
Faculty of Science and Technology
Department of Computer Science

AI Chatbots in Health: Implementing an LLM-Based Solution to Promote
Physical Activity

Sondre Elvebakken Løvås
INF-3981 Master’s Thesis in Computer Science - June 2024

Supervisors

Main supervisor: André Henriksen UiT The Arctic University of Norway,
Faculty of Science and Technology,
Department of Computer Science

Co-supervisor: Eirik Årsand UiT The Arctic University of Norway,
Faculty of Science and Technology,
Department of Computer Science

Co-supervisor: Dillys Larbi UiT The Arctic University of Norway,
Faculty of Health Sciences, Depart-
ment of Clinical Medicine

Co-supervisor: Elia Gabarron Østfold University College, ICT and
Learning, Department of Education

Co-supervisor: Denecke Kerstin Bern University of Applied Sciences,
Institute Patient-centered Digital
Health, Department of Engineering
and Computer Science

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2024 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

Abstract
With the emergence of powerful generative AI models comes the possibility
of creating knowledgeable and engaging chatbots, which have the potential
to significantly enhance several areas of the user’s life. This thesis focuses on
the design and implementation of FysBot, an application with an integrated
chatbot that aims to increase the user’s physical activity levels. In collaboration
with a PhD project, FysBot’s design is guided by scientific evidence on user
preferences in physical activity chatbots, with a strong emphasis on the security
and privacy of the users’ data.

To facilitate personalized conversations on different topics, the use of chatbot
personas is proposed. A chatbot persona is specialized for a single conversation
topic and is responsible for generating an appropriate response to the user.
FysBot implements personas for the following conversation topics: exercise
recommendations, hiking trip suggestions and step progress review. In addition,
a default persona is used to handle queries unrelated to the listed conversation
topics. In order to mediate a query to the correct persona, queries are first
presented to a routing persona, which then routes the query to the appropriate
destination.

FysBot’s design has undergone testing via a usability study conducted using
the think-aloud method. From this study, the overall impression of FysBot has
been positive. However, several areas require improvement to enhance the user
experience and intuitiveness. Addressing these areas will, in turn, increase
engagement and promote healthier lifestyles among users.

Acknowledgements
I would like to thank my main supervisor, André Henriksen, and co-supervisors
Eirik Årsand, Elia Gabarron and Kerstin Denecke for their support and guidance
not only in the supervision meetings but also for taking the time to answer
my spontaneous questions and checking in on me to see how I was doing.
They have shown genuine interest in the success of the thesis and have always
motivated me to do better.

Many thanks to my co-supervisor and the PhD student referred to in this thesis,
Dillys Larbi, whom I have worked closely with and who has helped me with
the usability tests, application design, and much more. I am extremely grateful
for all you have done and wish you all the best for the future.

Thank you to Assoc. Prof. Elisavet Kozri, thank you for taking the time to answer
my questions about security design.

To the participants of the usability test, thank you for your participation and
honest feedback.

Tomy friends at the university, thank you for all our discussions. Your dedication
to the field of computer science is an inspiration.

To my family, thank you for your limitless support and to my brother, who has
always been my role model.

And lastly, Benedikte, thank you so much for moving with me, believing in me,
and pretending to be interested in my incoherent ramblings over the last five
years.

Contents
Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xiii

List of Listings xv

List of Abbreviations xvii

1 Introduction 1
1.1 Background . 1
1.2 Previous Work . 2
1.3 Objective . 3
1.4 Research Question . 3
1.5 Outline . 3

2 Technical Background 5
2.1 Physical Activity . 5
2.2 Chatbots . 6

2.2.1 Overview . 6
2.2.2 Physical Activity Chatbots 7

2.3 Large Language Models . 7
2.4 ChatGPT . 9

2.4.1 Overview . 9
2.4.2 Function Calling . 9

2.5 Security . 10
2.5.1 Data Protection . 10
2.5.2 Data Security . 10
2.5.3 JSON Web Token . 12

2.6 Android App Development 12
2.6.1 Overview . 12

vii

viii contents

2.6.2 React Native . 13

3 Method 17
3.1 Collaboration . 17
3.2 Software Development . 18

3.2.1 Agile Methodologies 18
3.2.2 Personas . 18
3.2.3 User Stories . 19

3.3 Usability Study . 19
3.4 Ethics . 21

3.4.1 Test Approval . 21
3.4.2 Data Privacy and Protection 22

4 Requirement Specification and Design 23
4.1 Requirements . 24

4.1.1 Functional Requirements 24
4.1.2 Non-Functional Requirements 29

4.2 Design . 29
4.2.1 Choosing the Right LLM 29
4.2.2 Handling Different Topics of Conversation Using Chat-

bot Personas . 30
4.2.3 Design of Chatbot Personas 30
4.2.4 Goal Setting . 36
4.2.5 Badges . 36
4.2.6 Daily Schedule . 37
4.2.7 Step Collection . 39
4.2.8 Backend Architecture 39
4.2.9 Scalable Architecture 40

5 Security and Privacy 45
5.1 Consulting a Security Expert 45
5.2 Protecting API Endpoints with JSON Web Tokens 46
5.3 Securing Credentials . 47
5.4 Securing Communication 48
5.5 Protecting Privacy in Chatbot Messages 49

6 Implementation 51
6.1 Backend Server . 51

6.1.1 Azure VM Deployment 52
6.2 Database Setup . 52
6.3 Securing API Endpoints . 55

6.3.1 Authentication . 55
6.3.2 NGINX and TLS . 57

6.4 Azure ChatGPT Deployment 58

contents ix

6.5 User Interface . 58
6.5.1 Contexts . 58
6.5.2 Login . 59
6.5.3 Create New User . 60
6.5.4 Log in Existing User 62
6.5.5 Tab Navigation Bar 62
6.5.6 Chatbot Messaging 62
6.5.7 Daily Schedule . 64
6.5.8 Badges . 66
6.5.9 User Profile . 66
6.5.10 Firebase Push Notifications 67

6.6 Publishing to Google Play Store 68

7 Evaluation and Result 71
7.1 Usability Study . 71

7.1.1 The Participants . 72
7.1.2 Downloading and Installing FysBot 72
7.1.3 Logging into FysBot 73
7.1.4 Chatbot . 73
7.1.5 Step Goal and Step Overview 75
7.1.6 Finding Information About FysBot 75
7.1.7 Badges and Daily Schedule 77
7.1.8 Overall Thoughts 78

7.2 System Performance And Cost 79

8 Discussion 81
8.1 Software Development Process 81

8.1.1 Solving a Problem 81
8.1.2 Usability test . 82

8.2 Avoiding Misuse of FysBot 84
8.3 Complexities with Step Collection 85
8.4 Lacking IOS Implementation 85
8.5 Steps for Releasing FysBot to Production 86
8.6 Gaining Insight into App Use 86
8.7 Standalone App vs. Social Media Deployment 87
8.8 Design Revision After Usability Study 88
8.9 Facilitating Future Continuation of FysBot 91
8.10 Research questions . 91

9 Future Work 93
9.1 Improving User Experience 94

9.1.1 Voice Communication 94
9.1.2 Social Aspects . 94
9.1.3 Gamification . 94

x contents

9.1.4 Chatbot Personas . 95
9.2 Professional Integration . 95
9.3 System Reliability . 95

10 Conclusion 97

Bibliography 102

A User Testing Procedures 103
A.1 Sikt Notification Form . 104
A.2 Information Letter . 108
A.3 Sikt Assessment . 111
A.4 Think Aloud Protocol . 112

List of Figures
2.1 Example of context given as input to LLM 8
2.2 Prop drilling . 16
2.3 Consuming state from context. 16

4.1 Mockup of app design. 28
4.2 Router persona . 31
4.3 Exercise recommender persona 32
4.4 Progress review persona . 34
4.5 Location based activity recommendations 35
4.6 Synchronizing badges . 37
4.7 Sending notifications of scheduled events. 38
4.8 FysBot’s backend architecure. 41
4.9 Database schema. Diagram is taken from pgAdmin using ERD

tool. 42
4.10 Scalable architecture that splits the backend concerns into

separate microservices. 43

5.1 Authenticating users. 47
5.2 Call stack for an API request. 49

6.1 Caching a request to enable multiple reads. 57
6.2 Create user and login tabs. 60
6.3 The next three steps required to complete the user profile

creation after setting a username and password. 61
6.4 Requesting exercise recommendations. ERP found the follow-

ing parameters in the first query: level=beginner, category=cardio. 63
6.5 Requesting progress review. 64
6.6 Requesting hiking trips. 65
6.7 Schedule feature in app. 66
6.8 Step badges. 67
6.9 The user profile which displays step counts and the step goal,

which can be updated by pressing the "Set goal" button. . . . 68

xi

xii l ist of figures

7.1 Time taken to complete task 2: Sign in to FysBot, task 3: Give
the chatbot a name, and 4: Set a step goal. 74

7.2 Time taken to complete task 8: Change step goal and task 14:
Check the overview of steps. 76

7.4 Schedule feature in app. 76
7.3 Time taken to complete task 6: Find and read information

about FysBot. 77
7.5 Time taken to complete task 9: Make a physical activity plan

for the day and task 15: Check how many badges you have
have received. 78

8.1 Asking more complex questions using the new design. 90

List of Tables
3.1 Think aloud tasks . 20

4.1 User stories . 25

6.1 Virtual Machine Specifications 52
6.2 API Endpoints (TLS is enabled for all endpoints) 56

7.1 Tasks evaluated using the think aloud method 71

xiii

List of Listings
2.1 Custom button component 14

6.1 SQL script for exercises and hiking trips 54
6.2 NGINX TLS configuration 57
6.3 Using Certbot to generate TLS certificate 58

xv

List of Abbreviations
AAB Android App Bundle

BCTs Behaviour Change Techniques

CLI Command-Line Interface

ERP Exercise Recommender Persona

GDPR General Data Protection Regulation

JPA Java Persistence API

JWT JSON Web Token

LAP Location Activity Persona

LLM Large Language Model

NLP Natural Language Processing

OIDC OpenID Connect

ORM Object-Relational Mapping

OS Operating System

PA Physical Activity

PRP Progress Review Persona

RAG Retreival Augmented Generation

RN React Native

xvii

xviii l ist of abbreviat ions

RP Routing Persona

SDK Software Development Kit

TLS Transport Layer Security

UI User Interface

VM Virtual Machine

WHO World Health Organization

1
Introduction
1.1 Background

Individuals living with cancer, type 2 diabetes, heart diseases and obesity face
an elevated risk of mortality[1]. It has been found, however, that physical
inactivity is a modifiable risk factor for these conditions[1, 2] and can enhance
quality of life[2]. A sedentary lifestyle has become a global problem, and in
Norway, it has been observed that 19% of the adult population is obese and
60% is overweight[3, 4]. It has also found that 27% of men and 24% of women
in Norway are insufficiently active[5].

With the widespread use of smartphones and other smart devices, designing and
developing software applications specifically to help individuals become more
physically active is now possible. Most smartphone manufacturers produce
phones that come pre-equipped with health applications that use the phone’s
internal sensors to monitor the user’s steps, heart rate and metabolism. Third-
party apps like Strava1 also use the geopositioning of the smartphone or
smartwatch to track the user’s activity and have a feature to share the activity
in a social network that exists within the app.

The field of Natural Language Processing (nlp) has seen a lot of improvements
in recent years, and research on chatbot applications used for promoting phys-
ical activity has become a hot topic[6, 7]. The prominent features of chatbots

1. https://www.strava.com/

1

2 chapter 1 introduction

are that they can simulate human-to-human interactions and contain a vast
knowledge base. A chatbot is also a very effective tool for packing many differ-
ent functionalities into a single user interface. This is an innovative solution
for keeping the user engaged and can have positive effects on individuals
who otherwise struggle to reach out to other people for social interactions. A
chatbot is always available when the user needs it and can be designed as a
companion with a personality that is tuned to the user’s liking. With this, a
chatbot could be the source of motivation that the individual needs to become
more physically active.

1.2 Previous Work

In a study conducted by Wlasak, Zwanenburg and Paton[7], a chatbot was
created and used to motivate individuals to do physical activity during the
COVID-19 pandemic[7]. They based the chatbot on three Behaviour Change
Techniques (bcts): goal setting, experimenting, and action planning, and
evaluated the system based on changes in the user’s step count. Telegram was
used as the channel for interacting with the chatbot, and Google Fit was used
to collect steps. The chatbot interactions in this work consisted of weekly status
updates where the user was able to set their goals for the week. The authors
found that participants had an increase of 143 weekly move minutes from the
272 minutes baseline, and 46.1% of the participants credited the chatbot for
their increased physical activity[7].

Maher et al.[8] used a chatbot that allowed users to set goals and monitor
progress. An accompanying website was used to show videos that educated
the users on physical activity. The chatbot was powered by the NLP software
Watson from IBM and was deployed on the messaging platform Slack. The
study found that participants, on average, had a 109.8-minute increase in time
spent being physically active compared to their baseline[8].

In their 2023 study, Vandelanotte et al[6]. explored the use of a chatbot system
to educate users about physical activity, nudge them at opportune moments
using machine learning, and answer PA questions using generative AI. A set
of predefined conversations was used to help users become more motivated
and could be initiated by the nudge engine or triggered when the user asked
a question that closely related to one of the conversation. The nudge engine
also used weather data and the users’ locations to suggest suitable activities.
The NLP behind the chatbot was implemented using Google DialogFlow, and
the chatbot was released as a standalone app[6].

1.3 objective 3

1.3 Objective

It is possible to integrate chatbots into popular chat applications like Messenger,
Telegram, or Slack, which already have large user bases, thus making it easier
for people to use them. Using these chat applications also removes the need
to implement a standalone app, which usually takes considerable time. The
downside is that the privacy of users’ data cannot be fully guaranteed, and any
unforeseen regulation changes could render the chatbot unusable. Furthermore,
the chatbot’s functionalities are limited to what already exists within the chat
application. Therefore, the aim is to implement a chatbot in a standalone
application that preserves the privacy of the user’s data and provides a rich set
of features to help the user achieve their physical activity goals.

1.4 Research Question

In the capstone for this project[9], the scoping literature review found a lack
of detailed explanations on how to implement a physical activity chatbot in a
standalone application. In addition, although there are existing studies about
the features users prefer in a PA chatbot app, there is a lack of evidence on
how well these elements work in practice. It was also found that most of the PA
chatbots used higher level nlp software, were mostly rule-based, and provided
static conversations. This has led to the following research questions:

• RQ1: How can a chatbot be developed using ChatGPT to help users
become more physically active?

• RQ2: How can a physical activity chatbot be implemented in a way that
preserves the security and privacy of the users’ data?

• RQ3: How can integrated interactive features enhance the effectiveness
of a physical activity chatbot?

1.5 Outline

The thesis contains the following chapters:

Chapter 2 - Background provides necessary technical details for understanding
the analyses and discussions in the subsequent chapters.

Chapter 3 - Method details the methodologies used for designing and testing

4 chapter 1 introduction

FysBot.

Chapter 4 - Design presents the design of the FysBot application and the
architecture supporting it.

Chapter 5 - Security explains the design of the security features in Fys-
Bot.

Chapter 6 - Implementation goes into detail about realizing the FysBot
application, architecture, and security features, as well as how the application
is deployed.

Chapter 7 - Evaluation presents the findings from the usability study and the
results from running FysBot.

Chapter 8 - Discussion discusses the usability study findings, obstacles en-
countered with the implementation, as well as the strengths and limitations of
FysBot.

Chapter 9 - Future Work goes into detail about potential features in FysBot
and priorities for future work.

Chapter 10 - Conclusion presents the final thoughts about the thesis.

2
Technical Background
This chapter gives an explanation of technical terms and concepts that are
used throughout the thesis. It starts with introducing what physical activity
is in section 2.1. Section 2.2 then introduces chatbots, what they are used for,
and how they can be used in relation to physical activity. Section 2.3 then
explains what a Large Language Model (llm) is, and is followed by section
2.4 which introduces a specific implementation of a llm, namely ChatGPT.
Section 2.5 goes into details about some of the security concepts that are used
in the implementation of FysBot. Finally, section 2.6 introduces concepts that
are used to implement the FysBot application.

2.1 Physical Activity

Physical Activity (pa) is defined as "any bodily movement produced by skeletal
muscles that result in energy expenditure" [10]. Our bodies store energy from
the foods we consume and consuming more energy than what we expend
through physical activity and metabolic processes results in an increase in
body weight[11]. The opposite is true; consuming less energy than the body
expends will result in weight loss. The increase or decrease in weight can be
caused by changes in muscle mass and the body storing energy as fat to be
used when the body is at an energy deficit. This balance between muscle mass
and fat storage is influenced by both diet and exercise[12].

5

6 chapter 2 technical background

The Norwegian Institute of Public Health found that as of 2022, about one in four
Norwegians are not sufficiently active based on thewho recommendations of at
least 150 minutes of moderate-intensity activity per week[5][2]. It is important
to encourage individuals living with obesity, cancer, or diabetes to become
more physically active as the health benefits of pa can have a significant impact
on their quality of life[2]. For these individuals, insufficient pa can even be
life-threatening, so attempts must be made to make exercising more accessible
and engaging.

