state, that is, to stabilize a site 𝑠, when it comes back online. The
restoration process is analogous to the repair process, but it needs to support
partial restoration of the state. This is because the site 𝑠 may have been offline
for an extended period and may not have received all the updates that were
sent to replicas.

In order to repair a site 𝑠, we to need to fetch the missing data from upstream
𝑢 or peer sites 𝑝. We employ two strategies for restoration, first the stateless
repair strategy 3.4.2 which works just as for replication, and secondly the lwc
strategy. The need for the lightweight commit strategy arises from the fact that
it is currently not possible to determine if an output 𝑝 − 𝑓 𝑎𝑐𝑡 will be resent
from an upstream or not.

Two alternative solutions to this problem have been identified. The initial
idea was to utilize sequence numbers for deltas. However, this approach would
require messages to be delivered in FIFO order, a guarantee that is not iherent
in the system. This renders it impossible to determine if a message has been
re-sent or not. Instead, we draw inspiration from the Git 1 and Pijul 2 version
control systems. This involves adding commits to the delta outputs at periodic
intervals, to keep track of sets of updates that have been sent and received.
Unfortunately, commits also exhibit a similar limitation as sequence numbers,
as they are not guaranteed to be delivered in the correct order. This implies
that messages prior to the commit may be lost or arrive after the commit. We
propose the inclusion of Cl-Map deltas, which are join-irreducible states within
the commits. As the Cl-Maps represent a summary of the site state, they can
be used to determine which facts are missing and where they derive from.

1. https://git-scm.com/
2. https://pijul.org/

3.4 replication & restoration 43

This approach entails a reduction in communication overhead, although it
necessitates the introduction of a more persistent system state.

A lwc for a 𝑝 − 𝑓 𝑎𝑐𝑡 ¥𝑓 is structured as a tuple of the form ⟨𝑓 , 𝑝 𝑓 , 𝑐𝑙𝑓 ,𝑚𝑓 ⟩. The
𝑓 represents the 𝑝 − 𝑓 𝑎𝑐𝑡 itself, 𝑝 𝑓 is the provenance identifier for the 𝑝 − 𝑓 𝑎𝑐𝑡
and 𝑐𝑙𝑓 is the Cl-Map for the 𝑝 − 𝑓 𝑎𝑐𝑡 .𝑚𝑓 contains additional metadata about
the 𝑝 − 𝑓 𝑎𝑐𝑡 , such as the site that generated it or the target site. It can be
modified based on the specific requirements of the system.

Suppose an upstream site 𝑠𝑢 sends a sequence of 𝑝− 𝑓 𝑎𝑐𝑡𝑠 to a downstream site
𝑠𝑑 , followed by a lwcmessage 𝑐𝑛. The 𝑝−𝑓 𝑎𝑐𝑡𝑠 after the previous lwcmessage
𝑐𝑛−1 are included in the same commitment. Subsequently, the downstream
site 𝑠𝑑 will then merge the received 𝑝 − 𝑓 𝑎𝑐𝑡𝑠 into its local state. When 𝑠𝑑
receives a new lwc message 𝑐𝑛+1, it sends an acknowledgement message to
𝑠𝑢 , if and only if it has merged all neccesary 𝑝 − 𝑓 𝑎𝑐𝑡𝑠 into its state. To verify
that all the necessary 𝑝 − 𝑓 𝑎𝑐𝑡𝑠 have been merged, cl-maps are compared by
calculating the difference between the cl-maps of the lwc message 𝑐𝑛 and the
current cl-map of the site. If the 𝑝 − 𝑓 𝑎𝑐𝑡𝑠 are verified, the site 𝑠𝑑 sends an
acknowledgement to the upstream site 𝑠𝑢 , to notify it that the previously sent
updates are now included in its state.

The upstream 𝑠𝑢 maintains a 𝑐𝑙𝑖 for each lwcmessage 𝑖 it sends. After sending
⟨𝑓 , 𝑝 𝑓 , 𝑐𝑙𝑓 ,𝑚𝑓 ⟩, 𝑠𝑢 merges the new Cl-Map 𝑐𝑙𝑓 into the current Cl-Map 𝑐𝑙𝑖 , to
update its local state to reflect the changes. When 𝑠𝑢 receives an acknowledge-
ment from 𝑠𝑑 , it compares 𝑐𝑙𝑖 with 𝑐𝑙𝑠𝑑 . If 𝑐𝑙𝑖 ≤ 𝑐𝑙𝑠𝑑 , downstream site 𝑠𝑑 has
successfully merged the 𝑝 − 𝑓 𝑎𝑐𝑡𝑠 into its state. If 𝑐𝑙𝑖 > 𝑐𝑙𝑠𝑑 , the site 𝑠𝑑 has not
yet merged the 𝑝 − 𝑓 𝑎𝑐𝑡𝑠 into its state. In this case, 𝑠𝑢 will resend the lwc
message 𝑐𝑖 to 𝑠𝑑 . This process will be repeated until 𝑐𝑙𝑖 ≤ 𝑐𝑙𝑠𝑑 .

The site 𝑠𝑢 keeps a commit log that contains acknowledged lwcmessages. If 𝑠𝑢
knows that all downstream sites 𝑠1, . . . , 𝑠𝑛 have made merged all the necessary
𝑝 − 𝑓 𝑎𝑐𝑡𝑠 into their states, it can trim the 𝑝 − 𝑓 𝑎𝑐𝑡𝑠 from its delta-out buffer.
More on this in Section 3.5.

If 𝑠𝑢 derives multiple 𝑝 − 𝑓 𝑎𝑐𝑡𝑠 in a single step, it will bundle them together
in a single lwc message. These bundled Cl-Maps are called composite Cl-Maps
and are not curently implemented in the system. But it is a potential future
extension to the system see Section 7.2.

44 chapter 3 design

3.5 Lowering recovery overhead

As the system is horizontally sclaed, the introduction of each replica results
in an increases the amount of data that must be exchanged to repair a site
increases. Consequently, the communication overhead increases linearly with
the number of replicas. This is not a significant issue when the system is
relatively small, but as the system grows, the communication overhead will
become a bottleneck. To address this issue, we need to minimize the amount
of data that needs to be exchanged between sites to restore state. Therefore,
a strategy is employed to trim the delta-out buffer of redundant data, while
maintaining the fault-tolerance requirements.

The trimming algorithm is based on the concept of garbage collection. The
objective is to identify the data that is no longer needed and remove it from
the delta-out buffer. The algorithm is designed to be stateless and does not
require any coordination between sites. Each site is responsible for trimming
its own delta-out buffer. Periodically, the site will check the state of the commit
log, to determine if it has received all the downstream sites acknowledgements.
If all have acknowledged, the site will trim (discard) the associated delta-out
𝑝 − 𝑓 𝑎𝑐𝑡𝑠 from the buffer. It does not discard the lwc records themselves, this
ensures that the system can restore from a site failure without losing any data.
For any site that comes back online, we can regenerate the missing 𝑝 − 𝑓 𝑎𝑐𝑡𝑠

with the database instance, at the cost of some additional computation and
time.

3.5.1 Choosing the time to trim

An efficient trimming algorithm will result in a reduction in the duration of
system operations. This implies enhanced runtime performance, as there is a
reduction in the disruption to processing and a faster recovery from failures,
due to a reduction in the amount of data that needs to be restored. Therefore,
it is crucial to determine the optimal time to trim the deltas. The time to trim
is determined by the number of downstream acknowledgments received. It’s
inherently a trade-off between trimming too often and too seldom. Trimming
too often will result in removing deltas that are still needed to restore a
downstream site, while trimming too seldom will result in a large amount of
data that will be stored at upstream sites. In the case of a N-N communication
strategy, a site can have both multiple replicas and multiple downstream sites
how can it alone determine when to trim?

The system can’t be certain that all downstream sites have received the deltas,
as some sites may be offline (a common state in a local-first system), and
it will only have a partial or incomplete view of the system. Suppose we

3.5 lowering recovery overhead 45

have a system with upstream site 𝑢 and downstream sites 𝑑1, 𝑑2, . . . , 𝑑𝑛. The
upstream site 𝑢 sends a lwc to the downstream sites, and it receives an
acknowledgment from the downstream sites 𝑑1, 𝑑2, . . . 𝑑𝑛−𝑘 where 𝑘 is the
number of offline sites. The upstream site 𝑢 can’t be certain that the offline
sites have received the 𝑝 − 𝑓 𝑎𝑐𝑡𝑠, and it can’t trim the 𝑝 − 𝑓 𝑎𝑐𝑡𝑠 since new
information from the offline sites may be needed to restore the system. In
other words, the output (trim) does not grow monotonically with the input
(acknowledgments), previously received acknowledgments may be invalidated
by new acknowledgments. This is akin to the findings of Hellerstein and
Alvaro [14] where they discuss the challenges of distributed garbage collection,
with the conclusion that coordination-free systems can’t guarantee that all
nodes have received the same information.

We have chosen a probabilistic approach to solve the problem. Depending on
the system configuration, we set up a policy to trim the deltas when we have
received acknowledgments from around certain percentage of the downstream
sites. This is based on the assumption that the system contains both edge and
core sites, where the edge sites are more likely to be offline than the core sites.
Once the policy is met, the upstream site can trim the deltas, and the reaming
sites that have not acknowledged are regarded as offline.

4
Software Engineering
Methods

This chapter will provide a brief overview of the software engineering methods
employed during the thesis development process, with a particular focus on
the improvements made to the development processes and code quality in
prad.

The principles and practices of software engineering serve as the foundation
for any robust development process. Software engineering is a discipline that
applies engineering principles to the creation of software. The objective is to
prioritize efficiency, maintainability, and reliability throughout the software
lifecycle. These qualities are of importance for any system developed over
an extended period of time. Software engineering is a broad discipline en-
compassing numerous approaches to software development. One of the most
popular approaches is the Agile methodology, which was created to address the
shortcomings of the traditional Waterfall model.

4.1 Agile

Agile methodologies, such as Scrum and Kanban, represent a set of software
development practices that are focused on incremental iterative development,

47

48 chapter 4 software engineering methods

is a methodology that involves the evolution of requirements and solutions
through collaboration between self-organizing and cross-functional teams.
These methodologies are based on the Agile Manifesto [32], which outlines the
fundamental principles of agile development as follows:

• Individuals and interactions over processes and tools.

