
Faculty of Science and Technology
Department of Computer Science

Haddock: A Smart-Contract Command Bus for the Fishing Industry

Sivert Jakob Steinholt
INF-3981, Master thesis in Computer Science, June 2024

Supervisor

Main supervisor: Håvard Dagenborg UiT The Arctic University of Norway,
Faculty of Science and Technology,
Department of Computer Science

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2024 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

Abstract
The global fishing industry, a critical food source, faces significant challenges
due to criminal activities such as illegal fishing and over-exploitation. Tradi-
tional surveillance methods can be susceptible to tampering and cannot fully
ensure the integrity of recorded events. This thesis introduces Haddock, a
shared, distributed logging system leveraging a two-phase dissemination proto-
col and the Avalanche blockchain network to provide a secure and immutable
record of log data. By utilizing blockchain system’s inherent properties of trans-
parency, immutability, and decentralized nature, Haddock aims to enhance the
reliability and trustworthiness of maritime surveillance systems.

Through experiments and evaluations, this thesis demonstrates the potential of
using blockchain technology for logging and timely dissemination of messages
within systems that tolerate a latency of a few seconds.

Acknowledgements
I extend my sincere gratitude to Professor Håvard Dagenborg, my supervisor,
for valuable discussions, guidance, and support throughout this semester. I
deeply appreciate you taking the time to give last-minute inputs, as they have
proven to be invaluable for the success of this thesis

I would like to give a heartfelt thanks to my beloved friends and co-students,
"Guttebassene". Thank you for the amazing friendship and years at the uni-
versity. Additionally, my warmest thanks to my mom, dad, two brothers, and
grandma for their continuous, loving support and encouragement throughout
my study years.

I want to thank my friend and co-student Henning Hageli for his insightful
discussions on the subject of blockchain technology and for his enthusiasm and
motivation.

Throughout the thesis writing process, large language models like ChatGPT
have been used for spelling, refinement, and feedback on the sections.

Contents
Abstract i

Acknowledgements iii

List of Figures ix

List of Tables xi

List of Abbreviations xiii

1 Introduction 1
1.1 Problem Definition . 2
1.2 Methodology . 3
1.3 Scope and Limitations . 4
1.4 Context . 5
1.5 Outline . 5

2 Background 7
2.1 Blockchain . 7
2.2 Types of Blockchains . 8
2.3 Ethereum . 10
2.4 Avalanche . 11
2.5 Decentralized Applications (DApps) 12
2.6 REST API . 14
2.7 Cryptography . 15
2.8 Summary . 17

3 Requirements 19
3.1 Functional Requirements 19
3.2 Non-Functional Requirements 21

3.2.1 Reliability . 21
3.2.2 Responsiveness and Availability 21
3.2.3 Security and Resilience 22
3.2.4 Usability . 22

v

vi contents

3.2.5 Maintainability . 22
3.3 Summary . 23

4 Design & Implementation 25
4.1 System Overview . 26
4.2 Haddock’s Workflow . 27
4.3 Server-Side Components 28

4.3.1 Disseminate Message 28
4.3.2 Store Acknowledgments for Encrypted Messages . . . 29
4.3.3 Dissmeniate Key . 31

4.4 Client-side Components . 32
4.4.1 Contract Interaction Tools 32
4.4.2 REST API . 33
4.4.3 Client Services . 35
4.4.4 Contract Services 36
4.4.5 Frontend . 37
4.4.6 Frontend Message Dissemination 38
4.4.7 Frontend Message Acknowledgment 40

4.5 Synchronization Options 41
4.6 Summary . 42

5 Evaluation 45
5.1 Platform . 45
5.2 Experiment Setup and System Specifications 46
5.3 Dissemination Experiment 47
5.4 Cost Analysis Experiment 50
5.5 Memory Growth Experiment 51
5.6 Summary . 54

6 Discussion 55
6.1 Solely Key Distribution . 55
6.2 Subnets and Customized Access Control 56
6.3 Single Struct Approach . 56
6.4 Discussion of Non-Functional Requirements 57
6.5 Summary . 59

7 Concluding Remarks 61
7.1 Contributions and Goals . 61
7.2 Related Work . 63
7.3 Concluding Remarks . 64
7.4 Future Work . 65

Bibliography 67

contents vii

A Appendix A 71

List of Figures
2.1 Blockchains stores transactions in blocks that are linked to-

gether by hashes. Inspired by Figure 1 [25] 9

4.1 An architectural overview of Haddock 26
4.2 A complete view of the Haddock user interface. 37
4.3 Haddock features a simple navigation bar. A button can be

used to connect the crypto wallet to the system. 38
4.4 The publisher component includes an input text form and a

button for message dissemination, a button, and a slider used
to set the required acknowledgments. Lastly, a button is used
to force push the decryption key to the network. 39

4.5 The transaction window from the Metamask browser exten-
sion. This box is used by the client to sign the transaction. . . 39

4.6 A display of the incomplete messages. The key in the left cor-
ner is a button to acknowledge the message. The numbers to
the left of it display the required number of acknowledgments
before the decryption key is disseminated. 40

4.7 A display of all complete messages. The verification mark
down left in the message panel opens a modal with a list of
all signers of the current message. The number to the left of
the verification mark displays the number of signers. 41

4.8 The full list of singers for a given complete message. Their
address, hash of the encrypted data, and a verification mark
are included in the modal. 42

5.1 A bicep script deploys 30 public container instances to Azure
at different regions across Northern America. Each container
instance consists of a dissemination test wrapped inside a
Docker container. Finally, a Python script calls the API end-
points to start and fetch test results. 47

5.2 The mean retrieval time for all 30 nodes spread across the
globe. The plot is based on the table in appendix A.8 48

5.3 The time window from the first received data to the last re-
ceived data and the mean retrieval time for each byte size . . 49

ix

x l ist of figures

5.4 The increasing cost of publishing encrypted data at various
byte sizes. 51

5.5 The increasing cost of disseminating the decryption key at
various byte sizes. This cost will always be higher than the
cost of disseminating encrypted messages. 51

5.6 The increasing cost of acknowledging data at various byte sizes. 52
5.7 The increasing gas cost of publishing encrypted data (a) and

decryption key (b) at various byte sizes, as the number of data
entries accumulates . 53

5.8 The cost of acknowledging messages at various byte sizes as
the number of data entries accumulates. The opaque plot il-
lustrates the confidence interval for each iteration 54

List of Tables
4.1 Listing of all endpoints exposed by the client-side API service 34

5.1 System Specifications . 46
5.2 System Specifications for each Azure container instance . . . 46
5.3 The cost of each function on a new empty SHIELD contract . 46

A.1 Data retrieval time in milliseconds at different sizes for each
node. Each time entry is the mean value of three separate
dissemination tests . 73

A.2 List of Server Regions . 74
A.3 Data retrieval time in milliseconds at 20 bytes with three tests 75
A.4 Data retrieval time in milliseconds at 40 bytes with three tests 76
A.5 Data retrieval time in milliseconds at 60 bytes with three test 77
A.6 Data retrieval time in milliseconds at 100 bytes with three test 78
A.7 Data retrieval time in milliseconds at 1000 bytes with three

tests . 79
A.8 Data retrieval time in milliseconds at 5000 bytes with three

tests . 80
A.9 The cost analysis of the acknowledgement function, with three

tests . 81
A.10 The cost analysis of the data publication function, with three

tests . 82
A.11 The cost analysis of the key publication function, with three

tests . 83

xi

List of Abbreviations
ABI Application Binary Interface

AES Advanced Encryption Standard

AIS Automatic Identification System

API Application Interface

C-CHAIN Contract Chain

CBC Cipher-Block Chaining

CDN Content Deliver Network

CFB Cipher Feedback

CSG Cyber Security Group

DApp Decentralized Application

ETH Ether

EVM Ethereum Virtual Machine

HTTP Hypertext Transfer Protocol

IoD Internet of Drones

IV Initialization Vector

JS JavaScript

JSON JavaScript Object Notation

xiii

xiv l ist of abbreviat ions

LCaaS Logchain-as-a-service

P2P Peer-to-Peer

PoS Proof-of-Stake

PoW Proof-of-Work

RBAC Role-Based Access Control

REST Representational State Transfer

RPC Remote Procedure Call

SHA-2 Secure Hash Algorithm 2

SHIELD Secure Handling of Information with Encrypted Logs and Decryption
Key

SSE Server Sent Events

TTF Time-to-Finality

UI User Interface

UX User Experience

XOR Exclusive-Or

1
Introduction
The fishery industry provides one of the most significant sources of protein
worldwide. Edible fish originates from wild fisheries and ocean-farmed species.
They are contributing to 17% of the global edible meat production [9] with
the number of fishing vessels more than doubled globally since 1950. The
widespread adoption of motorization in most vessels has notably enhanced the
efficiency of fishing operations and is primarily a consequence of advances in
the industrial sector. In 2015, the total number of motorized fishing fleets was
estimated to be 68% [31]. The ever-increasing demand for fishing products,
alongside significant advancements in the industrial fishing sector, has elevated
the rate of overfishing, threatening the global marine ecosystem. For instance,
the world’s Bluefin tuna and Swordfish population has decreased by 80% in just
5 five years [6]. In addition, the fishing sector is threatened by organized and
transnational criminal activities. Encompassing activities like illegal fishing,
money laundering, document forgery, and drug trafficking [39].

Controlling critical information in the communication channels connecting
boats and land-based control centers has been suggested as fundamental
for preventing criminal activities at sea and preventing overfishing [26, 3].
Modern surveillance of ship traffic, fishing, suspicious activities, etc., is done
with a combination of Automatic Identification System (ais), black-boxed
surveillance tools for event recording, and satellite imagery, especially Synthetic-
Aperture Radar (SAR), which utilizes radar to capture images through cloudy
environment [3, 27]. On-board equipment like ais and black-boxes is at risk
of tampering and cannot be deemed fully reliable.

1

2 chapter 1 introduction

Reconstructing the order of events with evidence of high integrity is crucial
for pursuing and suppressing criminal activities. Existing tools are susceptible
to failure due to tampering. A public logging infrastructure, recording on-ship
events and which information on fleet command centers act on, alongside
timely dissemination of business-critical information, can, in combination with
existing surveillance architecture, be part of a larger system fighting large-scale
coordinated criminal activities.

Blockchains offer communication with a high degree of non-repudiation and
offer mechanisms that can be used to keep an ordered log of events distributed
and consistent in a network consisting of fully or partially mistrusting entities.
All information can be stored publicly on a blockchain with low risk for potential
tampering. Blockchains have an architectural design that naturally correlates
with a logging structure in which all recordings are stored, enabling access to
the complete blockchain history at any moment. Requiring data to be public to
a larger degree can have positive effects when fighting crime. Making certain
records public can increase the availability of the data,whereby the detection of
anomalies can be more apparent. Blockchains are not fully resilient to network
attacks but can be used reliably [33]. Participating in the blockchain network
requires the adversary to spend money transactions and will naturally increase
the threshold for engaging in network attacks.

Smart contracts operate on blockchain systems and automate the execution
of code. Once deployed, they remain immutable and have a high degree of
tamper resistance. The immutability combined with tamper resistance yields
the property of non-repudiation, in which performed actions recorded on the
platform cannot be disowned or denied by the parties involved. Public pow-
based blockchains, like Bitcoin [25], are too slow and unreliable [36] and do
not have a satisfactory transaction throughput to support a high workload at
a reasonable cost, which is required by a distributed logging system. Newer,
more contemporary blockchain networks like Ethereum [7] and Avalanche
[30] are better suited for this purpose.

1.1 Problem Definition

Suppressing fishery-related criminal activities that occur out on the open sea
is a complex and problematic challenge. Applying a blockchain network for its
immutability, transparency, and distributed properties may prove valuable when
logging on-ship events and timely disseminating fleet command center reports.
A secure, distributed logging infrastructure may be helpful as a component in
a larger system composed of modern surveillance tools.

1.2 methodology 3

Our thesis is that

A secure, shared logging infrastructure for fishery fleet command can be imple-
mented using Blockchain smart contracts.

In this thesis, we propose Haddock: a shared, distributed logging service,
utilizing the public blockchain network Avalanche as a backend service1. To
investigate our thesis, we devise and implement Haddock: A decentralized
logging infrastructure. Haddock is built and designed as a Decentralized Ap-
plication (dapp), which combines a two-phase dissemination protocol with
a barrier synchronization mechanism that records and logs the publisher of
messages, as well as the initial readers. This is done with a smart contract and
client-side software that interacts with and interprets the logged data. Had-
dock acts as a distributed synchronizer for arbitrary data types and multiple
severity levels. Haddock, arguably, may not be used for the highest form of
severities since, first of all, the critical need for access to the internet poses a
persistent challenge, particularly in open sea environments, secondly, because
of the natural latency within contemporary blockchain networks.

1.2 Methodology

In 1989 the Task Force of the Core of Computer Science tackled the debate
on computer science’s inclusion in the world of science and engineering. The
group introduces a framework for the discipline of computing [11]. Outlining
three distinctive paradigms - theory, abstraction, and design - for approaching
the discipline of computing.

The first paradigm for the discipline is the theory paradigm. It is rooted in
the world of mathematics. Thus, by adhering to a mathematical approach,
the objects of study are explicitly stated, forming a comprehensive definition.
Further, the relationship between the objects can be hypothesized, forming a
theorem. Finally, an examination is conducted to determine if the relationship
between the objects holds true in practice. In the theory paradigm, studies
revolving around algorithms can be conducted. A problem can be defined
around computer complexities, e.g., finding the quickest way to sort a list of
massive numbers. Algorithms can be created and tested to solve a uniform
problem. Through theoretical analysis, the results can be used to find an optimal
solution and the best-suited algorithm for the given problem.

1. The system is named Haddock after the fish from the cod family and a somewhat known
seafaring captain.

4 chapter 1 introduction

The second paradigm within the discipline is the abstraction paradigm, which
finds its foundation in the experimental scientific method. Following the
paradigm, a hypothesis revolving around the area of interest is formed. The
hypothesis is then used to model a model that coheres to the proposition and
makes predictions of the model. Experiments are conducted to collect data
from the model. Through analysis, the data can be interpreted, whether it sup-
ports or disapproves the hypothesis, thereby either falsifying or strengthening
the proposition made.

The third and last paradigm within the discipline of computer science is the
design paradigm. This paradigm follows an engineering approach. First, the
system’s requirements need to be stated. Then, specify details of how the
system will meet the requirements, and design and implement the system
accordingly. The system is then thoroughly tested to check if it meets the initial
requirements.

This master’s thesis mainly builds on the discipline of design. The thesis has a
problem definition that states and specifies the system’s initial requirements.
A demonstrator of the system will be designed and implemented to fulfill
the requirements derived from the problem definition. In addition, we will
conduct experiments to ensure that the system’s functionality meets the initial
requirements.

1.3 Scope and Limitations

Haddock has two distinct and challenging limitations.

1. Ships and vessels need access to the Internet for the system to work as
intended.

2. It is not possible to record all readers of data in a fully public system, as
the decentralized nature of the system makes it challenging to identify
and store readers without a transaction to record.

We assume that ships and vessels have internet access when using the system.
Further, we assume we cannot record all entities who read the published data
in the logging infrastructure.

1.4 context 5

1.4 Context

This master thesis is written in the context of the Cyber Security Group (csg)
at The Arctic University of Norway (UiT). csg conducts research involving
distributed systems, with a focus on designing and implementing systems
while investigating key properties such as scalability, fault tolerance, reliability,
security, and partitioning, to mention a few. The csg group solves distinct
research problems by constructing prototype systems with an experimental
approach, the primary research method for the group.

The csg group has researched and explored subjects related to the fishing
industry, particularly criminal activities, such as illegal fishing and overexploita-
tion. The paper [27] examines a surveillance video dataset from a trawler
and explores the potential applications of such data. In addition, the papers
[26, 3] investigate distributed monitoring and surveillance systems for off-
shore environments, applying Artificial Intelligence (AI) while offering privacy
guarantees. Another area of interest for the csg group has been blockchain
technology, which includes an analysis of Bitcoin’s transaction fee volatility us-
ing a Machine Learning (ML) model for prediction [37], alongside a transaction
inclusion model for Bitcoin [36].

This introduces only a few of the research projects the csg group has been
involved with throughout the years. This thesis will build upon this foundation
by designing and implementing Haddock, a shared, distributed logging system
using blockchain technology in the context of previously conducted research
revolving around the maritime field and blockchain.

1.5 Outline

The thesis is structured as follows. Chapter 2 presents foundational knowledge
on essential topics and concepts, which is key to understanding the work done
in this thesis. Following, Chapter 3 outlines the requirements, derived from the
problem definition. Further on, Chapter 4 provides an in-depth, comprehensive
description of the implementation details of the shared logging infrastructure,
Haddock. Next, Chapter 5 introduces the experiments conducted to test and
evaluate the system. Proceeding to Chapter 6, the results and architectural
design of the Haddock are discussed. Finally, Chapter 7 makes concluding
remarks based on our findings, recaps the work accomplished in this thesis,
and lastly, proposes future improvements for Haddock.