Not all exercising has to be purposeful. It is important to be aware that daily
activities, which can also be called non-exercises, can be significant towards
increasing daily expenditure of energy[13]. By being aware of this, people can
actively make choices that are more healthy for them and which feel more
accomplishable compared to, for example, going to the gym. Some individuals
might not have many opportunities to execute non-exercises and could, for
various reasons, be uncomfortable with going outside for a walk or going to the
gym. These individuals should be made aware that there exists a vast amount
of different exercises that can be done at home and could, for example, be
done with just a simple chair. It is important not to confuse exercising with
brutal gym sessions but to understand that even these simple chair exercises
can significantly improve health.

2.2 Chatbots

2.2.1 Overview

Chatbots are computer systems that simulate human-to-human conversations,
where the human, using free text or some other input, gets a response from the
system based on the input[14]. They have been extensively used to increase
productivity, for example, on e-commerce or banking websites, to provide the
user with the requested information quickly.

Earlier generations of chatbots often came with a set of predetermined con-
versation paths, where the user can choose from a set of conversations. These
would then evolve into more sophisticated chatbots that use Natural Language
Processing (nlp) to parse the user’s intentions from free text. Recently, chat-
bots have taken nlp to the next level by using Large Language Model (llm)
technology and is used by the most popular chatbot application yet, ChatGPT.
ChatGPT and similar chatbots are known for their surprising accuracy and
ability to hold conversations in large contexts. These chatbots are also capable
of conveying emotions and can be perceived as trustworthy.

2.3 large language models 7

2.2.2 Physical Activity Chatbots

Physical activity chatbots are chatbots that are applied to motivate the user to
be more physically active. Not everyone can afford to hire professional help;
some might feel uncomfortable doing so even if they could. It is assumed that
most people would also like to get assistance quickly, at any time of the day,
so there is also the problem of availability. pa chatbots attempt to fill this gap
by always being available, allowing the users to freely interact, receive advice,
and be motivated by them.

If the pa chatbot works as intended, there is a potential for users to increase
the time spent being physically active. There are a number of features that a
pa chatbot can have in order to motivate the user. Human likeness is assumed
to be one of them, as it will build trust with the user and make the chatbot
more engaging. There are also interventions such as allowing the user to set
goals, sending the user notifications, and giving the user feedback on progress.
Additionally, the chatbot can be programmed to provide exercise-focused rec-
ommendations.

2.3 Large Language Models

The Large Language Model (llm) technology is one of the most significant
advancements within nlp, and much of it can be attributed to the development
of the transformer architecture[15]. This architecture has the ability to process
sequential data such as text with great efficiency and scalability, which in
turn allows for the deployment of models with vast parameter sizes. The most
important element of the transformer is the self-attention module, which plays
a crucial role in "relating different positions of a single sequence in order to
compute a representation of the sequence"[15]. In other words, the transformer
is able to evaluate how a single word in an input relates to every other word
in the same input.

An llm is trained on large volumes of text, giving it extensive knowledge
across many domains. The depth of this knowledge can vary depending on
the amount of training data available, which again is influenced by the specific
period the model underwent training. When using an llm in production,
domain-specific knowledge is most often a requirement in order to reduce
hallucinations and give more accurate outputs. When an llm hallucinates, it
produces an output that is factually incorrect and is "due to the model’s ability
to generate plausible-sounding text based on patterns it has learned from its
training data"[16]. There are various ways for an llm to gain knowledge about
a domain, and depending on available resources, some solutions are more

8 chapter 2 technical background

feasible than others.

For an llm requiring high specialization, a process called transfer-learning,
also called fine-tuning, could be suitable. In this approach, a pre-trained model
serves as the starting point, and its parameters undergo further optimization
using domain-specific data[17]. Another simpler approach to gaining domain-
specific knowledge is injecting the required information directly into the con-
versation context, a process called Retreival Augmented Generation (rag)[18].
The context window refers to the input message provided to the llm, upon
which the model bases its output. Figure 2.1 shows how the domain-specific
knowledge, in this case, called documents, are placed in the context. The fig-
ure also shows how the model is given a behavior or a personality, as well as
instructions. In the rag approach, parameter values remain static, making it
highly feasible to develop in practice while also giving accurate outputs. In
most cases, not every piece of domain knowledge can fit into the context at
once. Information can be fetched from a data store dynamically based on the
user question before it is injected into the context.

You are a positive physical activity instructor who tries to motivate the user to be more active

Use the documents below when answering the user's question. If you are not able to find the
answer in these documents, reply with "Sorry I don't know".

<<DOCUMENTS>>

What exercises can I do at home?

Behavior

Instructions

Knowledge source

User question

Figure 2.1: Example of context given as input to llm

In order to train a well-performing llm, large amounts of computational
power and data are required. It might not be feasible to train such a model
independently, but there are other solutions, such as using open-sourced model
parameters. Still, the computation needed to just run inference on such a
model that serves multiple users might not be available to some. In this case,
companies such as OpenAI provide an llm as-a-service by providing paying
customers with an API that allows the user to run inference on models that are
run by OpenAI.

2.4 chatgpt 9

2.4 ChatGPT

2.4.1 Overview

ChatGPT, developed by OpenAI, is a set of llm models accessible through the
OpenAI API. To generate text based on a conversation history, the OpenAI API
considers the conversation history as a parameter, which consists of a set of
annotated messages. The annotations include which role is associated with
a particular message as well as the content of the message. The role is one
of "user", "assistant", or "system", where a message annotated with user is a
query (for a user message, the content of the message could look like that of
figure 2.1) and a message annotated with assistant is the model’s response.
The system annotation is used for a message that "helps set the behavior of
the assistant"[19]. It was found, however, in the capstone[9] that placing the
behavior in the context of the user message works better.

2.4.2 Function Calling

The system message has another use, which is in a feature OpenAI calls
"function calling". This feature lets the model decide whether or not a function
could be called based on the user message. One could then say in the API
call to OpenAI that there exists a function that, given the name of a location,
fetches the weather conditions for that location. The model will then evaluate
the user message and determine if the user wants to know the weather and if
the message includes a location. If so, the model will automatically parse out
the location from the message and reply with a JSON object that contains the
location. The JSON object could then be passed to weather function to fetch
the weather conditions. The steps for completing this query are all described
in the system message, which OpenAI handles automatically. Function calling
also allows for setting enums for each parameter that defines which values the
parameter can take. In the weather example, one could define legal locations as
just Tromsø or Oslo. This is useful for handling typos in the user message. The
model will be able to detect the typo and output the correctly spelled location,
which can later be used in API requests or database queries. In addition, if the
enums are written in English, the user could still write the equivalent word
in a different language, and the model will automatically output the English
equivalent if it exists among the enum values.

10 chapter 2 technical background

2.5 Security

2.5.1 Data Protection

Any entity processing the personal data of an EU individual is subject to the
regulations outlined in the General Data Protection Regulation (gdpr)[20].
The gdpr aims to protect users’ personal data and to penalize entities that
collect and process data in non-compliant ways. In article 5 of the gdpr
official legal text, seven principles for processing personal data are defined as
follows[21][20]:

1. Lawfulness, fairness and transparency. Personal data must processed
lawfully, fairly and in a transparent manner in relation to the data subject.

2. Purpose limitation. There must be a specific legitimate reason for col-
lecting the personal data and the data subject must be explicitly informed
of the data collection.

3. Data minimisation. Personal data must be limited to only what is nec-
essary.

4. Accuracy. Personal data must be up-to-date and any inaccurate data
must be updated without delay.

5. Storage limitation. If the personally identifying data is no longer needed
for the specified purpose, it shall be deleted.

6. Integrity and confidentiality. Personal data must be processed with an
emphasis on confidentiality and integrity.

7. Accountability. The data controller is responsible for, and shall demon-
strate compliance with, 1-6.

2.5.2 Data Security

Data security is often defined in terms of confidentiality, integrity and avail-
ability[22]. Confidentiality pertains to safeguarding information, only allowing
access to authorized users while making sure that unauthorized users are
unable to read the information or even know about its existence. There are
several tools that can be used towards this goal, some of them are[22]:

• Encryption: information can, with the use of encryption, be obfuscated
in a way such that its content is unintelligible, and with the use of strong

2.5 security 11

encryption, regaining the original content requires significant computa-
tional resources. There are two primary ways of doing encryption:

– Asymmetric encryption: a piece of information is encrypted using
an encryption key and can (without the use of significant computa-
tional resources) only be deciphered using the associated decryption
key. The encryption key is often called the private key, which is not
to be shared with anyone, while the decryption key is called the
public key, which can be freely shared. In asymmetric encryption,
it is possible to create digital signatures where the private key is
used to generate a signature of a message. If the resulting output
of applying the public key on this signature is valid, one can be
confident about the sender’s identity and that the message has not
been tampered with.

– Symmetric encryption: in contrast to asymmetric encryption, the
same key is used for both encryption and decryption. Symmetric
encryption algorithms are often faster to use compared to asym-
metric algorithms but require a method of distributing the key to
the user[22]. A solution to this is to use asymmetric encryption to
communicate the shared key.

• Access control: determines who has access to what. In practice, access
control is implemented using roles where a piece of information should
only be accessible to entities with the appropriate role.

• Authentication: is used to grant access to information and determine the
identity of the entity. Several options exist to authenticate an entity, some
of which can also be combined to create multi-factor authentication for
even stronger security guarantees. Authentication can be done using, for
example, username and password, secret keys or biometric information.

• Authorization: determines if the entity should be allowed to access the
information. This is done by looking at the defined access control policies.

Transport Layer Security

Transport Layer Security (tls) is the most popular cryptographic protocol
for securing communication on the web, ensuring that web traffic between
two entities can not be read by unauthorized parties[23]. tls uses strong
cryptographic algorithms for authenticating the communication channel be-
tween the server and user, making sure that data can only be read at the
endpoints, and makes it infeasible for attackers to alter the data without it

12 chapter 2 technical background

being detected[24].

2.5.3 JSON Web Token

The JSON Web Token (jwt) is an internet standard (RFC7519) used to encode
a set of claims (information about a subject formatted as key/value pairs)[25].
The integrity and authenticity of the jwt can be secured by digitally signing
the jwt with a private key. In addition, the jwt can also be encrypted to
achieve confidentiality.

2.6 Android App Development

2.6.1 Overview

Android app development broadly consists of creating a User Interface (ui)
and implementing the underlying logic that enables interactions with it. The
Google Play Store is the most common alternative to publish the application,
allowing others to download and use it.

Installed apps can be in one of the following states:

• Foreground. When an app is in the foreground, it is currently open
and visible to the user and can be interacted with. In this state, the
app is prioritized by the Operating System (os), allocating more system
resources to it.

• Background. The app is running in the background but not visible to
the user. This can occur when the user enters another app, goes back to
the phone’s home screen, or the phone is locked. While in this state, the
user cannot interact with the app but background processes can still run.
The app is, however, allocated limited resources.

• Terminated. A terminated app cannot be interacted with and does not
perform any background tasks. While in this state, the app has no system
resources allocated to it.

There are solutions that enable the periodic waking of terminated apps to run
background tasks. Still, these solutions can be unreliable and cannot be run
too often as they will be throttled by the os.

Within an app, there are usually multiple tabs, which are screens with different

2.6 android app development 13

content that the user can navigate. The content and corresponding logic within
the tab can be written in the native language of the Software Development Kit
(sdk) (Java or Kotlin for Android) and/or using otherui frameworks like React
Native (rn). Often, a combination of the native language and other frameworks
are used, as using a separate ui framework can speed up development and
enable cross-platform functionalities. The native language is used to access
platform-specific functionalities that are not available in the framework (e.g.,
device sensors).

2.6.2 React Native

React Native (rn) is a cross-platform ui framework. In RN, JSX is used to
describe the ui and looks very much like regular HTML. React Native contains
elements like <Text> for displaying text, <View> for creating a container, or
<Image> for displaying an image and can be written in the same file as the
JavaScript/TypeScript code.

Components

A core part of RN is the use of components which are units that contain the
logic and the markup for the ui, both of which are written in the same file[26].
Components drive the reusability of UI elements and are implemented as
JavaScript/TypeScript functions that take in a set of arguments called props
and return what should be rendered on the screen[26]. A simple example is
the implementation of a custom button that has a specific color, shape and size
and takes in the text that should be rendered inside the button as a prop. The
custom button component and how it can be used is shown in listing 2.1

14 chapter 2 technical background

Listing 2.1: Custom button component

// CustomButton.tsx
function CustomButton(props) {

return (
<Button

style={{
height: 10,
width: 10,
color: "black"

}}
title={props.title}

/>
)

}

// App.tsx
function App {

return (
<CustomButton title="Press me"/>

)
}

State

Variables that are defined in React components can be used as part of the ui
and even updated by, for example, defining a button that increments a counter
each time it is pressed. If the counter variable value is shown in the ui, one
would, however, not see the updated value as the button is pressed; only its
initial value will be shown. The counter value would also be reset whenever
the component re-renders. React offers state hooks whenever data values has
to persist across re-renders and triggers a re-render whenever the state value
is updated to show the new value in the ui.

Sharing the same state among several components is often required in React,
and passing them as props can lead to "prop drilling", where a state is passed
down multiple layers of components, which makes it harder to maintain the
code base. For example, an application needs to render a welcome message
to a user if the user is logged in and display a login screen if not. For this, it
creates a state value isLoggedIn and a setter for updating the state setIsLoggedIn.
If the user is not logged in, the setter is passed to the login component. The
login component itself can consist of a ’create new user’ component and a ’log
in existing user’ component for which the setter has to be passed a second time.

2.6 android app development 15

This is illustrated in figure 2.2

An improved alternative to this is to use a context that holds the logged-in
state, which can then be consumed by the components that need to read or
update the state. This is illustrated in figure 2.3. One can imagine that the
LoggedInContext could also contain a state value for the user’s username,
which could be consumed in other components. Another great reason for
implementing contexts is that they can contain all the logic surrounding the
state values that they provide. Instead of providing the setIsLoggedIn setter
directly, it could provide a function that not only sets the state value but also
makes the necessary API calls required to log in the user.

16 chapter 2 technical background

Figure 2.2: Prop drilling

Figure 2.3: Consuming state from context.

3
Method
This chapter explains the methodologies that are used to implement and
test FysBot. Section 3.1 presents the collaboration FysBot has with a PhD
project. Section 3.2 introduces the methods used in the design of FysBot and is
followed by the methods used for testing FysBot on actual users in section 3.3.
Lastly, section 3.4 explains the ethical concerns relating to testing FysBot with
users.

3.1 Collaboration

The system created in this master project is intended to be used in a PhD project,
and as such, the PhD student could be considered a customer of the system.
She has knowledge about the users and what they desire in a physical activity
chatbot application based on her ongoing research. Her findings about potential
users’ preferences, as well as the findings in the literature review performed in
the capstone[9], have motivated the implementation of the features that now
exist in the application. Since this master project has a "customer", frequent
meetings are important to give updates on the implementation progress in
order to get feedback on what works and what does not. To facilitate this, we
set up an entire day each week to work together, in addition to the regular
supervision meetings.

17

18 chapter 3 method

3.2 Software Development

3.2.1 Agile Methodologies

Agilemethodologies focus on collaboration, iterative development and adapting
to frequent requirement changes[27]. This methodology is appropriate for this
project due to the close collaboration with the PhD project and the user
test that will be conducted. Both the collaboration and the test will lead to
new or changing requirements as the project progresses, necessitating quick
adaptation to these updates. To help define an initial set of requirements,
personas and user stories has been used and are introduced in sections 3.2.2
and 3.2.3 respectively.

3.2.2 Personas

Personas are descriptions of fictional people based on the characteristics of the
intended user base. The personas are used as a tool to derive the different
features required in the system and evaluate whether the system design is
user-friendly and delivers the intended value. Ideally, multiple personas should
be defined with different background stories, genders, and skills. The following
list contains the most important aspects of a persona that must be covered in
the persona’s description.

• Age

• Gender

• Occupation

• Location

• Education level

• Personal and professional details

• What is the user trying to achieve with the product

• Pain points that the user faces in their daily lives

• Motivations to use product

• How is the user currently addressing their problem

3.3 usabil ity study 19

• Technology usage

• Proficiency level in relevant areas

• Personality

3.2.3 User Stories

User stories are short and informal descriptions of what a user would like to
achieve while using a product. They are implemented using the following
steps:

1. Role. The user of the functionality states the specific position they find
themselves in. Roles always start with "As a".

2. Action. The action that the user wants to execute is the piece of func-
tionality that must be implemented. Actions always start with "I want".

3. Value. What is the value the user gains from executing an action? Values
always start with "So that".

User stories help in all stages of the development process, from designing the
product, implementing the features, and finally, validating that the product
matches the user’s expectations. It is a tool used to guide the development
into creating something that the user actually wants and avoids features that
are "cool" but do not benefit the user. Since the target population is mostly
individuals living with obesity as well as other related health condition, the
roles were centered around this.

3.3 Usability Study

A usability test was conducted using the think-aloud method to test the devel-
oped physical activity app prototype. In the think-aloud method, participants
were monitored while they performed a set of predefined tasks[28]. These tasks
were centered around the different functions in the app in order to discover pat-
terns in the users’ decision-making process. Through this process, one can gain
insight into areas the participants think need improvements, such as missing
functionality or something that could be made more intuitive. Validating design
choices in a test of this sort could be crucial for the success and effectiveness
of the application.

20 chapter 3 method

In the think-aloud method, it is important that the participants continually
verbalize their internal monologue and explain their decision-making process
while performing the tasks. When a participant finds something to be un-
intuitive while solving a task, they should state their difficulties and, where
necessary, make suggestions on what would make solving the task easier.