• Working software over comprehensive documentation.

• Customer collaboration over contract negotiation.

• Responding to change over following a plan.

In the context of our project, we have implemented a modified version of
the Scrum methodology. The product backlog consists is a prioritized list of
requirements and milestones, created in collaboration with the project super-
visor. Subsequently, the product backlog is then divided into sprints, which
are defined as short cycles during which the requirements are defined and
implemented. At the conclusion of each sprint, the requirements are reviewed
and evaluated, and the product backlog is updated accordingly. This process
is repeated until the project is completed. The project is divided into three
sprints, each lasting approximately one month. The initial sprint was focused
on the theoretical framework, the second to the design and experimentation
and the third to the evaluation and results.

Utilizing an agile methodology has been beneficial to the project, as it has
allowed us to adapt to changes in requirements and priorities. And it opens
for collaboration with future developers, as the project is well-structured and
tested.

4.2 Test-Driven Development

Test-Driven Development (tdd) is a software development process that relies
on the repetition of a very short development cycle. Once the requirements
have been transformed into highly specific failing test cases, then the software
is improved to pass the new tests. Only then can the code be refactored. This
process is repeated until the requirements are met. tdd is well-suited to agile
methodologies, as it ensures that the code is well-tested. Additionally, tdd
facilitates the design of Application Programming Interface (api)s, as it forces
the developer to think about the interface before the implementation. This is
especially useful for prad, as it is a library that will eventually be utilized by
other developers.

4.3 devops 49

4.3 DevOps

Development and Operations (devops) extends the agile methodology, by
efficiently integrating development and operations. It is a set of practices that
automates and links the software development process. With the goal of build-
ing, testing, and releasing software quickly and reliably. Industry leaders such
as Microsoft [33] and Amazon [34] have adopted devops, and it has become
a popular approach to software development. The devops approach builds on
the principles of Collaboration between the development and operations teams,
Automation of the software delivery process, andMonitoring of the performance
of the development process. They are described in detail below.

4.3.1 Collaboration

In order for a team towork efficiently, theymust be able to collaborate effectively.
For the source code to be available, Version Control System (vcs) such as Git
are used. They allow for better collaboration, versioning, branching and can
scale to large projects. A popular workflow for Git is trunk-based development1,
where all changes are committed to a single branch, the trunk. With this,
changes are visible for all collaborators, and it reduces the pressure of merging,
and allows for more automation.

4.3.2 Automation

Automation is a key component of devops, as it reduces the time and cost for
integration and deployment. The utilization of such tools such as container-
ization permits the creation of reproducible environments, which can be used
for testing and deployment. Continuous Integration (ci) is a software devel-
opment practice where developers regularly merge their code changes into a
central repository. Automated builds and tests are then run. This approach al-
lows for early detection of bugs and reduces the cost of integration. Continuous
Deployment (cd) is an extension of ci, where the software is automatically
deployed to production or the package repository after passing the automated
tests.

4.3.3 Monitoring

Monitoring is the process of continuously collecting, processing, and displaying
real-time information about a system. It provides information about the system

1. https://trunkbaseddevelopment.com/

50 chapter 4 software engineering methods

such as performance, status and usage patterns of the system. This is achieved
by collecting metrics, events, and logs from the system. Metrics are quantitative
measurements, such as CPU usage, memory usage, and network traffic.Events
are discrete signals that indicate that something has happened, such as a node
joining or leaving the network.Logs are records of events that have happened
in the system, such as a node crashing or a message being sent. These are
typically stored in a centralized database, and can be used for debugging and
analysis. In Section 6.1, we will employ monitoring techniques to assess and
evaluate system’s performance.

5
Implementation
This chapter will present how the approach to failure handling with replication
and restoration of sites has been implemented. We explain how our approach
is integrated into the existing prad system. We provide an overview of the
rationale behind selecting Elixir as the programming language. Finally, we
present the implementation of the trimming algorithm for delta outputs.

5.1 Elixir Background

In this thesis, and more specifically in prad, we make use of several language-
specific features of the Elixir programming language, which renders it an
optimal choice for the development of large distributed systems. In light of the
aforementioned considerations, it is beneficial to provide a brief overview of
Elixir and the Erlang Virtual Machine, which it runs on.

Elixir [35] is a dynamically typed and concurrent programming language that
adheres to the principles of functional programming. This enables the rapid
prototyping of highly concurrent systems. It integrates elements from Erlang,
Clojure and Ruby to create a language that is both expressive and performant.
Its syntax is inspired by that of Ruby, and it makes use of a number of the same
features, including metaprogramming and pattern matching. In contrast to
programming languages such as Python and Rust, which employ Async-Await
to achieve concurrency, Elixir utilizes a share-nothing actor model. These and

51

52 chapter 5 implementation

other features derive from Erlang, which is the reason for now introducing the
Erlang programming language.

Erlang [36] is a programming language and platform designed for building
reliable and scalable systems. The language was initially developed by Joe
Armstrong, Robert Virding and Mike Williams at Ericsson in the 1980s, with
the intention of being used in telecommunication systems. Telecommunication
systems are inherently distributed, and must be always online, even in the face
of unexpected errors or software upgrades. The non-functional requirements
of high availability and fault tolerance remain highly relevant in the present
day. Erlang is used to build large-scale distributed systems, including those
used by WhatsApp [5], Discord [4] and RabbitMQ [37].

5.1.1 BEAM & OTP

The Erlang Virtualmachine, or Bogdan/Björn’s Erlang AbstractMachine (beam)
is the virtual machine that runs Erlang and Elixir code. It utilizes its own
garbage collector, scheduler and memory allocator to distribute the Erlang
processes across available CPU cores.

The fundamental unit of concurrency in Erlang is the Erlang process. In contrast
to operating system processes, Erlang processes are notably lightweight and can
be created and destroyed quickly. This capability enables the Erlang runtime
to schedule millions of processes on a single machine. The processes are
scheduled by the Erlang Run-Time System (erts) [38], and are preemptively
scheduled. This implies that can continue to execute until they yield control to
the scheduler.

Additionally, Erlang processes are share-nothing, meaning that they cannot
share memory with other processes. In the event of a process crash, it will not
affect any other processes, and the runtime will simply destroy the process
and reclaim the memory as described in [38]. This contrasts with operating
system processes, where a crash can affect other processes and the operating
system itself. This enables a ‘Let it cash’ philosophy, where the programmer
does is not required to handle every possible error; instead, the process can be
allowed to crash, and a new process can be initiated instead. This is particularly
advantageous in distributed systems, where errors are inevitable and difficult
to handle. Furthermore, it enables the use of the actor model of concurrency,
where each process is an actor that communicates with other actors by sending
messages.

As Erlang processes are share-nothing, they communicate by asynchronous
message-passing. This implies that they do not necessitate the use of intricate

5.2 prad extension for failure handling 53

synchronization primitives such as locks or mutexes. The message-passing
interface between processes is the identical regardless of whether the processes
are local or remote. This enables the same code to be executed on a single
machine or across a cluster of machines.

The Open Telecom Platform (otp) is a set of libraries and tools for building
distributed systems in Erlang and Elixir. It provides a set of behaviours for
building fault-tolerant systems, such as gen-server. A behaviour is generic a
code module that implements a set of common functionality. This functionality
is made available through a set of callbacks, which the user implements in
order to adapt the code to their specific requirements code. This enables the
user to focus on the domain logic, while the generic Open Telecom Platform
(otp) code handles the common functionality. The ease of adopting GenServer
behaviours is one of the main reasons we choose to implement prad in Elixir.
This allows us to focus on the domain logic of the system instead of the common
functionality. GenServers provide both a synchronous and asynchronous request-
response model, named call and cast respectively. This allows for a flexible
communication model between the processes.

The Erlang Term Storage (ets) is a built-in database in the Erlang runtime
that can be utilized to store considerable amounts of data in-memory and to
share state between Erlang processes. It is highly optimized for concurrent
access, and can be used to store millions of entries. It is useful for key-value
stores or counters, such as in the Cl-set. prad uses ets to store the edb and
idb tables of the Datalog program.

5.2 PRAD Extension for Failure Handling

The implementation extends the existing prad [6] system with the ability
to repair the execution of prad programs by recovering from site failures.
The implementation has been developed in Elixir as a set of modules, which
have been wrapped in an api that provides the necessary failure handling
functionality. The currently supportedmodules in the Elixir implementation are
Replication and Restoration. The Replication module is responsible for
dynamically replicating the state of one site to a new replica. The Restoration
module is responsible for restoring the state of a site that has been offline for
a period of time. Both modules are implemented as GenServer processes in
Elixir, which allows for the handling of stateful processes (actors).

The modules are responsible for repairing the state of a crashed, stopped or
offline site in the system. As previously discussed in Section 3.4, the objective is
to populate the new site with the relation(s) from an existing site. To achieve

54 chapter 5 implementation

this, the new site must set up a minimal skeleton state, which requires the
instantiation of a configuration, a relation or relations, and a Cl-Map. These
are the fundamental elements of a site in prad.

Listing 5.1: Example Datalog Program

BookPr (T, Y) :- Book(T, Y, A).

Suppose we have upstream sites 𝑠1, 𝑠2 with relation the Book and downstream
sites 𝑠3 and 𝑠4 with the relation BookPr. Among these sites, 𝑠3 has experienced
a crash and is offline. All of the aforementioned sites are part of the same
program, as seen in Listing 5.1. An example of the state of 𝑠1 and 𝑠3 can be
seen in Listing 5.2 and Listing 5.3 respectively, taken immediately following the
crash of 𝑠3.

Listing 5.2: Example of complete Site 1 state.

{
"name": "s1",
" configs ": [":book"]
" relations ": {

[": book_s1 "]
},
" replicas ": [":s2"]
" schema ": {[title: :text , year: :num , author : :

text], [1, 3]}
"delta": [{" Elixir ", 2024, " Author ", %{ prov ...}}]
"cl": %{...}
" commit_log ": {...}
"is_on": true

}

As illustrated in Listing 5.2, the complete state of 𝑠1 is a JavaScript Object
Notation (json) object that contains the site’s name, configuration, relations,
replicas, schema, delta, Cl-Map and a boolean flag is_on. While the state of 𝑠3
in Listing 5.3 is largely consistent with that of 𝑠1 with the exception of the is_on
flag, which has been set to false to indicate that the site is offline. Important for
the repair process are the configs, replicas, cl and delta fields. The configs field
contains the relations that the site is responsible for, the replicas field contains
the names of the replica sites, the cl field contains the Causal Length of the site
and the delta field contains the updates that the site has received.