2
Background
This chapter outlines essential theoretical concepts and system models that are
necessary to understand the presented work in this thesis. The first section
introduces the general concept of blockchain technologies, followed by differ-
ent types of blockchains. The next section provides an in-depth description of
Ethereum, its specifications, and smart contracts, followed by a detailed expla-
nation of Avalanche and decentralized applications, winding up the blockchain-
related concepts. The background is finalized by a section on rest, a Web
architectural style, and a section on essential cryptographic functionalities used
by Haddock.

2.1 Blockchain

Blockchains are distributed and decentralized systems managed and sustained
by multiple member nodes communicating over the wide-area Internet. These
nodes, which may be individual computers or devices, run software processes
and participate by sending messages over the network according to specified
protocols. Eachmember node maintains a copy of the blockchain data structure
and collaborates with others to validate transactions and uphold the distributed
and decentralized network. Conceptually, a blockchain resembles a traditional
linked list, comprising blocks with cryptographic references to their preceding
blocks, forming a chain.

7

8 chapter 2 background

Understanding key concepts is crucial for grasping how blockchain technologies
function. In the world of accounting, a ledger is a fundamental tool, denoting a
book used to record account transactions. Primarily employed by companies, it
serves to monitor the transaction history of customers, detailing their spending
and outstanding balances. A ledger must ensure that every debit is matched by
a corresponding credit, thus preserving balance. It is important to note that a
ledger differs from a bank account, as it solely documents the financial activities
within a company rather than serving as a bank account for funds.

Bitcoin [25] is perhaps one of the most renowned blockchains and functions
as a distributed ledger where each participant in the network possesses its
own private copy of the ledger. Whenever a participant intends to add a
new entry to the ledger, it must be disseminated to all other members of the
network. To address potential inconsistencies within the network, blockchain
employs consensus protocols [21, 16]. Among these, the most prominent is the
Proof-of-Work (pow) protocol [13, 25, 36]. pow allows participants to place
trust in the ledger that has demonstrated the most computational effort. Every
member of the network must complete a pow to append their transaction list
to the ledger. pow involves a computationally demanding task that is easy
to verify. Thus, if a participant wishes to broadcast transactions to the ledger,
they must invest effort while other network members can verify and agree
on the new transaction set. The introduction of a consensus protocol ensures
immutability within the system. In pow, altering a single block requires the
redoing of pow for all subsequent blocks, making it computationally infeasible
to manipulate.

In Bitcoin, each block includes a cryptographic reference to the previous block,
a collection of transactions, and a timestamp. These blocks are hashed using
the Secure Hash Algorithm 2 (sha-2) hashing algorithm. A depiction of the
chain structure can be observed in Figure 2.1. The specific contents of a block
will vary depending on the particular blockchain technology.

2.2 Types of Blockchains

The blockchain technology has evolved immensely in a relatively brief time pe-
riod. As a consequence, blockchain systems have been tailored to suit the needs
of different industries, introducing a diverse set of blockchain technologies with
different applications.

A permissionless blockchains is open to everyone on the internet. All participants
are permitted to partake in submitting transactions. Everyone has the ability to
join and participate in the network’s validation process [34]. The most popular

2.2 types of blockchains 9

Block 0xA455 Block 0xA456 Block 0xA457

Sign

Alice's private key Bob's private key Charlie's private key

Verify

Alice's public key

Signature

Block hash
0000000000000000000adea43asd462...

Bob's public key

Signature

Block hash
00000000000000000002d7a43agd3423...

Charlie's public key

Signature

Block hash
0000000000000000000347g43g3sd3423...

Sign

Verify

Figure 2.1: Blockchains stores transactions in blocks that are linked together by hashes.
Inspired by Figure 1 [25]

blockchain technologies, like Ethereum and Bitcoin, are classified as public and
permissionless.

A permissioned blockchain is partially or fully closed off from the open inter-
net. Participation in submitting transactions and partaking in the validation
process is not permitted for everyone [34]. This type of blockchain requires
strict access control for the validation process and regular auditing and gover-
nance to mitigate anomalies or malicious activities. Permissioned blockchain
can result in centralization, undermining the true nature of blockchain technol-
ogy as a distributed and decentralized system. If the blockchain becomes too
centralized, there is no guarantee that the blockchain remains immutable. Per-
missioned blockchains are, to a greater extent, more susceptible to censorship
than permissionless [34].

In a private blockchain, a single entity governs the entire system, leading
to a more centralized infrastructure [12]. Private blockchains can be publicly
available for viewing but not public to be used by anyone [34]. In contrast,Public
Blockchains are both publicly available for viewing, and anyone is permitted to
use and partake in the system.

A consortium blockchain typically combines characteristics from both permis-
sioned and private blockchains. Companies favor these blockchains as they
offer more centralization in terms of access control and privacy of any propri-
etary data. Consortium blockchains share the authority of the system between
the members of the network, and the infrastructure is decentralized on both
homogeneous and heterogeneous hardware [12].

10 chapter 2 background

2.3 Ethereum

Ethereum is one of the leading blockchains today with a market cap close
to 5 trillion dollars [8]. While Ethereum initially used pow as its consensus
mechanism, it made a transition to Proof-of-Stake (pos) in 2022 [14]. In the
pos consensus protocol, participants are required to commit a certain amount
of funds as a stake to participate in the validation process of new blocks. The
staked amount of money acts as collateral, ensuring participants follow the
protocol. If any malicious behavior is detected, the staked funds risk being
forfeited. Furthermore, the Ethereum network functions as a decentralized
global computer anyone can use, commonly referred to as Ethereum Virtual
Machine (evm). Every network participant maintains a copy of the network’s
state, which is collectively agreed upon. Code execution requests sent to the
blockchain network are called transactions. All transactions and previous states
are recorded on the blockchain. evm runs code execution on smart contracts.
evm is a virtualmachine that executes and processes evm byte code [42].

Smart contracts can be written in the language Solidity and is a representation
of a program or code snippet compiled down to evm byte code. Any network
participant can create and deploy a smart contract to the Ethereum network.
This ensures every network participant can access the functionality of an arbi-
trary smart contract, promoting publicity and transparency in the blockchain
network. However, deploying and utilizing smart contract functionalities in-
duces costs. Network participants must use Ether (eth), the cryptocurrency
of Ethereum, to cover these costs. Fiat currencies such as United States Dollars
(USD) can be converted to eth at crypto stack exchanges. Effectively linking
evm to monetary fees based on fiat currency. The smart contracts are stored on
the blockchain, ensuring tamper-proofness and resistance to alterations.

Solidity is an object-oriented, statically written language primarily used for
writing smart contracts for evm-compatible blockchains. The language offers a
diverse range of functionalities, including data types, data structures, function
modifiers, and events. Solidity supports common data types such as integers,
strings, and bytes, allowing developers to declare and store variables. Devel-
opers can create custom structs, a composite data type that can consist of
different data types. Function modifiers are an important aspect of Solidity,
serving as special functions designed to enforce certain conditions before code
execution. Typically included as a function parameter, enabling preconditions
to be set. Furthermore, Solidity provides support for events. Events are special
constructors that can store and emit data to off-chain applications, incentivizing
event-driven interactions with external systems. Solidity also offers visibility
modifiers to variables and functions, which control the accessibility to off-chain
interactions. Variables and functions prefixed with private will encapsulate all
the data to within the smart contract, restricting access to internal contract

2.4 avalanche 11

logic. Prefixing with public makes them externally available, allowing off-chain
interactions via getter functions.

evms are capable of executing arbitrary code on request from any network
participant; because ofevm’s quasi-Turing-completeness [7, 42], it can carry out
any computational sequence [38]. Ethereum uses a unit denoted gas to measure
the computational resources required to execute operations within the network
and is a mechanism to avoid misuse of Ethereum’s Turing completeness [42].
This helps make the network less susceptible to either spam or never-ending
programs (endless loops). Every computation requires a fee, discouraging any
unnecessary operations, and participants are less likely to create programs
that monopolize resources if there is an associated cost with the operations.
Computations have a fixed gas cost that is universally agreed upon in the
Ethereum network [42].

Gas fees are generated by combining the base fees of the computation and a
priority fee. Adding the base fee per unit of gas and the priority fee per unit of
gas, then multiplying the sum by the total amount of gas consumed, results in
the total fee paid by the participant [42], after block creation, the base fee is
burned, removing it from circulation in the network. Ethereum operates with a
gasLimit, which indicates the maximum amount of gas a participant is willing
to use for a transaction. During gas estimation, a higher gas limit allows more
gas to be assigned to the base fee of the transaction. Any remaining gas can
cover the priority fee. This incentivizes participants to set higher gas limits, as it
increases the chance for the transaction to be included by the validator; unused
gas during the gas estimation will be refunded to the participant. However, a
gas limit that is set too low can run out of gas and fail the transaction while still
incurring costs, with no refunding options. Gas fees are an essential part of the
Ethereum network, ensuring efficient allocation of computational resources
and that the network is functional and secure.

2.4 Avalanche

A new and emerging blockchain is Avalanche, an open-source blockchain
employing pos consensus mechanism. Avalanche is developed by Ava Labs and
is built to be evm-compatible, meaning it supports the same smart contract
functionalities as Ethereum, with a native token denoted AVAX. Avalanche
offers a hybrid solution to permissioning, a hybrid model where the Primary
Network in Avalanche is permissionless, allowing anyone to partake and build
on the network while also supporting the creation of subnets with customizable
restrictions. The Primary Network consists of three chains:

12 chapter 2 background

• Platform Chain (P-Chain)

• Contract Chain (C-Chain)

• Exchange Chain (E-Chain)

Avalanche is built and designed to support scalability on an extensive level,
with the possibility of hundreds of millions of connected devices, all operating
with high transaction throughput and low latency, in a decentralized manner
without distinguishing between miners, developers, and users [32]. Avalanche
provides an infrastructure to support multiple blockchains within the network,
offering interoperability for porting existing blockchains on top of it.

Avalanche supports the creation of individual subnets, which can be either per-
missionless or permissioned. Permissioned subnets are ideal for organizations
and businesses that rely on data privacy. The blockchain contents in the private
subnet are only visible to a predetermined set of validators. Validators only
validate transactions in the subnets they reside in, minimizing computational
resource usage, as opposed to other blockchains where every transaction must
be validated by every validator in the network. Every blockchain is validated by
one subnet, and each subnet can validate multiple blockchains [32]. Subnets
offer significant advantages in terms of flexibility and scalability, allowing val-
idators to participate in arbitrarily many subnets, and arbitrarily many subnets
may be created.

Avalanche features a family of consensus protocols known as Snow, which pos-
sess Byzantine fault-tolerant properties and are inspired by gossip algorithms
[30]. The Avalanche consensus protocol ensures fast, probabilistic Time-to-
Finality (ttf), the period in which a transaction is confirmed and rendered
immutable. Its leaderless consensus mechanism and absence of traditional
consensus protocols like Proof-of-Work allows for high transaction throughput.
By deviating from pow protocols, Avalanche drastically reduces the network’s
energy consumption [20, 30], making it a more energy-efficient solution.

2.5 Decentralized Applications (DApps)

A Decentralized Application (dapp) is an application or system that lever-
ages the properties of blockchain technology to provide decentralized and
immutable server environments. These applications deploy and run services
on blockchain networks, benefiting from the inherent features of blockchain
technology, including high availability, privacy, resistance to censorship, and
full decentralization. dapps built on open permissionless blockchains are often

2.5 decentralized applications (dapps) 13

open-source, with open and verifiable code, ensuring properties such as full
publicity and transparency. However, a larger proportion of dapps remain with
closed source code [43].

While dapps offer several advantages, there are trade-offs. Running smart
contract functions on blockchains can be expensive in monetary terms and
requires optimized code to reduce the costs. For instance, minimizing storage
writes is an optimization approach. On the positive side, applications that
primarily rely on public static data only incur deployment costs of the data and
then have free server-side storage as long as the blockchain network remains
operational. Another trade-off can be performance and reliability; blockchain
networks can suffer from high traffic and network congestion, which largely
depends on the blockchain of choice. Additionally, immutability significantly
affects the maintainability of dapps. Altering a deployed program cannot
be done, but the functionality accessible through interactions can be changed
with smart contractupgrade techniques [40], involving transferring the contract
state to a new contract, or using a smart contract as a proxy and distribute
functionality to smaller, replaceable contract. Ultimately, the maintainability
of the dapp heavily relies on the design and implementation of the smart
contract.

The emergence of new decentralized technologies like blockchains has sparked
an idea for a web that leverages thesemechanisms. A concept for a new iteration
of the World Wide Web (WWW) is in progress and is referred to as Web 3.0,
or simply Web3. This evolving concept is in its early stages. Currently, Web3 is
often described as a buzzword or even vaporware, a term for announced but
unreleased products. Therefore Web3 has been accused of generating hype in
the world of blockchain and technologies employing cryptocurrency [2].

The rise of blockchain technologies has led to the development and creation
of blockchain interaction tools tailored to leverage the decentralized and
immutable properties blockchain technologies inherently offer. A prominent
JavaScript (js) library for developing dapps is Web3.js, which facilitates com-
municationwith Ethereum nodes via Hypertext Transfer Protocol (http), Inter-
Process Communication (IPC) or WebSocket [41]. Web3.js uses the Ethereum
JSON-RPC API, a stateless and lightweight Remote Procedure Call (rpc) [19],
that is exposed through an api. This makes Web3.js compatible with any evm-
compatible blockchain networks that support the JSON-RPC API. The library
offers functionality to interact with, build, sign, and send transactions to smart
contracts. Additionally, it supports the compilation and deployment of smart
contracts, making it a valuable tool for dapp development.

14 chapter 2 background

2.6 REST API

Representational State Transfer (rest) Application Interface (api) is a network-
based architectural style for network applications, based on a set of princi-
ples and constraints, which combined, achieves scalability, maintainability,
efficiency, and security in Web services and applications [15]. rest standard-
izes the Web architectural model by leveraging Web protocols, especially http
and Web elements such as Uniform Resource Identifiers (URI) and Hypertext
Markup Language (HTML). The key constraints comprising rest include
Client-Server, Stateless, Cache, Uniform Interface, Layered System, and Code-
on-Demand.

Client-Server is a constraint that enforces separation on client-side and server-
side concerns. The User Interface (ui) and User Experience (ux) are handled
by the client, while the server-side manages data storage and logic. This
separation allows the components of each concern to evolve independently,
improving scalability [15].

Stateless is the second constraint, requiring all communication to include all
necessary information for generating and processing a request. No information
or state is stored on the server, making the entire state session based on the
client-side. This improves reliability during partial failure, as the client needs
no reinstatement on the server-side, which allows for improved scalability since
no state is stored between requests. A potential trade-off is increased network
traffic by repeated requests and decreased server-side control over maintaining
consistent client-side operations.

Cache is the third constraint, requiring the request to include a marking if
the content is cacheable or non-cacheable. This signaling informs the client if
the content may be reused as a response, which can enhance the efficiency by
reducing server interactions. On the contrary, it can weaken the reliability, by
potentially serving stale data, inconsistent from a non-cached response.

Uniform Interface is the fourth constraint and enforces a uniform interface
for architectural components. The provided services are decoupled from the
components, allowing them to develop and expand independently. Trade-offs
include decreased efficiency due to standardized information transferring, as
opposed to component-optimized interfacing.

Layered-System is the fifth constraint, emphasizing a layered architecture that
restricts component knowledge by encapsulating component services, increas-
ing security and scalability. This constraint allows for intermediary components
to operate between layers.

2.7 cryptography 15

Code-on-Demand is the final and optional constraint for rest, which extends
client functionality by offering downloadable features that can be executed
after deployment in production environments, providing extensibility. As a
consequence, this can diminish application operations visibility, potentially
creating a security risk.

rest api provides a robust and scalable framework for web services and
applications by adhering to a set of well-defined principles and constraints.
Each constraint contributes uniquely to the system’s scalability, maintainability,
efficiency, and security. While there are trade-offs, such as potentially increased
network traffic, inconsistency, and security risks, the advantages of implement-
ing a rest architecture style outweigh the drawbacks, making it a preferred
and standardized choice for modern Web-based development.

2.7 Cryptography

Advanced Encryption Standard (aes) is a symmetric encryption algorithm
that uses a single key for both encryption and decryption, operating as a block
cipher on fixed-size 128-bit blocks. The key sizes are normally either 128, 196,
or 256 bytes, making it infeasible for a brute-force attack, which involves trying
all key combinations to decrypt a ciphertext to the corresponding plaintext
[17]. Systems using this scheme are called symmetric cryptosystems and are
fast and efficient in securing communication.

aes can be used with different modes of operation. One of the most common
modes is Cipher-Block Chaining (cbc). In the following description of the
modes, aes will be the encryption algorithm of choice. This encryption mode
separates the plaintext data into fixed-size blocks, which must be performed
sequentially. The mode is performed by using Exclusive-Or (xor) with an
Initialization Vector (iv) on the first plaintext block. After this operation, the
result is encrypted with aes into a cipher block. All following plaintext blocks
are xor-ed with its subsequent cipher block before being encrypted. Forming
a ciphered chain of blocks. Decrypting the ciphered chain is done by reversing
the process and using the same Initialization Vector [17].