Friends and colleagues at UiT The Arctic University of Norway, and the Norwe-
gian Centre for E-health Research were invited to participate in the think-aloud
test. Participation was voluntary. Before the test, participants had to sign an
information letter (appendix A) explaining the reason for the test and their
rights relating to data privacy. Furthermore, participants were informed that
the think-aloud test would be recorded. The set of tasks given to the partici-
pants is shown in table 3.1. The tasks were used in a schema by the observers of
the think-aloud test where the following key points are noted: Time: the time
to complete the task in minutes, Completed: whether or not the participant
was able to complete the task (Y-Yes; N-No), and Errors: the severity of any
identified errors were noted (C-critical; NC-Non-Critical). The tasks were exe-
cuted with minimal intervention, but the participant could freely ask questions
or ask for assistance. For participants who had never participated in this type
of test, a demonstration using a different app was given to help them better
understand what was expected of them.

Table 3.1: Think aloud tasks

Task
Download and install the FysBot app

Sign in to FysBot - create a username and password

Give the chatbot a name

Set step goal

Start chatting with the chatbot

Find and read information about FysBot

Ask the chatbot to recommend exercises

Change step goal

Make a physical activity plan for the day

Ask the chatbot to give feedback on steps

3.4 ethics 21

Ask/check for overview of physical activity

Ask the chatbot a physical activity related question

Ask the chatbot a general question

Check the overview of steps

Check how many badges you have received

Ask the chatbot to suggest a hike

The app was released in test mode for the usability test, requiring adding
participants’ Gmail accounts to a list of test users. These were collected orally.
All tests were audio recorded on an offline device. Voice recordings were given
anonymous identifiers, transcribed verbatim and then deleted. The data were
then analyzed and used to improve the application’s usability.

3.4 Ethics

3.4.1 Test Approval

Approval for executing the user testing was granted by Sikt - Norwegian Agency
for Shared Services in Education and Research. This is required as the appli-
cation could potentially collect and process personal information. To get the
approval, a notification form is filled that explains the following:

• Usage of application

• Type of data collected

• How the data is collected

• How data is secured

In addition, an information letter explaining the goal of the test, the partic-
ipation requirements, and the participants’ data privacy rights was written
for each user sample. The notification form, information letter and the Sikt

22 chapter 3 method

assessment are in appendix A.

3.4.2 Data Privacy and Protection

An emphasis has been placed on protecting the privacy of the user data collected
through app usage and user tests. This data includes, for example, location,
message history and voice recordings.

In the application system, a specific area of concern is the usage of ChatGPT,
which has also been highlighted by Sikt. OpenAI is primarily based in the US,
and there is a lot of scepticism about transferring user data to a data processor
or data storage outside of the EU. However, OpenAI provides ChatGPT models
in different regions through the cloud provider Azure, one of them being
Sweden, which is used by the system implemented in this project. While using
ChatGPT in Azure, OpenAI states that they will not have access to the data,
and it will not be used to further optimize OpenAI models[29]. OpenAI also
states that they will store inputs and outputs for 30 days in the region where
the ChatGPT model is used for the purpose of monitoring abuse[29]. By this, it
can be concluded that no ChatGPT-related data will ever leave the region from
which the model is used. More information on where and how data is stored is
explained in section 4.2.8. Chapter 5 goes into more detail on how the user is
protected while using the app, including which data is sent to ChatGPT, secure
communication, authentication and authorization.

4
Requirement Specification
and Design

This chapter is split into two parts. The first part, section 4.1, presents FysBot’s
functional and non-functional requirement specifications that were devised
using personas and user stories. Section 4.1.1 presents the functional require-
ments and ends with defining a set of key focus areas as well as a mockup to
guide the visual design. Section 4.1.2 presents the non-functional requirements
that must be in place for the usability study.

The second part presents the design of FysBot, beginning with choosing the
right llm in section 4.2.1. The following section, 4.2.2, introduces the chatbot
personas, which are entities implemented to handle different topics of conver-
sation and are used to provide personalized responses. The different personas
are further described in section 4.2.3. Sections 4.2.4, 4.2.5 and 4.2.6 present
the design of the goal setting, badges, and daily schedule features, respectively.
Section 4.2.7 presents the design and design obstacles related to collecting user
steps. Section 4.2.8 presents FysBot’s architecture with a graphical explanation
of the backend server and database schema. Finally, section 4.2.9 presents a
revised architecture that is not used in the current implementation of FysBot
but could be used to increase FysBot’s scalability.

23

24 chapter 4 requirement specif ication and design

4.1 Requirements

The functional requirements were developed using personas and user stories,
with priority given to those that provide value to the user and were feasible
to implement in the given time frame. The non-functional requirements were
based on the need to protect users’ data during the usability test and ensure
the reliability of the server throughout the test.

4.1.1 Functional Requirements

Personas

The following describes two fictional personas undergoing treatment for obesity
at a health clinic. These personas are representative subjects for the user base
that will use the FysBot application and are based on interviews performed by
the PhD student with patients at a rehabilitation clinic.

Persona 1 - John

John is a 33-year-oldmale living in southern Norway who struggles with obesity.
He has a high school education and is currently receiving health benefits as he
is unable to work because of his health problems. John is single and likes to
talk to friends, primarily through gaming. He also enjoys watching movies and
listening to music. Currently, John is a patient at a rehabilitation clinic for his
obesity.

John does not enjoy physical activity and sits mostly at his computer. He lacks
motivation and finds walking just for the sake of moving boring and pointless.
He would like to be productive while getting his exercise. John does little
physical activity at home, but he would like to be more motivated to lose
weight and is addressing this by going to the rehabilitation clinic.

John is proficient with technology and confident using smartphones, computers,
and wearables. He does not have much knowledge about physical activity but
is enthusiastic about using a chatbot that can help him with physical activity
and motivate him to be more active.

Persona 2 - Mary

Mary is a 61-year-old Norwegian who struggles with obesity and depression.
She has a bachelor-level education and used to work as an advisor, but she
is now out of work and receives disability benefits because of obesity-related
problems. Mary is a single mother who lives alone, and her favorite activities
are swimming, gardening and hiking.

4.1 requirements 25

Mary would like to be more physically active but lacks the motivation to start,
especially in the winter months. She has bought resistance bands for working
out and has hung them up in a place that makes her notice them every day in
an attempt to remind herself to train. She also goes to a rehabilitation clinic
to help manage the weight gain.

Mary is not proficient with technology and is hesitant to use new technology.
She would like a chatbot that could be a companion and remind her to be
physically active. However, it would need to be intuitive and should understand
what she is saying. She would like to try the chatbot first to determine if it can
help her be more active.

User Stories

In a published paper about the user base[30], a set of desired features were
gathered from individual interviews and focus groups using a semi-structured
interview guide. Using this information, along with the personas, several user
stories have been defined and are presented in table 4.1 (US: User Story). These
will be used to guide the design of FysBot.

Table 4.1: User stories

NO User Story
US1 As an individual living with obesity, I want to get recommendations for

exercises so that I can have more variety.

US2 As an individual living with obesity, I want to receive encouragement to
work out so that I feel motivated.

US3 As an individual living with obesity, I want to be reminded to work out so
that I don’t forget.

US4 As an individual living with obesity, I want to be reminded to work out so
that I get pushed to be more physically active.

US5 As an individual living with obesity, I want to create a structured plan for
my day so that I can keep promises to myself to exercise and eat.

US6 As an individual living with depression, I want a companion to talk to so
that I feel less lonely.

US7 As an individual trying to live healthier, I want to be rewarded for my
efforts so that I feel motivated.

26 chapter 4 requirement specif ication and design

US8 As an individual trying to live healthier, I want to be able to talk to other
people in similar situations so that their progress motivates me.

US9 As an individual trying to live healthier, I want to be able to work out with
other people so that physical activity becomes more social and thus easier
to accomplish.

US10 As an individual trying to live healthier, I want the chatbot to be aware of
my physical activity so that I can get recommendations for how to progress.

US11 As an individual living with a disability, I want to be able to talk to a health
professional if the chatbot does not know the answer so that I can get the
right counseling.

US12 As a chatbot user, I would like information about how to use the chatbot
so that I can have productive conversations.

US13 As an individual with sight problems, I would like text-to-speech so that
the chatbot is more accessible.

US14 As an individual with sight problems, I would like speech-to-text so that I
can easily interact with the chatbot.

Features for Motivating Physical Activity

Based on the user stories listed in 4.1, the following set of features have been
decided as key focus areas for the application and are the functional require-
ments for FysBot. The decisions are based on their value to the user base and
on what is realistically feasible.

• Exercise recommendation. The user should be able to receive person-
alized exercise recommendations through interactions with the chatbot
(US1).

• Outdoor activity recommendation. The user should be able to receive
activity suggestions based on the user’s current location (US1).

• Progression review. The user should be able to review their progression
and get suggestions on increasing daily activity (US2, US10).

4.1 requirements 27

• Scheduling. The user should be able to set a daily plan and have the
option to be reminded of selected events (US3, US4, US5).

• Open conversation chat. The chatbot should be open to a multitude of
conversation topics (US6).

• Reward system. The user should be able to set goals and be rewarded
for their efforts (US7).

• Guide for using chatbot. The user should be able to receive information
on how to use the chatbot (US12).

The remaining user stories, 8, 9, 11, 13 and 14, are not scheduled for this master
thesis. Stories 8 and 9 relate to a feature incorporating a social platform into
the application. With the given time frame, this feature is not prioritized as
other features are thought to add more value. In user story 11, there is a desire
to communicate with a health professional if the chatbot is not able to satisfy
the user. This could be a great feature, but its value is thought to be first
realized in a production setting, so it is not a priority in the prototype. User
stories 13 and 14 express a desire to converse with the chatbot using voice.
Speech-to-text and text-to-speech synthesis is, unfortunately, too expensive for
this project.

User Interface

The previous sections have identified the features that could be included in
FysBot, and from this, a mockup of FysBot’s user interface is presented in figure
4.1. This mockup is used to help visualize the functional requirements.

28 chapter 4 requirement specif ication and design

Figure 4.1: Mockup of app design.

4.2 design 29

4.1.2 Non-Functional Requirements

For the prototype of FysBot that will be tested in the usability study, there are
three main non-functional requirements: security, reliability, and performance.
Since the application could probably process sensitive data, a set of security
mechanisms has to be in place to protect the users’ data and privacy. For the us-
ability study, the backend server hosting the AI model must be available during
the study. This leads to the following non-functional requirements:

• Secure traffic. The traffic between the client and server, as well as
between the server and other APIs must be secure (security).

• Secure API endpoints. It should not be possible for unauthorized users
to retrieve data from the server. Additionally, users should not be able to
retrieve personal data about other users (security).

• High availability. The system must be available throughout the usability
study (reliability).

• Adequate response time. The system should consistently respondpromptly
without significant delays, ensuring that the quality of the usability study
is maintained (performance).

4.2 Design

4.2.1 Choosing the Right LLM

The chatbot will be powered by an llm as it will give the user the most human-
like experience and make extracting information from free-text conversations
easier. There are different design options to evaluate when choosing an llm,
and the most suitable solution will depend on the severity of inaccurate out-
puts, response time, response quality, time to implement and possibly most
importantly, the cost of using the llm.

With the dedicated hardware, a good option could be to host the llm on-
premise. There are several available open-sourced models in different sizes.
Smaller-sized models are not considered an option for this application’s pur-
poses, as the chatbot responseswill not be of high enoughquality to be perceived
as human-like. Larger models are also not an option as the dedicated hardware
is not available to us on-premise, and renting cloud hardware is too expensive.
Not considering the cost, the time and effort spent setting up a larger model
like Metas’ LLaMA[31] model will be extensive.

30 chapter 4 requirement specif ication and design

Since running the llm locally is not an option, the best solution appears to be
the ChatGPT models, accessed via the OpenAI API. This will provide a powerful
model at an affordable price and several out-of-the-box features. The model
chosen is the ChatGPT-3.5-1106 version, which will be referred to as just "the
model" from here on.

4.2.2 Handling Different Topics of Conversation Using
Chatbot Personas

To create a chatbot that works well for different topics, splitting the respon-
sibilities of the chatbot into several entities, each specialized for a specific
topic, could be one approach. These specialized entities have been given the
name personas and are inspired by LangChain’s chain[32] structure used to
simplify the development of apps using llms. The topic could, for example,
be exercise recommendation, for which the persona responsible for exercise
recommendation will have the task of analyzing which exercise(s) the user is
most likely interested in and providing the appropriate response. There could
also be scenarios where one persona ’talks to’ another persona in order to
complete the user query.

The reasoning for this approach is that the context size of the model is limited,
but also, the model would most likely become confused if given too many
instructions at once. The instructions often include how to respond and/or
parse a specific message. One can imagine that placing all the instructions for
every topic in a single message, like the example message of figure 2.1, would
make it difficult for the model to perform. Instead, one persona called the
router persona, acts as a mediator between the user queries and specialized
personas.

4.2.3 Design of Chatbot Personas

Router Persona

The Routing Persona (rp) is the persona that first receives a query and is
responsible for routing the query to one of the other personas. As shown in
figure 4.2, the rp is given a description of the capabilities of each persona and
must evaluate the incoming query to find which description best matches the
query. The rp will then forward the query to the selected persona.

4.2 design 31

{query}

Router persona
Persona descriptions

query

Select persona

Figure 4.2: Router persona

Exercise Recommendation Persona

Exercise recommendation is a feature that allows the user to receive a selec-
tion of exercises from the chatbot based on the parameters: body part, type
of exercise (ex., cardio or strength), difficulty level and available equipment.
The data needed to accomplish this is taken from the Github repository "free-
exercise-db"[33]. This repository contains over 800 annotated exercises with
accompanying images and instructions. Since the user base for the applica-
tion is primarily Norwegian speakers, the instructions (originally written in
English) have been translated into Norwegian. The translation was done by
implementing a small script that used the OpenAI API with ChatGPT as the
translator.

Exercise recommendation is made via the Exercise Recommender Persona
(erp) after being forwarded the user message by the router persona. As
shown in figure 4.3, the first step is to parse out the relevant keywords from
the message. This is done via ChatGPT function calling, where the model is
given a description of each keyword that could exist in the message, such

32 chapter 4 requirement specif ication and design

as the exercise name, body group, exercise equipment or exercise level. An
example of a possible message is "Could you recommend some easy exercises for
biceps using dumbbells?", for which the erp would parse out: {exercise: null,
bodyGroup: bicep, level: beginner, equipment: dumbbells}. Questions with the
exact semantic equivalence will result in the same parsed output.

The erp is designed such that when the user has a specific exercise in mind,
it will return the instructions as well as images for that exercise. Otherwise,
it will list a set of suggestions based on the parameters the user has included.
Any combination of parameters can be used.

{exerciseMessage}

Exercise recommender persona

Parse message

NoYes
Specific exercise

requested?

{exercise, bodyGroup, equipment, level}

Exercises

List exercises

Exercise
images

Give instructions with
images

{bodyGroup,equipment, level}{exercise}

Figure 4.3: Exercise recommender persona

4.2 design 33

Progress Review Persona

The intention of the Progress Review Persona (prp) is to give the users an
overview of their step history by comparing their daily steps to their weekly,
monthly and yearly step averages.

When reviewing the steps, it is, of course, necessary to know the user’s step
history. With this system, the topic of the user query cannot be known until it
is reviewed by the rp. Therefore, it is difficult to ascertain whether the steps
should be included in the client’s request. A solution is then needed to fetch
the steps when the user query is directed to the prp. This could be done using
the periodically sent steps explained in section 4.2.7. However, more up-to-date
steps are needed to get the most accurate response. A better approach for
progress review is to do conditional fetching where the step records are only
provided when needed.

When the user query is sent to rp, and it is determined that the query should
be forwarded to the prp, the prp initially verifies if the necessary step records
are included in the request. If they are absent, the server responds with a
request to include this data. This is illustrated in figure 4.4. Subsequently, the
client, awaiting the response, will conditionally send a new request with the
step records if necessary.

Location Activity Persona

Tomotivate physical activity, finding ways to do pa should be as easy as possible.
FysBot’s solution is to create a Location Activity Persona (lap), as shown in
figure 4.5, which recommends activities based on the user’s current location.
For now, the activity the lapwill recommend is nearby hiking trips orwalks, but
several other possibilities could be implemented into this feature. The starting
coordinates of a set of hikes and walks have been obtained from ut.no[34],
which uses data from Kartverket and other sources and is stored in FysBot’s
backend database.

Whenever a user request is forwarded to the lap by the Routing Persona, the
same conditional fetching strategy used in the prp is applied to resend the user
message, but now also including the user’s location. A mathematical function
is then applied to determine the distance between the user and the activities,
and the ones within a set radius are recommended to the user. This radius
is currently set to five kilometers, but the feature could easily be extended to
allow the user to specify the maximum distance in the request.

Another feature of the lap is that it is programmed to give the user personalized

34 chapter 4 requirement specif ication and design

{progressReviewMessage}

Progress review persona

Parse message

{progressReviewMessage, stepsDay, stepsWeekAvg, stepsMonthAvg, stepsYearAvg}

Yes

Steps included
in message?