The Cl-Map is implemented using a map data structure in Elixir, where the
keys are the relation names and the values are sub-maps containing the UUIDs
and their associated Causal Lengths. While the commit log utilizes the Erlang

5.2 prad extension for failure handling 55

:ordset 1 module to store the UUIDs of the commits, allowing for efficient
insertion and deletion of unique commits.

Listing 5.3: Example of complete Site 3 state.

{
"name": "s3",
" configs ": [": book_pr "]
" relations ": {

[": book_pr_s3 "]
},
" replicas ": [:s4]
" schema ": {[title: :text , year: :num], [1, 2]}
"delta": [{" Elixir ", 2024, %{ prov ...}}]
"cl": %{...}
" commit_log ": {...}
"is_on": false

}

The process of establishing a skeleton site is initiated by invoking the GenServer
init behavior in Elixir, which is called when a new process is started. The init
function is responsible for initializing the state of the process. The state, which
is represented as a map, includes the site’s unique id and its configuration.
The configuration comprises the relations (edbs and idbs) that the site is
responsible for, the schemas of the relations and the Rules defined by the cur-
rent program. A common feature of both the Replication and Restoration
modules is that we provide the id of the site from which we wish to replicate
or restore from. With the id of the source site, we can fetch the configuration
using a call to the source site. Based on the source configuration, we create
the required relations either as edbs or idbs, and instantiate them at the
replica. Finally, we create an empty Cl-Map based on the Site id. Once the
skeleton state has been established, the replication or restoration process can
be initiated.

5.2.1 Basic Replication

Our implementation of the restore and replication mechanisms underwent
several iterations. In the initial iteration, we used a replicate (full restore)
approach, where the source site would send the relations to the new replica.
This approach is illustrated in Listing 5.4 Once the site skeleton has been
established, we contact the existing site to pull the relations from it. The

1. https://www.erlang.org/doc/apps/stdlib/ordsets.html

56 chapter 5 implementation

existing site sends the required relations to the new replica. Subsequently, the
new replica then stores the relations in their respective states and updates the
Cl-Map accordingly. At this point, the new replica is prepared to receive new
updates.

Listing 5.4: Minimal example of a basic repair using replication.

defmodule Site do
use GenServer
Common intialization for both replication and

restoration .
def init(args) do

%{id: args[:id], relations : %{}, cl_map : %{}}
end

def replicate (new , source) do
call({:init})
config = fetch_config (source , new)
create_relations (config)
pull_relations (source)
update_cl ()

end
end

The full replication approach is costly due to the necessity of transmitting a
significant amount of data, even in the event that sites possess some common
relations. This is particularly problematic in the case of partial repairs or
restores, where only a subset of the relations is required. To address this
issue, we developed a stateless restore mechanism, which is more efficient and
only requires the sites to transmit the missing relations. The stateless restore
mechanism is discussed in the following subsection.

5.2.2 Stateless Restore

A more viable approach is to utilize the Cl-Map to calculate the difference
between the two maps and only transmit the missing relations. After receiving
the diff, the new site can apply the changes to its state and update the Cl-Map
accordingly.

The diff algorithm is composed of two primary functions that operate on Cl-
Maps. The keys represent relations, while the values are sub-maps containing
UUIDs and their associated Causal Length. The diff algorithm is illustrated in
Algorithm 1. The algorithm takes two Cl-Maps as input, the current state map

5.2 prad extension for failure handling 57

𝐶𝐿 and the delta state map 𝐶𝐿Δ. The algorithm iterates over each relation
in the delta state map and compares the Causal Lengths of the UUIDs in the
sub-maps. If the Causal Length in the delta state map is greater than the Causal
Length in the current state map, the UUID is added to the diff. This ensures
that only the facts that are not present in the target map are added to the diff.
The diff is then returned as the output of the algorithm.

Algorithm 1 Diff Algorithm for Cl-Maps
1: Input: Current State Map 𝐶𝐿, Delta State Map 𝐶𝐿Δ
2: Output: Difference Map 𝐷
3: procedure Diff(𝐶𝐿, 𝐶𝐿Δ)
4: 𝐷 ← {}
5: for all 𝑟 ∈ Relations(𝐶𝐿Δ) do
6: 𝐶𝐿𝑟 ← Get(𝐶𝐿, 𝑟, {})
7: 𝐶𝐿Δ𝑟 ← Get(𝐶𝐿Δ, 𝑟)
8: 𝛿 ← DiffInRel(𝐶𝐿𝑟 ,𝐶𝐿Δ𝑟)
9: if 𝛿 ≠ {} then
10: 𝐷 ← 𝐷 ∪ {𝑟 ↦→ 𝛿}
11: end if
12: end for
13: return 𝐷

14: end procedure
15: procedure DiffInRel(𝐶𝐿, 𝐶𝐿Δ)
16: 𝐷𝑟 ← {}
17: for all 𝑢 ∈ Keys(𝐶𝐿Δ) do
18: 𝑙 ← 𝐶𝐿Δ (𝑢)
19: if 𝐶𝐿(𝑢) < 𝑙 then
20: 𝐷𝑟 ← 𝐷𝑟 ∪ {𝑢 ↦→ 𝑙}
21: end if
22: end for
23: return 𝐷𝑟

24: end procedure

5.2.3 Lightweight Commit Generation

A third approach, currently only for the restoration mechanism, is to use
Lightweight Commit (lwc)s, to handle the restoration of a site with multiple
upstream sites. It builds on the same initial setup as the stateless restore, but
instead of relying on the Cl-Map to calculate the difference, we use the lwcs
to determine when all upstream sites have sent their updates. Suppose we
have an upstream site 𝑢, and a downstream site 𝑑. The upstream site 𝑢 sends a
sequence of p-facts followed by a lwc. As described in Section 3.4.3, the interval

58 chapter 5 implementation

of the lwc is determined by the queue length. The downstream site 𝑑 receives
the p-facts and merges them to its local Cl-Map. When the downstream site 𝑑
receives the lwc, it sends an acknowledgment back to the upstream site 𝑢 if
and only if it has merged all necessary p-facts. 𝑑 can verify this by comparing
the Causal Length of the p-facts with the Causal Length in the Cl-Map. If the
Causal Length in the Cl-Map is less than the Causal Length of the p-facts, the
p-facts have not been merged, and the lwc is ignored. Currently, the lwc
mechanism is only available insertions as deletions require a more complex
mechanism to handle the removal of facts, to keep the monotonicity of the
system.

lwcs are generated automatically by the system or manually added to the
delta output via an api. In either case, however, the generation of lwcs is
contingent upon the occurrence of queue points. A queue point is defined as
a point in the execution where the system is in a stable state, which can be
used as a reference point for the generation of lwcs. The system automatically
generates queue points based on the user-defined queue length parameter. The
queue length parameter specifies the number of updates that can be sent before
a queue point is generated.

The queue length parameter allows for the fine-tuning off the amount of state
that needs to be stored and the efficiency of the restoration process. A queue
length that is too shortwill result in numerous queue points and lwcs that could
temporarily saturate the network. Conversely, a queue length that is too long
will result in a significant amount of state that needs to be stored. The optimal
queue length is contingent upon the specific use case and the requirements of
the system. Consequently, there is an inherent trade-off between the overhead
in memory usage by storing more in the queue, and reducing the latency of
the restoration process.

5.2.4 Repair API Usage

Listing 5.5 shows the usage of the Replication and Restoration apis. In this
example, we have four sites, :s1, :s2, :s3, :s4 and :s5. Site 1 crashes and Site
2 goes offline and the fault tolerance degree of the system is reduced. To repair
the fault tolerance degree, we create a new site, :s5, which is a replica of site
1. We use site 2 as the source of the replication. The state of site 5 is now the
same as site 1, and the fault tolerance degree of the system is restored. Here
we see that the replication mechanism extends the system static configuration,
we can instantiate new replica sites on-the-fly and dynamically change the
number of replicas for a given site.

Listing 5.5: Example of the Replication and Restoration APIs

5.3 trimming algorithm 59

def Prad. Example do
Initialize the sites.
sites = [:s1 , :s2 , :s3 , :s4 , :s5]

Configuration for the sites.
upstream_schema = [:s1 , :s2 , :s3]
downstream_schema = [:s4 , :s5]

Sites 1 crashes .
Site.crash(:s1)

Site 2 goes offline .
Site.stop(:s2)

We create a replica of site 1 using site 3.
:s6 = Site. replicate (:s1 , :s3)

We restore site 2 using site 3.
:s2 = Site. restore (:s2 , :s3)

Sites 2 and 6, can now be used as before .
end

All three approaches currently use a synchronous communication mechanism
call, which means that the calling process will block until the receiver has
processed the message. This could have notable performance and scalability
implications, this and the different ramifications of each approach will be
discussed more in-depth in the Discussion Section 7.2.2.

5.3 Trimming Algorithm

The implementation of the trimming algorithm presented in Section 3.5 is built
on top of the GenServer process abstraction in Elixir. The trimming algorithm is
presented in Algorithm 2. Each site in the system is represented as a GenServer,
which is equipped with a local trim process. Besides the synchronous and asyn-
chronous communication protocols (call and cast), GenServer provides a set of
‘regular’ callbacks that define the sending and receiving ofmessages. To support
the periodic nature of the trimming algorithm, especially the send_after/4
function is of interest. It allows us to send a message to the GenServer process
after a specified time interval, and handle the message in the asynchronous
handle_info callback, which is akin to an Async/Await pattern in other pro-

60 chapter 5 implementation

gramming languages. This allows us to avoid blocking the process while waiting
for the next trimming operation in idle periods.

In addition, if no new lwcs are acknowledged, an exponentially back off is
implemented using the aforementioned send_after/4. The backoff period
is determined by the trimming interval parameter, which specifies the time
between each trimming operation. With a maximum backoff period of 10
minutes, the algorithm will gradually increase the time between each trimming
operation until a new lwc is acknowledged. This ensures that the system is
not burdened with unnecessary trimming operations when there is no new
data to be removed.