Another mode of operation is Cipher Feedback (cfb), which encrypts the fixed
size plaintext blocks similarly to cbc. These modes differentiate in that cfb
uses a feedback mechanism. cfb starts by encrypting the Initialization Vector
with aes. Then xor it with the plaintext. The resulting ciphertext is encrypted
with aes. The decryption of the chain is done by reversing the cfb process.
cfb can result in faster decryption than cbc [17].

16 chapter 2 background

An alternative symmetric encryption is asymmetric encryption. This approach
uses a public key and a private key for data encryption and decryption. The
public key can be used to encrypt data, while the private key can be for
decryption. As the name suggests, the private key must be kept secret, while
the public key can be accessible to anyone. The public key can be distributed to
other entities, and these entities can encrypt the data with the public key. This
data can only be decrypted with the corresponding private key, ensuring the
data remains secure. Although private keys are typically used for decryption,
they can also encrypt specific data to generate a verifiable digital signature.
This signature can be verified by anyone possessing the corresponding public
key, ensuring the authenticity and integrity of the signed data. Whereas the
encryption and decryption scheme of asymmetric keys are strong, they are
less efficient compared to symmetric cryptosystems. Therefore, asymmetric
cryptosystems are often used to ensure safe symmetric key exchange amongst
entities. Once the symmetric key is shared, it can be used for session-based
communication, as symmetric keys are much faster in comparison [17]. A
hybrid approach can leverage the robustness of both cryptosystems: secure key
exchange from the asymmetric system and efficiency of data encryption and
decryption from the symmetric system.

A cryptographic hash function reduces the size of data by creating fixed-size
checksums that are derived from the original data. This type of functionality
is essential in cryptography as it generates smaller pieces of data used for data
integrity and error detection after storage and transmission of data. A hash
function is considered strong if it possesses the properties collision-resistance
and is a one-way function. First, the hash function ℎ should be resistant against
different data inputs 𝐷, yielding equal outputs, such that ℎ(𝐷) = ℎ(𝐷 ′). Sec-
ond, while the hash should be easy to generate, it should be computationally
infeasible to reverse the output hash to its original state. A popular set of
standardized hash functions are Secure Hash Algorithm 2 (sha-2), which de-
notes four variants SHA-224, SHA-256, SHA-384, and SHA-512, each producing
a digest size indicated by their suffix [17, 28].

A digital signature can be generated using asymmetric encryption. A specific
message or data can be encrypted using a private key, ensuring only the
possessor of the private key could have generated this digital signature. A
common practical approach for digital signatures involves combining asym-
metric encryption with a hash function. The hash function produces a digest
of the message, which is then encrypted using the private key. This approach
is more lightweight and efficient than encrypting the entire message, which
can be huge. The signer’s public key can be sent with the digital signature for
verification, ensuring the authenticity of the signature.

2.8 summary 17

2.8 Summary

In this chapter, we explored various aspects of blockchain technology, includ-
ing its fundamental principles, types of blockchains, and specific blockchain
networks such as Ethereum and Avalanche. We introduced the standard Web-
based architectural style rest api for network applications. Further on, we
discussed important cryptography concepts ensuring the security and integrity
of a system, covering symmetric and asymmetric encryption, modes of oper-
ation, cryptographic hash functions, and digital signatures. Additionally, we
examined the concept of Web 3.0 and its implications for dapps, highlighting
the motivation for tools like Web3.js used for blockchain interaction. Overall,
this chapter provides a comprehensive overview of the foundational concepts
and technologies essential for blockchain ecosystems.

3
Requirements
This chapter provides the requirements for the system according to the prob-
lem definition in Section 1.1, with regard to the key concepts and knowledge
presented in Chapter 2. As outlined in Section 1.2. Our thesis follows the dis-
cipline of design in regard to methodology. Therefore, we present and state
functional and non-functional requirements for the system, to create a con-
ceptual overview of the system’s needs in terms of architectural design and
components to align with the problem definition.

3.1 Functional Requirements

This section provides the fundamental functional requirements for the sys-
tem to comply with our problem definition, defined in Section 1.1. Functional
requirements specify what the system shall do and which capabilities and func-
tionality the system possesses. These requirement attributes outline the tasks,
features, or actions the system must perform to satisfy the criteria specified in
our problem definition.

Requirement 1 (Multiple public communication channels). The system must
support multiple communication channels to qualify as a shared logging in-
frastructure. The number of channels, can either be static or dynamic. Each
channel shall provide the end user the ability to publish messages to secure,
shared, and public storage. The communication channels shall not be suscepti-

19

20 chapter 3 requirements

ble to hijacking or blocking. The public storage platform for the communication
channel data shall build on the concepts of blockchain technology, leveraging
principles such as tamper-resistance, non-repudiation, and append-only data
structures. All data shall be publicly available and transparent to the end user.

Requirement 2 (Encrypt data). All data stored on a public storage platform
must be encrypted. While the specific type of cryptographic mechanism is not
strictly defined. Symmetric or asymmetric is preferred. However, the robustness
and rigidity of the encryption is not critical for this thesis. The strength of the
encryption will not be tested and is considered out of scope.

Requirement 3 (Access control). The system shall provide Role-Based Access
Control (rbac) for its logging infrastructure. It shall administer membership
management with at least two sets of roles: an owner role and a member
role. Owners shall be privileged with adding and removing users in the system.
While members shall have access to the logging system’s publication and
acknowledgment functionality within the logging infrastructure.

Requirement 4 (Non-repudiation). The system shall log the address and
identity of both the message publisher and the message receivers, with a
high degree of non-repudiation. These records shall be stored on a platform
that builds on blockchain technology, ensuring their public, transparent, and
continuous availability to end users.

Requirement 5 (Timeliness). The system shall provide functionality for timely
dissemination of secure data, supporting multiple severity levels. Data publica-
tion shall occur in a controlled and timely manner, ensuring the data is publicly
available in an interpretable format, simultaneously across the entire system.
Hence, all participants of the logging infrastructure shall have equal benefits
in terms of receiving data of different severity levels. No end users shall gain a
competitive advantage by receiving the data earlier than others.

Requirement 6 (User Interface). The system shall implement a ui that utilizes
the functionality of the system to publish and acknowledge messages in a
user-friendly and understandable manner. The ui shall include a minimum
of an input text box and a button for the publication functionality, providing
a straightforward solution to input and submit messages. Additionally, the
acknowledgment functionality shall be facilitated through a button associated
with each message, allowing the end users to acknowledge their possession of
the encrypted data.

Requirement 7 (Crypto Wallet). The ui shall integrate a crypto wallet of
choice, enabling the end user to connect their wallet to the system. Allowing
the end user to monitor and control the transaction flows from the ui to
the blockchain network. Signing and confirming transactions of significant
importance, such as acknowledgments and key and data publication, shall go
through the connected crypto wallet, ensuring end user authorization for all
fund withdrawals from their wallet.

3.2 non-functional requirements 21

3.2 Non-Functional Requirements

Non-functional requirements represent the crucial conditions that define the
effectiveness and behavior of the system. Unlike functional requirements that
define what the system should do, non-functional requirements specify how ef-
fectively the system performs under various conditions, attributes,or constraints.
In this section, we will discuss the importance of the non-functional require-
ments for the system, and how these requirements comply with our problem
definition specified in Section 1.1. We will list non-functional requirements [35]
and investigate how they will design and implementation of Haddock.

3.2.1 Reliability

Reliability within a system is the capability to perform system functions and
services in a consistent and accurate manner. Key non-functional attributes
associated with reliability are availability, security, and resilience. All of which
contribute to the system’s ability to deliver its services in a determinable fashion.
Other aspects include stability and dependability. The User Interface (ui) shall
consider reliability when handling user input and I/O interactions with the
blockchain network, to ensure user interactions are processed correctly and
consistently.

3.2.2 Responsiveness and Availability

Responsiveness defines the system’s ability to respond to user interactions and
return results on inputs and requests. It is an important attribute of how a
system handles throughput, latency, and processing time, which collectively
influence the system’s efficiency and performance. Availability, on the other
hand, is an attribute of the system’s capabilities to deliver and provide services
consistently.

In this thesis, we explore the use of a shared logging infrastructure with
a focus on timely dissemination. Both responsiveness and availability are
crucial elements for the system to comply with the functional requirements.
Availability becomes particularly critical if the system is being used in large
diverse geographic regions.

In a synchronization service, like the one we proposed, data availability and
integrity must be present to give equal benefits to all participants. Due to the
decentralized nature of blockchain technology, availability and responsiveness
are inherent attributes of the blockchain network’s system architecture. The
logging infrastructure system architecture is dependent on blockchain networks

22 chapter 3 requirements

for these attributes. Therefore making additional measures unnecessary.

3.2.3 Security and Resilience

The system shall provide security measures to prevent any unauthorized ac-
cess and mitigate security threats. Key aspects of security in a system include
confidentiality, integrity, and availability, as well as authorization, authentica-
tion, and non-repudiation. Our system leverages blockchain technology, which
inherently provides several robust security features. While security is a cru-
cial element in this thesis, We primarily leverage these measures, rather than
developing standalone security features. Although, the system needs to make
sure cryptographic keys are kept safe and handled with care. Additionally the
system shall demonstrate resilience to potential failures and external attacks,
maintaining highly available services is essential in case of partially system
failures. The system shall, to a certain extent, be able to adapt to unfortunate
events such as attacks and arbitrary system failures. Leveraging the decen-
tralized nature of blockchains can enhance the resilience of the system, by
mitigating single points of failures. Given blockchain technology’s inherent
measure for resilience, implementing additional measures for resilience will
not be necessary for the server-side of the system. However, the smart contract
shall incorporate access control measures. Proper access control and secure
key management will be considered

3.2.4 Usability

A system that relies on user input and interactions must be user-friendly to
use. The design of the ui should be intuitive to ensure ease of use. Usability in
the system can be improved by limiting the accessible features available at any
given time [10]. Designing an intuitive ui will be regarded as an important
focus.

3.2.5 Maintainability

Maintainability is important in all software and engineering systems. It deter-
mines the complexity of adding, editing, and fixing features in a system. In
large-scale systems with complex components, maintainability is an essential
factor to ensure that further development aligns with other non-functional
requirements. In this thesis, maintainability shall be considered for the com-
ponents, especially because of the complex and nascent nature of blockchain
technology.

3.3 summary 23

3.3 Summary

This chapter outlines the system’s requirements, detailing both functional and
non-functional aspects. Functional requirements include supporting multiple
secure communication channels, providing a public storage platform based
on blockchain technology for message logs, encrypting data, ensuring timely
dissemination of secure data, implementing access control, logging data pub-
lishers and message acknowledgers, and providing user interfaces for message
publishing and acknowledgment. Non-functional requirements focus on relia-
bility, responsiveness, availability, security, resilience, usability, and maintain-
ability, leveraging blockchain technology’s inherent features to enhance these
attributes while ensuring ease of use and future development.

4
Design & Implementation
This chapter presents the implementation details for our shared logging service,
Haddock, using the Avalanche blockchain for its immutability and decentral-
ized properties. A smart contract is used to disseminate and synchronize access
to published data, making it feasible to track both the publisher of data and
the initial message receivers. The message is published in a two-phase dissem-
ination protocol. In the first phase, the message is published in an encrypted
format. After some time has passed, the second phase disseminates the decryp-
tion key, inspired by the dissemination technique employed in FirePatch [18].
Haddock combines this dissemination technique with barrier synchronization
to determine when the decryption key should be disseminated. A predeter-
mined number of acknowledgments is required before the second phase can
commence. Haddock is structuredwith a server-side and a client-side,which im-
plements a rest api service to communicate and interact with the server side.
We start by presenting a system overview and Haddock’s workflow, then delve
into the implementation details of Haddock’s server-side and client-side.

25

26 chapter 4 design & implementation

Haddock

Client-side Server-side

Vue frontend

API service Smart contract

Avalanche Network

Build transactions

Include transaction in a block

Web3.0 library for
contract interaction

Local
storage

Metamask

Figure 4.1: An architectural overview of Haddock

4.1 System Overview

Haddock is built as a dapp following a classic client-side server-side archi-
tecture. The Avalanche network and a deployed smart contract act as the
server-side for the dapp and represent the dissemination services for the
system. The client-side consists of a frontend ui, a Metamask crypto wallet
integration, and a rest api service which exposes the dissemination services
of the server-side to the client-side. In addition, the client-side is structured
with a simple local storage, including a directory for storing smart contracts
and a directory for cryptographic keys. An architectural overview is displayed
in Figure 4.1.

4.2 haddock ’s workflow 27

4.2 Haddock’s Workflow

This section will present a brief overview of Haddock’s workflow, emphasizing
how the messages are logged and disseminated with synchronization. The
workflow process of message dissemination and synchronization is done in the
following steps:

(1) Encrypted Message Dissemination: The publisher encrypts a message
and sends it to Avalanche

(2) Message Emission: Avalanche emits the dissemination of encrypted
data to readers

(3) Message Retrieval: Readers fetch the encrypted data

(4) Acknowledgement: Readers ACK the message by creating a digital
signature and sending it to Avalanche

(5) Quorum Check: Publisher check Avalanche for quorum

(6) Decryption Key Dissemination: Publisher disseminate decryption key
on quorum

(7) Key emission: Avalanche emits the publication of the decryption key

(8) Decryption and Display: Readers fetch the decryption key, decrypt, and
read the message

(1) The publisher use the client-side frontend to input a message, which is
encrypted symmetrically, the publisher use Metamask to sign the transaction,
then send it to Avalanche. (2) Avalanche receives the encrypted message and
stores it in struct for incomplete messages on the smart contract, then emits
the publication of the encrypted message to readers. (3) The frontend ui for
each reader automatically fetches the newly emitted encrypted message and
displays it in a list. (4) Readers acknowledge the message by pressing a button
in the frontend ui which create a digital signature of the encrypted data, the
reader use Metamask to sign the transaction, then send it to Avalanche. (5)
The publisher interacts with Avalanche and checks if the number of required
acknowledgments for the message is met. (6) If a quorum is reached, the pub-
lisher disseminates the decryption key to Avalanche. (7) Avalanche receives the
decryption key and stores both the existing encrypted message and decryption
key in a new struct for complete messages on the smart contract. (8) Finally, the
frontend ui for each reader automatically fetches the decryption key, decrypts
the message, and displays it in a list, making it readable to readers.

28 chapter 4 design & implementation

1 event MessageDisseminated (
2 uint256 indexed id ,
3 uint256 timestamp
4);
5 event DisseminationTime (
6 uint256 indexed id ,
7 uint256 time
8);
9 event KeyDisseminated (
10 uint256 indexed id ,
11 uint256 timestamp
12);

Listing 4.1: The three events on the SHIELD
contract

4.3 Server-Side Components

Haddock uses one contract; Secure Handling of Information with Encrypted
Logs and Decryption Key (shield), which is responsible for logging and
the two-phase dissemination of messages, and is designed to be deployed on
the Avalanche’s Primary Network. The shield contract offers three primary
functions. First, the contract can disseminate and store encrypted messages
in bytes on the blockchain network, making it publicly available. Second, the
contract can store acknowledgments of the encrypted messages. Third, the
contract can disseminate and store the decryption key for the corresponding
encrypted message.

Solidity includes events, which are special constructors that can store and emit
data to off-chain applications. The shield contract includes three events: one
event for signaling the completion of the decrypted message dissemination, an
event to emit the dissemination time of the key, and lastly, signal the completion
of the key dissemination. All events on the smart contract are illustrated in
Listing 4.1.

4.3.1 Disseminate Message

During the first phase of the dissemination, encrypted messages are stored
in structs on the shield contract. The message struct includes necessary
metadata such as an assigned message identifier, publisher details, and the
number of required acknowledgments for the second phase of dissemination
to commence. A full overview of the message struct is illustrated in Listing
4.2. Each message struct is then stored inside a mapping, and this mapping

4.3 server-s ide components 29

1 struct Message {
2 uint256 id;
3 uint256 timestamp ;
4 address publisher ;
5 bytes message ;
6 bytes key;
7 bytes hash;
8 uint256 quorum ;
9 uint256 acks;
10 }

Listing 4.2: Message structure
represents the message with
all relevant metadata

1 struct Signee {
2 uint256 id;
3 uint256 ts;
4 address signer ;
5 bytes signature ;
6 bytes public_key ;
7 }

Listing 4.3: The signee struct represents
an acknowledgment. All
acknowledgments are
stored inside an array

represents a key-value storage for all incomplete messages (encrypted mes-
sages). The identifier of the message is used as a key for the message entry in
the mapping, and the identifier is stored inside a dynamic array. Finally, both
the mapping and the dynamic array are stored inside the incompleteMessage
struct, illustrated in Listing 4.4. An identical struct called completeMessages
is implemented to store all messages that are decrypted. Storing the messages
in mappings allows for multiple publishers at the same time, creating multi-
ple public communication channels, which is an essential requirement of the
system.