No

{requiresSteps}

Generate response

Figure 4.4: Progress review persona

recommendations based on the weather conditions to help them prepare for
outdoor activities. The weather conditions are fetched using an API provided
by Yr[35], from which the current temperature, wind speed, and a summary
of the weather conditions expected in the next hour are used. The next hour’s
summary could state, for example, "rain" or "cloudy", which is useful when
crafting the recommendations. These properties are then fed to the lap, and
the model creates a weather-based physical activity recommendation and the
necessary preparations for the user.

4.2 design 35

Figure 4.5: Location based activity recommendations

Memory

Each persona has its own memory for storing conversations with the user.
This is done to more efficiently manage the context in the conversations and
attempt to give the user a more accurate response by providing continuity. The
design challenge this presents is managing the conversation messages linked
to a particular user and persona. One approach is to let the client manage
the messages that should be sent to the server, which would require sending
large message blocks to the server for each chat request. Instead, the approach
used is to store the messages in the server database, where messages can be

36 chapter 4 requirement specif ication and design

retrieved based on username and persona name.

4.2.4 Goal Setting

In the initial design of the goal-setting feature, the user was supposed to be able
to set goals in free text by stating the goal directly to the chatbot. The chatmodel
would then parse out the goal type, which could be, for example, a step goal
or a weight-loss goal, and then parse the associated value (number of steps or
number of kilos). Themotivation for this approach is to enhance user experience
and human-like interaction with the chatbot. Although feasible, getting it right
requires a good amount of testing. Furthermore, it would be harmful to the
user experience if the chat model could not parse a more unconventional goal
setting. A solution would be to limit the user to a predefined set of goal types.
However, it was concluded that the most suitable approach would be to give
the user a menu of goals to choose from. This solution might make it easier for
the user to set goals and, in addition, make it possible to include and obtain
data on the goal types stated as outcomes in the PhD project.

4.2.5 Badges

Badges are earned by completing specific step goals, and the progress towards a
goal is constantly monitored by the app, but only while the app is running. The
badges earned by the user are stored locally on the user’s phone. Whenever the
application is opened after being closed, synchronization of the badge progress
is required by reviewing the user’s step history from previous days. The time of
the last sync is also stored on the user’s phone and will be used as the starting
point. If, however, there has been no previous sync, as will occur the first time
the user opens the app, the time of the app installation is used instead. The
sync will run every 5 seconds.

The synchronization process found in figure 4.6 starts by retrieving the last
sync date, as shown. Then, for each day up to the current day, the badges
the user should have earned are found and matched against the badges the
user has been rewarded. If they match, the last sync date is set to the current
day, and the iteration jumps to the next day. If not, the user is first awarded
the previously unrewarded badges. The badges are stored in a minimal SQL
database on the user’s phone.

4.2 design 37

Fetch last synch date

Async

SQLite

Start loop

Get badges earned
on this date

No

Yes
User received
all badges?

Add remaining badges

Increment to next day

Set last synch day to
current date

No

Yes
Current date
evaluated?

End loop

Calculate badges
which should have

been earned on this
date

Figure 4.6: Synchronizing badges

4.2.6 Daily Schedule

From section 4.1.1, it was identified that potential users might want to set
a structured plan and get reminders for events like workouts. A scheduling
feature is implemented for this purpose, where the user can create events

38 chapter 4 requirement specif ication and design

and have the option to get reminders for specific events that are sent as push
notifications.

A notification on an event is sent 30 minutes before the time of the event. For
this to be feasible, each user’s scheduled events must be stored in the backend
server. At a frequent interval, the server then checks for any scheduled events
in the next 30 minutes. A possible solution to this is to store the entire schedule
of each user separately, then iterate over each user and their schedules. This
is highly inefficient, so instead, each singular event of every user is stored
in the same table. Sorting this table by event time makes it easy to check
whether any events occur in the next 30 minutes. If events are identified,
the notifications are sent, and the corresponding row is deleted. Figure 4.7
illustrates the process.

User

Repeat every minute

Figure 4.7: Sending notifications of scheduled events.

4.2 design 39

4.2.7 Step Collection

The FysBot application can fetch steps through Health Connect and Google Fit.
To use Google Fit, the user must have it installed and log into their Google
account when using FysBot. Google requires the login to authorize the user and
give consent. Step data from Google Fit can be used without further verification
while FysBot is released in the testing stage. For an open release of FysBot,
the app must be verified by Google, which involves demonstrating the app and
how the health data is being used.

Steps can also be accessed via Google’s Health Connect application, which is
a hub for different health apps to share data. The Health Connect application
is installed by default starting from Android 14. This is currently the latest
version of Android, and the usage of Android 14 is currently around 16% at
the time of writing[36]. For users with versions below Android 14, the Health
Connect application has to be manually installed, or the user could use Google
Fit instead. Using the data from Health Connect requires a complete Google
verification process that involves demonstrating the app and how the data is
used. This applies to both test releases and open releases of FysBot.

Collecting steps is an integral part of further research on whether using FysBot
increases a user’s physical activity levels. It is also required to update the
user on their progress and to give rewards and positive feedback. Feedback,
given in the form of push notifications, can update the user on their progress
towards achieving their goals or congratulate them when a goal has been
reached. This feedback should be provided even if FysBot is in the background
or closed. Mechanisms have been implemented for this that attempt to wake
the application every 15 minutes to supply the current step count, which is then
used to evaluate the user’s progress. Due to operating system restrictions, a
higher frequency is not possible.

4.2.8 Backend Architecture

Backend Server

The FysBot architecture consists of a virtual machine deployed in Azure in the
Norwegian region and an Azure deployment of ChatGPT located in Sweden,
as shown in figure 4.8. Several services are defined in the vm, and all contact
one or several tables in the database. For simplification, a single dashed line
shows the communication between the services and the database. The figure
does not show communication between services, such as the scheduling service
contacting the notification service to notify the user of upcoming events.

40 chapter 4 requirement specif ication and design

The backend server is designed using a proxy at the front, which terminates
the TLS communication and forwards the request to the API controller after it
has been authenticated. A TLS-certificate system is attached to the proxy for
generating and renewing the TLS-certificates that enable secure communica-
tion. The API controller reads the request and uses one or several services to
handle the processing of the request, which again might require accessing the
database or external APIs. The AI chat service is responsible for forwarding
the user query to the chatbot personas to process the query and generate a
response.

Database Schema

An SQL (PostgreSQL) database is chosen as it provides a data model that fits
the needs of the application, which almost exclusively executes simple read-
and-write operations. In theory, a NoSQL database could be a better fit as the
application does not require the strictness of the ACID properties found in
SQL databases, which places an overhead on the transaction. Availability and
transaction speed are valued more in this context, but with the low number
of users expected, the difference between the choices is insignificant. The
database schema is shown in figure 4.9. No normalization techniques have
been applied.

4.2.9 Scalable Architecture

The system design that has been implemented is for a prototype. This sec-
tion explores a design that is scalable, has a higher fault tolerance, is more
resilient and has a stronger security. Only the most critical components are
discussed.

In the revised architecture shown in figure 4.10, the API server and the different
services are split into self-contained microservices. To provide a higher degree
of availability and fault tolerance, these microservices are replicated and can
be scaled either vertically or horizontally. Each service includes health check
endpoints to verify the availability of the service. A load balancer sitting in
front of the API server then uses health probes to route traffic to replicas that
are operational. This ensures that users can still access the system through
another replica should one of the replicas crash or overload.

The notification service handles notifications on scheduled events as well as
goal completions. In the revised architecture, the notification service places
pending notifications on a message queue like RabbitMQ. The notification
consumer then handles sending these notifications to the user. Decoupling the

4.2 design 41

Certbot

Token filter

Nginx

API controller

TSL certificate

User profile User goal User stepsSchedules Hiking trips Exercises AI chat

Services

Notification

Personas

RouterExercsises
Location
activity

Progress
review

Database

Figure 4.8: FysBot’s backend architecure.

notification system in this manner makes it easier to develop and maintain, and
the producers and consumers can scale independently. Using a message queue
like RabbitMQ makes it easier to guarantee that messages reach the user suc-
cessfully. It can also dynamically balance the load across the consumers.

The majority of the processing takes place in the ChatGPT service, which can

42 chapter 4 requirement specif ication and design

Figure 4.9: Database schema. Diagram is taken from pgAdmin using ERD tool.

scale independently from the rest of the system by being implemented as a
microservice. This service will contain the personas and respond to messages
sent to the chatbot.

Lastly, there is the authentication service implemented using OpenID Con-
nect (oidc) provided through Firebase. oidc provides secure mechanisms

4.2 design 43

for authentication and session management. Like the token authentication
mechanisms used in the current FysBot design, Firebase also offers the use
of JSON web tokens in their session management. Using a well-established
system like oidc is generally more secure and faster to implement.

Message queue

Users

Load balancer

Figure 4.10: Scalable architecture that splits the backend concerns into separate mi-
croservices.

5
Security and Privacy
Securing the user’s data is a large focus area in this project. The data processed
by FysBot is potentially sensitive information and includes messages between
chatbot and user, location, steps and goals, and the prospect of using voice. This
data must be protected against unauthorized access and should not be shared
with others. Section 5.1 provides information learned from consulting a security
expert. Section 5.2 explains how the API endpoints are secured. Section 5.3
explains how the users’ credentials are secured. Section 5.4 explains how the
communication between the client and the FysBot server is secured. Finally,
section 5.5 explains how the users’ privacy is protected when writing messages
to the chatbot.

5.1 Consulting a Security Expert

An initial security design prototype was constructed that focused on the use
of tokens (tokens are explained in section 2.5.3) for authenticating the user.
A meeting with a security expert at UiT was then scheduled to have the
prototype reviewed. The rest of this section goes into detail about several key
points discussed in this meeting.

In addition to the token, username and password are essential parts of au-
thentication. Without the ability to refresh a token using the username and
password, access to it cannot be revoked should the user’s phone be compro-

45

46 chapter 5 security and privacy

mised. Without the username, there is no way to know which token is owned
by which user, and without the username and password, there is no way to
give the user a new token should the user reinstall the app.

The user needs to be informed that their data is being used in queries to OpenAI.
Being aware of this, the user must decide whether or not to share sensitive data.
Of course, much of the responsibility also falls on the server, which makes the
actual request to OpenAI. Instead of providing the complete message history
in the requests, a sliding window could be used to only take, for example, the
last 20 messages. The size of the window could be tuned by the user, letting
the user create a balance between privacy and quality with which the user is
comfortable. The requests should not include the user’s username unless the
user explicitly states it in one of the messages.

To reduce the amount of sensitive information sent to OpenAI, an option could
be to identify the sensitive information and run the query on a local LLM.
Unfortunately, this is not feasible with the resources in this project. In a case
where step counts for individual days are considered sensitive (could be used to
track the user’s location), another option is to aggregate the steps over several
days, in which case it would be difficult to discern specific details about the
number of steps. This could then be fed into the query instead of step count
for individual days.

5.2 Protecting API Endpoints with JSON Web
Tokens

The API server exposes endpoints to, for example, fetch the user’s message
log. It is crucial that the request to such an endpoint is authenticated, making
sure a user is not able to fetch another user’s data. A solution to this is to give
each user an authentication token when the user starts using the app. This
token is then stored locally on the user’s phone and included in the request
when the user wants to access a protected route. A common approach to this
is to create a JSON Web Token (jwt). The jwt defines an access token
and a refresh token, where the access token is a short-lived token used to
authenticate routes while the refresh token has a longer lifetime and is used
to re-authenticate the access token. By using the JWT, the server does not
have to be concerned about a user’s session, as the required information can
be found in the user’s token. The trade-off with this approach is that the user
must create a username and password, which is required to create new tokens
when the refresh token expires. Encrypting the token residing in the user’s
phone could also be considered for extra security. The trade-off for security is

5.3 securing credentials 47

always accessibility and complexity, and additional complexity requires extra
implementation time, though necessary to protect the user.

A simpler approach to protecting routes could be using tokens that do not
expire in the demo period and are stored as plain text on the user’s phone. By
default, data stored by an application is not viewable by other applications[37].
This makes sure that malicious apps cannot retrieve data from other apps. The
most prominent security risk with plain text tokens is other people getting
access to the user’s phone. In this scenario, an attacker would be able to view
the data stored by the app and find the plain text token. The attacker would
then be able to make a request to the API server with the user’s token to retrieve
the user’s data.

Figure 5.1 illustrates the process of protecting the API routes. The security of
this depends on the user never sharing their token or password with anyone.

/api/user/createUser

/api/user/loginUser

/api/user/getUser

/api/messages/**

/api/goals/**

/api/badges/**

Password Token

API

HTTPS

{username: Kate, password: 1234}

(username, hash(password), token)

generateSignedToken(username)

HTTPS
200 OK {signedToken}

{signedToken: token, username: Kate}
HTTPS

Yes

No

token
signature

valid

Users Credentials

(username)

No

subject
=

Kate

401 Unauthorized

HTTPS

200 OK {data}
HTTPS

Figure 5.1: Authenticating users.

5.3 Securing Credentials

When the user first opens the app, the user is required to create a profile with
a username and password. The server will then store the username and other
metadata in a user table and the credentials in a separate credentials table.
With this strategy, if the user table is leaked, the associated credentials will
not be available to the attacker. There are also several cases where the user

48 chapter 5 security and privacy

metadata is required for some functionality within the client. This strategy
becomes a safetymeasure against a developerwho could otherwise accidentally
send the user credentials, too. In the latter case, although data transfer is
encrypted and authenticated, passing on user credentials unnecessarily should
be avoided.

The passwords within the credentials table are hashed, followed by salting. In
this case, an attacker would be unable to retrieve meaningful information from
the stored credentials easily. Even so, an extra security step could be ensuring
users occasionally update their passwords. It should also be noted that this
security measure is only efficient if the password is strong and, therefore,
difficult to guess to begin with.

5.4 Securing Communication

Communication between the client and the server is encrypted using Transport
Layer Security (tls). A design concern when using encrypted communication
is how the backend reads the encrypted requests or whether it should do so
at all. Azure provides tls offloading through a mechanism called Application
Gateway[38] that terminates tls at the gateway, providing the backend ser-
vices with the decrypted request[39]. This could provide better performance
as it removes the tls processing overhead from the backend servers, and only
a single certificate is needed at the gateway instead of one for each backend
server[39].

The solution of using the Application Gateway resource was tested and worked
as intended, securing the communication to the Azure vm gateway and pro-
viding the backend server with decrypted requests. However, the offloading
feature provided by Azure comes at a price, and while testing, it was found that
it is far more expensive than first anticipated. With limited funding, another
solution is needed.

A different approach tested was to fetch the certificate from the Azure key
vault and use it in the backend API server to decrypt the messages. The only
problem with this is that no solution was found to effectively set and update
the certificate used by the vm. Again, it was found that Azure provides pricey
mechanisms for handling such cases, which is not an option in this project.
This led to exploring options outside the confined spaces of the Azure Portal
box and evaluating what could be done manually on the vm. It was then found
that the open-source system NGINX has the ability to do tls offloading at no
cost. NGINX acts as a proxy that intercepts all traffic and collaborates well with
the free-to-use certificate system Certbot, which provides automatic renewal

5.5 protecting privacy in chatbot messages 49

of valid certificates.

Using NGINX, requests sent by the client will be picked up by the NGINX
proxy that uses its configured certificates instead of those configured by Azure.
With just a couple of lines in the configuration, tls offloading is enabled,
and the backend is served decrypted requests. Though several solutions were
attempted, this ended up being the best solution. In the implemented system,
NGINX interacts with the certificate generation system Certbot1 that generates
and automatically renews valid certificates used to enable TLS-enabled com-
munication. Figure 5.2 illustrates how an API request is decrypted by NGINX
and authenticated before accessing a resource.

Client API controllerNGINX

HTTPS POST
/api/newSchedule

JWT filter Schedule service

Client

HTTP POST
/api/newSchedule

User authenticated
/api/newSchedule

Handle storing
schedule

Database

Save(schedule)

Schedule saved

NGINX JWT filter API controller Schedule service Database

Store successful

HTTPS 201 Created

HTTP 201 Created

Figure 5.2: Call stack for an API request.

5.5 Protecting Privacy in Chatbot Messages

As discussed in section 3.4.2, queries to OpenAI are only processed and tem-
porarily stored in Azure servers located in Sweden. The message history is
stored for longer periods in the Azure VM located in Norway, as explained in
section 4.2.8. This data is then subject to the laws of GDPR. To further secure
the user’s privacy, attempts are made to include as little information about the
user as possible in the queries. The following lists data that could be used to
personally identify a user and how it could be used in queries:

• Username: Never added to the user query.

1. https://certbot.eff.org/

50 chapter 5 security and privacy

• Location: Exact coordinates are never added to the user query. Location
is used to fetch names of hiking trips in a large radius around the user
and weather conditions, which could be added to the user query.

• Steps: Steps for the current day, as well as aggregates of steps in the
current week/month/year could be added to the user query.

To reduce the risk of personally identifying a user based on the hiking trip
recommendations, hiking trips in a large radius around the user is used. It
should be noted that the risk increases for individuals living in a sparsely
populated area.

6
Implementation
This chapter gives a description of how FysBot’s design has been implemented,
the tools used, and how FysBot is published to the Google Play Store. Section 6.1
explains the implementation of the backend server and how it is deployed to the
Azure cloud. Section 6.2 explains how the database is set up and the injection
of the exercise and hiking trip data. Section 6.3 explains the implementation
for securing API endpoints and securing communication. Section 6.4 explains
how the ChatGPT model is deployed in the Azure cloud. Section 6.5 explains
the implementation of the features in the user interface. Finally, section 6.6
describes how the app is published to the Google Play Store.