Algorithm 2 Trimming Algorithm for Delta Outputs
1: Input: State state, min_timeout := 1000, max_timeout := 10000,
queue_size := 10

2: Output: Trimmed updated state
3: procedure HandleInfo(trim, state)
4: (new_deltas, trim_performed)← PerformTrim(state)
5: if trim_performed then
6: timeout← 1
7: else if min_timeout * (state.timeout * 2) > max_timeout then
8: timeout← max_timeout
9: else
10: ScheduleTrim(min_timeout * (state.timeout * 2))
11: timeout← state.timeout * 2
12: end if
13: ScheduleTrim(min_timeout)
14: return state with updated delta and timeout
15: end procedure
16: procedure ScheduleTrim(interval)
17: Send :trim message after interval
18: end procedure

6
Experiments
This chapter presents the experiments conducted to evaluate the implemented
approach. We start by describing the experimental setup, including the hard-
ware and software used. We present the two scenarios, repair and restore, and
demonstrates their effect on performance, storage, and communication. We
then proceed on to evaluate the lightweight commit cost. Finally, the impact
of trimming algorithm on the system is evaluated.

6.1 Experimental Setup

We have created a set of experiments to evaluate our expansions of the prad
system in terms of performance and scalability. The experiments are imple-
mented and measured using our monitoring system, which is described in
Section 4.3.3. The monitoring system enables the measurement of the CPU
usage, memory usage, garbage collection, and the number of processes, with
minimal overhead.

The experiments were conducted using Elixir 1 version 1.15.7, compiled with
Erlang OTP 2 26.1.2. The prad fault-tolerance extension is implemented us-
ing GenServers for the sites and ets for data storage. In order to study the

1. https://elixir-lang.org
2. https://www.erlang.org/

61

62 chapter 6 experiments

performance of the system in a more realistic distributed environment and
to overcome the limitations of the shared resources on a local machine, we
have added delays simulating network latency and processing time of Database
operations. The delays are introduced at the GenServer level, and can be con-
figured. For each message transmitted between two sites, a 10𝑚𝑠 delay was
introduced, and for each search conducted on a table 1𝜇𝑠 for every 10 rows
processed.

The following hardware was used to run the benchmarks:

• CPU: Apple M1 CPU with 8 (4 power and 4 efficiency) cores @ 3.2 GHz

• MEMORY: 16 GB LPDDR4 @ 4267 MHz

• BANDWIDTH: 68 GB/s

• STORAGE: 256 GB PCIe SSD with 3.3 GB/s read and 2.8 GB/s write

Due to the manual insertion of delays, the hardware should not have a signifi-
cant impact on the results.

The core of the experiment comprises two classical Datalog programs for
calculating a transitive closure, for the two operations Project and Join. In each
experiment, we insert 50, 150, 300, 500, 1000 and 1500 Book and Author facts
for each execution. We then measure the total runtime it takes to derive all new
BookPr and Release facts from the inserted facts. The facts are derived using
a recursive Datalog rule, which is applied until a fixed point is reached. The
Project program is presented in Listing 6.1, while the Join program is shown in
Listing 6.2.

Listing 6.1: Project Datalog Program

BookPr (T, Y) :- Book(T, Y, A).

Listing 6.2: Join Datalog Program.

Release (T, N) :- Book(I, T, Y, A), Author (A, N).

6.2 Repair Time

In the initial experiment,wemeasure the repair time of an offline or crashed site
replicating a peer site, in terms of run-time and memory usage. The run time
here is the time it takes to repair the site, from offline to online and including

6.2 repair t ime 63

the time to derive all new facts. We then compare the repair time with a
restoration of the same site from an upstream site, under the same conditions
meaning that 100% of the facts are inserted before it goes offline. In both cases
a second site is not going offline, and used to validate the repair or restore
operation. The Project program is used, with a replication and partitioning
factor of 2 for both the Book and BookPr relations. To circumvent potential
anomalies, the experiment is conducted three times and the mean runtime is
calculated.

Figure 6.1: Time to repair using Replication.

Figure 6.1 shows the results of the repair using replication. We can see that
the run time of repairing small sites with 50 to 300 derivations is quite low,
with a run time of under 5 seconds. However, as the number of rows increases,
the run time increases exponentially, at 500 derivations the run time is still 20
seconds, but it increases to 100 seconds at 1500 derivations. This is likely due
to the increased number of messages sent As previously stated in Section 5.1.1,
a GenServer (or any other process) runs concurrently, but its internal mailbox
is synchronous. The mailbox is a FIFO queue, which means that the messages
are processed in the order they are received. As the number of messages in
the mailbox increase, the process will have to go through all the messages
in the mailbox to check if they match one of the receive patterns. We

64 chapter 6 experiments

confirm this suspicion by checking the number of messages in the mailbox
using Process.info(:messages_queue_lenght) [38], which indeed
increases drastically with the number of derivations.

The behavior is reflected in the etsmemory usage,which is shown in Figure 6.2.
We can see that the memory usage is increasing with the number of derivations,
and peaks at 33 MB at 1500 derivations. This is consistent with that each fact
is around 15 KB to 20 KB in size depending on the number of attributes. In
Figure 6.3, we can see that the size of the site state is increasing with the
number of derivations with at peak at 3000 KB, as expected. As the site state
contains metadata about the derivations. This explains some increased run
time, as the state needs to be updated and sent for each derivation.

Figure 6.2: Memory usage for repair using Replication.

6.2 repair t ime 65

Figure 6.3: State size for repair using Replication.

As described in Section 4.3.3 monitoring is used to gain insights into the perfor-
mance of the system. These are used to better understand the system behavior,
and to detect performance regressions. Belowwe present the monitoring results
for the repair operation using replication.

Next, the Active Process’s and the Run Queue length are measured and pre-
sented in Figure 6.4. We can observe that the number of processes is on the rise
with each run, reaching a maximum at around 600 active processes. Which is
well within the limits of the Bogdan/Björn’s Erlang Abstract Machine (beam),
which can handle up to 2000 reductions per scheduler [38]. The length of the
Run Queue is also increasing, but from the graphs it appears that task stealing
is able to keep up, and the queue length per process is kept small.

Subsequently, we take a look at the memory usage, which is shown in Figure 6.5.
We can observe that the memory usage, particularly for ets stands out, and
has a steady increase with the number of replicas. It peaks at 2.8 GB total
usage, which is consistent with expectations for 1500 table entries. The next
step is to examine the impact of garbage collection as the number of tables
increases.

66 chapter 6 experiments

Figure 6.4: Active Processes with Replication.

Figure 6.5: Memory Usage with Replication.

Finally, we take a look at the garbage collection, which is shown in Figure 6.6.
We can observe that the collector peaks at 800 MB, which is roughly 30% of
the total memory usage. Moreover, we can see that the spikes are analogous
to the active processes, which suggests that the garbage collector is triggered
when the number of processes increases and functions as intended.

6.2 repair t ime 67

Figure 6.6: Garbage Collection with Replication.

Figure 6.7 shows the comparison between replication and restoration for the
repair operation. From the graph, we can see that a full restoration of site is
equally fast as using replication, with a slight increase in run time for 1500
derivations and a decrease at 1000 derivations. Which both are within the
margin of error. In regard to memory usage, we see no difference between the
two methods, which is as expected, as the same amount of data is transmitted
in both cases. Meaning that in the case of a full-repair, it is not worth to restore
the site and just replicate it. Possible solutions to the run time overhead are
outlined later in the discussion Section 7.2.2.

Because the delay is introduced at the GenServer level, it will also be triggered
on local messages. This is not ideal, as there should be no delay on local
messages in a realistic environment. Therefore, we run the experiment with a
delay of 0, to check the implementation. The results are shown in Figure 6.8.
We can see that the run time is much lower, with a peak at 20 seconds at 1500
derivations, which is half of the run time with a delay. Nevertheless, we still
see the same exponential increase in run time, which indicates that the delay
is not the main factor for the increased run time.

68 chapter 6 experiments

Figure 6.7: Time to repair using Restoration and Replication.

Figure 6.8: Time to repair using Replication (No delay).

6.3 repair using cl-map 69

6.3 Repair using Cl-Map

We evaluate the performance of the stateless restore utilizing Cl-Maps for
repair, as outlined in Section 3.4.2. We use the same setup as in the previous
experiment, with a replication and partitioning factor of 2. We measure the
runtime of the repair operation for 100, 200, 300, 400, 500, 1000 and 1500 rows,
with both the Project and Join programs.

First we look at the Project program, which is shown in Figure 6.9. We can see
that the run time closely follows the same pattern as the previous experiment,
with a slight increase at 1000 derivations. However, the state is considerably
smaller, with a peak at 640 KB at 1500 derivations compared to 3000 KB
using replication. This is due to only the Cl-Map being transmitted, which is
considerably smaller than the full state. However, the run time remains high,
which indicates that the differences’ calculation takes a considerable amount
of time.

Figure 6.9: Time to repair using Stateless Restore (Project).

Then we take a look at the Join program, which is shown in Figure 6.10. We
can see that the run time is a bit lower than for the Project program, with a
peak at 90 seconds at 1500 derivations. And the state size is also smaller, with

70 chapter 6 experiments

a peak at 300 KB at 1500 derivations. This is likely due to the fact that we in
the case of join are restoring from an intermediate relation, which is smaller
than the full state.

Figure 6.10: Time to repair using Stateless Restore (Join).

The results of the Project and Join programs indicate that the stateless restore
is comparable to the full replication, while being more in line with prads
coordination-free approach. Additionally, the state size is smaller, which is
beneficial for the memory usage. Consequently, we now turn our attention
to the final approach, namely the Lightweight Commit (lwc) approach for
repair.