The shield contract is implementedwith function modifiers, which is a special
function in Solidity designed to enforce certain conditions before code execu-
tion. Modifiers can be attached to functions to ensure specific requirements
are satisfied before their execution. shield uses modifiers primarily for access
control, as only the owner of the contract is privileged to add new members
to the contract, ensuring controlled access to the contract’s functionality. Addi-
tionally, modifiers are used to verify the publisher, confirm message signatures
to avoid double signing, and validate the quorum requirements. Modifiers en-
hance the security and resilience of the shield contract’s operations and are
important for the functional access control requirement in Section 3.1. Modifiers
are crucial during the message dissemination process as they can restrict the
use of the shield contract exclusively to members.

4.3.2 Store Acknowledgments for Encrypted Messages

In Haddock, a significant feature is the capability to record acknowledgers
on-chain in a blockchain ecosystem where all data is public and transparent.
A notable challenge is documenting who has accessed and read the message

30 chapter 4 design & implementation

1 struct IncompleteMessages {
2 mapping (uint256 => Message)

incomplete ;
3 uint256 [] keys;
4 }
5 struct CompleteMessages {
6 mapping (uint256 => Message) complete

;
7 uint256 [] keys;
8 }

Listing 4.4: The incomplete and complete structs in the SHIELD
contract. The struct represents a mapping, in which the
message’s ID maps to an entry of the Message struct
(found in Listing 4.2)

while stillmaintaining the decentralized properties of the system. Recording the
publisher is relatively straightforward since the publisher must use transactions
when disseminating. However, anyone can read data on a publicly accessible
blockchain like Avalanche. Making it necessary for an alternative approach to
track and log the data access without compromising decentralization.

To create controlled access for the primary data readers. Haddock implements
a barrier synchronization to record the recipients of the encrypted messages.
This ensures tamper-proof evidence that the readers possess all the necessary
information to access the encrypted message, increasing non-repudiation, an
essential requirement for the system. However, once the key is disseminated,
there is no way, from this point and onward, to determine new readers who
have accessed the messages. As a consequence of the barrier synchronization,
the logging functionality of Haddock naturally shifts towards serving as a
synchronization service that can be used for logging purposes, rather than a
comprehensive system with complete access control over message publishers
and readers.

Each acknowledgements are stored in a struct. The Signee struct contains the
identifier of the message, a timestamp, the address of the signer, and a digital
signature of the received encrypted message, along with the public key of the
signer, which is illustrated in Listing 4.3. All Signee structs are then stored
inside an array. In addition, the acknowledgment function includes a modifier,
ensuring no double signing can take place.

A reason for maintaining a separate signer and message struct is to avoid
dynamic nested structs and arrays, which Solidity currently does not support.
Instead, a single signer is appended to an independent struct. Including the

4.3 server-s ide components 31

signer struct within the message, struct can lead to memory issues due to the
unknown size of the signer struct. There are several benefits to this design
choice. First, reading data requires less computation since there is less data
to iterate through. Additionally, storing acknowledgments within the message
struct is complicated because of the dynamism of the signee struct. Keeping
a separate struct simplifies the process and improves the structure and organi-
zation of on-chain data. Overall, a separate signer struct is an optimal choice
for Haddock.

4.3.3 Dissmeniate Key

When a quorum of acknowledgment is met, the second phase of dissemination
will commence. The server-side dissemination of the decryption key involves
three major steps:

(1) Move the Message from the incompleteMessages to completeMessages
mapping

(2) Disseminate the decryption key

(3) Emit an event, signaling the dissemination of the decryption key is con-
cluded.

(1) The Message is moved by copying the Message stored at the given iden-
tifier in the incompleteData mapping, and store it with the same identifier
in thecompleteData. The Message is then deleted from the incompleteData
map. (2) The decryption key is stored in the Message struct, which is now lo-
cated in the completeDatamap,with a hash of the encryptedmessage from the
publisher, which can be used for verification of the digital signatures. (3)Lastly
emit the KeyPublished event, specified in Listing 4.1. This emitted event is a
notification, signaling listening off-chain application that the decryption key
has been published to the blockchain.

Synchronization options are important for the logging infrastructure to achieve
timely dissemination. So far, we have presented the events, data structs, and
the three primary functions of the server-side of Haddock. The server-side is re-
sponsible for storing the messages and working as a secure, shared, distributed
system. The synchronization mechanism is part of the client-side, which is
responsible for the dissemination of the decryption key in a timely manner.
Different synchronization options for timely dissemination will be discussed
further in Section 4.5.

32 chapter 4 design & implementation

4.4 Client-side Components

The client side of Haddock consists of a frontend User Interface implemented
in Vue.js, a JavaScript (js) framework for Web interfaces, and a client-side
rest api service implemented in Python with Flask. The api service relies
on the Web3 libraries for interactions with the blockchain network, including
sending transactions, smart-contract operations, and reading blocks, which is
used to create a toolchain of smart contract interaction tools. The rest api
service’s primary function is to interact with the shield contract. Close to
all contract interactions happen through the rest api service except for two
transaction types, which happen directly in the frontend.

4.4.1 Contract Interaction Tools

The contract interaction tools are a toolchain that offers wrapper functions
for common Web3 functions. The Web3 library for Python offers a lot of
functionality for blockchain interaction. Most of the functions are primitive
and can cause hard coding and redundancy in code. The inspiration for the
toolchain is to reduce redundancy andmake contract interaction more dynamic
and accessible for developers. These tools are designed for building, signing,
and sending arbitrary transactions to arbitrary contracts with Python. All
endpoints exposed by the client-side api service in Section 4.4.2 leverage the
contract interaction tools for blockchain interaction.

Communicating with a smart contract is not as straightforward as using a
connection string, URL, or other connection methods. A common method for
interacting with blockchain ecosystems, such as Ethereum and Avalanche, is
with an Application Binary Interface (abi). Web3 can generate the abi for the
shield contract and store it within the client-side, as Haddock has a local
storage for storing Solidity contracts. Ideally, the contract could be fetched
directly from the blockchain as long as the contract address is known. The
contract must be open-source, uploaded, and verified to the blockchain’s block
explorer. Haddock is designed to support both retrieval options. Since the
contract has been continuously developed, Haddock has preferred the former
options.

With a smart contract’s abi and the contract’s address, a Web3 object that
represents the contract can be instantiated. This Web3 object supports methods
for building, signing, and sending transactions, as well as contract interaction.
Two unique wrapper functions are introduced to streamline smart contract
interaction. Both provide a convenient interface for transaction and View
functions.

4.4 client-s ide components 33

The first wrapper function is designed to send transactions. It takes a smart
contract function name and a list of arbitrary parameters as arguments, mak-
ing it versatile and useful for any transactional function. It constructs the
transaction and signs it using the user’s private key before dispatching it to
the network. Upon successful execution, it returns a receipt confirming the
transaction.

Similarly, the second wrapper function is tailored for View function interaction.
View functions in Solidity are functions that allow off-chain applications to read
and query data from blockchains withoutmodifying it or altering the state of the
smart contract, by providing the wrapper function with the smart contract view
function name, and a list of arbitrary parameters as arguments, access to any
View function can be done seamlessly. Facilitating smart contract interaction.
Together, these wrapper functions offer an interface, ensuring efficiency and
ease of use, simplifying both the process of altering and querying smart contract
data.

4.4.2 REST API

The client-side offers a rest api service for most of the blockchain interactions.
One main reason for having a separate api service is for more compute-heavy
processes. The shared logging service relies heavily on encrypted data. Encryp-
tion can be resource-intensive, particularly for larger datasets. Establishing
a separate service offers the flexibility to host it on a device with scalable
computing resources. Additionally, using a frontend-backend architecture for
the client-side allows for a more structured and organized implementation of
the application. We use the term rest api service to refer to the backend of
the client-side to distinguish it from Avalanche, which acts as the backend for
Haddock. All api endpoints represent unique services and are listed in Table
4.1. Endpoints prefixed with client are operations on the client-side, while those
prefixed with contract interact with and execute computations on the shield
contract on the server-side. The most essential services will be described in
more detail.

The most important mechanisms of the api service are the encryption of
the message, creating a digital signature, key dissemination, and fetching
incomplete and complete logs. These are facilitated through the endpoints
encrypt-msg, digital-signature and disseminate-key, which are client-
side services, and incomplete-log and complete-log, which are calls to the
shield contract.

34 chapter 4 design & implementation

Endpoint Method Description

/api/contract/disseminate-key POST Disseminate the decryp-
tion key to the network

/api/contract/force-push-key POST Force push the decryption
key to the network. Re-
quires quorum

/api/contract/incomplete-log GET Get all incomplete mes-
sages on the contract

/api/contract/incomplete-new GET Get the latest incomplete
message

/api/contract/complete-log GET Get all completemessages
on the contract

/api/contract/complete-new GET Get the latest complete
message

/api/client/encrypt-msg GET Encrypt the data

/api/client/digital-signature GET Create a digital signature
with the encrypted mes-
sage

/api/client/abi GET Get the ABI of the con-
tract

/api/client/contract_address GET Get the address of the con-
tract

Table 4.1: Listing of all endpoints exposed by the client-side API service

4.4 client-s ide components 35

4.4.3 Client Services

The encryption service (encrypt-msg) takes the plaintext message sent from
the frontend as an argument. The cryptographic implementation utilizes the
python library Cryptography. The process involves three steps: First, a 256-bit
encryption key is generated and stored in the local storage on the client-side.
Second, the plaintext message is symmetrically encrypted using aes with cfb
mode, with a randomized 16-bit Initialization Vector. aes is used because
it is standardized and easy to implement with libraries. Third, the resulting
ciphertext is encoded with Base64, a binary-to-text encoding scheme that
converts the ciphertext to American Standard Code for Information Interchange
(ASCII) encoding. A standard format supported by Web-based communication
channels. Allowing the api service to effectively send the encrypted data
to recipients while aligning with the encrypt data requirement from Section
3.1.

The signing service (digital-signature) produces a digital signature which
is done in primary steps. Initially, the encrypted message is concatenated with a
timestamp, then hashed using sha-2 algorithmwith a 256-bit output, producing
a fixed-size hash. Further on, the hashed message is encrypted(signed) with
the signer’s private key, effectively creating a digital signature. Including a
timestamp in the digital signature can increase the non-repudiation of the
signatures, even in scenarios of a compromised private key [44]. To verify
the digital signature, the system, or any other parties, can decrypt it with the
signer’s public key and compare it against the corresponding data hash stored
on-chain. Lastly, the digital signature is returned to the recipient.

The key dissemination service (disseminate-key) handles a POST request
and runs as a background process that spawns a thread, idling until a quorum
of acknowledgments is met by interacting with the shield contract. Once
the quorum is met, a transaction is sent to the smart contract, emitting an
event with the decryption key’s dissemination time in Portable Operating
System Interface (POSIX) time to avoid potential time zone complexities. By
default, the final publication time is set to 10 minutes after the initial quorum is
received. The decryption key (in byte format), a hash of the encrypted message
for verification, and the corresponding identifier are sent with a transaction
to the shield contract. Concluding the key dissemination functionality on
the client side. Section 4.3.3 explained the server-side handling of the key
dissemination.

36 chapter 4 design & implementation

4.4.4 Contract Services

The logging service (complete-log and incomplete-log) includes fetching
incomplete and complete messages from the shield contract. The endpoints
are routes defined to handle GET requests, retrieving log data stored on the
shield contract. The process begins by fetching the incomplete and complete
message keys, stored in respective dynamic arrays, on the shield contract.
These keys are the identifiers that map to incomplete and complete messages,
as described in Section 4.3.1. The service fetches the associated incomplete
and complete messages from the mappings for each key retrieved. The key
also fetches the list of signers corresponding to each complete message. These
endpoints vary slightly for incomplete and complete data retrieval, particularly
for dictionary formatting. For incomplete message retrieval, the message is
encrypted, while the complete message is decrypted and stored in plaintext
in the dictionary. The dictionary contains details such as message (encrypted
or plaintext), identifier, timestamp, publisher, signers, and acknowledgment
number, depicted in Figure A.1. These dictionaries are collected into a list.
Finally, the function serializes the lists to JavaScript Object Notation (json)
format and returns them to the recipient.

Similarly, the incomplete-new and complete-new endpoints provide the same
functionality as the logging service but are used to fetch the newest incomplete
or complete messages. These endpoints are implemented as event listeners
using Server Sent Events (sse) to stream new messages to the client in real
time.

Smaller services include the forceful dissemination of the decryption key to
the shield contract. This feature is available if the key dissemination service
should fail. If Haddock encounters any errors or crashes resulting in a restart,
there is no mechanism to restart the background publication process. This
feature enables the publisher possessing the decryption key to disseminate the
key by force to the blockchain, given that the incomplete message has received
a quorum. However, this is not an optimal solution; an automatic mechanism
should handle this upon restart to maintain the integrity of the system’s
operations. The current force push solution undermines the requirements for
timely dissemination, as the client can disseminate the key at any time as long
as a quorum is met. thereby disrupting the synchronization process.

4.4 client-s ide components 37

Figure 4.2: A complete view of the Haddock user interface.

4.4.5 Frontend

The client-side’s frontend ui is developed using Vue.js. The frontend ui is
built and serves as a demonstrator of Haddock’s capability as a logging and
dissemination service, integrating services from the rest api service to seam-
lessly interact with Avalanche. The ui offers three main functions. Disseminate
messages to Avalanche, browse message logs, and acknowledge incomplete
messages. A full overview of Haddock’s ui is illustrated in Figure 4.2.

Haddock incorporates the cryptocurrency wallet Metamask, a Web browser
extension that enhances user control over cryptocurrency funds. Metamask
allows users to sign transactions directly in the browser, removing the need
for hardcoded signatures and gas limits in the code. If the total amount of gas
exceeds a hardcoded gas limit, the transaction is invalidated, and there is no
way for the user to change this except by modifying the source code. Making
the Metamask integration a crucial requirement for Haddock’s functionality.
The front end provides a user-friendly interface for connecting a crypto wallet
to Haddock, accessible via a button on the navigation bar, the connection is
facilitated with Web3 tools, depicted in Figure 4.3.

Initially, the architecture was designed to handle all transaction-related com-
puting within the api service. However, due to the integration of Metamask,

38 chapter 4 design & implementation

Figure 4.3: Haddock features a simple navigation bar. A button can be used to connect
the crypto wallet to the system.

the frontend needs to build, sign, and send the transaction to the blockchain
network. As a result, the architectural model has become more intricate and
less structured. Consequently, the message dissemination and the acknowl-
edgment of incomplete messages are done directly in the frontend code and
not through the api service because Python cannot access the functionality of
browser extensions. Despite the added complexity, integrating a crypto wal-
let, like Metamask, is essential as it aligns with the functional requirements
specified in Section 3.1.

4.4.6 Frontend Message Dissemination

The message dissemination is designed through a simple ui component com-
prising an input text form and a button for executing the process. Additionally,
the component includes a slider for setting the number of required acknowl-
edgments and a button to force key dissemination, as illustrated in Figure
4.4. The encryption service, as described in Section 4.4.3, is used to encrypt
the message. Subsequently, the frontend builds and sends the transaction to
the shield contract, in which the publisher is prompted with a request from
Metamask to sign and confirm the transaction, as illustrated in Figure 4.5. Upon
transaction confirmation, the frontend receives a receipt indicating whether
the message was successfully disseminated to the shield contract. Finally,
the key dissemination service is invoked, starting a background process and
idling until it reaches a quorum.

The layout of the encrypted messages presented in Figure 4.6 features two but-
tons and a list composed ofmessage panels. When Haddock is initiated, two sep-
arate event listeners are initialized on the incomplete-new and complete-new
endpoints described in 4.4.4. These event listeners continually check for new
entries in the incomplete and complete message structures on the shield con-
tract and update the lists. If an event listener fails, the end user can manually
fetch messages from Avalanche by clicking the button titled "Fetch" and invoke
the logging service from the presented in Section 4.4.4. The other button clears
all messages from the message list. Each message panel displays essential
information, including the publisher of the message, the encrypted message, a
timestamp, and the required number of acknowledgments. In addition, every

4.4 client-s ide components 39

Figure 4.4: The publisher component in-
cludes an input text form and a
button for message dissemina-
tion, a button, and a slider used
to set the required acknowledg-
ments. Lastly, a button is used
to force push the decryption
key to the network.

Figure 4.5: The transaction win-
dow from the Meta-
mask browser exten-
sion. This box is used
by the client to sign
the transaction.

40 chapter 4 design & implementation

Figure 4.6: A display of the incomplete messages. The key in the left corner is a
button to acknowledge the message. The numbers to the left of it display
the required number of acknowledgments before the decryption key is
disseminated.

panel includes a key button at the bottom left to acknowledge the message.
The message lists are cached in the browser to increase efficiency.

4.4.7 Frontend Message Acknowledgment

To acknowledge an incomplete message, a user must click the key button in
the message panel. The signing service is invoked to create a digital signature,
then sends a transaction to the shield contract, passing the digital signature
of an encrypted message, identifier, and the signer’s public key. The identifier
for the acknowledgment message is stored in the browser’s cache, disabling the
user from acknowledging a message multiple times. Mechanisms for ensuring
no double signing on the server side were reflected in Section 4.3.2.