6.1 Backend Server

The backend server was written in Kotlin using the Spring Boot framework with
PostgreSQL as the database management system. The following sections de-
scribe the implementation of the backend system, how the virtual machine was
deployed in Azure, how the ChatGPT model was deployed, data management
and security.

51

52 chapter 6 implementation

6.1.1 Azure VM Deployment

A virtual machine hosted in Azure was used to implement the backend server.
The entire deployment process was done via the Azure portal, which includes
selecting the specifications for the VM, deployment region, storage type, virtual
networks, reliability options and security. The specification is given in table 6.1.
For the prototype, the amount of compute needed is very small; thus, one of the
cheapest options was selected. The VM is deployed in Norway and uses Spot,
which is a solution provided by Azure where the VM utilizes spare capacity
in Azure’s VM pool. This gives us a VM at a cheaper cost but at the risk of
being evicted if the capacity in the VM pool is full. The latter is not desired in
a production system but is not an issue for the prototype.

Table 6.1: Virtual Machine Specifications

Specification Value
Operating system Linux

Size Standard DS1 V2

vCPUs 1

RAM 3.5GiB

Availability zone None

Scale set None

Security type Standard

Disk 30GiB SSD

Spot eviction policy Deallocate

Region Norway east

6.2 Database Setup

The Postgres database was deployed in a docker container and was connected
to the backend server through the Java Persistence API (jpa). Using the Object-
Relational Mapping (orm) system Hibernate as an abstraction layer to in-
terface with the database, the creation of tables and updates to the tables

6.2 database setup 53

were performed directly in the backend code. The tables in the database were
created by annotating Kotlin classes as an "entity", for which Spring Boot scans
through all the entities and constructs the tables when the server is run.

The exercise and hiking trip tables contain static data and require copying
data from JSON and CSV sources. This is easiest to accomplish when initially
building the docker image and involves injecting the SQL script shown in listing
6.1 into the docker image. The exercises are available in JSON format. To be
able to copy this data to Postgres, it has to be converted to Newline Delimited
JSON (NDJSON), which is done beforehand using jq[40]. Note that in the
insert statement of "primaryMuscles", which is originally an array, only the first
element is chosen as it is found that this array always contains a single element.
By removing the array, future processing becomes easier. The hiking trips were
manually written down in a CSV file and copied using this script.

54 chapter 6 implementation

Listing 6.1: SQL script for exercises and hiking trips

CREATE TABLE IF NOT EXISTS temp (data jsonb);

\COPY temp (data) FROM ’formatted_file.nd.json’ csv quote e’\
↩→ x01’ delimiter e’\x02’;

CREATE TABLE IF NOT EXISTS exercises (
name TEXT,
force TEXT,
level TEXT,
mechanic TEXT,
equipment TEXT,
primaryMuscles TEXT,
secondaryMuscles TEXT[],
instructions TEXT,
category TEXT,
images TEXT[]

);

INSERT INTO exercises
SELECT

data->>’name’,
data->>’force’,
data->>’level’,
data->>’mechanic’,
data->>’equipment’,
(ARRAY(SELECT jsonb_array_elements_text(data->’

↩→ primaryMuscles’)))[1],
ARRAY(SELECT jsonb_array_elements_text(data->’

↩→ secondaryMuscles’)),
data->>’instructions’,
data->>’category’,
ARRAY(SELECT jsonb_array_elements_text(data->’images’))

FROM temp;

CREATE TABLE IF NOT EXISTS turer (
name TEXT,
lat DOUBLE PRECISION,
lon DOUBLE PRECISION

);

\COPY turer(name, lat, lon) FROM ’turer.csv’ DELIMITER ’,’ CSV
↩→ HEADER;

6.3 securing api endpoints 55

6.3 Securing API Endpoints

6.3.1 Authentication

JSONWebToken (jwt) are used for authenticating API routes, and the backend
server handles the generation of jwts. This is done through a jwt class found
in Java’s IO package. When a user of the FysBot app creates a new profile or
signs into an existing one, a new jwt is generated based on the user’s username,
known as the "subject" of the token. In addition, the token is annotated with an
issue date and an expiration date. Using a public/private key pair generated for
the server using OpenSSL[41], the last step of the token generation is signing
it with the private key.

Table 6.2 shows every available API endpoint through the backend server. The
endpoints that are Authenticated always require a jwt and the username. In
Spring Boot, the implemented jwt filter class extends the native OncePerRe-
questFilter class, effectively intercepting all requests so that authentication
can be performed before the request is passed to the API controller. When the
server receives a request on an authenticated endpoint, the filter class checks
that the token’s signature is authentic using the server’s public key and then
extracts the subject from the token. The server can then authorize the request
by verifying that the subject matches the username within the request.

56 chapter 6 implementation

Table 6.2: API Endpoints (TLS is enabled for all endpoints)

HTTP Method Endpoint Authenticated
GET / No

GET /api/user/getUser No

POST /api/user/createUser No

POST /api/user/loginUser No

POST /api/user/stepsToday Yes

POST /api/user/setSettings Yes

POST /api/user/scheduleEvent Yes

GET /api/openai/chat Yes

POST /api/goal/getGoal Yes

POST /api/goal/setGoal Yes

Since the request has to be read by both the jwt filter class (to extract the
username) and by the destination endpoint (if the token validation process
succeeds), caching the request is required as illustrated in figure 6.1. Typically,
the request body can only be read once, as caching the body for each request
can be expensive and introduce scalability issues. However, for the moment,
this is the only identified solution to the problem. To read the request body
multiple times, Java’s HttpServletRequest and ServletInputStream classes
are extended, and the input stream reader methods are overridden to cache
each request.

6.3 securing api endpoints 57

Figure 6.1: Caching a request to enable multiple reads.

6.3.2 NGINX and TLS

As explained in the security chapter, the backend server has enabled Transport
Layer Security by using Certbot and NGINX. For this, the configuration shown
in listing 6.2 is added to the NGINX configuration file. The location block
specifies that incoming requests shall be proxied to the local Spring Boot server
running on port 8080 using HTTP (thereby, TLS is terminated by the NGINX
proxy).

Listing 6.2: NGINX TLS configuration

listen 443 ssl default_server;
listen [::]:443 ssl default_server;
ssl_certificate /etc/letsencrypt/live/fysbot.norwayeast.

↩→ cloudapp.azure.com/fullchain.pem;
ssl_certificate_key /etc/letsencrypt/live/fysbot.norwayeast

↩→ .cloudapp.azure.com/privkey.pem;
server_name fysbot.norwayeast.cloudapp.azure.com;
location / {

proxy_pass http://127.0.0.1:8080;
}

58 chapter 6 implementation

The certificate is created using Certbot with the command shown in listing
6.3.

Listing 6.3: Using Certbot to generate TLS certificate

$ sudo certbot --nginx -d fysbot.norwayeast.cloudapp.azure.
↩→ com -d www.fysbot.norwayeast.cloudapp.azure.com

6.4 Azure ChatGPT Deployment

Like the Azure VM, the ChatGPT model was deployed by creating an OpenAI
instance through the Azure portal. The model is deployed in Sweden within
the same VNet used by the VM. The ChatGPT instance was configured to be
accessible only from within the VNet, meaning that only the VM will have
access to it. When created, the OpenAI API can be accessed through the URL
of the ChatGPT deployment with the API keys generated by Azure.

6.5 User Interface

The user interface was written in TypeScript with the React Native (RN) frame-
work, using Metro for building and testing the application while developing.
The following sections discuss specific details of the implementation of the
UI.

6.5.1 Contexts

The following contexts (introduced in section 2.6.2) are implemented in Fys-
Bot:

• ChatbotContext: Holds state for messages, chatbot name and avatar.
This context will read messages, name and avatar from the user’s local
storage and inject them into the context state on launch of FysBot. It will
also inject a welcome message as the first message in the message state.
Whenever one of the states updates, the new values are also saved in the
local storage.

• BadgeContext: Holds the state for earned badges. This context runs the
badge synchronization process by repeatedly checking the user’s step
count, adding new badges to the state, and storing them in the user’s

6.5 user interface 59

local storage when earned. On launch of FysBot, the context will load
the earned badges from the user’s local storage.

• GoalContext: Holds the state of the user’s current daily step goal. Set
goals are stored in local storage and retrieved on launch.

• StepContext: Holds the state of the user’s current steps and includes
methods for retrieving steps. It also holds the state of whether the user
has granted FysBot access to their Google Fit data. This context will
continually request the current step count and update the step context if
needed.

• KeyboardContext: Holds the state of whether the keyboard is currently
in view.

• ScheduleContext: Holds the state of the scheduled events set by the user.
Updates to the schedule state are stored in the user’s local storage and
loaded on launch.

• UserContext: Holds the state of the user’s username, avatar and logged
in status, as well as the state for whether it is the first time the user has
launched the app. If the user has previously created a profile, the user-
name, avatar and first-time user states are retrieved from local storage.

6.5.2 Login

The login screen is the first content displayed to the user on the initial launch
of FysBot. This screen is shown depending on whether the user owns a valid
authentication token. If the user does not have a valid token, the user is able
to either create a new account, as seen in figure 6.2a, or log in to an existing
account, as seen in figure 6.2b, in order to gain a token. Since the token will
be used most frequently for automatic authentication, the create user text
input fields are shown first, while the log-in option requires an extra button
press.

60 chapter 6 implementation

(a) Create new user. (b) Login existing user.

Figure 6.2: Create user and login tabs.

6.5.3 Create New User

When the user creates a new user, the server checks whether a user already
exists with the same username; if it does, the user receives a descriptive error
message. If not, the user profile is created. The creation process involves
sending a request to the server to store the username, creation date, and hash
+ salt of the password in the backend database. In return, the user receives an
authentication token, which is stored in the local storage of the user’s phone.
This token is then used for future authentication requests.

The user is then taken to the next part of the user creation process, which
involves setting up their avatar, customizing the chatbot with a name and
avatar and finally setting a daily step goal as shown in figures 6.3a, 6.3b and
6.3c, respectively. After a valid step goal is set, the user is taken to the main
content of FysBot.

6.5 user interface 61

(a) Seleting the user’s avatar. (b) Customizing chatbot.

(c) Setting the daily step goal.

Figure 6.3: The next three steps required to complete the user profile creation after
setting a username and password.

62 chapter 6 implementation

6.5.4 Log in Existing User

Logging in as an existing user requires a valid username and password combi-
nation. The server first verifies that a user with the given username exists, then
checks if the hashed + salted password matches the credential stored in the
database. If not, the user receives a description message of what went wrong.
If the verification succeeds, the user is given an authentication token, which is
stored in the local storage of the user’s phone.

6.5.5 Tab Navigation Bar

An essential part of an application with multiple tabs is enabling simple navi-
gation. In FysBot, a navigation bar is placed at the bottom of the screen, which
follows the user in every tab they visit. Each option in the navigation bar has
an associated image and descriptive text to recognize the tab’s functionality
easily. A state variable contains information about the currently selected tab,
and by pressing one of the tab navigation options, the state value updates and
the new content is rendered. This is achieved by pointing a specific state value
to a particular functional component (see functional components in section
2.6.2). To easily recognize which tab is currently in view when looking at the
navigation bar, the same state value is used to highlight the currently selected
tab. The initial state value is set to the chatbot messaging tab, as this is the core
part of the application and will be the first thing the user sees after logging
in.

An issue with the navigation bar is that it will sit on top of the keyboard
whenever the keyboard comes into view, cluttering the screen. Because of this,
the navigation bar is conditionally rendered and only shown if the keyboard
is not active. This is achieved by consuming the keyboard state from the
KeyboardContext.

6.5.6 Chatbot Messaging

The chatbot messaging component is the core part of FysBot. It displays all
messages between the user and the chatbot, as well as a text input field for
writing a new message that can be sent by pressing the arrow button. Pressing
the text input field will bring the keyboard into view, and the navigation bar will
be hidden. When the user sends a new message, an API request is sent to the
server to get the chatbot response. Based on the topic of the message, additional
information like steps or location could be required. The client will then await
the server’s response and conditionally send the required information if needed.
By consuming the ChatbotContext, the new user message and its response are

6.5 user interface 63

added to the message state. Since this state is used in the JSX returned by
the messaging component, any new additions to the message state cause the
component to re-render, instantly showing the new messages.

The ChatbotContext is also used to display the name and avatar of the chatbot
at the top of the tab, with the option of changing the name of the chatbot. In
combination with the UserContext, each message is accompanied by the avatar
of the user and chatbot to enhance the user experience.

Figure 6.4 is an example of asking for exercise recommendations where the
Exercise Recommender Persona first lists a set of exercises based on the user
query. It is then able to retrieve additional information if needed. Each exercise
has an instruction as well as two images to illustrate the exercise.

(a) Getting exercise suggestions (b) Getting instructions and images

Figure 6.4: Requesting exercise recommendations. erp found the following parame-
ters in the first query: level=beginner, category=cardio.

Figure 6.5 shows the user asking for progress review within the app. The

64 chapter 6 implementation

Progress Review Persona will request the user’s steps and craft a response
based on the steps.

Figure 6.5: Requesting progress review.

Figure 6.6 shows the user asking for hiking trips. The Location Activity Persona
will request the user’s location, fetch nearby hiking trips and the currentweather
conditions at that location, and use it in its recommendation.

6.5.7 Daily Schedule

The daily schedule feature allows the user to create events for the current day
and have the option to get notifications on specific events. As shown in figure
6.7b, the user is able to add new events by pressing the plus icon, which brings
up the event customization modal shown in figure 6.7a. Here, the user is able
to set the hour and minute of the event and optionally press the notification
symbol to receive a notification before the event takes place.

6.5 user interface 65

Figure 6.6: Requesting hiking trips.

To display the existing events in the schedule, the component consumes the
ScheduleContext and retrieves the schedule state. Creating a new scheduled
event will add the event to the state,which re-renders the list of scheduled items
shown in figure 6.7b. Each item is sorted by time before rendering. Adding an
item with notification enabled will issue an API request with username, time
and event title to the server.

66 chapter 6 implementation

(a) Setting a new schedule entry. (b) All events in schedule

Figure 6.7: Schedule feature in app.

6.5.8 Badges

The badges, shown in figure 6.8, are based on the user’s daily step progress
and can be earned by walking a certain amount of steps. It consumes the
BadgeContext and aggregates the number of times each badge has been earned.
This number is then displayed in the corner of each badge. Pressing a badge
will display the requirements for how the user can earn it.

6.5.9 User Profile

The profile tab allows the user to set a new daily step goal and review their
step count. The step count is fetched from the StepContext and displayed both
in a circle that shows the step count for the current day and in a bar chart for
the current week, as seen in figure 6.9. The circle can also display the step
progress directly against the current goal, shown in the same figure.

6.5 user interface 67

Figure 6.8: Step badges.

6.5.10 Firebase Push Notifications

Push notifications are provided through the Google service Firebase Messag-
ing[42]. The user may get notifications on goals reached or for upcoming
scheduled events. To enable Firebase Messaging, the FysBot application is
registered in the Firebase console through their web portal. From the web
portal, a JSON file is downloaded containing the API key for the messaging
service along with other metadata such as project identifiers. This JSON file
must be placed under /app within the /android root folder to enable Firebase
Messaging on the client. The Firebase React Native API can then be used to
handle incoming notifications and fetch the Firebase token associated with the
user’s mobile device. This token is sent to the server when the user logs in or
creates a new profile in the FysBot app.

In the backend server, a different JSON file is required. This file is downloaded

68 chapter 6 implementation

Figure 6.9: The user profile which displays step counts and the step goal, which can
be updated by pressing the "Set goal" button.

from the Google Cloud Console and contains metadata such as the ID of the
client sending the push notifications. It is used to retrieve the server’s Firebase
token, which is necessary for authenticating the server against the Firebase API.
The backend server can then send notifications to registered users by including
the user’s Firebase token in the API request.

6.6 Publishing to Google Play Store

To publish the FysBot Android application, the React Native Command-Line
Interface (cli) is used to build a signed Android App Bundle (aab). The
signing key is generated using the Keytool cli provided by Java. Navigating
to "internal test" in the Google Play console[43], a new version of FysBot is

6.6 publishing to google play store 69

published by uploading the signed aab. Google will then perform a verification
process to check the validity of the signature andmake sure that the application
does not request unauthorized permissions. The permissions are, for example,
reading Google Fit steps, which is allowed in the internal testing stage. If the
verification process is successful, the application can then be published. For
users to be able to download FysBot, their Gmail accounts must be added to a
list of test users within the Google Play Console.

An important thing to note is that Google will have its own certificate for
signing the published build. This certificate has to be used to authenticate
FysBot against other Google and third-party APIs like Google Fit. To fix this,
the SHA-1 fingerprint of the publishing certificate is added to the credentials
of the Google account used to publish the application.

7
Evaluation and Result
In this chapter, an evaluation, and the results, of the usability study is provided
in section 7.1. This includes the time used for the different tasks as well as the
most notable comments from the participants. In the following section, 7.2, an
evaluation of the system performance and cost is given.

7.1 Usability Study

FysBot was evaluated using the think-aloud method as explained in section 3.3.
This section will focus on how well the chatbot and the application performed
as a whole and present the participant’s feedback, which was given during the
completion of tasks. The tasks are presented again in table 7.1 to make it easier
to follow the evaluation process. The time participants used to complete specific
tasks is also shown and was determined using the voice recording.