6.4 Lightweight Commit Cost

The lwc approach is evaluated using the same experimental setup as the
previous experiments, with a replication and partitioning factor of 2. We mea-
sure the runtime of the repair operation for 100, 200, 300, 400, 500, 1000 and
1500 rows, with the same exact Project program as in Section 6.3. The results
are presented in Figure 6.11. We can see that the run time is considerably

6.5 impact of delta trimming 71

reduced in comparison to the stateless restore, with a peak at 40 seconds at
1500 derivations, which is less than half of the run time for the stateless restore.
The state size is about the same as the first approach, but with much faster
operations at the sites. This is likely due to the fact that the lwc approach is
more lightweight, and only sends the differences in commits between the sites,
which is much smaller than the full difference. This evidence indicates that
the lwc approach is a good compromise between the two approaches, with a
lower run time and memory usage, while still being coordination-free.

Figure 6.11: Time to repair using lwc (Project).

6.5 Impact of Delta Trimming

We compare the full replica repair run time with trim and without trim. This
is illustrated in Figure 6.12. We can observe that the run time is considerably
reduced with trim, with a peak at 10 seconds at 1500 derivations, which repre-
sents approximately 20% of the run time without trim. This is likely due to the
fact that the trim has removed the unnecessary deltas, which are not required
for the repair operation. The assertions are corroborated by verifying that the
trimmed state of both sites is identical after the repair operation. This indicates
that the trimmed site has been replicated correctly and that the trim operation

72 chapter 6 experiments

is working as intended.

Figure 6.12: Trim versus no trim (Full Replication).

Subsequently, we evaluate the impact of delta trimming on the system. We
use the same setup as in the previous experiments, with a replication and
partitioning factor of 2. We measure the time to trim deltas, with 100, 200, 300,
400, 500, 1000 and 1500 facts, while running the Project program.

6.5 impact of delta trimming 73

Figure 6.13: Time to trim (Full).

The results are shown in Figure 6.13. We can see that the run time is quite
low, with a peak at 1 seconds at 1500 derivations, this includes the time to
derive the new facts. In comparison to the repair operation, trimming is
run asynchronously, which means that the system can continue to process
messages while the trimming is ongoing. Furthermore, we can validate that it
trims the correct deltas by checking the memory it collects, which is shown in
Figure 6.14. Deltas are only a fraction of the size of full derivations in the ets
tables, which is why the memory reclaimed is much lower at only 1.5 MB at
1500 derivations.

74 chapter 6 experiments

Figure 6.14: Time to trim (Full).

When comparing the reclaimed memory of the full trim to the partial trim, we
can see that it has a more linear decrease, which is shown in Figure 6.15. This
is likely due to the fact that the beam garbage collector is interfering with the
trimming, which is not the case for the partial trim. Because the partial trim
does not run long enough for the generation to be promoted.

6.5 impact of delta trimming 75

Figure 6.15: Time to trim (Partial).

7
Discussion & Future Work
This chapter will present the implications of our results and evaluations. The
potential limitations and possibilities of our approach will be discussed. The dif-
ficulties encountered during the development of the system will be highlighted.
It is evident that several aspects of the current approach can be improved upon
and subject to further research.

7.1 Challenges during Development

During our iterative development process, we encountered some issues with
the different approaches we took. This section will discuss their implications
and potential solutions.

7.1.1 Invisible or Missing Deltas

We will present two cases where we had to rethink our initial the basic replica-
tion and second approach stateless repair approaches. For case one, consider
the following example:

Suppose we have a system with three sites 𝑠1, 𝑠2, and 𝑠3. At site 𝑠1 we have
relation 𝐻 with the following facts:

77

78 chapter 7 discussion & future work

ℎ1 ← 𝑟1, 𝑟2

ℎ1 ← ℎ2

ℎ1 ← ℎ3

at site 𝑠2 we have relation 𝐻2 with the following configuration:

ℎ2 ← 𝑟1, 𝑟3

and at site 𝑠3 we have relation 𝐻3 with the following configuration:

ℎ3 ← 𝑟1, 𝑟3

we observe that the prad partition algorithm will generate the following
configuration for the above relations:

𝐻1 ← 𝑅11, 𝑅
1
2

𝐻2 ← 𝑅21, 𝑅
2
3

𝐻3 ← 𝑅32, 𝑅
3
3

This implies that the Relations 𝑅𝑛1 and 𝑅
𝑛
1 may not be collocated at the same

site, but at different sites. Another observation is that for two replicas of𝐻1, one
may have received ℎ2(𝑟1, 𝑟3), but the other replica never received this update.
Depending on the site configuration, this may lead to issues when repairing the
sites later on. First, between replicas there are deltas from an upstream or peer
replica that are invisible in the local Cl-Map. For instance, if 𝑠1 received 𝑟1, 𝑟2
and ℎ2(𝑟2, 𝑟3), then goes offline. It has effectively received ℎ(𝑟1, 𝑟2 + 𝑟2, 𝑟3),
and the Cl-Map contains 𝑟1, 𝑟2 and 𝑟3. When 𝑠1 comes back online, how does
it know that it is missing 𝑟1, 𝑟3, and has to restore to ℎ(𝑟1, 𝑟2 + 𝑟1, 𝑟3)? Second,
between the upstream and downstream sites, if 𝑠1 first sends ℎ(𝑟1, 𝑟2, +𝑟2, 𝑟3)
and at a later point sends, but loses, ℎ(𝑟1, 𝑟2 + 𝑟1, 𝑟3). The upstream site will
be unable to detect whether at downstream site has applied the latter delta or
not.

For the second case, we have an even simpler example, based on the first
case.

Suppose we have at site 𝑠1 the relation 𝐻 with the following configura-
tion:

7.1 challenges during development 79

ℎ1 ← 𝑟1, 𝑟2

ℎ2 ← 𝑟1, 𝑟3

ℎ3 ← 𝑟2, 𝑟3

If a downstream site 𝑠2 has applied the updates ℎ1 and ℎ2, how does it know
that it is missing ℎ3?

The two cases indicate that there are invisible delta updates which may come
from a single upstream site. Essentially, the problem is that ¥𝐼1 > ¥𝐼2, but 𝑐𝑙 (¥𝐼1) =
𝑐𝑙 (¥𝐼2). Therefore, Causal Lengths per site, are not sufficient to determine the
state of a site.

As shown in Section 3.4.3 our proposed solution is to use a Cl-Map for each
input relation, with bundle generated facts into a composite Cl-Map. This
gives the property that for input relations H = 𝐻𝑛 with edb facts 𝑟𝑛, a site 𝑠
has not merged the facts ¥𝑓 =⟩𝑓 , 𝑝 𝑓 , 𝑐𝑙𝑓 ,𝑚𝑓 ⟨, if and only if there exists some
edb 𝑟𝑖 in 𝑝 and 𝑐𝑙𝐻𝑚

𝑓
∈ 𝑐𝑙 , such that 𝑐𝑙𝐻𝑚

𝑓
(𝑟𝑛) > 𝑐𝑙

𝐻𝑚
𝑠 (𝑟𝑛). Consequently, if

𝑐𝑙
𝐻𝑚

𝑓
(𝑟𝑛) > 𝑐𝑙

𝐻𝑚
𝑠 (𝑟𝑛), then we know that there is no need to restore the facts

𝑓 .

7.1.2 Communication Overhead

During the design of the communication setup between the sites, we encoun-
tered an issue that depended on the communication strategies used. These
strategies could potentially introduce an overhead. Suppose we have a system
with the communication strategy N-N, where each site communicates with
every other site. Two methods exist for transmitting the deltas between the
sites. The first method is a single trip. We pull all the deltas from the upstream
site, and calculate the difference between the local Cl-Map and the received
Cl-Map. The second method is a round-trip. We push the local Cl-Map to the
upstream site, which calculates the difference. This difference is then sent back
to the local site. The two methods have different trade-offs in terms of the
data transmitted and the messages sent. The round-trip method will result in
a reduction in the amount of data being transmitted, as only the difference
and the small local Cl-Map is sent. However, this comes at the cost of more
messages being sent. Furthermore, in the roundtrip method, the upstream
site has a smaller difference to calculate. The single trip method will result
in potentially more data being transmitted, as the entire Cl-Map is sent. After
careful consideration, we have opted for the roundtrip method, which offers
greater efficiency in terms of data transmitted permessage,while also requiring
less processing at the upstream site.

80 chapter 7 discussion & future work

7.1.3 Upstream or Peer for Repair

In the current implementation, both upstream and peer sites can be utilized for
the repair process. Between an upstream site 𝑠 and a peer site 𝑠′, if 𝑐𝑙𝑠 ≤ 𝑐𝑙𝑠′ ,
then there are nomissing deltas at 𝑠′ and peer 𝑠′ can be used for repair. However,
if 𝑐𝑙𝑠 > 𝑐𝑙𝑠′ , then 𝑠 has more deltas than 𝑠′, and the upstream 𝑠 should be used
for repair, as it possesses more recent information. The process of repairing
using peer sites is the identical to that of using upstream sites, but it also has
certain advantages. Firstly, there is no necessity for re-deriving the facts, as the
peer site has already derived them. Secondly, there is no necessity to compare
multiple upstream sites, instead, the peer site can be utilized directly. Finally,
the peer sites are often situated closer in terms of network latency, which could
lead to faster repair times. Nevertheless, for shorter offline periods, the peer
sites have a larger comparison space, which could lead to longer repair times.
In the current implementation we utilize both upstream and peer sites for
repair, and decide on a case-by-case basis which to use.

7.1.4 Latency for Local Operations

In the current implementation, we have added a latency of a few milliseconds
to the GenServer calls. This is due to wanting a more realistic simulation
of the network. However, this is also added to local GenServer calls, which
are performed on the same site. Which is not realistic, as the calls would
be instantaneous. This is taken into account in the performance evaluation
in Section 6.2, but it is important to note that this is not a realistic scenario.
Instead of utilizing the manual :timer.sleep/1 function inside the business
logic to add the delay, we could use the Process.send_after/4 function inside
the GenServer callbacks from to other sites. This would permit us to simulate
the latency without affecting the local calls.

7.2 Future Work

There are several areas where the current implementation could be improved
upon. The potential of the prad runtime has yet to be fully realized. Some
edge cases have not been considered, and the system still exhibits limitations.
The system is not yet ready for deployment in a production environment. This
section will discuss some of the potential improvements that could be made to
the system.