When a quorum is met, the background process from the key dissemination
service will disseminate the decryption key. Completed messages are stored in
a separate layout, like the incomplete message list. Displayed in Figure 4.7, but
the content is decrypted and displayed in plaintext, making it readable and
understandable to the user. The ability to acknowledge messages is removed
from the log view. Each message panel includes a verification mark button in
the bottom left of the message panel, which expands a modal displaying all
signers of the respective message. Next to this button is a number indicating

4.5 synchronization options 41

Figure 4.7: A display of all complete messages. The verification mark down left in
the message panel opens a modal with a list of all signers of the current
message. The number to the left of the verification mark displays the
number of signers.

the quantity of acknowledgers.

The list of signers comprises the address of the signee, the digital signature,
and, lastly, a verification mark signifying the legitimacy of the digital signature.
The verification mark is awarded when the digital signature is successfully
verified against the hash of the encrypted, which is disseminated concurrently
with the decryption key. The signer list is depicted in Figure 4.8

4.5 Synchronization Options

Haddock has multiple options when it comes to barrier synchronization pref-
erences concerning the decryption key. While the encrypted message has no
initial publication requirements, in terms of synchronization, encrypted mes-
sages can be disseminated anytime. Synchronization is strictly applied to key
dissemination, with synchronization mainly occurring off-chain on the client-
side, complemented by restrictions on-chain, enforced by shield contract.
The decryption key can only be disseminated once a predefined quorum of ac-
knowledgment is met. These system restrictions set constraints on the available
synchronization options.

The most elemental synchronization primitive involves disseminating the de-
cryption key on a regular time interval after the initial quorum is met. The

42 chapter 4 design & implementation

Figure 4.8: The full list of singers for a given complete message. Their address, hash
of the encrypted data, and a verification mark are included in the modal.

dissemination time could be seconds, minutes or hours after the quorum. This
options would suffice in most cases. By default, Haddock has a final dissem-
ination time of 10 minutes after the initial quorum is reached. Although, the
publisher can override the default time interval and set a desired time interval
in the frontend.

Another approach is to schedule the dissemination of the key for a specific
time and date, with the constraint that the quorum must be met before the key
is disseminated. As illustrated in Figure 4.4, next to the publish button is an
input field for final dissemination time, and will only activate this option if the
input field is changed, otherwise it will remain on the default 10 minute time
interval. However, this approach runs the risk of no key dissemination if the
quorum is not satisfied within the designated timeframe. To mitigate the risk,
a mechanism could be implemented to reschedule the dissemination for the
next day or delay the final key dissemination time by an hour until the quorum
is met and the key is successfully published.

4.6 Summary

This chapter presents comprehensive design and implementation details of
Haddock, a shared logging service leveraging the Avalanche blockchain for its
immutability and decentralized properties. It details how a smart contract is
used to synchronize data access and tracking, using a two-phase dissemination
protocol for encrypted messages and their corresponding decryption keys. The
workflow involves steps such as message dissemination, acknowledgments,
and key dissemination. The system architecture includes both client-side and

4.6 summary 43

server-side components. The server-side handles smart contract interactions,
and the client-side provides a rest api and a frontend UI with a Metamask
integration for transactions.

5
Evaluation
This chapter presents experiments conducted on Haddock to evaluate the
system’s properties and assess if they are suitable for a logging and synchro-
nization system. The first section outlines the testing platform, followed by
an explanation of the experimental setup and system specifications. Next, the
chapter discusses the dissemination experiment, which explores the latency
of Avalanches in different regions. Subsequently, a cost analysis investigates
the feasibility of the system in terms of fiat currency. Concluded by a memory
growth experiment that explores gas cost associated with increased memory
usage.

5.1 Platform

We evaluate Avalanche’s Fuji test network and investigate how efficiently it
can work as a backend server for Haddock. Fuji is designed for smart contract
testing, and offers AVAX free of charge through drops, and is intended to
mirror the actual price of AVAX at on the c-chain. It is important to notice
that AVAX tokens on Fuji hold no real monetary value and are merely used
for experimentation purposes. The number of AVAX tokens set some limits
for the tests that were conducted. Running extensive tests on Fuji requires a
high number of AVAX tokens, while AVA Labs drops 0.5 AVAX a day. Therefore,
the smart contract has not been tested to its fullest extent. It is important to
mention that the system is designed for public blockchain networks. Hence,

45

46 chapter 5 evaluation

Component Specification
Processor 13th Gen Intel(R) Core(TM) i7-13700 2.10 GHz
RAM 128GB 3600MHz DDR4
Graphics Card NVIDIA GeForce GTX 3070
Operating System Windows 11 Enterprise
Virtual subsystem Windows Subsystem for Linux 2.0.9.0

Table 5.1: System Specifications

Component Specification
Processor Intel(R) Xeon(R) CPU E5-2673 v4 @ 2.30GHz
Number of CPU cores 1
RAM 1GB
Operating System Linux

Table 5.2: System Specifications for each Azure container instance

the Fuji network is chosen as a test platform rather than a locally managed
test network because this more closely reflects real-world scenarios.

5.2 Experiment Setup and System Specifications

The dissemination test has been conducted on Azure, with Fuji acting as
an API server. The Azure setup consists of nodes deployed using Azure’s
Container Instance service. The system setup in Azure is presented in Table 5.2.
Additionally, the cost analysis has been conducted and run on a desktop with
the system specifications presented in Table 5.1.

Functions AVAX USD gas
Contract deployment 0.085156 $3.28 2852801
appendMember 0.00204449 $0.08 68492
removeMember 0.00107388 $0.04 35976
setData (1 byte) 0.00540081 $0.020 196393
acknowledgeData (1 byte) 0.00450263 $0.17 163732
setKey (16 bytes) 0.00796649 $0.30 266884

Table 5.3: The cost of each function on a new empty shield contract

5.3 dissemination experiment 47

Container Registry
Python script

API

/start_test
/get_time

API

/start_test
/get_time

Bicep deployment file

Deploy containers
from registry

Resource group

Start tests and fetch results
from all container instances

Multiple container instances
are deployed at various locations

Figure 5.1: A bicep script deploys 30 public container instances to Azure at different
regions across Northern America. Each container instance consists of a
dissemination test wrapped inside a Docker container. Finally, a Python
script calls the API endpoints to start and fetch test results.

5.3 Dissemination Experiment

The dissemination experiment measures the latency of Haddock’s blockchain
network. It is designed to evaluate the performance of retrieving complete
data, which is defined as information that includes the encrypted data and
the decryption key for said data. The purpose is to check the mean latency
when retrieving data from the blockchain and validate the feasibility of the
barrier synchronization that Haddock uses as part of its shared command bus
system.

The dissemination experiment is conducted and tested in Azure. Each test is
performed three times. Every iteration is tested on an empty, newly deployed
contract. This ensures that the gas remains consistent on a given size for each
test. Whenever a decryption key is published to the contract, it is emitted as an
event. An event listener is set up to listen for this event. The event listener is
wrapped in a docker container, which allows deployment to Azure to be done
more easily and effectively. A bicep deployment script is used for deployment.
The deployment script includes a series of server regions in Northern America,
Europe, and Asia, efficiently spreading the container deployments across the
globe. The full list can be found in Appendix A.2. This way, 30 containers, each
one at one of 20 predefined regions in the world, can be tested. All containers
are set up to have API endpoints for starting the event listening and fetching
the stored data retrieval time from the concluded listening. The experiment is
conducted at multiple byte sizes for the encrypted data to see how this affects
the latency when fetching from the contract. The operation of storing and

48 chapter 5 evaluation

0 5 10 15 20 25

Node

0.0

0.5

1.0

1.5

2.0

2.5
M

ea
n

Re
tri

ev
al

 T
im

e

Mean Time
Average time value of each node

Figure 5.2: The mean retrieval time for all 30 nodes spread across the globe. The plot
is based on the table in appendix A.8

disseminating the decryption key involves moving a storage reference from
the incomplete data structure to the complete data structure on the contract,
which, in theory, should have a relatively constant time complexity.

The dissemination experiment indicates a mean retrieval time of 0.86s on
message sizes ranging from 20 to 5000 bytes, as illustrated in Figure 5.2. There
is no substantial increase in delay observed within the tested byte interval,
which suggests the retrieval time remains relatively consistent, regardless of
the size of the data being read from the Avalanche network within the given
byte interval. The total overhead of the data packet for a message entry is 343
bytes when the encrypted data and the decryption key are excluded, meaning
the real packet size ranges from 396 to 5375 bytes when both the message and
256-bit decryption key are included. Therefore, by minimizing the overhead,
the system could potentially lower the latency for smaller messages, as highly
critical information should have minimal latency.

Parts of the latency can be due to client-side operations. Each time a key event
is emitted. The client fetches a list of completed IDs to cross-check if the ID
in the emitted event exists, which acts as an extra measure of security and
avoids potential errors on the smart contract. The latency of data retrieval will

5.3 dissemination experiment 49

0 500 1000 1500 2000 2500
Time in milliseconds

20

40

60

100

1000

By
te

s

Mean time retrieval Time window Time window, slowest nodes included

Figure 5.3: The time window from the first received data to the last received data and
the mean retrieval time for each byte size

heavily rely on the bandwidth of the recipient and network congestion on the
blockchain network.

High latency in a synchronization service is not always problematic, as the
most important factor is that end users receive the information in the smallest
possible time window, which is the window spanning from the first receiver
of data to the last, as depicted in Figure 5.3. This figure presents the average
retrieval time for every byte size, the time window during the experiment, and
an extended time window, including nodes with the highest latency. However,
the results indicate both a high latency, averaging at 0.86 s and a large time
window averaging around 1 s reducing the potential applications for Haddock,
for instance, some business disciplines like accounting, finance and economics
heavily depends on extremely low latency. However, the system can be accept-
able for its designed environment, the sea, for message dissemination with a
tolerable latency of a few seconds.

Given these results, it is crucial to consider the non-functional requirements of
availability and responsiveness from Section 3.2.2. The dissemination results
demonstrate significant latency variations across different regions,where North
America has significantly lower latency compared to nodes in Europe and Asia,
which can imply a higher distribution of Avalanche nodes in North America [4].
With variations to responsiveness this substantial between continents, applying
such technology at sea may prove challenging, as the variation could become
even greater, especially since Internet availability is highly limited at open

50 chapter 5 evaluation

sea.

Thorough transaction throughput testing of Avalanche indicates that the av-
erage transaction confirmation time is around 0.3 s, with a maximum of 0.4 s
[30]. However, the dissemination experiment does not test transactions per
second and the latency of transaction confirmation. This needs to be taken
into consideration. According to Avalanche’s developers, the time to finality is
around 1 s [5, 30]. Although this is a short time, the legitimacy of the decryp-
tion key cannot be verified, before 1 s has surpassed from the first indication
of the decryption key on-chain. The key can still be verified by the recipient
off-chain by creating a hash of the encrypted data and comparing it against the
verification hash created by the original publisher of the encrypted data.

The dissemination experiment conducted on Haddock provides insight into its
performance and feasibility as a synchronization service. While the experiment
suggests relatively consistent retrieval times regardless of data size, latency
variations across different regions and the challenge of potential high latency
at sea present notable considerations for responsiveness. Client-side operations
and network congestion further influence data retrieval latency, which again
can affectHaddock’s responsiveness. Overall, these findings prove thatHaddock
can be used in systems that accept and tolerate a latency and time window
of a few seconds, although it may face considerable availability challenges at
sea.

5.4 Cost Analysis Experiment

The cost analysis experiments explore the increasing cost of smart contract
functionality at various byte sizes. The purpose of the cost analysis is to assess
the growth of expenses as the data’s size varies and explore whether public
blockchains can be viable and feasible in monetary terms. This experiment
mainly focuses on the cost fluctuations across several days.

The cost analysis is done by checking the cost of the core functions on the
smart contract at different byte sizes, on an interval between 10 to 3200 bytes,
effectively 8 messages per experiment. The core functions include publishing
the encrypted data, acknowledging said data, and publishing the decryption
key. This analysis has been conducted three times on different dates to include
standard deviation. All experiments are done at a new and empty smart
contract, in which all functions will have the same gas estimation across the
iterations.

The cost analysis experiment signifies a linear growth both for data and key

5.5 memory growth experiment 51

0 500 1000 1500 2000 2500 3000
Bytes

0.5

1.0

1.5

2.0

2.5

Co
st

 in
 d

ol
la

r

Regression Line
Data Cost

Figure 5.4: The increasing cost of publish-
ing encrypted data at various
byte sizes.

0 500 1000 1500 2000 2500 3000
Bytes

0.5

1.0

1.5

2.0

2.5

3.0

Co
st

 in
 d

ol
la

r

Regression Line
Data Cost

Figure 5.5: The increasing cost of dissem-
inating the decryption key at
various byte sizes. This cost
will always be higher than
the cost of disseminating en-
crypted messages.

publication for increasing message sizes, depicted in Figure 5.4 and 5.5, and
a consistent cost for acknowledgments in Figure 5.6. The increase in gas cost
indicates that larger data needsmore computationwhen storing the data,which
is expected, and highlights the predictable nature of gas consumption, which
strengthens the reliability of the system. In the span ofmultiple days, the cost for
the computation in dollars does not fluctuate much, which can indicate a stable
and consistent economic environment within the Avalanche ecosystem, further
strengthening the reliability of the system. Publishing complete messages
of size 1600 bytes (1943 bytes including overhead) averages at around 2.96
dollars from the demonstrated results. As the gas price grows predictably,
large datasets can be expensive to deploy on the Avalanche network in terms
of monetary value, suggesting that smaller messages are more feasible for
Haddock. Arguably, for crucial data with moderate deployment frequency, the
associated cost may be regarded as acceptable, particularly for large businesses
and government agencies and institutions.

5.5 Memory Growth Experiment

The smart contract stores all messages in structures on the smart contract.
Perhaps one of the most expensive operations a smart contract can execute is
writing to storage. As the number of data entries accumulates in the contract’s
memory, the gas cost of appending the messages can increase. The purpose
of this experiment is to measure the gas cost as the data structures grow. The

52 chapter 5 evaluation

0 500 1000 1500 2000 2500 3000
Bytes

0.160

0.165

0.170

0.175
Co

st
 in

 d
ol

la
r

Regression Line
Data Cost

Figure 5.6: The increasing cost of ac-
knowledging data at various
byte sizes.

experiment is conducted similarly to the cost analysis in Section 5.4. Messages
ranging from 10 to 3200 bytes are deployed, effectively publishing 8 messages
to the smart contract. The experiment script has been run 13 times on the same
contract to achieve around 100 messages stored on the shield contract. Since
gas computation is predictable, error bars are excluded, as they would have
been consistent across multiple experiments (Only the cost in dollars would
fluctuate).

According to the findings illustrated in Figure 5.7a and 5.8, the gas cost remains
relatively consistent at fixed byte sizes across multiple iterations regardless
of the data storage and accumulated data struct. This can be a consequence
of optimized mappings in Solidity; theoretically, a mapping can support an
entry of 32 bytes with 2256 keys using Keccak-256 hash [22], with the maximum
storage capacity of (2256) × 32 bytes per contract. The overhead of each
message is 343 bytes, which theoretically indicates the mapping can store
around 2253 empty messages. Despite an extremely vast number of storage
slots, the available storage on various nodes will significantly vary, which is
influenced by hardware and storage capacities, individual node configurations,
and the increasing state size as more data is appended to the blockchain.
However, theoretically, mappings suggest a favorable storage alternative on
Avalanche, as the gas cost remains relatively consistent and predictable for
fixed byte sizes when appending to a growing struct, thereby enhancing the
reliability of the system.

The results in Figure 5.7b indicate that the accumulated data entries in the
incomplete message struct drastically change the gas cost when moving a data
entry from the incomplete message struct to the complete message struct.
The increased gas cost can be a result of several factors, including storage

5.5 memory growth experiment 53

0 500 1000 1500 2000 2500 3000
bytes

0.5

1.0

1.5

2.0

2.5

ga
s

1e6
16 messages
40 messages
72 messages
104 messages

(a)

0 500 1000 1500 2000 2500 3000
bytes

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ga
s

1e6
16 messages
40 messages
72 messages
104 messages

(b)

Figure 5.7: The increasing gas cost of publishing encrypted data (a) and decryption
key (b) at various byte sizes, as the number of data entries accumulates

writes, deletion, and event emission. During the message transfer, each data
entry in the struct must be allocated and copied to the complete struct. The
identifier of the message must be appended in the dynamic array in the struct.
Finally, the old entry in the incomplete struct must be deleted, involving the
removal of the mapping entry and the identifier from the dynamic array, which
requires iteration, concluded by emitting an event signaling the publication
of the key. This process involves redundant computations similar to those
performed during data publication, leading to a consistently higher gas cost for
key publication. Interestingly, in the later iterations, the gas cost of storing even
smaller messages surpasses that of storing larger messages in earlier iterations,
which emphasizes the impact of accumulated data entries on gas costs for
key publication, highlighting the importance of efficient storage. To optimize
gas cost efficiency, it can be advantageous to use a single struct for both the
incomplete and complete messages.

The memory growth experiment highlights the critical impact of data storage
and struct design on smart contract efficiency. While mappings in Solidity
offer optimized storage capabilities, the gas cost of moving a data entry from
one struct to another can significantly increase gas cost due to accumulated
data entries. Efficient storage management, such as combining the message
structs, can mitigate the rising gas costs. These findings suggest that a struct
with mappings is favorable for Haddock, as it has the potential to store signifi-
cant numbers of fixed size byte entries with a consistent and predictable gas
cost.