Table 7.1: Tasks evaluated using the think aloud method

NO Task
1 Download and install the FysBot app

2 Sign in to FysBot - create a username and password

3 Give the chatbot a name

71

72 chapter 7 evaluation and result

4 Set step goal

5 Start chatting with the chatbot

6 Find and read information about FysBot

7 Ask the chatbot to recommend exercises

8 Change step goal

9 Make a physical activity plan for the day

10 Ask the chatbot to give feedback on steps

11 Ask/check for overview of physical activity

12 Ask the chatbot a physical activity related question

13 Ask the chatbot a general question

14 Check the overview of steps

15 Check how many badges you have received

16 Ask the chatbot to suggest a hike

7.1.1 The Participants

Participants were selected from among friends and colleagues. Five participants
aged 20-60 were included in this test. All participants are considered highly
proficient with technology. Participants were sent a link via their Gmail to
download the app. Those who did not own Android devices could borrow one
for the sake of the test.

7.1.2 Downloading and Installing FysBot

Since FysBot was released on an internal test stage, participants might not have
necessarily found it in their Google Play store. In most cases, the participants

7.1 usabil ity study 73

had to be given the download link directly. This caused some complications
with the time measurements, so they were not calculated for this task. In
any case, none of the participants experienced any issues downloading and
installing the app after receiving the link.

7.1.3 Logging into FysBot

The first four tasks involved downloading and installing the FysBot app, creating
a user account, customizing the chatbot, and setting a step goal.

After opening FysBot for the first time, the participants are presented with a
Google account login pop-up to enable Google Fit data collection. No problems
were encountered in this step, although one participant stated that it would
be nice to know why this login was necessary. After logging into their Google
account, the next step was to create a new user profile. Here, the user first sets
their username, selects their avatar, and customizes the chatbot with its own
name and avatar.

Two participants did not find the chatbot customization intuitive, as they did
not realize why they had to select an avatar a second time (not knowing it was
for the chatbot). This can be seen by looking at the times for participants 2 and
3 to complete Task 3 in figure 7.1. It was also mentioned that the selected avatar
could be made more clear, as people with vision problems might have difficulty
seeing it. The last step of the ’create user’ process was to set a step goal, where
one of the participants noted that it would be nice to know what a good step
goal for them would be. For tasks 2 and 4 in figure 7.1, some participants spent
more time thinking about their username and step goal.

7.1.4 Chatbot

There are seven tasks that revolve around interactions with the chatbot (5, 7, 10,
11, 12, 13 and 16 in table 7.1). The time to complete these tasks is not included, as
participants had no issues navigating to the chatbot tab and asking the chatbot
the appropriate questions to get the information they wanted. However, it is
also in these tasks that the most critical user experience issues were discovered
and are discussed further in section 8.1.2.

Hiking Trip Suggestions

Overall, users were satisfied with the chatbot’s responses to hiking trip sug-
gestions, step reviews and exercise recommendations. However, they were not

74 chapter 7 evaluation and result

Figure 7.1: Time taken to complete task 2: Sign in to FysBot, task 3: Give the chatbot
a name, and 4: Set a step goal.

entirely satisfied with the responses to the follow-up questions. Two partici-
pants tried to ask for hiking trips near a specified location, unaware that the
chatbot only uses the user’s current position. One of the participants tried to
ask for more information about a particular hiking trip using the trip name.
The chatbot did not understand the query since it’s not programmed to give
additional details on specific hiking trips.

Exercise Recommendations

For the exercise recommendations, participants were satisfied with getting a
list of exercises based on their exercise goals. They also tried to ask the chatbot
for additional information on particular exercises and were pleased to receive
instructions and images on how to perform them. However, one participant
suggested that the exercise names should be in Norwegian to make it easier
to identify the purpose of the exercise. There was also a suggestion to press
one of the recommended exercises to get instructions and images instead of
having to type the exercise name.

7.1 usabil ity study 75

Steps Review

All participants successfully got a step review response on their first try, although
the response content was not satisfactory due to a bug in the code which
recorded the wrong step count. This is a critical error which must be fixed.
One participant did not have Google Fit installed but still tried to complete
the step review task, although the chatbot responded by stating that it did
not have access to the steps. Another participant did have Google Fit installed,
but FysBot was unable to collect the step data. Additionally, one participant
felt that the chatbot’s response lacked sufficient focus on the number of steps,
desiring more concrete statistics.

7.1.5 Step Goal and Step Overview

Task 8 involved going to the user’s profile tab and changing the step goal
the user initially set when creating their profile. In figure 7.2, it can be seen
that Participant 5, in particular, took a long time to complete this task. Like
Participant 4, they tried asking the chatbot to change the step goal before
realizing it had to be done manually in the profile tab. Participant 2 was
initially prevented from setting the step goal because they mistyped it and
tried to set a goal over 100 000 steps, which the app did not allow.

All participants successfully found the step overview of task 14 in the user
profile tab. As seen in figure 7.2, there were no issues related to this task.

7.1.6 Finding Information About FysBot

Task 6 involved finding and reading information about FysBot, for which most
participants had no problems, as seen in figure 7.3. However, Participant 4
tried to ask the chatbot first before identifying the information tab in the top
right corner of the application. The information button and the information tab
within the app is shown in figure 7.4. They then suggested that the information
tab should have been presented right after logging into FysBot.

76 chapter 7 evaluation and result

Figure 7.2: Time taken to complete task 8: Change step goal and task 14: Check the
overview of steps.

(a) The information button
(indicated by the arrow).

(b) The information displayed after pressing the
information button.

Figure 7.4: Schedule feature in app.

7.1 usabil ity study 77

Figure 7.3: Time taken to complete task 6: Find and read information about FysBot.

7.1.7 Badges and Daily Schedule

In task 9, participants were asked to set a physical activity plan for the day
in the schedule tab. Three of the participants assumed that they were to set
up an exercise routine, creating schedule entries with exercise names and the
duration of that exercise. Because of this, they were unsure of the purpose of
the notification option.

The time to complete task 9 is shown in figure 7.5 and was measured from
when the user read or was given the task until the first scheduled event was
created. Participant 1 spent a little time looking for the correct tab to create
the events but had no problems after that. Participant 2 initially did not set
the hour of the event as it was assumed the scheduled events were exercises
in a workout plan (and thus did not need the hour component). Participant 3
initially asked the chatbot to create the plan but had no problems after finding
the correct tab. Participant 5 used the longest time and thought the schedule
was for creating a workout routine for the day. In addition, this participant did
not set the hour component for the same reason as Participant 2 and created a
title that was too long. Some participants preferred longer titles in the event
as this was limited to 20 characters.

78 chapter 7 evaluation and result

Task 15, checking how many badges the user has received in the badges tab,
was done with no problems, as evident in figure 7.5. Four of the five participants
did, however, have some comments about the design of the badge tab. They
found it unintuitive to know whether or not a badge had been earned because
of the color options used. Two of them also thought they should already have
received some of the badges based on their current step count (in the current
version, badge progress is only recorded after installation of FysBot).

Figure 7.5: Time taken to complete task 9: Make a physical activity plan for the day
and task 15: Check how many badges you have have received.

7.1.8 Overall Thoughts

Each test ended with asking the participants to give general feedback about
FysBot, and theywere encouraged to comment on the design, too. The following
lists some of their suggestions for improvement that have not been stated
previously:

• Edit font size. It should be possible to increase the size of the font.

• Edit avatars. It should be possible to change the user’s and chatbot’s
avatar.

7.2 system performance and cost 79

• Chatbot name editor. The chatbot name edit feature was not intuitive.

• Emphasise chatbot tab. Since the chatbot is the app’s main feature, it
would be nice if the tab option in the tab navigation bar was somehow
more dominant than the other options.

• Information. When using the app for the first time, some information
about the usage of the app and the abilities of the chatbot should be
presented immediately.

• Swiping between tabs. It would be nice to have the ability to swipe
between tabs instead of using the tab navigation bar.

• Wearable sensors. The total step count could take into account the steps
registered on wearable devices.

• Hiking trip difficulty. The difficulty level of the hiking trip could be
stated to get more appropriate suggestions.

• Hiking trip location. Could have a map to show the location of the
hiking trip.

7.2 System Performance And Cost

The usability study encountered no errors that led to system failure. The study
took approximately 6 hours, and the backend server ran continually without
problems. The total cost of running the backend server and its associated
resources on the day of the usability study amounted to 7.56 NOK. Considering
the different time frames when the server was not in use, the cost of renting
the vm is approximately 3.22 NOK per day. Therefore, the price of the added
load was 4.34 NOK. For the ChatGPT deployment, a total of 2.39 NOK was spent
on 387 messages and completions.

8
Discussion
The following sections discuss certain topics in design, ethics, implementation,
and user testing to reflect on the parts that worked well and those that still
require improvement.

8.1 Software Development Process

8.1.1 Solving a Problem

FysBot aims to motivate people to become more physically active. Each design
and implementation decision strives to solve the challenge of motivating and
guiding individuals towards improved physical activity. Therefore, the features
of the system are influenced by this objective. By contemplating the problem
that FysBot seeks to address, each decision is made to align with the user’s
needs.

In section 3.2, two fictive users and several user stories were presented. This is
used to concretize the problem that needs to be addressed and from which a
set of features can be outlined. The features are then realized in the prototype
of FysBot. The prototype includes all the features that were scheduled for this
project.

To ensure that there is value in the design decisions and that the implemented

81

82 chapter 8 discussion

system works as intended, it is ideal that new prototypes are pushed out and
tested constantly. Unfortunately, only one prototype of FysBot was created
during this project. To some extent, this was because FysBot has a single
developer, but even so, delivering multiple prototypes could have still been
possible. This could have been done by accepting that parts of the application
need not be finished or even functional for it to be evaluated. One concern is
finding participants to test the prototypes, as having multiple usability tests
with multiple users is time-consuming. For this project, if multiple prototypes
were created, having the PhD student test each prototype would have been a
great option.

8.1.2 Usability test

Testing the usability of a product is difficult to do in a vacuum, and the success
of the product critically relies on testing it with real users. The think-aloud
methodwas an excellent tool for discovering how users interact with the system.
Many of these interactions were unexpected, where the user had a different
perception of using a feature than originally intended.

System Performance and Cost

Section 7.2 provided an evaluation of the performance and cost of the system
as a whole. With such a small group of users over a short period, the reliability
of these results most likely does not transfer to a scenario with more users.
However, one could use the cost from the usability study to project costs for
many users.

Findings

Most users thought the daily schedule feature was a method for setting up a
workout plan and inputting the exercise name and the duration of the exercise.
This could partly be due to how the task was formulated: "Make a physical
activity plan for the day". The title of the schedule tab could be updated to avoid
future misunderstandings. In addition, a date should be displayed, possibly
under the title. There was also some dissatisfaction about the legal length
of the title on a scheduled event. This is set to a maximum of 20 characters
and should be increased. Some users expressed a desire to set a weekly plan
instead,which is a good idea and should be implemented in the future. Perhaps,
users can have the option to choose the kind of plan they would like to set.
There was also a desire to update scheduled events after creation. This can
easily be fixed by implementing an on press listener for each event, enabling an

8.1 software development process 83

editorial mode. Lastly, in the daily schedule feature, some users wondered what
enabling notification on an event did for them (most likely due to thinking the
daily schedule was a workout routine planner). The text beside the notification
button could be more descriptive to prevent future confusion. Another option
could be to enable an informational pop-up text box to appear and explain it
when the user first enters the schedule tab.

For the tasks relating to the chatbot, the participants were able to ask for exercise
recommendations, hiking trips and step progress reviews easily. However, they
received unexpected responses to some of the follow-up questions. For the
hiking trip recommendation task, users successfully got recommendations on
the first try, but some users wanted more information about specific trips, like
route information. The first issue to address with this is to inform the user
that this type of information is not available at the moment, possibly through
a response from the chatbot. Attempts have been made to make this sort of
functionality available by using an open database provided by Kartverket that
contains detailed information on hiking trips (route information, difficulty,
etc.). However, due to several problems in using the database, implementing
this functionality proved harder than anticipated. Kartverket was contacted to
resolve the issues, but they could not help. The second issue is that the chatbot
mistakenly recognized the request for additional information as a request for
general hiking trip recommendations, for which it simply repeated the initial
recommendation. This sort of problem also occurs with the Progress Review
Persona as any follow-up questions, like "how many steps should I be walking?"
caused the prp to repeat the user’s step progress.

There were problems experienced with the Exercise Recommender Persona
as well. If it is found that a query should be processed by the erp, it will try
to extract information on which types of exercises to recommend and then
statically list them. If no specific information is found in the query, it will ask
for more information. In one particular case, Participant 2 asked: "Create a plan
that makes me reach my goals", for which the chatbot just listed a set of random
exercises, which was not really what the participant expected to get. The erp
has to be more clever in its reasoning, always asking the user what their goals
are to prompt for more information before making its decision. An additional
mechanic that can be implemented is not to list the exercises statically, but
instead tell the erp "Here are some exercises that match the user’s request.
Use them if needed to answer the question.". In this case, knowing the user’s
goals, the erp could answer the question by even creating a complete workout
plan. A proposed solution to mend these issues with the chatbot personas, as
well as other design limitations, is discussed in section 8.8.

84 chapter 8 discussion

Limitations

For the usability test, all participants were quite proficient with technology and
had previously used chatbots like ChatGPT. This is a limitation of the study,
which could have included a more diverse group.

Exactrating time measurements from the audio recordings of the think-aloud
test were challenging. The participants could have been focused on talking
about their actions and thoughts and asking questions to get clarification while
performing the tasks. Therefore, it can be assumed that the time users spent
on certain tasks could be lower than what was measured in the study. There
was an attempt, however, to cut out the time used to ask questions and provide
clarification. Measuring the correct time can also be challenging since most
users probably navigated between the tabs while searching for a solution for
a particular task. They could then observe parts of the application associated
with other tasks. Therefore, they knew exactly what to do when they started
on the later tasks.

The study had no strict rules about the order in which participants completed
the tasks, which also made time measurements difficult. It is thought that
being more strict about following the exact order could give more accurate
results. The time measurements were also taken by listening to the recordings
of each participant, but ideally, this should have been done while observing
the participant’s actions within the application. The trade-off is that this could
be disturbing to the participant if it is not done in a subtle manner. Optionally,
accurate timings after the fact could be achieved using analytics tools, like the
ones described in section 8.6.

8.2 Avoiding Misuse of FysBot

To use the app, a user profile has to be created using a username and password,
and a token filter helps authenticate the API endpoints such that a user cannot
retrieve another user’s data. In a production system, additional authentication
mechanisms should be implemented to secure the system further. This could
be, for example, in the form of a verification message that is sent by email or
SMS. One of the reasons for doing this is to be more guarded against exploit
attacks. Hackers will often use bots that try to perform various exploits on open
ports, which was experienced in the FysBot server during testing. Using web
crawlers, they are also able to find the API endpoints of the server, which they
also try in their exploits. Some bots are smarter than others, and it has been
experienced that they are able to create user profiles by randomly filling in
parameter values. This can, to a large extent, be avoided by using multi-factor

8.3 complexit ies with step collection 85

authentication. A short-term solution could be to add a long static string at the
end of the username when the user creates a profile. This string is also known
by the server and removed before the user profile is stored in the database. If
the username does not contain this string, the server rejects the request.

8.3 Complexities with Step Collection

Many of the largest mobile manufacturing companies implement their own
health application with their own API, which usually comes preinstalled on the
user’s phone. The user also has the option to download and install other health
applications as they see fit. With the abundance of possible health applications,
it is difficult for an application like FysBot to integrate directly into a specific API.
For the test release of the FysBot prototype, only the Google Fit API was used
to obtain steps. FysBot was implemented to obtain steps via Health Connect as
well, but could not be released in the Google Play store without going through
a verification step as mentioned in 4.2.7 (unlike Google Fit that could be used
as long as FysBot is released in a testing stage). This revelation came in the
latter part of the project, and due to the time it takes for Google to approve an
app, the use of Health Connect was disbanded.

Health Connect is used to share health data between applications installed on
the user’s phone. Although a few devices currently come with Health Connect
preinstalled (approx. 16%), this number will rise in the coming years. Since
Health Connect is the better solution for obtaining steps, users can avoid
installing an additional app in order to use FysBot. More importantly, the
Google Fit API will no longer be available after June 30, 2025. This makes sense
as there should ideally be no need to use multiple APIs to provide health data
related experiences in an app. In conclusion, the necessity for verification to
use Health Connect should have been recognized earlier, serving as the only
method of obtaining the user’s step data.

8.4 Lacking IOS Implementation

One of the initial goals of FysBot was to release it for both Android and IOS,
as this would make it available to more users and make finding test users
easier. The plan was to get a finished version for Android first, then port it
to IOS. Although the client interface is written in a cross-platform language,
some modifications are still required for an optimal experience. There are also
some features that necessitate implementing native code (code that is designed
for a particular platform) that would also have to be rewritten for IOS. It is

86 chapter 8 discussion

unclear how long this will take, but finishing a working version on Android
with the backend server, security, and AI takes a substantial amount of time. It
was, therefore, decided that improving the quality of the application is more
valuable at this time.