7.2 future work 81

7.2.1 Storage Options

The current implementation stores the Cl-Maps and Commits as Elixir Maps.
This approach offers a straightforward and effectiuve means of storing data, as
Cl-Maps are relatively compact and can be utilized to leverage the integrated
Map functions. For instance, the Map.merge/2 1, which allows us to merge
two maps into a single entity, with the resolution of conflicts being handled
by the specified function. However, as the system grows, the Cl-Maps will
inevitably become larger, which could potentially lead to performance issues.
One way to mitigate this is to utilize the built-in in memory storage solution in
Erlang, known as ets.This is a key-value store, which has been optimized for
fast reads and writes. This would permit us to store the Cl-Maps in memory,
albeit with a more efficient data structure. However, this would also introduce
additional complexity, as we would have to manage the ets tables ourselves.
Furthermore, ets tables are also not subject to garbage collected, which means
that we would also have to manage the memory ourselves. In this trade-off, we
must consider the simplicity of using Elixir Maps, versus the performance of
using ets. As prad is still in the early stages of development, and it allowed
us to quickly iterate on the design. But for a production system, it would be
necessary to switch to a more performant storage solution.

Another analogous trade-off is in the implementation of the idb and edb,
which are currently in memory using ets. This will ultimately result in a
limitation of the available memory. Currently, this is not a problem as the idb
and edb are sufficiently small to fit in memory. However, as the system grows,
the memory usage will also increase. It would be advantageous to transition
to an on-disk storage solution, such as Erlang’s Mnesia2. This would permit
the storage of larger databases, but would also introduce additional processing
overhead. As the data would have to be read from disk, which is slower than
reading from memory. An important balancing act is to find the right balance
between storage and performance. We choose to rely on the in-memory storage
for the current implementation, as it is more performant, and we don’t need to
clear the Database manually, but it will be necessary to switch to a disk-based
solution as the system grows. This could provide an interesting area for future
research, as it would allow us to deeper explore the trade-offs between memory
usage and performance.

1. https://hexdocs.pm/elixir/1.16.3/Map.html#merge/2
2. A distributed DBMS in Erlang

82 chapter 7 discussion & future work

7.2.2 Asynchronous vs Synchronous messages

The current implementation of prad employs GenServer calls, synchronous
messages, to facilitate communication between the sites. This implies that
the calling process will block until the receiver has processed the message.
This could have notable performance and scalability implications. And also
goes against the prad principles of being an asynchronous coordination-
free system. An alternative approach would be to utilize GenServer casts,
asynchronous messages, could be used. This would allow the calling process to
continue without waiting for the receiver to process the message. However, this
would also mean that the calling process would not know if the message was
successfully processed. Which could work with the coordination-free nature of
the system. A third option would be to use a combination of both. However, we
would lose the capability to use call as a backpressuremechanism. As the calling
process would lack the ability to know if the receiver is overloaded.

In addition to the performance implications, there are also implications for the
development process. Asynchronous messages are more challenging to debug,
as the calling process does not know if the message was successfully processed.
This could result in the occurrence of undetected bugs, as the calling process
would continue without knowing if the message was processed. Conversely,
synchronous messages are more straightforward to debug, as they provide
direct feedback which is invaluable for development.

The following Figure 7.1 provides a summary of the interactions between
upstream and downstream sites, as facilitated by GenServers. The processes
and communication via messages are indicated by the continuous line. The calls
to our module made by the GenServer are indicated by the dotted lines.

7.2.3 System Structure

In the current implementation, we have a lot of duplicated code. This is a
consequence of the iterative development process, during which new repli-
cation and restoration features were added incrementally after passing the
initial tests. The modules edb, idb and join are illustrative examples of this
phenomenon. The aforementioned modules share similar functions, yet exhibit
slight differences in their respective implementation.

This is an undesirable practice, as it leads to code duplication, which is more
challenging to maintain and debug. It would be more prudent to adhere to
the DRY principle, which stands for Don’t Repeat Yourself. This implies that we
should strive to write code that is reusable, and to refrain from the duplication
of code when it is not necessary. This would make the code easier to maintain,

7.2 future work 83

Figure 7.1: GenServer Communication Example.

84 chapter 7 discussion & future work

as we lessen the burden on future developers. One way to achieve this is to
use Elixir protocols 3 which is a built-in mechanism to achieve polymorphism
in Elixir. In contrast to the limitations of traditional approaches, the use of
protocols would allow us to define a set of functions that change behaviour
based on the data type. This would enable the development of modular systems
that can be readily adapted to accommodate an expanding range of data types
and enable a future decoupling of the existing modules.

7.2.4 Composite Cl-Map

At present, a provisional solution has been devised for the problem of invisible
deltas as discussed in Section 7.1.1. This solution involves the use of a Cl-Map
for each input relation. This allows us to determine if a site is missing deltas
from an upstream site. Nevertheless, we are still encountering certain edge
cases, where the Cl-Map insufficient for determining whether a site is missing
deltas. For instance, in the case of sites with multiple tables, it is not possible
to ascertain whether the site is lacking deltas for a specific table. A composite
Cl-Map could be employed here, comprising the Cl-Map for each update. The
creation and propagation of composite Cl-Maps would permit the resolution
of these edge cases, thereby providing a more comprehensive solution to the
issue of invisible deltas.

7.2.5 BEAM GC interference

As evidenced by the results of the performance evaluation presented in Sec-
tion 6.5, the garbage collection of the BEAM VM has an impact on partial
trimming. Further experiments could be conducted to investigate the impact of
BEAM garbage collection on system performance in greater depth. One poten-
tial avenue for further investigation is the use of the spawn_opt ⁴ function to
increase the initial stack and heap size of the processes. This would permit the
execution of processes without invoking the BEAM garbage collection.

3. https://hexdocs.pm/elixir/protocols.html
4. https://www.erlang.org/doc/apps/erts/erlang.html#spawn_opt

8
Conclusion
To conclude the thesis we first present some related work relevant to the
research presented in this thesis, and then summarize our contributions and
provide some concluding remarks.

8.1 Related Work

We have a unique approach to the problem of fault tolerance using lwc with
Cl-Map crdt, which is not directly comparable to other systems. Therefore,
we will present the closest related work that we could find.

8.1.1 Fault Tolerance Approaches

Fault tolerance is a crucial aspect of distributed systems, ensuring that systems
remain available and consistent even in the presence of faults. A variety of
approaches have been developed to achieve fault tolerance, each with its own
trade-offs between availability and consistency. Availability is often measured
by processing latency, while eventual consistency ensures that all replicas
process the input in the same order and produce the output in the same order.
One of the primary challenges in fault tolerance is managing the availability-
consistency trade-off.

85

86 chapter 8 conclusion

Various fault tolerance approaches exists that implement different trade-offs
between availability and consistency, to achieve an improved fault-tolerance
degree. Among others classifications, Martin [39] present categorizes fault
tolerance approaches into the following categories:

• Active replication: Merges the outputs of upstreams to maintain total
order.

• Upstream backup: Buffer output messages and replay them when needed.

• Passive replication: Combines checkpointing with upstream backup to
restore the state.

• Active standby: Active replica does not send output.

• Passive standby: Receive state updates.

Furthermore, they present a replication method is based on a per-operator
basis, whereby each operator replica can switch between active and backup
modes.

In our approach, we have identified the same fault tolerance categories, but
we have chosen to focus on the active and passive replication approaches. We
have chosen to focus on these approaches because they are the most common
fault tolerance mechanisms used in distributed systems, and they provide a
good balance between availability and consistency. Our approach differs from
their adaptive fault-tolerance per operator replication, in that we utilize our
delta output trimming mechanism to reduce the amount of state that needs
to be replicated, to achieve similar efficiency improvements to their dynamic
approach.

8.1.2 Checkpoints and State Reconciliation

In order to restore the state of a failed replica, checkpointing is employed to save
the state of the system at regular intervals. The creation of consistent snapshots
of the system’s state, checkpointing enables the recovery from faults by reverting
to the last known good state. Techniques such as boundarymessages (punctures
and heartbeats) as presented by Balazinska [40], to help ensure that tuples
from duplicate streams, with timestamps smaller than the smallest boundary
timestamp, are totally ordered.

Our approach differs from theirs in that it utilizes Cl-Map crdt to maintain
the state of the system. This allows us to avoid the additional complexity

8.2 concluding remarks 87

of managing timestamps and boundary messages. Since our Cl-Map crdt is
commutative, associative and idempotent, we can merge the state of the system
without the need for additional synchronization. Finally, as we rely on Erlang’s
‘let it crash’ philosophy, we can avoid the need for heartbeats, we have instead
opted for a rapid repair mechanism, which allows us to recover from failures
faster.

In their work, Martin [39] present a system called StreamMine3G, which em-
ploys checkpoints to restore the state of the system. Checkpoints are created
by locking the state, serializing it, and writing it to disk or sending it to another
node. Non-replication optimizations such as sorted merge using epochs are
employed to improve efficiency. They utilize a two-phase consensus protocol
for replicated operators to achieve consistency.

Our work differs from that described above in that we write the commits to
an in-memory map, rather than to on-disk storage. This allows us to avoid
the overhead of disk I/O. Additionally, they employ the punctures to sort the
merged tuples and a two-phase consensus protocol for consistency among
replicas, which we circumvent by using Cl-Map crdts to maintain the state of
the system. This approach allows us to guarantee strong eventual consistency
without the need for additional synchronization.

Hwang [41] presents a system which eases the replication process by merging
duplicate upstreams into a single stream. This enables nodes to function inde-
pendently. The merged input streams comprise non-duplicate results, although
they may be presented in a different order. The consistency of the system
is guaranteed by the production of identical tuples, regardless of their order.
Punctures are employed to constrain the size of metadata and to guarantee
that merged replicas are sorted correctly when necessary.

Our work is analogous to theirs, in that we both utilize a mechanism to limit the
size of metadata by trimming it at regular intervals. However, our approach has
a policy-based decision-making to determine when an upstream should trim
its delta output buffer. Additionally, their approach also considers the current
resource usage of the sites, which we do not consider. Finally, our approach
is not dependent on the order of the tuples, as we rely on Cl-Map crdts to
maintain the state of the system.