54 chapter 5 evaluation

0 500 1000 1500 2000 2500 3000
bytes

10

20

30

40

50

60

70

80
ga

s

+1.661e5
16 messages
40 messages
72 messages
104 messages

Figure 5.8: The cost of acknowledging
messages at various byte
sizes as the number of data
entries accumulates. The
opaque plot illustrates the
confidence interval for each
iteration

5.6 Summary

The chapter provides an evaluation of Haddock’s performance and availability
on the Avalanche network, as well as cost implications and smart contract
efficiency in terms of storage. The dissemination experiments imply a relatively
consistent retrieval time across different byte sizes, although with some notable
latency variations across geographic regions, which may present even greater
challenges at sea. Meanwhile, the cost analysis experiments indicate consistent
and predictable gas costs, with low fluctuation in monetary value in the span
of several days. Lastly, the memory growth experiment suggests that mappings
support the storage of a vast number of fixed-size byte entries with consistent
and predictable gas costs.

6
Discussion
This chapter discusses the design choices, problems, and challenges with the
current implementation of Haddock, along with improvements. The first sec-
tion discusses the use of Haddock solely for key dissemination, followed by
optimization with custom subnets. Lastly, an assessment of the non-functional
requirements from Section 3.2.

6.1 Solely Key Distribution

In considering alternatives to Haddock’s current barrier synchronization mech-
anism, one approach could involve leveraging Avalanche solely for key dis-
tribution, rather than storing data. This adaptation addresses the potential
cost concerns when deploying large-sized data to Avalanche and enhances the
efficiency of the shield contract. By shifting the storage of encrypted data to
external systems like Peer-to-Peer (p2p) and Content Deliver Network (cdn),
the overall volume of data stored on the blockchain is significantly reduced,
potentially lowering the overall cost of the service. However, this shift of the
system’s storage means, would remove the logging mechanism, as the system
would only disseminate a decryption key. While this approach could optimize
gas efficiency, it will compromise the logging feature of the system, which is
an important feature of Haddock’s current design.

55

56 chapter 6 discussion

1 struct Messages {
2 mapping (uint256 => Message) incomplete ;
3 mapping (uint256 => Message) complete ;
4 uint256 [] keysIncomplete ;
5 uint256 [] keysComplete ;
6 }

Listing 6.1: A single struct including both incomplete and complete messages

6.2 Subnets and Customized Access Control

Haddock is designed to be deployed on Avalanche Primary network’s c-chain.
A more sophisticated approach would involve using custom subnets deployed
on Avalanche, potentially improving performance and latency since fewer
transactions need to be validated by partitioning validators in the subnet. Only
the transaction within the subnet would require validation.

While leveraging Avalanche’s subnet properties for stricter access control, could
benefit Haddock. The current design uses function modifiers in Solidity to
achieve rbac. Modifiers are chosen as they minimize complexity, have no
extra step when deploying the solution, and increase the interoperability of the
smart contract itself, allowing it, theoretically, to be applied to other blockchain
networks using evm or evm compatible virtual machines.

6.3 Single Struct Approach

The initial design of Haddock separates the incomplete and complete messages
on the shield contract. The results from the memory growth experiment in
Section 5.5, indicates that mappings have substantial storage capabilities, with
consistent and predictable gas costs. Therefore, consolidating the incomplete
and complete struct can reduce the storage cost, by eliminating the need
to move a message from one mapping to the other upon its completion. The
initial concept of separating the structs in Haddockwas intended to encapsulate
each message type and mitigate the high gas costs associated with increased
storage. If the gas cost of appending became large, messages in the struct
could be emitted as events, effectively storing them in the transaction receipt,
and reducing the storage and gas cost on the struct. With the results from the
experiments, there is no reason to keep the structs separated. A single struct
solution would include the mappings for both the incomplete and complete
messages, in addition to their corresponding keys, stored in dynamic arrays,
as depicted in Listing 6.1

6.4 discussion of non-functional requirements 57

The decision to use two structs in Haddock is also a consequence of altered
design choices during implementation. Ideally, all of the current features could
be achieved with a single struct, which would be a preferable option as it
could decrease the overall costs and complexity of Haddock, leading to a more
straightforward solution.

6.4 Discussion of Non-Functional Requirements

This section presents a brief summation of the non-functional requirements
from Section 3.2, followed by a discussion on how the system conforms to these
requirements.

Non-functional:

1. Reliability: Perform system functions and services in a consistent and
accurate manner

2. Responsiveness and availability: The system’s ability to respond to user
interactions and return results on inputs and requests, and the system’s
capabilities to deliver and provide services consistently

3. Security and resilience: Measures to prevent unauthorized access and
address security threats, leveraging blockchain technology, while main-
taining highly available services and being resilient to potential failures
and attacks

4. Usability: The design of the ui should be intuitive to ensure ease of use.

5. Maintainability: The complexity of adding, editing, and fixing features
in a system

The experiments from Section 5.4 and 5.5 contribute to strengthening the
Reliability of the system. These findings demonstrate a stable economic envi-
ronment within the Avalanche network, along with consistent and predictable
gas cost and gas consumption across evm’s data structures. This reliability
ensures that Avalanche delivers its services in a predictable manner. The fron-
tend components in the ui are designed to accurately transmit all information
to Avalanche via an api service, thereby ensuring correct processing of all
data and mitigating the risk of conflicting data types. However, the frontend’s
key dissemination mechanism lacks a backup, posing a risk of failure and
potentially preventing key dissemination, which is a significant consideration
regarding the reliability of Haddock. Despite the key dissemination mechanism,

58 chapter 6 discussion

these aspects collectively contribute to the reliability requirement.

Responsiveness and availability is crucial forHaddock to operate accordingly. The
results from Section 5.3 give insight into the responsiveness and availability of
Avalanche, which provides various latencies across large geographical regions,
indicating that the distribution of nodes affects these properties. Overall, the
responsiveness appears adequate for a system that tolerates a few seconds of
latency. However, the substantial latency variation across the continents may
suggest even greater variations in offshore environments, potentially posing a
notable challenge for the availability of the Haddock.

Security and resilience measures in Haddock are provided by the inherent
security features of blockchain technology. Blockchains use cryptography to
ensure confidentiality and integrity of data. Each block in a blockchain is
cryptographically hashed and linked to the previous block, making it more
resistant to tampering and increasing non-repudiation. Additionally, consensus
mechanisms, an essential mechanism for blockchains, validate transactions
and detect fraudulent records, ensuring only transactions redeemed valid, are
appended to the ledger. Haddock implements rbac to control the access to the
shield contracts functionality. Membership management within the SHIELD
contract is restricted to the contract owner, who exclusively holds the authority
to add and modify members, thereby minimizing the potential for adversaries
to infiltrate the logging system, enhancing overall security, resilience, and
integrity. Members are granted full access to all functions within shield
contract. However, the functions are designed to preserve the contract’s state,
thereby preventing any unauthorized alterations, except for specific operations
such as disseminating data, decryption keys, and acknowledgments. The user’s
private key is stored in plaintext inside the local storage of the client, which
is not sufficient and fails to provide adequate protection, leaving it susceptible
to unauthorized access and potential compromise. As Haddock is primarily
a demonstrator for a logging infrastructure, this practice is sufficient for a
demonstrator system

Haddock’s Useability is of utmost importance, as it should be easy to use and
navigate in offshore environments. The publication window presents and dis-
plays the input in an understandable and intuitive manner as a consequence
of limiting the available features to the end user at any time[10]. Each button
includes a tooltip with informative text when hovered over, and the message
list for incomplete and complete messages, which consist of a unique mes-
sage panel, are clearly separated, increasing the overall user experience and
ensuring the end users can distinguish between different message states. Ac-
knowledging a message may not be the most user-friendly solution, as the
button in the message panel is quite small and represented by an icon of a key.
This icon can be easily mistaken for a message tag or a symbol indicating that

6.5 summary 59

the message is encrypted, potentially causing confusion. In summary, these
usability considerations contribute to better user integration and are sufficient
for Haddock’s useability requirement.

Maintainability is a crucial factor for blockchain-related systems. Due to its
nascent nature, the technology evolves rapidly, continuously exploring new
applications. Modern blockchain systems are highly complex, which means
they require a structured approach to ensure they remain maintainable and
adaptable over time. Haddock addresses maintainability by implementing
a single smart contract, complemented by documentation and adhering to
best practices. The frontend components are designed to be independent,
making them easy to update or replace. While Haddock currently features
some temporary solutions and altered design choices, it is sufficient for a
demonstrator system.

6.5 Summary

The chapter discusses alternative approaches and optimizations for Haddock.
An alternative approach would leverage Avalanche solely for decryption key
distribution, suggesting the use of external systems like p2p and cdn for en-
crypted data storage, as it could reduce the overall cost. Furthermore, the
chapter discusses the use of custom subnets in Avalanche for better perfor-
mance and access control and the possibility of consolidating the incomplete
and complete message struct into a single struct to reduce extra gas costs
and complexity. Lastly, we assess how Haddock meets the non-functional re-
quirements stated in Section 3.2, encompassing reliability, responsiveness and
availability, security and resilience, usability, and maintainability while ac-
knowledging some compromises and temporary solutions that are suitable for
a demonstrator system.

7
Concluding Remarks
This chapter outlines Haddock’s contributions and objectives in line with the
problem definition for this thesis, along with the findings. It also includes a
concise overview of related work. The chapter concludes with final remarks
and suggestions for future research on the system. Revisiting the problem
definition outlined in Section 1.1:

Reconstructing the order of events with high-integrity evidence is crucial for
suppressing fishery-related criminal activities on the open sea. Blockchain’s
immutability, transparency, and distributed properties can be valuable for log-
ging on-ship events and disseminating critical fleet command center reports. A
secure, distributed logging infrastructure could serve as a valuable component
within a broader system of modern surveillance tools.

Our thesis is that

A secure, shared logging infrastructure for fishery fleet command can be imple-
mented using Blockchain smart contracts.

7.1 Contributions and Goals

In this thesis, Haddock explores the use of a logging infrastructure in the fishery
andmaritime domain and contributes by implementing a logging service, using

61

62 chapter 7 concluding remarks

a smart contract-based system, on a public blockchain network, which can be
extended to other evm-compatible systems. The system offers non-repudiation
for messages and timely dissemination of log entries of different severity levels.
Haddock is unique compared to the reviewed papers, in which it provides
a lightweight solution in terms of a single, smart contract for logging and
disseminating messages rather than extensive frameworks or architectures.
In addition, Haddock includes a ui, which can make the dissemination and
acknowledgment of messages efficient and understandable by end users, along
with displaying and accessing the logged data.

To ensure the system aligns with the problem definition, the requirements
specified in Chapter 3 must be fulfilled. Haddock allows each end user to dis-
seminate messages concurrently to a public, available blockchain, Avalanche
(requirement 1), in which the system symmetrically encrypts the messages
with aes(requirement 2) before message dissemination. The shield con-
tract’s function modifiers allow for rbac to Haddock’s functionalities, with
two roles, owner and members (requirement 3). This controlled access, in
combination with recording the publishers and acknowledgers of the messages
on an immutable blockchain, enhances the non-repudiation of the system (re-
quirement 4). The two-phase dissemination protocol, combined with barrier
synchronization, allows for timely dissemination of the messages(requirement
5). Although with some challenges related to the synchronization options.
Haddock’s services, including disseminating encrypted messages and decryp-
tion keys, acknowledging messages, and reading the messages, are available
through a frontend User Interface (requirement 6). In addition, the frontend
integrates the crypto wallet Metamask to let the end users sign and confirm
transactions through their connected wallet (requirement 7).

In Section 6.4, we assessed the non-functional requirements for Haddock. In
summary, reliability is achieved by consistent and predictable gas cost for the
functionalities provided by the shield contract and by ensuring correct pro-
cessing of data between the components in the system. However, reliability is
compromised due to the absence of backup measures in the key dissemination
mechanism in the frontend. The evaluated results in Section 5.3 indicate vari-
ous message retrieval latencies across large geographical regions, suggesting
that the variations in offshore environments may be even greater, posing po-
tential availability problems for Haddock. However, the responsiveness proves
adequate for systems that tolerate a few seconds of delay. Haddock leverages
the inherent properties in blockchain systems to provide security and resilience,
along with function modifiers for access control but fails to store the private
keys securely within the system, but the applied practice is considered suffi-
cient in a demonstrator system. Haddock achieves useability by limiting the
available features to the end user at any time and clearly distinguishing the
frontend components. Lastly, Haddock addresses maintainability by providing

7.2 related work 63

all blockchain-related functions in a single, documented smart contract, adher-
ing to best practices. However, Haddock features some temporary solutions due
to altered design choices, which is sufficient for a demonstrator system.

7.2 Related Work

Similar toHaddock,Logchain: Blockchain-Assisted Log Storage [29] is a blockchain-
assisted logging system providing an API service for storing logs. The paper
presents Logchain, a prototype logging service referred to as Logchain-as-a-
service (lcaas). An api service for storing logs or log hashes in a hierarchical
immutable ledger. The api service allows the client to send, verify, and retrieve
data from the distributed storage. Pourmajidi and Miranskyy argue that log
tamper detection software exists but is not adequate for Cloud-based solutions
[29]. Therefore, the primary use for the lcaas is to store technical logs from
Cloud solutions in a tamper-proof environment, as Cloud-based solutions can
be vulnerable to tampering. lcaas is a prototype framework designed to sit
on top of blockchains, transforming it into a two-level hierarchical ledger that
can be expanded if necessary. The motivation for a hierarchical ledger is to
decrease the validation process of consensus protocols that require every node
to process every block in the network. The higher-level blocks on the ledger
consist of a locked portion of the blockchain. All lower-level blocks are vali-
dated in the system by validating a high-level block, minimizing the number
of blocks to process, and increasing scalability [29], which is especially impor-
tant for systems where the log data can be extensive. For future studies, the
authors plan to test the implemented lcaas with existing blockchain systems
and find possible solutions to integrate their blockchain framework onto these
systems.

ProvChain: A Blockchain-based Data Provenance Architecture in Cloud Envi-
ronment with Enhanced Privacy and Availability [23] presents ProvChain, a
blockchain architecture for collecting and recording provenance data. ProvChain
explores embedding the provenance data into Merkle trees [24]. A series of
provenance data represents the leaf nodes and is the fundamental hashes that
construct the Merkle tree. The Merkle root is the top hash, representing the
list of provenance hashes included in the blockchain transaction. By using this
approach, ProvChain leverages the same validation principles as transactions
in blockchain systems but with provenance data. Consequently, altering a piece
of provenance data in a block requires modifying all preceding blocks to en-
sure the hashes correlate, which can be infeasible in many blockchain systems.
Their evaluation of the system demonstrates an acceptable distribution time for
transactions, and the retrieval time for provenance data is averaged at 221ms at
1.004 KB [23]. For future work, the paper addresses increased interoperability

64 chapter 7 concluding remarks

with different cloud providers and implements receipt validation with an open-
source architecture to improve performance, flexibility, and security.

A New Secure Data Dissemination Model in Internet of Drones [1], Aggar et
al. proposes a system model utilizing blockchain technology in Internet of
Drones (iod) systems to enhance data integrity, accountability, authorization,
authentication (AAA), data confidentiality and non-repudiation. Similar to
Haddock, the authors investigate Ethereum-based blockchain technology for
data dissemination. They explore how this technology, combined with pos
consensus mechanisms, can be used for selecting a forger node, creating and
validating blocks, and disseminating data in an iod environment. The forger
nodes are selected with an algorithm using Game theory; further, pos is
responsible for both the creation and validation process of a new block, with
the forger node generating the block hash for pos. Lastly, the forger node
is responsible for the dissemination of data among drones, which is done in
multiple steps:

• Send encrypted data to the blockchain network

• Blockchain accepts data and updates the ledger

• The forger generates and sends a digital signature to the blockchain

• The blockchain verifies the digital signature

• Blockchain forwards encrypted data to participants

• Participants decrypt data with the forger’s public key and send an ac-
knowledgment

The authors argue that the system model is superior in computation cost and
time when evaluating and comparing to other systems [1]. They plan to explore
using different platforms, particularly private permissioned blockchains, for
future research.

7.3 Concluding Remarks

In this thesis, we have designed, implemented, and evaluated Haddock, a
shared, distributed logging service using Avalanche, according to the problem
definition. The intention of this thesis was to explore a command bus system for
logging critical information from command fleets in the maritime field by using
blockchain and smart contract technology for its transparency, immutability,

7.4 future work 65

and decentralized properties.

Haddock consists of a server-side using the shield contract on Avalanche and a
client-side exposing a frontend and a rest api to interact with the server-side,
serving as a logging infrastructure with a two-phase dissemination protocol
combined with a barrier synchronization mechanism to achieve timely message
dissemination. In the first phase the message is disseminated in an encrypted
format, waiting for a predetermined number of acknowledgments, the second
phase commences when a quorum is met and disseminate the decryption key.
Haddock presents a ui to interact seamlessly with the dissemination services
provided by the shield contract, offering techniques for message dissemi-
nation to Avalanche, browsing message logs, and acknowledging incomplete
messages.