8.5 Steps for Releasing FysBot to Production

Currently, the prototype of FysBot is released through the Google Play Console
as an internal test release. In order to do a production release, some steps must
be completed. First, assuming that only Health Connect is used, a form has to
be filled out explaining why and how the user’s health data is used. The app
can then be released to a closed testing stage. Google requires that an app is
tested in closed testing for 14 days with at least 20 test users. After this test,
a second form has to be filled out explaining the application and how it has
been tested. In the next step, the address to the application’s homepage must
be provided, including a link to the application’s privacy policy and terms of
service. When all of this is done, the application can be released to production
and installed by the public.

8.6 Gaining Insight into App Use

As stated earlier, a big part of the success of an application is understanding
how it is used and discovering patterns that can be used to improve the user
experience. In this project, this was accomplished through a usability test, but
it can also be done continually by implementing user analytics tools (assuming
the application has users). There also exist free-to-use analytics tools like
Google Cloud Analytics[44] that can be easily integrated. Using tools like this,
usage patterns like how the user navigates between tabs or interacts with
buttons and other visual components can be monitored. There may be some
legal obstacles if a cloud provider is used, especially when the application
contains sensitive data. However, great alternatives to Google Analytics like
Matomo[45] offer a free on-premise solution such that the user analytics data
can be stored on self-hosted servers. With more time, integrating user analytics
tools would greatly benefit analyses from future application tests and possibly
production releases.

8.7 standalone app vs. social media deployment 87

8.7 Standalone App vs. Social Media Deployment

In related studies, physical activity chatbots are often deployed on social media
platforms[7][8] instead of standalone apps like FysBot. There are many reasons
for doing this, so the choice of using a standalone app in this project should be
discussed in more detail.

One of the reasons for choosing a social media platform, like Messenger or
Telegram, is that they already have large user ases, making it easier to reach a
larger population. In this case, one can avoid having the user install another
app to use the chatbot as they are most likely already using a popular social
media messaging platform. It could also cause the chatbot to be thought of as
another friend, which could have positive psychological effects.

Another big reason for using existing social media platforms is that implemen-
tation is much quicker and requires less software development knowledge. The
social media messaging platform already has a messaging interface, it secures
data in traffic, and runs on the social media providers servers. To host the
chatbot itself, an independent server is still needed to run the backend Natural
Language Processing system, which makes the necessary API calls to chat with
the user. There could also be a need for installing an independent app even if a
social media platform approach is used. This could be to, for example, collect
the user’s steps and send them to the chatbot server.

The limitation of using existing social media messaging platforms is that there
are few opportunities to implement features outside the messaging interface.
Most often, one is restricted to the existing features of the messaging platform.
One is also heavily restricted to the messaging platform’s policies and the
belief that the user’s data is secure and not misused for political agendas[46]
or otherwise.

Selecting the right messaging platform can be a problem. Among the youth
in Norway, in terms of usage, the top-ranking platforms where messaging is
a core component are: Snapchat (95%), Instagram (90%), Messenger (62%)
and Discord (25%)[47]. Other platforms like WhatsApp and Telegram see less
than 10% of usage[47]. Of these, Snapchat and Instagram are not suitable
for implementing chatbots, and it is unlikely that the user already uses What-
sApp or Telegram. Norway also prohibits Norwegian ministers and officials
from using Telegram along with TikTok, so these are also not considered safe
options[48].

Discord is predominantly used by young males, while Messenger is widely used
across all age groups. Therefore, Messenger is one of the few viable options for
integrating a chatbot. A chatbot in Messenger was explored in the capstone [9],

88 chapter 8 discussion

and it was found that Messenger offers an easy-to-use API for conversing with
users. The problem with the Messenger chat API is that its design is focused on
marketing and has a few restrictions that make it hard to implement Behaviour
Change Techniques. One of these policies implements a restriction on when
the chatbot is allowed to send the user a message. Specifically, the chatbot
is only allowed to send the user a message within 24 hours of receiving a
message from the user. When the user sends a new message to the chatbot,
this 24-hour timer resets. This restriction was explored in the capstone project
[9] and heavily affected the study by To, Quyen G and Green, Chelsea and
Vandelanotte, Corneel[49], as the policy was implemented during the test trial
of the chatbot. This is evident that sudden policy changes in a social media
platform can significantly affect chatbot use. The authors of [49] later decided
to implement a standalone application.

At the time of writing, Meta has released a new policy allowing them to use
the users’ data to improve their AI models, including messages sent between
the user and professional accounts[50]. If FysBot were to be released on the
Messenger platform, it would be considered a professional account, and thus,
there would be some concerns about the privacy of the users’ data.

The reason for choosing a standalone application in this project sums up to
the following: (1) a desire to have a rich and extensive set of functionalities
that benefit the user, (2) avoiding strict functional policies on how the chatbot
may be used, (3) making sure the user’s data and privacy is secured and not
misused.

8.8 Design Revision After Usability Study

As discussed in the findings from the usability test, several issues with the
chatbot were encountered, and immediate attention was required. Three major
focus points for improving it were identified:

1. Improved query routing. The Routing Persona must be more reliable in
its query routing.

2. More creativity. The personas must be given the opportunity to be more
creative in their responses.

3. Global context. A persona must be able to base its answer on previous
conversations between the user and a different persona.

For the first point, a new design for routing queries has been implemented.

8.8 design revis ion after usabil ity study 89

Previously, a message annotated with user was injected with the descriptions of
all the other chatbot personas (figure 4.2), and the model was asked which of
these descriptions best fit the given user query. In the new design, the Routing
Persona instead utilizes OpenAIs function calling API (see function calling in
section 2.4.2), where each of the other personas is given dummy functions that
could be called. The query is then routed based on which function the model
has decided to use. It is found that the rp now selects the correct persona
much more frequently.

For the second point, the chatbot personas are now given much more freedom
in their responses. Previously, their recommendations and suggestions were
almost static, like the Exercise Recommender Persona who tries to find suitable
exercises but then only gives the user a simple list (figure 6.4). In retrospect, this
is not a good use of a powerful llm like ChatGPT. In the newly implemented
design, the personas are given the external data, but it is up to them to decide,
based on the user’s query, how to use this data in their response. This opens
up the possibility for a much wider range of conversations. An example of
this is shown in figure 8.1, where the erp has to fetch the exercises from the
database matching the user’s specification and use them to satisfy the user’s
request.

90 chapter 8 discussion

(a) Asking a complex question. (b) erp response.

Figure 8.1: Asking more complex questions using the new design.

Lastly, in the previous design, it was thought that a dedicated conversation
memory for each chatbot persona would increase performance, but in practice,
this was false. The usability study found that the user’s follow-up questions
to a previous conversation might not be destined to the same persona, thus
breaking the continuity of the conversation. In the revised design, all personas
now share the same memory, improving the conversation flow.

After implementing these three changes, the chatbot seems to have improved
significantly, but ideally, a new usability study should be conducted to verify
this.

After the completion of the usability study, some less critical issues were also
fixed. Since many of the participants found the chatbot customization step in
the create a user process unintuitive, the app’s design has been altered with a
new and more descriptive title. In addition, the daily schedule entries are now
deleted after the event time has expired.

8.9 facil itating future continuation of fysbot 91

8.9 Facilitating Future Continuation of FysBot

FysBot will be used for further research on the effectiveness of physical activity
chatbots, and thus, it should be easy to set up and run, and it necessitates
handing over the Azure resources and source code. To enable quick setup of
the system, the database and API server are placed in Docker[51] containers
and can be run using Docker Compose. The containers are also set to start
when the VM has booted, so all that is required to run the system is to press
the "turn on" button in the Azure portal.

The Azure resources are currently located under the author’s Azure subscription
and has to be moved to the research group’s subscription to avoid redoing the
creation process. The necessary steps for this transfer has been researched,
and the author will be available to assist once specific details about where
the resources should be moved have been finalized. The author will also be
available to assist in extracting data that is stored on the Azure vm after the
transfer has been completed.

8.10 Research questions

In this section, the research questions are revisited and evaluated based on the
findings of this thesis.

RQ1: How can a chatbot be developed using ChatGPT to help users become
more physically active?

Through the use of the implemented chatbot personas, ChatGPT is instructed
to provide information on different topics related to physical activity. Further,
the use of OpenAIs function calling API makes it easy to extract relevant
information from the user query. This information is then used to call other
APIs or make database queries to give personalized responses. Whenever the
topic of the user query does not match any of the persona descriptions, the
chatbot still attempts to help the user by utilizing the vast knowledge already
found in ChatGPT.

The chatbot personas are able to give exercise recommendations, hiking trip
suggestions and review the users’ step progress. They have been implemented
with modularity in mind, allowing new personas to be added easily. The
information they provide will help the user discover different options to be
physically active and hopefully motivate them to maintain a more active
lifestyle. Additionally, the chatbot is designed to avoid repetitive responses and,
to a large degree, feel like a human. This helps retain user engagement and is

92 chapter 8 discussion

made possible by using ChatGPT.

RQ2: How can a physical activity chatbot be implemented in a way that
preserves the security and privacy of the users’ data?

For a physical activity chatbot, there are cases where data that could be consid-
ered sensitive is transferred between the client and server as well as between
the server and other APIs. Additionally, sensitive data, such as authentication
credentials, messages, and health data, could be stored on the server. The
FysBot system uses secure communication through TLS in all joints where
communication over the internet is used. It also encrypts the users’ credentials
when stored on the server and protects against unauthorized access by securing
API endpoints using JWTs.

Using the OpenAI API to use ChatGPT, assuring that the privacy of the users’
data is maintained becomes an obstacle. FysBot handles this by using an Azure
deployment of ChatGPT, located in Sweden, ensuring compliance with GDPR
legislation and that the users’ data is not used to improve future OpenAI models.
It is also found that the data will not be moved from the location where the
model is deployed. Even so, steps have been taken to ensure no personally
identifiable data is included in the queries sent to ChatGPT.

RQ3: How can integrated interactive features enhance the effectiveness
of a physical activity chatbot?

Although a chatbot has the potential to include several features just within the
chat interface, it is thought that some are best suited in separate interfaces.
FysBot provides badges for gamification and a scheduler to help the user
plan and remember daily events. Having these features solely in the chatbot
interface could be cumbersome for the user as it is challenging to find practical
solutions that would not result in the user feeling overwhelmed, thus harming
engagement. The features can still be bridged to the chatbot by enabling
questions related to the badges or scheduled events.

9
Future Work
The work done in this project has led to a working prototype of FysBot, but there
are still several improvements that can be made. The backend system can easily
be extended to support new API endpoints if needed, and it is built on a robust
foundation using Spring Boot, which offers a rich set of functionalities that can
help the system scale. It also has a well-functioning security implementation
that secures users’ data both at rest and in traffic. However, some security
measures should be implemented and evaluated before FysBot can be taken
into the production stage. The frontend code has been implemented with a
high degree of modularity, making it easy to implement new features.

The following discusses future work that can be done to further improve
FysBot’s user experience and system design. Section 9.1 gives a discussion of
functionality that can be added to FysBot to improve user experience. Section
9.2 discusses adding a feature that allows health professionals to help users
through FysBot. Section 9.3 discusses some of the system design changes that
can be made to improve FysBot’s backend system.

93

94 chapter 9 future work

9.1 Improving User Experience

9.1.1 Voice Communication

OpenAI offers high-quality text-to-speech and speech-to-text models that could
be used in FysBot if the budget allows. It is more expensive than text-only
messages but could significantly improve the user experience for many users,
especially those who struggle with text-based messaging. The implementation
of this will cover user stories 13 and 14 of table 4.1.

9.1.2 Social Aspects

The users of FysBot could benefit from social interactions within the app to help
them stay motivated in their goal of becoming more active. This could include
chatting with friends and posting achievements on a timeline shared with all
of the user’s friends. By also having the means for creating workout plans,
users could share these plans as well as coordinate group workouts so they can
help each other be active. There could also be global events like challenges or
competitions that are posted in which the user could compete with friends and
have a leaderboard ranking. Implementing these social aspects will cover user
stories 8 and 9 of table 4.1.

9.1.3 Gamification

Together with badges, avatars were first intended as another method of adding
gamification to FysBot to increase the user’s motivation to be active and have
ties to the social aspects in section 9.1.2. The user’s avatar was supposed to be
customizable by applying customization options gained from reaching different
step goals. Furthermore, the user could be rewarded with different avatars or
receive other visual rewards to show their progress. Due to the lack of large sets
of available open-use avatars of high quality and limited graphic design skills,
this reward system has not been implemented. Attempts were made to use AI
solutions like OpenAI’s Dall-e image generator to create the avatars. However,
this result did not align with the vision for the avatars, and no more time was
spent on this topic due to not being a high-priority feature. This feature would
be a great addition to FysBot for future work, especially in combination with
the social aspects discussed in section 9.1.2.

9.2 professional integration 95

9.1.4 Chatbot Personas

Through the usability study, it was found that the chatbot could, in some
cases, give undesired responses. In most cases, these are related to mistakenly
identifying a message as a request for step review or hiking trip suggestions,
as discussed in section 8.1.2. A solution to this is explained in section 8.8 but
should be further tested. Another solution that could be explored is using
OpenAI’s new Assistants API, which is currently in beta[52].

9.2 Professional Integration

Related to section 9.1.2, health professionals could be given access to review
the progress of individual users to provide them with feedback or professional
feedback on questions. There are some legal challenges related to this, and
whether or not it should be included in FysBot depends on the direction in
which it is taken. If used for the specific purpose of helping individuals who
are undergoing treatment, this is a great feature to have and implements user
story 11 from table 4.1.

9.3 System Reliability

Depending on the size of the user base, future work should consider the
following properties of the system: scalability, availability, redundancy and
resilience. Other authentication mechanisms should also be considered, like
Firebase Authentication, which includes multi-factor authentication. Firebase
also allows for different sign-in options by using, for example, Facebook or
Google accounts. Ideally, a solution like Firebase’s OpenID Connect solution
should be used. Discussions on how the system could become more reliable
are explored in section 4.2.9.

10
Conclusion
In this thesis, FysBot, an application aimed at increasing users’ physical activity
levels with a knowledgeable chatbot as its core component has been designed
and implemented. In addition, an emphasis was placed on protecting the
users’ data through authentication and private communication. The use of
ChatGPT to power the physical activity chatbot proved highly feasible through
the use of chatbot personas that are specialized to handle different topics of
conversation. While being open to any conversation, utilizing external datasets
enabled the chatbot to provide personalized hiking trip suggestions, exercise
recommendations and step progress reviews.

The design of FysBot is based on scientific evidence regarding what individuals
seek to achieve by using a physical activity application with an integrated
chatbot. A usability study conducted to test the implemented design using
the think-aloud method gave valuable insight into how users interacted with
the system. Through observations and feedback, several areas of improvement
were identified, and updates were made to improve the application and chatbot.
Overall, the participants found FysBot promising and effective in encouraging
physical activity.

97

Bibliography
[1] Darren E.R. Warburton, Crystal Whitney Nicol, and Shannon S.D. Bredin.

“Health benefits of physical activity: the evidence.” In: CMAJ 174.6
(2006), pp. 801–809. issn: 0820-3946. doi: 10 . 1503 / cmaj . 051351.
eprint: https://www.cmaj.ca/content/174/6/801.full.pdf. url:
https://www.cmaj.ca/content/174/6/801.

[2] World Health Organization. “More Active People for a Healthier World.”
In: Global action plan on physical activity 2018–2030: more active people
for a healthier world (2018).

[3] WHO. "Age-standardized prevalence of obesity among adults". Last ac-
cessed 15 April 2024. 2022. url: https://data.who.int/indicators/i/
BEFA58B.

[4] WHO. Prevalence of overweight among adults. Last accessed 15 April
2024. 2022. url: https://www.who.int/data/gho/data/indicators/
indicator- details/GHO/prevalence- of- overweight- among- adults-
bmi-greaterequal-25-(crude-estimate)-(-).

[5] FHI. Fysisk inaktivitet - voksne (indikator 7). Last accessed 2 April 2024.
2023. url: https://www.fhi.no/is/ncd/fysisk-aktivitet/voksne/
?term=.

[6] Corneel Vandelanotte et al. “Increasing physical activity using an just-
in-time adaptive digital assistant supported by machine learning: A
novel approach for hyper-personalised mHealth interventions.” en. In:
J. Biomed. Inform. 144.104435 (Aug. 2023), p. 104435.

[7] Wendy Wlasak, Sander Paul Zwanenburg, and Chris Paton. “Supporting
autonomous motivation for physical activity with chatbots during the
COVID-19 pandemic: Factorial experiment.” en. In: JMIR Form. Res. 7
(Jan. 2023), e38500.

[8] Carol Ann Maher et al. “A physical activity and diet program delivered
by artificially intelligent virtual health coach: Proof-of-concept study.”
en. In: JMIR MHealth UHealth 8.7 (July 2020), e17558.

[9] Sondre Elvebakken Løvås. Exploring Chatbot Design and the Feasibility
of securely implementing a chatbot using ChatGPT. Unpublished work.

[10] C J Caspersen, K E Powell, and G M Christenson. “Physical activity,
exercise, and physical fitness: definitions and distinctions for health-

99

https://doi.org/10.1503/cmaj.051351
https://www.cmaj.ca/content/174/6/801.full.pdf
https://www.cmaj.ca/content/174/6/801
https://data.who.int/indicators/i/BEFA58B
https://data.who.int/indicators/i/BEFA58B
https://www.who.int/data/gho/data/indicators/indicator-details/GHO/prevalence-of-overweight-among-adults-bmi-greaterequal-25-(crude-estimate)-(-)
https://www.who.int/data/gho/data/indicators/indicator-details/GHO/prevalence-of-overweight-among-adults-bmi-greaterequal-25-(crude-estimate)-(-)
https://www.who.int/data/gho/data/indicators/indicator-details/GHO/prevalence-of-overweight-among-adults-bmi-greaterequal-25-(crude-estimate)-(-)
https://www.fhi.no/is/ncd/fysisk-aktivitet/voksne/?term=
https://www.fhi.no/is/ncd/fysisk-aktivitet/voksne/?term=

100 BIBLIOGRAPHY

related research.” en. In: Public Health Rep. 100.2 (Mar. 1985), pp. 126–
131.