8.2 Concluding Remarks

This thesis has presented an approach to repair prad programs at runtime
using replication and restoration mechanisms. It combines traditional fault tol-

88 chapter 8 conclusion

erance mechanisms with Lightweight Commit (lwc), and Conflict-free Repli-
cated Data Type (crdt) research. Our approach is designed to be lightweight
and efficient, ensuring that the system can recover from failures at low cost
and without the need for state reconciliation. Existing fault tolerance solutions
often rely on vector clocks, sequence numbers or consensus protocols, which
can be expensive and complex to implement. Additionally, it differs from ex-
isting fault tolerance solutions in that it employs a trimming mechanism to
reduce the amount of state that needs to be repaired.

We have gained insights and built an understanding of prad. First, we under-
took an exploration into the theoretical foundations of prad, encompassing the
domains of crdt, Consistency, Datalog, Provenance and Fault Tolerance. We
chose to implement our prad extension in Elixir, due to it being a functional
programming language that runs on the beam, because of its fault-tolerance,
scalability and performance characteristics. During the development process,
we employed software engineering practices to streamline the development
process and ensure code quality. Test cases were created using tdd, to ensure
that the code is well-tested and that the api is well-defined.

A series of experiments was conducted to evaluate the performance, storage,
and communication capabilities of the system. Monitoring was implemented
to provide further insight into the performance and behavior of the system.
The results indicate that the system is capable to repair prad site failures
through replication and restoration with minimal overhead. Furthermore, our
Trimming algorithm is shown to be effective in reducing the amount of state
that needs to be repaired, and the time it takes to repair the state.

There is still a considerable amount of future work that can be done to improve
the implementation. One area of potential improvement is to optimize the
storage and communication of the implementation. Allowing for asynchronous
communication between replicas and utilizing ets for storage, could poten-
tially improve the performance of the system. Another area of improvement
is to implement a composite Cl-Map crdt, which would allow for the repre-
sentation of more complex site states. Finally, the implementation could be
moved to utilize the Elixir Protocols, which would allow for a more modular
and extensible implementation.

In conclusion, this thesis has presented a novel approach to fault tolerance
in prad programs, utilizing lwc with Cl-Map crdt. The implementation is
shown to be lightweight and efficient, and to be capable of repairing PRAD
programs from failures with minimal overhead.

Bibliography
[1] Martin Kleppmann et al. “Local-first software: you own your data, in

spite of the cloud.” en. In: Proceedings of the 2019 ACM SIGPLAN In-
ternational Symposium on New Ideas , New Paradigms, and Reflections
on Programming and Software. Athens Greece: ACM, 2019, pp. 154–178.
isbn: 9781450369954. doi: 10.1145/3359591.3359737. url: https:
//dl.acm.org/doi/10.1145/3359591.3359737 (visited on 11/19/2023).

[2] Seth Gilbert and Nancy Lynch. “Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services.” en. In: ACM
SIGACT News 33.2 (June 2002), pp. 51–59. issn: 0163-5700. doi: 10.
1145/564585.564601. url: https://dl.acm.org/doi/10.1145/564585.
564601 (visited on 12/07/2023).

[3] Shadaj Laddad et al. “Keep calm and crdt on.” In: (2022). doi: 10.48550/
ARXIV.2210.12605. url: https://arxiv.org/abs/2210.12605 (visited
on 11/19/2023).

[4] How Discord Scaled Elixir to 5,000,000 Concurrent Users. url: https:
//discord.com/blog/how- discord- scaled- elixir- to- 5- 000- 000-
concurrent-users (visited on 12/07/2023).

[5] Rick Reed. “That’s Billion with a B: Scaling to the next level at What-
sApp.” In: Erlang Factory (2014). url: https://www.erlang-factory.
com/static/upload/media/1394350183453526efsf2014whatsappscaling.
pdf (visited on 12/06/2023).

[6] Owais Qayyum and Weihai Yu. “Toward replicated and asynchronous
data streams for edge-cloud applications.” en. In: Proceedings of the 37th
ACM/SIGAPP Symposium on Applied Computing. Virtual Event: ACM,
Apr. 2022, pp. 339–346. isbn: 9781450387132. doi: 10.1145/3477314.
3507687. url: https://dl.acm.org/doi/10.1145/3477314.3507687
(visited on 11/19/2023).

[7] D. E. Comer et al. “Computing as a discipline.” en. In: Communications
of the ACM 32.1 (Jan. 1989). Ed. by Peter J. Denning, pp. 9–23. issn:
0001-0782, 1557-7317. doi: 10.1145/63238.63239. url: https://dl.
acm.org/doi/10.1145/63238.63239 (visited on 12/04/2023).

[8] George Grätzer and Friedrich Wehrung. Lattice Theory: Special Topics
and Applications. Volume 1. Vol. 1. Sept. 2014. isbn: 978-3-319-06412-3.
doi: 10.1007/978-3-319-06413-0.

89

https://doi.org/10.1145/3359591.3359737
https://dl.acm.org/doi/10.1145/3359591.3359737
https://dl.acm.org/doi/10.1145/3359591.3359737
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://dl.acm.org/doi/10.1145/564585.564601
https://dl.acm.org/doi/10.1145/564585.564601
https://doi.org/10.48550/ARXIV.2210.12605
https://doi.org/10.48550/ARXIV.2210.12605
https://arxiv.org/abs/2210.12605
https://discord.com/blog/how-discord-scaled-elixir-to-5-000-000-concurrent-users
https://discord.com/blog/how-discord-scaled-elixir-to-5-000-000-concurrent-users
https://discord.com/blog/how-discord-scaled-elixir-to-5-000-000-concurrent-users
https://www.erlang-factory.com/static/upload/media/1394350183453526efsf2014whatsappscaling.pdf
https://www.erlang-factory.com/static/upload/media/1394350183453526efsf2014whatsappscaling.pdf
https://www.erlang-factory.com/static/upload/media/1394350183453526efsf2014whatsappscaling.pdf
https://doi.org/10.1145/3477314.3507687
https://doi.org/10.1145/3477314.3507687
https://dl.acm.org/doi/10.1145/3477314.3507687
https://doi.org/10.1145/63238.63239
https://dl.acm.org/doi/10.1145/63238.63239
https://dl.acm.org/doi/10.1145/63238.63239
https://doi.org/10.1007/978-3-319-06413-0

90 BIBLIOGRAPHY

[9] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
2nd ed. Cambridge University Press, Apr. 2002. isbn: 9780521784511
9780511809088. doi: 10.1017/CBO9780511809088. url: https://www.
cambridge.org/core/product/identifier/9780511809088/type/book
(visited on 11/28/2023).

[10] Marc Shapiro et al. “A comprehensive study of Convergent and Commu-
tative Replicated Data Types.” en. In: (Jan. 2011). url: https://inria.
hal.science/inria-00555588 (visited on 12/04/2023).

[11] Stefano Bistarelli, UgoMontanari, and Francesca Rossi. “Semiring-based
constraint satisfaction and optimization.” en. In: Journal of the ACM 44.2
(Mar. 1997), pp. 201–236. issn: 0004-5411, 1557-735X. doi: 10.1145/
256303. 256306. url: https: // dl.acm .org/ doi/ 10.1145 /256303 .
256306 (visited on 11/29/2023).

[12] Leslie Lamport. “Paxos made simple.” In: ACM SIGACT News (Distributed
Computing Column) 32, 4 (Whole Number 121, December 2001) (2001),
pp. 51–58.

[13] Butler Lampson and David Lomet. “A new presumed commit optimiza-
tion for two phase commit.” In: 19th International Conference on Very
Large Data Bases (VLDB’93). 1993, pp. 630–640.

[14] Joseph M. Hellerstein and Peter Alvaro. “Keeping CALM: When Dis-
tributed Consistency is Easy.” In: (2019). doi: 10.48550/ARXIV.1901.
01930. url: https://arxiv.org/abs/1901.01930 (visited on 12/14/2023).

[15] Marc Shapiro et al. “Conflict-Free Replicated Data Types.” In: Stabiliza-
tion, Safety, and Security of Distributed Systems. Ed. by Xavier Défago,
Franck Petit, and Vincent Villain. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 386–400. isbn: 978-3-642-24550-3.

[16] Ken Birman, Gregory Chockler, and Robbert van Renesse. “Toward a
Cloud Computing Research Agenda.” In: SIGACT News 40.2 (2009),
pp. 68–80. issn: 0163-5700. doi: 10.1145/1556154.1556172. url:
https://doi.org/10.1145/1556154.1556172.

[17] Joseph M. Hellerstein. “The Declarative Imperative: Experiences and
Conjectures in Distributed Logic.” In: SIGMOD Rec. 39.1 (2010), pp. 5–
19. issn: 0163-5808. doi: 10.1145/1860702.1860704. url: https:
//doi.org/10.1145/1860702.1860704.

[18] Nuno Preguiça. “Conflict-free Replicated Data Types: An Overview.” In:
(2018). doi: 10.48550/ARXIV.1806.10254. url: https://arxiv.org/
abs/1806.10254 (visited on 11/19/2023).

[19] Christian Cachin, Rachid Guerraoui, and Luís Rodrigues. Introduction
to Reliable and Secure Distributed Programming. en. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2011. Chap. 3. isbn: 9783642152597
9783642152603. doi: 10.1007/978-3-642-15260-3. url: http://link.
springer.com/10.1007/978-3-642-15260-3 (visited on 11/20/2023).

https://doi.org/10.1017/CBO9780511809088
https://www.cambridge.org/core/product/identifier/9780511809088/type/book
https://www.cambridge.org/core/product/identifier/9780511809088/type/book
https://inria.hal.science/inria-00555588
https://inria.hal.science/inria-00555588
https://doi.org/10.1145/256303.256306
https://doi.org/10.1145/256303.256306
https://dl.acm.org/doi/10.1145/256303.256306
https://dl.acm.org/doi/10.1145/256303.256306
https://doi.org/10.48550/ARXIV.1901.01930
https://doi.org/10.48550/ARXIV.1901.01930
https://arxiv.org/abs/1901.01930
https://doi.org/10.1145/1556154.1556172
https://doi.org/10.1145/1556154.1556172
https://doi.org/10.1145/1860702.1860704
https://doi.org/10.1145/1860702.1860704
https://doi.org/10.1145/1860702.1860704
https://doi.org/10.48550/ARXIV.1806.10254
https://arxiv.org/abs/1806.10254
https://arxiv.org/abs/1806.10254
https://doi.org/10.1007/978-3-642-15260-3
http://link.springer.com/10.1007/978-3-642-15260-3
http://link.springer.com/10.1007/978-3-642-15260-3

BIBLIOGRAPHY 91

[20] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. “Efficient State-
basedCRDTs by Delta-Mutation.” In: (2014). doi: 10.48550/ARXIV.1410.
2803. url: https://arxiv.org/abs/1410.2803 (visited on 11/25/2023).