Through extensive experiments and evaluations, this thesis, despite the limita-
tions, demonstrates the feasibility and potential of using blockchain technology
for logging and timely dissemination of messages within systems that tolerate
a latency of a few seconds. The findings provide a robust foundation for future
research on the application of blockchain technology within the fishing sector,
particularly in enhancing the security, transparency, and efficiency of logging
and disseminating critical information.

7.4 Future Work

While Haddock demonstrates potential by fulfilling the specified functional
and non-functional requirements, several areas require further investigation
and development to enhance the system and the findings in this study. Future
work for Haddock should consider consolidating the incompleteMessages and
completeMessages structs, as this can significantly reduce the overall gas costs
associated with the system. Additional research should focus on integrating
more sophisticated access control mechanisms, potentially through custom
subnets on the Avalanche network. Furthermore, a more robust mechanism
for key dissemination in the frontend should be explored, ensuring a higher
guarantee of key dissemination. Lastly, exploring Haddock’s compatibility with
other blockchain systems would improve its interoperability.

Bibliography
[1] Shubhani Aggarwal et al. “A New Secure Data Dissemination Model in

Internet of Drones.” In: ICC 2019 - 2019 IEEE International Conference on
Communications (ICC). 2019, pp. 1–6. doi: 10.1109/ICC.2019.8761372.

[2] Bobby Allyn. People are talking about Web3. Is it the Internet of the
future or just a buzzword? Accessed: 2024-05-22. 2021. url: https://www.
npr.org/2021/11/21/1056988346/web3-internet-jargon-or-future-
vision.

[3] Joakim Aalstad Alslie et al. “Áika: A Distributed Edge System for AI
Inference.” In: Big Data and Cognitive Computing 6.2 (2022). issn: 2504-
2289. doi: 10.3390/bdcc6020068. url: https://www.mdpi.com/2504-
2289/6/2/68.

[4] “Analyzing the Distribution and Growth of AVAX Stake in the Avalanche
Ecosystem.” In: (). Accessed: 2024-05-28. url: https://medium.com/
@avascan/analyzing-the-distribution-and-growth-of-avax-stake-
in-the-avalanche-ecosystem-873a93a28b29.

[5] Usman Asim. Time to Finality (TTF): The Ultimate Metric for Blockchain
Speed. 05.13.24. No date. url: https://www.avax.network/blog/time-
to-finality-ttf-the-ultimate-metric-for-blockchain-speed.

[6] Daniel Bardey. “Overfishing: pressure on our oceans.” In: Research
in Agriculture Livestock and Fisheries 6 (Jan. 2020), pp. 397–404. doi:
10.3329/ralf.v6i3.44805.

[7] Vitalik Buterin. “Ethereum White Paper: A Next Generation Smart Con-
tract & Decentralized Application Platform.” In: (2013). url: https:
//github.com/ethereum/wiki/wiki/White-Paper.

[8] Coinbase. Ethereum (ETH) price, charts, and market cap. Accessed: 2024-
05-21. 2024. url: https://www.coinbase.com/price/ethereum.

[9] Christopher Costello et al. “The future of food from the sea.” In: Nature
588.7836 (2020), pp. 95–100.

[10] Ali Darejeh and Dalbir Singh. “A review on user interface design prin-
ciples to increase software usability for users with less computer liter-
acy.” In: Journal of Computer Science 9 (Nov. 2013), pp. 1443–1450. doi:
10.3844/jcssp.2013.1443.1450.

[11] P.J. Denning et al. “Computing as a discipline.” In: Computer 22.2 (1989),
pp. 63–70. doi: 10.1109/2.19833.

67

https://doi.org/10.1109/ICC.2019.8761372
https://www.npr.org/2021/11/21/1056988346/web3-internet-jargon-or-future-vision
https://www.npr.org/2021/11/21/1056988346/web3-internet-jargon-or-future-vision
https://www.npr.org/2021/11/21/1056988346/web3-internet-jargon-or-future-vision
https://doi.org/10.3390/bdcc6020068
https://www.mdpi.com/2504-2289/6/2/68
https://www.mdpi.com/2504-2289/6/2/68
https://medium.com/@avascan/analyzing-the-distribution-and-growth-of-avax-stake-in-the-avalanche-ecosystem-873a93a28b29
https://medium.com/@avascan/analyzing-the-distribution-and-growth-of-avax-stake-in-the-avalanche-ecosystem-873a93a28b29
https://medium.com/@avascan/analyzing-the-distribution-and-growth-of-avax-stake-in-the-avalanche-ecosystem-873a93a28b29
https://www.avax.network/blog/time-to-finality-ttf-the-ultimate-metric-for-blockchain-speed
https://www.avax.network/blog/time-to-finality-ttf-the-ultimate-metric-for-blockchain-speed
https://doi.org/10.3329/ralf.v6i3.44805
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://www.coinbase.com/price/ethereum
https://doi.org/10.3844/jcssp.2013.1443.1450
https://doi.org/10.1109/2.19833

68 BIBLIOGRAPHY

[12] Omar Dib et al. “Consortium Blockchains: Overview, Applications and
Challenges.” In: (Sept. 2018).

[13] Cynthia Dwork and Moni Naor. “Pricing via processing or combatting
junk mail.” In: Annual international cryptology conference. Springer. 1992,
pp. 139–147.

[14] Ethereum. The Merge. Accessed: 2024-05-21. 2024. url: https : / /
ethereum.org/en/roadmap/merge/.

[15] Roy Thomas Fielding. Architectural styles and the design of network-based
software architectures. University of California, Irvine, 2000.

[16] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. “Impossi-
bility of Distributed Consensus with One Faulty Process.” In: J. ACM 32.2
(Apr. 1985), pp. 374–382. issn: 0004-5411. doi: 10.1145/3149.214121.
url: https://doi.org/10.1145/3149.214121.

[17] M. Goodrich and R. Tamassia. Introduction to Computer Security. Aways
learning. Pearson Education Limited, 2013, pp. 27, 35–36, 399–404. isbn:
9781292025407. url: https://books.google.no/books?id=NPYsngEACAAJ.

[18] Håvard Johansen, Dag Johansen, and Robbert van Renesse. “FirePatch:
Secure and Time-Critical Dissemination of Software Patches.” In: New
Approaches for Security, Privacy and Trust in Complex Environments. Ed.
by Hein Venter et al. Boston, MA: Springer US, 2007, pp. 373–384. isbn:
978-0-387-72367-9.

[19] “JSON-RPC.” In: (). Accessed: 2024-05-26. url: https://www.jsonrpc.
org.

[20] Varun Kohli et al. “An analysis of energy consumption and carbon
footprints of cryptocurrencies and possible solutions.” In: Digital Com-
munications and Networks 9.1 (2023), pp. 79–89. issn: 2352-8648. doi:
https://doi.org/10.1016/j.dcan.2022.06.017. url: https://www.
sciencedirect.com/science/article/pii/S2352864822001390.

[21] Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzantine
generals problem.” In: ACM Transactions on Programming Languages
and Systems (TOPLAS) 4.3 (1982), pp. 382–401.

[22] “Layout of State Variables in Storage.” In: (). Accessed: 2024-05-28. url:
https://docs.soliditylang.org/en/latest/internals/layout_in_
storage.html.

[23] Xueping Liang et al. “ProvChain: A Blockchain-Based Data Provenance
Architecture in Cloud Environment with Enhanced Privacy and Availabil-
ity.” In: 2017 17th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGRID). 2017, pp. 468–477. doi: 10.1109/CCGRID.
2017.8.

[24] Ralph C. Merkle. “Protocols for Public Key Cryptosystems.” In: 1980 IEEE
Symposium on Security and Privacy. 1980, pp. 122–122. doi: 10.1109/SP.
1980.10006.

[25] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008.

https://ethereum.org/en/roadmap/merge/
https://ethereum.org/en/roadmap/merge/
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://books.google.no/books?id=NPYsngEACAAJ
https://www.jsonrpc.org
https://www.jsonrpc.org
https://doi.org/https://doi.org/10.1016/j.dcan.2022.06.017
https://www.sciencedirect.com/science/article/pii/S2352864822001390
https://www.sciencedirect.com/science/article/pii/S2352864822001390
https://docs.soliditylang.org/en/latest/internals/layout_in_storage.html
https://docs.soliditylang.org/en/latest/internals/layout_in_storage.html
https://doi.org/10.1109/CCGRID.2017.8
https://doi.org/10.1109/CCGRID.2017.8
https://doi.org/10.1109/SP.1980.10006
https://doi.org/10.1109/SP.1980.10006

BIBLIOGRAPHY 69

[26] Tor-Arne S. Nordmo et al. “Dutkat: A Multimedia System for Catching
Illegal Catchers in a Privacy-Preserving Manner.” In: Proceedings of
the 2021 ACM Workshop on Intelligent Cross-Data Analysis and Retrieval.
ICDAR ’21. Taipei, Taiwan: Association for Computing Machinery, 2021,
pp. 57–61. isbn: 9781450385299. doi: 10.1145/3463944.3469102. url:
https://doi.org/10.1145/3463944.3469102.

[27] Tor-Arne Schmidt Nordmo et al. “Njord: A Fishing Trawler Dataset.” In:
Proceedings of the 13th ACM Multimedia Systems Conference. MMSys ’22.
Athlone, Ireland: Association for Computing Machinery, 2022, pp. 197–
202. isbn: 9781450392839. doi: 10.1145/3524273.3532886. url: https:
//doi.org/10.1145/3524273.3532886.

[28] Wouter Penard and Tim van Werkhoven. “On the secure hash algorithm
family.” In: Cryptography in context (2008), pp. 1–18.

[29] William Pourmajidi andAndriyMiranskyy. “Logchain: Blockchain-assisted
log storage.” In: 2018 IEEE 11th International Conference on Cloud Com-
puting (CLOUD). IEEE. 2018, pp. 978–982.

[30] Team Rocket et al. Scalable and Probabilistic Leaderless BFT Consensus
through Metastability. 2020. arXiv: 1906.08936 [cs.DC].

[31] Yannick Rousseau et al. “Evolution of global marine fishing fleets and the
response of fished resources.” In: Proceedings of the National Academy of
Sciences 116 (May 2019), p. 201820344. doi: 10.1073/pnas.1820344116.

[32] Kevin Sekniqi et al. “Avalanche Platform.” In: (2020). Accessed: 2024-05-
24. url: https://www.avalabs.org/whitepapers.

[33] Saurabh Singh, A. S. M. Hosen, and Byungun Yoon. “Blockchain Secu-
rity Attacks, Challenges, and Solutions for the Future Distributed IoT
Network.” In: IEEE Access PP (Jan. 2021), pp. 1–1. doi: 10.1109/ACCESS.
2021.3051602.

[34] Siamak Solat, Philippe Calvez, and Farid Naıt-Abdesselam. “Permis-
sioned vs. Permissionless Blockchain: How and Why There Is Only One
Right Choice.” In: J. Softw. 16.3 (2021), pp. 95–106.

[35] I. Sommerville. Engineering Software Products: An Introduction to Modern
Software Engineering. Pearson, 2020, pp. 95–98. isbn: 9780135210642.
url: https://books.google.no/books?id=M2kNuwEACAAJ.

[36] Enrico Tedeschi et al. “On Optimizing Transaction Fees in Bitcoin Using
AI: Investigation on Miners Inclusion Pattern.” In: ACM Trans. Internet
Technol. 22.3 (July 2022). issn: 1533-5399. doi: 10.1145/3528669. url:
https://doi.org/10.1145/3528669.

[37] Enrico Tedeschi et al. “Predicting Transaction Latency with Deep Learn-
ing in Proof-of-Work Blockchains.” In: 2019 IEEE International Conference
on Big Data (Big Data). 2019, pp. 4223–4231. doi: 10.1109/BigData47090.
2019.9006228.

[38] A. M. Turing. “On Computable Numbers, with an Application to the
Entscheidungsproblem.” In: Proceedings of the London Mathematical
Society s2-42.1 (1937), pp. 230–265. doi: https://doi.org/10.1112/

https://doi.org/10.1145/3463944.3469102
https://doi.org/10.1145/3463944.3469102
https://doi.org/10.1145/3524273.3532886
https://doi.org/10.1145/3524273.3532886
https://doi.org/10.1145/3524273.3532886
https://arxiv.org/abs/1906.08936
https://doi.org/10.1073/pnas.1820344116
https://www.avalabs.org/whitepapers
https://doi.org/10.1109/ACCESS.2021.3051602
https://doi.org/10.1109/ACCESS.2021.3051602
https://books.google.no/books?id=M2kNuwEACAAJ
https://doi.org/10.1145/3528669
https://doi.org/10.1145/3528669
https://doi.org/10.1109/BigData47090.2019.9006228
https://doi.org/10.1109/BigData47090.2019.9006228
https://doi.org/https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/https://doi.org/10.1112/plms/s2-42.1.230

70 BIBLIOGRAPHY

plms / s2 - 42 . 1 . 230. eprint: https : / / londmathsoc . onlinelibrary .
wiley.com/doi/pdf/10.1112/plms/s2- 42.1.230. url: https://
londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms/s2-
42.1.230.

[39] UNODC. “Fisheries Crime: transnational organized criminal activities
in the context of the fisheries sector.” In: (2016).

[40] “Upgrading smart contracts.” In: (2023). Accessed: 2024-05-26. url:
https : / / ethereum . org / en / developers / docs / smart - contracts /
upgrading/.

[41] “web3.js - Ethereum JavaScript API.” In: (2024). Accessed: 2024-05-26.
url: https://web3js.readthedocs.io.

[42] Gavin Wood et al. “Ethereum: A secure decentralised generalised trans-
action ledger.” In: Ethereum project yellow paper 151.2014 (2014), pp. 1–
32.

[43] Kaidong Wu et al. “A first look at blockchain-based decentralized appli-
cations.” In: Software: Practice and Experience 51.10 (2021), pp. 2033–
2050. doi: https : / / doi . org / 10 . 1002 / spe . 2751. eprint: https :
//onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2751. url: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/spe.2751.

[44] J. Zhou and K.Y. Lam. “Securing digital signatures for non-repudiation.”
In: Computer Communications 22.8 (1999), pp. 710–716. issn: 0140-3664.
doi: https://doi.org/10.1016/S0140-3664(99)00031-6. url: https:
//www.sciencedirect.com/science/article/pii/S0140366499000316.

https://doi.org/https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/https://doi.org/10.1112/plms/s2-42.1.230
https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s2-42.1.230
https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s2-42.1.230
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms/s2-42.1.230
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms/s2-42.1.230
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms/s2-42.1.230
https://ethereum.org/en/developers/docs/smart-contracts/upgrading/
https://ethereum.org/en/developers/docs/smart-contracts/upgrading/
https://web3js.readthedocs.io
https://doi.org/https://doi.org/10.1002/spe.2751
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2751
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2751
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2751
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2751
https://doi.org/https://doi.org/10.1016/S0140-3664(99)00031-6
https://www.sciencedirect.com/science/article/pii/S0140366499000316
https://www.sciencedirect.com/science/article/pii/S0140366499000316

A
Appendix A

71

72 appendix a appendix a

1 [
2 {
3 " severity ": "info",
4 " content ": "b\"6\\ x1a \\ x15 \\ x0ef \\x98 'o..." ,
5 "id": "4",
6 " timestamp ": "2024 -05 -21 T14 :58:26" ,
7 " setter ": "0 x0319423b8163a4eb ..." ,
8 " signers ": [],
9 " ack_num ": "32"
10 },
11 {
12 " severity ": "info",
13 " content ": " Fishing field: Area 27.

↩→ Atlantic , Northeast at Subarea
↩→ 27.1\ nBarents Sea (Subarea I).
↩→ Barents Sea. NEAFC Regulatory
↩→ Area\ nClosing time: 05/18/2024 17:00
↩→ GMT +00:00" ,

14 "id": "3",
15 " timestamp ": "2024 -05 -18 T14 :15:30" ,
16 " setter ": "0 x0319423b8163a4eb08F950F0 ..." ,
17 " signers ": [
18 {
19 " setter ":

↩→ "0 x0319423b8163a4eb08F95 ..." ,
20 " data_hash ":

↩→ "b '\\ xf8 \\ xa6 \\ xe9 \\xb ..."
21 }
22],
23 " ack_num ": "14"
24 }
25]

Listing A.1: An incomplete and complete JSON entry. They have different data stored
on the "content" key. The incomplete entry includes encrypted data, while
th compelete includes plaintext.

73

Table A.1: Data retrieval time in milliseconds at different sizes for each node. Each
time entry is the mean value of three separate dissemination tests

Azure Nodes Time retrieval in milliseconds at different sizes

by region 20 bytes 40 bytes 60 bytes 100 bytes 1000 bytes 5000 bytes

westus 512 430 432 388 449 450
westus2 406 353 355 331 347 374
eastus 431 427 415 447 473 393
eastus2 516 386 513 404 425 421
centralus 555 532 510 500 539 556
northcentralus 409 415 405 375 390 415
southcentralus 653 566 594 633 611 613
westcentralus 745 695 657 615 638 736
canadacentral 480 472 470 500 569 487
canadaeast 568 582 614 561 654 628
northeurope 1158 1074 1164 1089 1165 1119
westeurope 1069 1020 1016 987 1041 1068
eastasia 1570 1469 1689 1448 1478 1464
southeastasia 1548 1682 1511 1699 1724 1624
japaneast 1136 1115 1254 1106 1071 1057
japanwest 1348 1570 1389 1307 1220 1485
australiaeast 1549 1708 1559 1577 1558 1581
australiasoutheast 1539 1513 1544 1483 1523 1542
centralindia 2395 2165 2205 2106 2699 2306
southindia 2279 2201 2683 2256 2698 2468
westus 456 394 444 424 396 412
westus2 372 367 344 370 350 352
eastus 516 435 435 396 444 383
eastus2 449 458 436 467 439 412
centralus 527 542 538 436 503 447
northcentralus 438 417 410 419 391 377
southcentralus 720 519 554 648 717 703
westcentralus 700 710 673 661 653 724
canadacentral 539 482 474 515 540 469
canadaeast 660 606 631 656 631 651

74 appendix a appendix a

Server Regions
westus
westus2
eastus
eastus2
centralus
northcentralus
southcentralus
westcentralus
canadacentral
canadaeast
northeurope
westeurope
eastasia
southeastasia
japaneast
japanwest
australiaeast
australiasoutheast
centralindia
southindia

Table A.2: List of Server Regions

75

Table A.3: Data retrieval time in milliseconds at 20 bytes with three tests

Azure Nodes Time retrieval in milliseconds at 20 bytes

by region 1 2 3

westus 0.653816 0.430926 0.452351
westus2 0.423772 0.378011 0.417188
eastus 0.498257 0.421682 0.374478
eastus2 0.666531 0.425452 0.456287
centralus 0.586758 0.475382 0.604237
northcentralus 0.464274 0.414568 0.348681
southcentralus 0.656229 0.671235 0.632442
westcentralus 0.836115 0.689630 0.710989
canadacentral 0.548706 0.476738 0.416790
canadaeast 0.611386 0.521861 0.573258
northeurope 1.273008 1.124370 1.079420
westeurope 1.114033 1.056695 1.039057
eastasia 1.728379 1.486474 1.497919
southeastasia 1.594974 1.521046 1.530628
japaneast 1.241478 1.054329 1.113982
japanwest 1.182526 1.570595 1.292110
australiaeast 1.649756 1.505727 1.493820
australiasoutheast 1.602887 1.499218 1.515307
centralindia 2.173141 2.321677 2.692048
southindia 2.133899 2.428116 2.276651
westus 0.500123 0.400780 0.469696
westus2 0.447044 0.306554 0.365387
eastus 0.640451 0.409777 0.499081
eastus2 0.476721 0.481055 0.391415
centralus 0.587013 0.457803 0.538498
northcentralus 0.583534 0.404588 0.328656
southcentralus 0.784209 0.722701 0.655506
westcentralus 0.818615 0.628835 0.655344
canadacentral 0.575677 0.486782 0.555888
canadaeast 0.752503 0.669158 0.559652

76 appendix a appendix a

Table A.4: Data retrieval time in milliseconds at 40 bytes with three tests

Azure Nodes Time retrieval in milliseconds at 40 bytes

by region 1 2 3

westus 0.418668 0.428980 0.443872
westus2 0.352107 0.364407 0.345018
eastus 0.441919 0.407476 0.431913
eastus2 0.483842 0.341803 0.334252
centralus 0.538278 0.556167 0.502906
northcentralus 0.401896 0.427336 0.416046
southcentralus 0.756222 0.483352 0.460240
westcentralus 0.604506 0.830090 0.653194
canadacentral 0.510904 0.409403 0.497857
canadaeast 0.535795 0.578228 0.633763
northeurope 1.104910 1.098014 1.021526
westeurope 1.069781 1.000278 0.991171
eastasia 1.420596 1.511996 1.475608
southeastasia 1.629826 1.913385 1.503067
japaneast 1.137339 1.123535 1.085362
japanwest 1.547464 1.581256 1.581719
australiaeast 1.575343 1.995000 1.553969
australiasoutheast 1.514370 1.514196 1.510783
centralindia 2.060990 2.383210 2.053410
southindia 2.321744 2.319707 1.963906
westus 0.341747 0.413098 0.428774
westus2 0.299900 0.458428 0.344571
eastus 0.431943 0.493350 0.382186
eastus2 0.495390 0.406987 0.473117
centralus 0.457493 0.705269 0.465786
northcentralus 0.388494 0.438460 0.425373
southcentralus 0.458426 0.440051 0.659829
westcentralus 0.625050 0.874566 0.632403
canadacentral 0.435650 0.528176 0.482669
canadaeast 0.594836 0.589558 0.636042

77

Table A.5: Data retrieval time in milliseconds at 60 bytes with three test

Azure Nodes Time retrieval in milliseconds at 60 bytes

by region 1 2 3

westus 0.428640 0.408962 0.459565
westus2 0.328417 0.372782 0.366750
eastus 0.381552 0.426900 0.437227
eastus2 0.530631 0.535942 0.475092
centralus 0.526180 0.441233 0.562677
northcentralus 0.366296 0.421471 0.430093
southcentralus 0.607237 0.574453 0.601507
westcentralus 0.698268 0.621045 0.652848
canadacentral 0.510035 0.452081 0.450766
canadaeast 0.673053 0.581960 0.587749
northeurope 1.080499 1.335136 1.077986
westeurope 1.024705 1.014826 1.009891
eastasia 1.569959 1.478433 2.019201
southeastasia 1.508278 1.477208 1.548272
japaneast 1.351041 1.319591 1.094337
japanwest 1.060351 1.796032 1.310678
australiaeast 1.520545 1.578897 1.578886
australiasoutheast 1.518950 1.580656 1.534425
centralindia 2.046000 2.433708 2.137912
southindia 2.757177 2.349610 2.944310
westus 0.443069 0.444532 0.446465
westus2 0.393060 0.301571 0.339234
eastus 0.449527 0.403620 0.454320
eastus2 0.443161 0.408092 0.458383
centralus 0.475159 0.544895 0.596195
northcentralus 0.368533 0.430186 0.433984
southcentralus 0.474372 0.596523 0.593709
westcentralus 0.754914 0.643340 0.622686
canadacentral 0.445986 0.521627 0.455960
canadaeast 0.629190 0.593609 0.672806

78 appendix a appendix a

Table A.6: Data retrieval time in milliseconds at 100 bytes with three test

Azure Nodes Time retrieval in milliseconds at 100 bytes

by region 1 2 3

westus 0.448518 0.391438 0.325994
westus2 0.358077 0.304269 0.332882
eastus 0.533483 0.323418 0.486486
eastus2 0.356407 0.507841 0.350291
centralus 0.535391 0.521807 0.444002
northcentralus 0.405090 0.317422 0.402495
southcentralus 0.593603 0.652861 0.652828
westcentralus 0.585555 0.628617 0.632261
canadacentral 0.551343 0.430357 0.518705
canadaeast 0.542289 0.580865 0.561099
northeurope 1.123371 1.033598 1.111124
westeurope 0.964760 0.998955 1.000034
eastasia 1.437026 1.452760 1.456938
southeastasia 1.549204 1.645556 1.905099
japaneast 1.100692 1.098126 1.122061
japanwest 1.307368 1.310585 1.303541
australiaeast 1.558487 1.599541 1.575508
australiasoutheast 1.507329 1.477768 1.464238
centralindia 2.075695 2.065580 2.178575
southindia 2.263776 2.243897 2.260729
westus 0.425564 0.399106 0.448143
westus2 0.335454 0.375269 0.401160
eastus 0.397998 0.439445 0.352498
eastus2 0.453716 0.442980 0.505250
centralus 0.433625 0.483928 0.391244
northcentralus 0.424192 0.365465 0.468739
southcentralus 0.635488 0.648676 0.660951
westcentralus 0.678537 0.648553 0.655922
canadacentral 0.408553 0.595722 0.540981
canadaeast 0.714490 0.614714 0.639587

79

Table A.7: Data retrieval time in milliseconds at 1000 bytes with three tests

Azure Nodes Time retrieval in milliseconds at 1000 bytes

by region 1 2 3

westus 0.484753 0.351765 0.512577
westus2 0.390529 0.299417 0.353433
eastus 0.576793 0.370673 0.472646
eastus2 0.517505 0.380188 0.379106
centralus 0.624613 0.492993 0.499935
northcentralus 0.391212 0.380035 0.399892
southcentralus 0.699130 0.574972 0.561759
westcentralus 0.671207 0.585750 0.657457
canadacentral 0.505907 0.702439 0.499160
canadaeast 0.637924 0.678384 0.647450
northeurope 1.153718 1.191575 1.152282
westeurope 1.053235 1.012551 1.058360
eastasia 1.461322 1.540848 1.432600
southeastasia 1.571697 1.557352 2.043291
japaneast 1.119560 1.038545 1.056766
japanwest 1.064967 1.572503 1.023435
australiaeast 1.555775 1.581705 1.538988
australiasoutheast 1.469888 1.596856 1.503390
centralindia 2.095376 3.318131 2.683805
southindia 2.265394 3.473813 2.355969
westus 0.450713 0.405325 0.333813
westus2 0.399777 0.328000 0.324284
eastus 0.522205 0.454617 0.357964
eastus2 0.418316 0.420650 0.478577
centralus 0.585116 0.510616 0.414191
northcentralus 0.468719 0.368115 0.337767
southcentralus 0.709453 0.728653 0.714851
westcentralus 0.741359 0.603754 0.615028
canadacentral 0.600617 0.569735 0.449889
canadaeast 0.645989 0.647335 0.599901

80 appendix a appendix a

Table A.8: Data retrieval time in milliseconds at 5000 bytes with three tests

Azure Nodes Time retrieval in milliseconds at 5000 bytes

by region 1 2 3

westus 0.494938 0.423876 0.432344
westus2 0.363119 0.411012 0.347964
eastus 0.438061 0.395766 0.346503
eastus2 0.378506 0.427613 0.459582
centralus 0.526835 0.500740 0.641973
northcentralus 0.461719 0.413147 0.371725
southcentralus 0.653625 0.599630 0.586337
westcentralus 0.719317 0.672185 0.818940
canadacentral 0.509619 0.525360 0.427245
canadaeast 0.530501 0.703984 0.649985
northeurope 1.157565 1.074704 1.125833
westeurope 1.160166 1.055225 0.990543
eastasia 1.472810 1.464829 1.456184
southeastasia 1.489551 1.480372 1.903391
japaneast 1.090606 1.042110 1.040818
japanwest 1.601225 1.282079 1.573684
australiaeast 1.585145 1.586277 1.573854
australiasoutheast 1.559159 1.520343 1.548271
centralindia 2.808739 2.049928 2.061371
southindia 2.243023 2.895147 2.267336
westus 0.352493 0.436058 0.450315
westus2 0.351158 0.372502 0.334689
eastus 0.386379 0.376254 0.387381
eastus2 0.437065 0.381855 0.418019
centralus 0.437747 0.431546 0.472273
northcentralus 0.407172 0.376833 0.349627
southcentralus 0.704029 0.633358 0.772523
westcentralus 0.692972 0.706382 0.773655
canadacentral 0.453071 0.464417 0.490271
canadaeast 0.566612 0.686097 0.702407

81

Table A.9: The cost analysis of the acknowledgement function, with three tests

Dollar Avax Bytes

0.17973047537219500 0.00004786430768 163732
0.17973047537219500 0.00004786430768 163732
0.17973047537219500 0.00004786430768 163732
0.17973047537219500 0.00004786430768 163732
0.17973047537219500 0.00004786430768 163732
0.17973047537219500 0.00004786430768 163732
0.17973047537219500 0.00004786430768 163732
0.17973047537219500 0.00004786430768 163732

0.1612852921431600 0.000046346348317 163732
0.1612852921431600 0.000046346348317 163732
0.1612734714636000 0.000046342951570 163732
0.1612852921431600 0.000046346348317 163732
0.1612852921431600 0.000046346348317 163732
0.1612852921431600 0.000046346348317 163732
0.1612852921431600 0.000046346348317 163732
0.1612852921431600 0.000046346348317 163732

0.16247097780579400 0.000046235338021 163732
0.16247097780579400 0.000046235338021 163732
0.16247097780579400 0.000046235338021 163732
0.16247097780579400 0.000046235338021 163732
0.16247097780579400 0.000046235338021 163732
0.16247097780579400 0.000046235338021 163732
0.16247097780579400 0.000046235338021 163732
0.16247097780579400 0.000046235338021 163732

82 appendix a appendix a

Table A.10: The cost analysis of the data publication function, with three tests

Dollar Avax Bytes

0.19384375024735875 0.00005162283628425 176589
0.22447209243969125 0.00005977951862575 204491
0.27415011746500125 0.00007300935218775 249747
0.34898329587284625 0.00009293829450675 317919
0.49869026800862500 0.00013280699547500 454300
0.79794614184524250 0.00021250230142350 726918
1.42119371716388000 0.00037848035077600 1294688
2.66773387396665875 0.00071044843514425 2430269

0.1739501652350700 0.00004998567966525 176589
0.2014352153253300 0.00005788368256475 204491
0.2460149381726100 0.00007069394775075 249747
0.3131682187529700 0.00008999086745775 317919
0.4474994063294400 0.00012859178342800 454288
0.7160790367254600 0.00020576983813950 726942
1.2753409981814400 0.00036647729832800 1294688
2.3939407704539100 0.00068791401449825 2430257

0.17522895646390050 0.00004986595232325 176589
0.20290415478190550 0.00005774164905575 204479
0.24782351216661150 0.00007052461928475 249747
0.31548237635143950 0.00008977870698675 317931
0.45081300459840400 0.00012829055338600 454312
0.72134327772273900 0.00020527697146350 726942
1.28472855010115000 0.00036560288847500 1294700
2.41146833361208250 0.00068624596858625 2430185

83

Table A.11: The cost analysis of the key publication function, with three tests

Dollar Avax Bytes

0.28358604426183625 0.00007552224880475 258343
0.34625109231336250 0.00009221067704750 315430
0.40879319669326875 0.00010886636396625 372405
0.50124574004015500 0.00013348754728100 456628
0.68342960028798125 0.00018200521978375 622595
1.04501132936781625 0.00027829862300075 951991
1.79549352998826250 0.00047816072702750 1635670
3.29373670478320875 0.00087716024095425 3000549

0.2544824849640900 0.00007312715085175 258343
0.3107164128009000 0.00008928632551750 315430
0.3668400142951500 0.00010541379721125 372405
0.4498044388436400 0.00012925414909300 456628
0.6132913325548500 0.00017623314153875 622595
0.9377650462503300 0.00026947271443975 951991
1.6112275779921000 0.00046299643045750 1635670
2.9557106860898700 0.00084934215117525 3000549

0.25635330796229350 0.00007295199429775 258343
0.31298873083788100 0.00008906907536650 315418
0.36953683146707250 0.00010516130662125 372405
0.45311116735582600 0.00012894455530900 456628
0.61778802418137350 0.00017580763351775 622583
0.94465900759970950 0.00026882726454175 951991
1.62307248593801500 0.00046188744619750 1635670
2.97743953524172050 0.00084730777895325 3000549

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Problem Definition
	1.2 Methodology
	1.3 Scope and Limitations
	1.4 Context
	1.5 Outline

	2 Background
	2.1 Blockchain
	2.2 Types of Blockchains
	2.3 Ethereum
	2.4 Avalanche
	2.5 Decentralized Applications (DApps)
	2.6 REST API
	2.7 Cryptography
	2.8 Summary

	3 Requirements
	3.1 Functional Requirements
	3.2 Non-Functional Requirements
	3.2.1 Reliability
	3.2.2 Responsiveness and Availability
	3.2.3 Security and Resilience
	3.2.4 Usability
	3.2.5 Maintainability

	3.3 Summary

	4 Design & Implementation
	4.1 System Overview
	4.2 Haddock's Workflow
	4.3 Server-Side Components
	4.3.1 Disseminate Message
	4.3.2 Store Acknowledgments for Encrypted Messages
	4.3.3 Dissmeniate Key

	4.4 Client-side Components
	4.4.1 Contract Interaction Tools
	4.4.2 REST API
	4.4.3 Client Services
	4.4.4 Contract Services
	4.4.5 Frontend
	4.4.6 Frontend Message Dissemination
	4.4.7 Frontend Message Acknowledgment

	4.5 Synchronization Options
	4.6 Summary

	5 Evaluation
	5.1 Platform
	5.2 Experiment Setup and System Specifications
	5.3 Dissemination Experiment
	5.4 Cost Analysis Experiment
	5.5 Memory Growth Experiment
	5.6 Summary

	6 Discussion
	6.1 Solely Key Distribution
	6.2 Subnets and Customized Access Control
	6.3 Single Struct Approach
	6.4 Discussion of Non-Functional Requirements
	6.5 Summary

	7 Concluding Remarks
	7.1 Contributions and Goals
	7.2 Related Work
	7.3 Concluding Remarks
	7.4 Future Work

	Bibliography
	A Appendix A