[21] Vitor Enes et al. “Efficient Synchronization of State-based CRDTs.” In:
(2018). doi: 10.48550/ARXIV.1803.02750. url: https://arxiv.org/
abs/1803.02750 (visited on 11/26/2023).

[22] Colin J Fidge. “Timestamps in message-passing systems that preserve
the partial ordering.” In: (1987).

[23] Nuno Preguiça, Carlos Baquero, and Marc Shapiro. “Conflict-free Repli-
cated Data Types (CRDTs).” In: (2018). doi: 10.48550/ARXIV.1805.
06358. url: https://arxiv.org/abs/1805.06358 (visited on 11/19/2023).

[24] Weihai Yu and Sigbjørn Rostad. “A low-cost set CRDT based on causal
lengths.” en. In: Proceedings of the 7thWorkshop on Principles and Practice
of Consistency for Distributed Data. Heraklion Greece: ACM, Apr. 2020,
pp. 1–6. isbn: 9781450375245. doi: 10.1145/3380787.3393678. url:
https : / / dl . acm . org / doi / 10 . 1145 / 3380787 . 3393678 (visited on
11/26/2023).

[25] S. Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases.
Reading, Mass: Addison-Wesley, 1995. isbn: 9780201537710.

[26] Tom J. Ameloot et al. “Weaker Forms of Monotonicity for Declarative
Networking: A More Fine-Grained Answer to the CALM-Conjecture.” In:
ACM Trans. Database Syst. 40.4 (2015). issn: 0362-5915. doi: 10.1145/
2809784. url: https://doi.org/10.1145/2809784.

[27] I. Balbin and K. Ramamohanarao. “A generalization of the differential
approach to recursive query evaluation.” en. In: The Journal of Logic
Programming 4.3 (Sept. 1987), pp. 259–262. issn: 07431066. doi: 10.
1016/0743- 1066(87)90004- 5. url: https://linkinghub.elsevier.
com/retrieve/pii/0743106687900045 (visited on 11/29/2023).

[28] Maarten Van Steen and Andrew S Tanenbaum. Distributed systems.
Maarten van Steen Leiden, The Netherlands, 2017.

[29] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. “Provenance
semirings.” In: Proceedings of the Twenty-Sixth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems. PODS ’07. New
York, NY, USA: Association for Computing Machinery, 2007, pp. 31–40.
isbn: 9781595936851. doi: 10.1145/1265530.1265535. url: https:
//doi.org/10.1145/1265530.1265535.

[30] Bas Ketsman, Aws Albarghouthi, and Paraschos Koutris. “Distribution
Policies for Datalog.” en. In: Theory of Computing Systems 64.5 (July
2020), pp. 965–998. issn: 1432-4350, 1433-0490. doi: 10.1007/s00224-
019-09959-3. url: http://link.springer.com/10.1007/s00224-019-
09959-3 (visited on 05/12/2024).

[31] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data pro-
cessing on large clusters.” In: Commun. ACM 51.1 (2008), pp. 107–113.

https://doi.org/10.48550/ARXIV.1410.2803
https://doi.org/10.48550/ARXIV.1410.2803
https://arxiv.org/abs/1410.2803
https://doi.org/10.48550/ARXIV.1803.02750
https://arxiv.org/abs/1803.02750
https://arxiv.org/abs/1803.02750
https://doi.org/10.48550/ARXIV.1805.06358
https://doi.org/10.48550/ARXIV.1805.06358
https://arxiv.org/abs/1805.06358
https://doi.org/10.1145/3380787.3393678
https://dl.acm.org/doi/10.1145/3380787.3393678
https://doi.org/10.1145/2809784
https://doi.org/10.1145/2809784
https://doi.org/10.1145/2809784
https://doi.org/10.1016/0743-1066(87)90004-5
https://doi.org/10.1016/0743-1066(87)90004-5
https://linkinghub.elsevier.com/retrieve/pii/0743106687900045
https://linkinghub.elsevier.com/retrieve/pii/0743106687900045
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1007/s00224-019-09959-3
https://doi.org/10.1007/s00224-019-09959-3
http://link.springer.com/10.1007/s00224-019-09959-3
http://link.springer.com/10.1007/s00224-019-09959-3

92 BIBLIOGRAPHY

issn: 0001-0782. doi: 10.1145/1327452.1327492. url: https://doi.
org/10.1145/1327452.1327492.

[32] Manifesto forAgile Software Development. url: https://agilemanifesto.
org/ (visited on 12/04/2023).

[33] mijacobs. How Microsoft plans with DevOps - Azure DevOps. en-us. Nov.
2022. url: https://learn.microsoft.com/en-us/devops/plan/how-
microsoft-plans-devops (visited on 12/13/2023).

[34] Abdullahi Olaoye. Beginning DevOps on AWS for iOS development: Xcode,
Jenkins, and Fastlane integration on the cloud. eng. New York: Apress,
2022. isbn: 9781484280232 9781484280225.

[35] José Valim. Elixir. url: https : / / elixir - lang . org/ (visited on
12/03/2023).

[36] Joe Armstrong. Making reliable distributed systems in the presence of
software errors. 2003. url: https://erlang.org/download/armstrong_
thesis_2003.pdf (visited on 12/03/2023).

[37] RabbitMQ Erlang Version Requirements — RabbitMQ. url: https://www.
rabbitmq.com/which-erlang.html (visited on 12/14/2023).

[38] Erik Stenman. The Erlang Runtime System. url: https://blog.stenmans.
org/theBeamBook (visited on 12/03/2023).

[39] André Martin. “Minimizing Overhead for Fault Tolerance in Event
Stream Processing Systems.” In: (2016), pp. 1–190.

[40] Magdalena Balazinska et al. “Fault-tolerance in the borealis distributed
stream processing system.” In: ACM Trans. Database Syst. 33.1 (2008).
issn: 0362-5915. doi: 10.1145/1331904.1331907. url: https://doi.
org/10.1145/1331904.1331907.

[41] Jeong-Hyon Hwang. “Fast and highly-available stream processing.” In:
(2009). AAI3377136.

https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://agilemanifesto.org/
https://agilemanifesto.org/
https://learn.microsoft.com/en-us/devops/plan/how-microsoft-plans-devops
https://learn.microsoft.com/en-us/devops/plan/how-microsoft-plans-devops
https://elixir-lang.org/
https://erlang.org/download/armstrong_thesis_2003.pdf
https://erlang.org/download/armstrong_thesis_2003.pdf
https://www.rabbitmq.com/which-erlang.html
https://www.rabbitmq.com/which-erlang.html
https://blog.stenmans.org/theBeamBook
https://blog.stenmans.org/theBeamBook
https://doi.org/10.1145/1331904.1331907
https://doi.org/10.1145/1331904.1331907
https://doi.org/10.1145/1331904.1331907

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Listings
	List of Definitions
	List of Abbreviations
	1 Introduction
	1.1 Problem definition
	1.2 Scope, limitations and assumptions
	1.3 Contributions
	1.4 Context
	1.5 Methodology
	1.6 Thesis Outline

	2 Theoretical Framework
	2.1 Algebraic Structures
	2.1.1 Lattice
	2.1.2 Join Decomposition
	2.1.3 Provenance Semirings

	2.2 Local-first Software
	2.3 Consistency
	2.4 CRDT
	2.4.1 Operation-based CRDT
	2.4.2 State-based CRDT
	2.4.3 Delta-state CRDT
	2.4.4 Grow-Only Counter
	2.4.5 LWW-Register
	2.4.6 Grow-Only Set
	2.4.7 CL-Set

	2.5 Datalog
	2.5.1 Logic Programming
	2.5.2 Syntax
	2.5.3 Semantics
	2.5.4 CALM
	2.5.5 Datalog with Negation
	2.5.6 Stratified Datalog
	2.5.7 Evaluation Strategies

	2.6 Fault-Tolerance
	2.6.1 Failure Models
	2.6.2 Approaches to Fault Tolerance

	3 Design
	3.1 PRAD Overview
	3.1.1 Architecture
	3.1.2 Datalogp
	3.1.3 Distribution Policies for Program Execution
	3.1.4 Coordination-Free Replication and Eventual Consistency
	3.1.5 Replication and Parallel requirements

	3.2 Communication Strategies
	3.3 Fault-Tolerance
	3.3.1 System model

	3.4 Replication & Restoration
	3.4.1 Basic Replication
	3.4.2 Stateless Repair
	3.4.3 Lightweight Commits

	3.5 Lowering recovery overhead
	3.5.1 Choosing the time to trim

	4 Software Engineering Methods
	4.1 Agile
	4.2 Test-Driven Development
	4.3 DevOps
	4.3.1 Collaboration
	4.3.2 Automation
	4.3.3 Monitoring

	5 Implementation
	5.1 Elixir Background
	5.1.1 BEAM & OTP

	5.2 PRAD Extension for Failure Handling
	5.2.1 Basic Replication
	5.2.2 Stateless Restore
	5.2.3 Lightweight Commit Generation
	5.2.4 Repair API Usage

	5.3 Trimming Algorithm

	6 Experiments
	6.1 Experimental Setup
	6.2 Repair Time
	6.3 Repair using Cl-Map
	6.4 Lightweight Commit Cost
	6.5 Impact of Delta Trimming

	7 Discussion & Future Work
	7.1 Challenges during Development
	7.1.1 Invisible or Missing Deltas
	7.1.2 Communication Overhead
	7.1.3 Upstream or Peer for Repair
	7.1.4 Latency for Local Operations

	7.2 Future Work
	7.2.1 Storage Options
	7.2.2 Asynchronous vs Synchronous messages
	7.2.3 System Structure
	7.2.4 Composite Cl-Map
	7.2.5 BEAM GC interference

	8 Conclusion
	8.1 Related Work
	8.1.1 Fault Tolerance Approaches
	8.1.2 Checkpoints and State Reconciliation

	8.2 Concluding Remarks