[11] James O Hill, Holly R Wyatt, and John C Peters. “Energy balance and
obesity.” en. In: Circulation 126.1 (July 2012), pp. 126–132.

[12] Kevin D. Tipton and Robert R. Wolfe. “Exercise, Protein Metabolism, and
Muscle Growth.” In: International Journal of Sport Nutrition and Exercise
Metabolism 11.1 (2001), pp. 109 –132. doi: 10.1123/ijsnem.11.1.109.
url: https://journals.humankinetics.com/view/journals/ijsnem/
11/1/article-p109.xml.

[13] Pedro A. Villablanca et al. “Nonexercise Activity Thermogenesis in Obe-
sity Management.” In: Mayo Clinic Proceedings 90.4 (2015), pp. 509–519.
issn: 0025-6196. doi: https://doi.org/10.1016/j.mayocp.2015.02.
001. url: https://www.sciencedirect.com/science/article/pii/
S0025619615001238.

[14] Eleni Adamopoulou and Lefteris Moussiades. “Chatbots: History, tech-
nology, and applications.” In:Machine Learning with applications 2 (2020),
p. 100006.

[15] Ashish Vaswani et al. “Attention is All you Need.” In: Advances in Neural
Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran
Associates, Inc., 2017. url: https://proceedings.neurips.cc/paper_
files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa- Paper.
pdf.

[16] Vipula Rawte, Amit Sheth, and Amitava Das. “A survey of hallucination
in large foundation models.” In: arXiv preprint arXiv:2309.05922 (2023).

[17] Angie K Reyes, Juan C Caicedo, and Jorge E Camargo. “Fine-tuning
Deep Convolutional Networks for Plant Recognition.” In: CLEF (Working
Notes) 1391 (2015), pp. 467–475.

[18] Inc Meta Platforms. Retrieval Augmented Generation (RAG) for LLMs. Last
accessed 09 June 2024. 2024. url: https://www.promptingguide.ai/
research/rag.

[19] OpenAI. Chat Completions API. Last accessed 6 April 2024. 2024. url:
https://platform.openai.com/docs/guides/text-generation/chat-
completions-api.

[20] GDPR EU Ben Wolford. What is GDPR, the EU’s new data protection law?
Last accessed 8 April 2024. 2024. url: https://gdpr.eu/what-is-gdpr/.

[21] GDPR-info.eu. Art. 5 GDPR: Principles relating to processing of personal
data. Last accessed 8 April 2024. 2024. url: https://gdpr-info.eu/art-
5-gdpr/.

[22] M. Goodrich andR. Tamassia. Introduction to Computer Security. Pearson,
2014.

[23] Eric Rescorla and Nagendra Modadugu. Datagram transport layer secu-
rity. Tech. rep. 2006.

[24] Eric Rescorla. The transport layer security (TLS) protocol version 1.3. Tech.
rep. 2018.

https://doi.org/10.1123/ijsnem.11.1.109
https://journals.humankinetics.com/view/journals/ijsnem/11/1/article-p109.xml
https://journals.humankinetics.com/view/journals/ijsnem/11/1/article-p109.xml
https://doi.org/https://doi.org/10.1016/j.mayocp.2015.02.001
https://doi.org/https://doi.org/10.1016/j.mayocp.2015.02.001
https://www.sciencedirect.com/science/article/pii/S0025619615001238
https://www.sciencedirect.com/science/article/pii/S0025619615001238
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.promptingguide.ai/research/rag
https://www.promptingguide.ai/research/rag
https://platform.openai.com/docs/guides/text-generation/chat-completions-api
https://platform.openai.com/docs/guides/text-generation/chat-completions-api
https://gdpr.eu/what-is-gdpr/
https://gdpr-info.eu/art-5-gdpr/
https://gdpr-info.eu/art-5-gdpr/

BIBLIOGRAPHY 101

[25] Michael B. Jones, John Bradley, and Nat Sakimura. JSON Web Token
(JWT). RFC 7519. May 2015. doi: 10 . 17487 / RFC7519. url: https :
//www.rfc-editor.org/info/rfc7519.

[26] Inc Meta Platforms. Introducing JSX. Last accessed 21 May 2024. 2024.
url: https://legacy.reactjs.org/docs/introducing-jsx.html.

[27] Pekka Abrahamsson et al. “Agile software developmentmethods: Review
and analysis.” In: arXiv preprint arXiv:1709.08439 (2017).

[28] Maarten Van Someren, Yvonne F Barnard, and J Sandberg. “The think
aloud method: a practical approach to modelling cognitive.” In: London:
AcademicPress 11.6 (1994).

[29] Microsoft. Data, privacy, and security for Azure OpenAI Service. Last
accessed 10 May 2024. 2024. url: https://learn.microsoft.com/en-
us/legal/cognitive-services/openai/data-privacy.

[30] Dillys Larbi et al. “What do adults living with obesity want from a chatbot
for physical activity? – a qualitative study.” In: BMC Digital Health 2.1
(2024), p. 15. issn: 2731-684X. doi: 10.1186/s44247- 024- 00070- 3.
url: https://doi.org/10.1186/s44247-024-00070-3.

[31] Inc Meta Platforms. Discover the possibilities with Meta Llama. Last
accessed 09 June 2024. 2024. url: https://llama.meta.com/.

[32] Inc. LangChain. langchain 0.2.3. Last accessed 13 June 2024. 2024. url:
https : / / api . python . langchain . com / en / latest / langchain _ api _
reference.html#module-langchain.chains.

[33] yuhonas. free-exercise-db. Last accessed 13 June 2024. 2024. url: https:
//github.com/yuhonas/free-exercise-db.

[34] Den Norske Turistforening. Finn din tur blant tusenvis av turforslag
og hytter i hele Norge. Last accessed 13 June 2024. 2024. url: https:
//ut.no/.

[35] Norwegian Meteorological Institute (met.no) and the Norwegian Broad-
casting Corporation (NRK). Make something useful with data from the
Meteorological Institute. Last accessed 13 June 2024. 2024. url: https:
//developer.yr.no/.

[36] Eugene et al. Android API Levels. Last accessed 13 June 2024. 2024. url:
https://apilevels.com/.

[37] Google. Improve your app’s security. Last accessed 13 June 2024. 2024.
url: https : / / developer . android . com / privacy - and - security /
security-best-practices#internal-storage.

[38] Microsoft.What is Azure Application Gateway? Last accessed 09 June 2024.
2024. url: https://learn.microsoft.com/en-us/azure/application-
gateway/overview.

[39] Microsoft.What is Azure Application Gateway? Last accessed 20 April 2024.
2023. url: https://learn.microsoft.com/en-us/azure/application-
gateway/ssl-overview.

[40] jq. jq. Last accessed 13 June 2024. 2024. url: https://jqlang.github.
io/jq/.

https://doi.org/10.17487/RFC7519
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://legacy.reactjs.org/docs/introducing-jsx.html
https://learn.microsoft.com/en-us/legal/cognitive-services/openai/data-privacy
https://learn.microsoft.com/en-us/legal/cognitive-services/openai/data-privacy
https://doi.org/10.1186/s44247-024-00070-3
https://doi.org/10.1186/s44247-024-00070-3
https://llama.meta.com/
https://api.python.langchain.com/en/latest/langchain_api_reference.html#module-langchain.chains
https://api.python.langchain.com/en/latest/langchain_api_reference.html#module-langchain.chains
https://github.com/yuhonas/free-exercise-db
https://github.com/yuhonas/free-exercise-db
https://ut.no/
https://ut.no/
https://developer.yr.no/
https://developer.yr.no/
https://apilevels.com/
https://developer.android.com/privacy-and-security/security-best-practices#internal-storage
https://developer.android.com/privacy-and-security/security-best-practices#internal-storage
https://learn.microsoft.com/en-us/azure/application-gateway/overview
https://learn.microsoft.com/en-us/azure/application-gateway/overview
https://learn.microsoft.com/en-us/azure/application-gateway/ssl-overview
https://learn.microsoft.com/en-us/azure/application-gateway/ssl-overview
https://jqlang.github.io/jq/
https://jqlang.github.io/jq/

102 BIBLIOGRAPHY

[41] OpenSSL Project Authors. OpenSSL. Last accessed 13 June 2024. 2024.
url: https://www.openssl.org/.

[42] Google. Firebase. Last accessed 13 June 2024. 2024. url: https : / /
firebase.google.com/.

[43] Google. Google Play Console. Last accessed 13 June 2024. 2024. url:
https://play.google.com/console/.

[44] Google. Google Marketing Platform. Last accessed 13 June 2024. 2024.
url: https://marketingplatform.google.com/about/analytics/.

[45] Matomo. Matomo. Last accessed 13 June 2024. 2024. url: https://
matomo.org/.

[46] Joanne Hinds, Emma J Williams, and Adam N Joinson. ““It wouldn’t
happen to me”: Privacy concerns and perspectives following the Cam-
bridge Analytica scandal.” In: International Journal of Human-Computer
Studies 143 (2020), p. 102498.

[47] Turi Reiten Finserås et al. “Reexploring problematic social media use
and its relationship with adolescent mental health. Findings from the
“LifeOnSoMe”-study.” en. In: Psychol. Res. Behav. Manag. 16 (Dec. 2023),
pp. 5101–5111.

[48] The Local. Norwegian government bans ministers and officials from using
TikTok. Last accessed 1 June 2024. 2023. url: https://www.thelocal.
no/20230321/norwegian-government-bans-ministers-and-officials-
from-using-tiktok.

[49] Quyen G To, Chelsea Green, and Corneel Vandelanotte. “Feasibility,
Usability, and Effectiveness of a Machine Learning–Based Physical Ac-
tivity Chatbot: Quasi-Experimental Study.” In: JMIR Mhealth Uhealth
9.11 (2021), e28577. issn: 2291-5222. doi: 10.2196/28577. url: https:
//mhealth.jmir.org/2021/11/e28577.

[50] DAIR.AI. Guidelines for privacy. Last accessed 09 June 2024. 2024. url:
https://www.facebook.com/privacy/policy/version/25238980265745528.

[51] Docker Inc. Docker. Last accessed 13 June 2024. 2024. url: https :
//www.docker.com/.

[52] OpenAI. Assistants API. Last accessed 13 June 2024. 2024. url: https:
//platform.openai.com/docs/assistants/overview.

https://www.openssl.org/
https://firebase.google.com/
https://firebase.google.com/
https://play.google.com/console/
https://marketingplatform.google.com/about/analytics/
https://matomo.org/
https://matomo.org/
https://www.thelocal.no/20230321/norwegian-government-bans-ministers-and-officials-from-using-tiktok
https://www.thelocal.no/20230321/norwegian-government-bans-ministers-and-officials-from-using-tiktok
https://www.thelocal.no/20230321/norwegian-government-bans-ministers-and-officials-from-using-tiktok
https://doi.org/10.2196/28577
https://mhealth.jmir.org/2021/11/e28577
https://mhealth.jmir.org/2021/11/e28577
https://www.facebook.com/privacy/policy/version/25238980265745528
https://www.docker.com/
https://www.docker.com/
https://platform.openai.com/docs/assistants/overview
https://platform.openai.com/docs/assistants/overview

A
User Testing Procedures

103

104 appendix a user testing procedures

A.1 Sikt Notification Form

Vil du delta i forskningsprosjektet
 FysBot: En Chatbot-drevet App for Økt Fysisk

Aktivitet?

Formålet med prosjektet
Dette er et spørsmål til deg om du vil delta i et forskningsprosjekt hvor formålet er å utvikle
en applikasjon som kan øke brukerens fysiske aktivitet. Dette masterprosjektet utføres
mastergradsstudent Sondre Løvås ved UiT i samarbeid med et doktorgradsprosjekt ved UiT,
utført av doktorgradsstipendiat Dillys Larbi og ledet av Nasjonalt senter for E-helseforskning,
en avdeling ved Universitetssykehuset Nord-Norge.

Hvorfor får du spørsmål om å delta?
Du får denne forespørselen fordi du er ansett som en person som kan gi oss verdifull innsikt i
kvaliteten av applikasjonen. Vi har sendt denne forespørselen til fem ulike personer da vi
ønsker å teste appen på personer som vi tenker kan ha unike synsvinkler og tekniske
bakgrunns ferdigheter.

Hvem er ansvarlig for forskningsprosjektet?
Universitetet i Tromsø er ansvarlig for personopplysningene som behandles i prosjektet.

Det er frivillig å delta
Det er frivillig å delta i prosjektet. Det vil ikke ha noen negative konsekvenser for deg hvis du
ikke vil delta eller senere velger å trekke deg.

Hva innebærer det for deg å delta?
Som deltaker vil du få instrukser på nedlastning av applikasjon som utvikles i masterprosjektet og vil
deretter bli med på en “tenke høyt” undersøkelse. Tenke høyt undersøkelsen går ut på at du vil sitte
sammen med utvikleren av applikasjonen og få en rekke oppgaver du skal utføre i applikasjonen. Din
fremgangsmåte og dine tanker vil så bli brukt til å forbedre kvaliteten av applikasjonen. I tenke høyt
undersøkelsen vil du få et fiktivt navn slik at svarene dine ikke kan knyttes til deg.

Kort om personvern
Vi vil bare bruke opplysningene om deg til formålene vi har fortalt om i dette skrivet. Vi
behandler personopplysningene konfidensielt og i samsvar med personvernregelverket. Du
kan lese mer om personvern på neste side.

Med vennlig hilsen

Sondre Elvebakken Løvås

108 appendix a user testing procedures

A.2 Information Letter

Utdypende om personvern – hvordan vi oppbevarer og bruker dine opplysninger
Opplysningene som registreres om deg brukes kun for å kontakte deg om deltakelse av
forskningsprosjektet. Dine personopplysninger vil ikke kobles til data som lagres eller
bearbeides underveis ved bruk av applikasjonen. Applikasjonsdata som må overføres fra/til
din mobil er alltid kryptert. Applikasjonsdata som må lagres på vår server vil også bli kryptert
og vil ikke kunne knyttes til deg. Det er kun mastergradsstudent Sondre Løvås og
doktorgradsstipendiat Dillys Larbi som vil ha tilgang til denne bruker dataen.

Etter prosjektslutt vil alle opplysningene om deg bli slettet. Du vil ikke bli gjenkjent i
eventuelle publikasjoner.

Hva gir oss rett til å behandle personopplysninger om deg?
Vi behandler opplysninger om deg basert på ditt samtykke.

På oppdrag fra UiT har personverntjenestene ved Sikt – Kunnskapssektorens
tjenesteleverandør, vurdert at behandlingen av personopplysninger i dette prosjektet er i
samsvar med personvernregelverket.

Dine rettigheter
Så lenge du kan identifiseres i datamaterialet, har du rett til:

• å be om innsyn i hvilke opplysninger vi behandler om deg, og få utlevert en kopi av
opplysningene,

• å få rettet opplysninger om deg som er feil eller misvisende,

• å få slettet personopplysninger om deg,

• å sende klage til Datatilsynet om behandlingen av dine personopplysninger.

Vi vil gi deg en begrunnelse hvis vi mener at du ikke kan identifiseres, eller at rettighetene
ikke kan utøves.

Hva skjer med personopplysningene dine når forskningsprosjektet avsluttes? 
Prosjektet vil etter planen avsluttes 10. juni 2024.

Kontaktinformasjon og andre direkte gjenkjennende opplysninger vil bli slettet umiddelbart
etter prosjektslutt. Anonymisert data vil bli arkivert på en sikker måte.

Spørsmål
Hvis du har spørsmål eller vil utøve dine rettigheter, ta kontakt med:

• André Henriksen
andre.henriksen@uit.no
+47 77 64 52 14

• Vårt personvernombud: personvernombud@uit.no.

Hvis du har spørsmål knyttet til Sikts vurdering av prosjektet, kan du ta kontakt på e-post:
personverntjenester@sikt.no, eller på telefon: 73 98 40 40.

Jeg har mottatt og forstått informasjon om prosjektet FysBot: En Chatbot-drevet App for Økt
Fysisk Aktivitet, og har fått anledning til å stille spørsmål. Jeg samtykker til:

 å delta i applikasjons-testing

 å delta i tenke høyt undersøkelsen

Jeg samtykker til at mine opplysninger behandles frem til prosjektet er avsluttet

a.3 sikt assessment 111

A.3 Sikt Assessment

FysBot Project

Think-aloud protocol – max 60 minutes

Description:

Concurrent think-aloud method – participants complete specific tasks and think aloud
simultaneously. That is, participants voice out everything they see, do or think related to the
assigned tasks.

Scope & Purpose

• Problem discovery – identify problems related to the following:
o Terminology – terms/words used in the app and by the chatbot
o Data entry – inputting data via free text, predefined text and voice
o Layout & Structure – placement of icons and buttons in the app
o Comprehension – chatbot’s understanding and continuity of text/conversation
o Relevance – how relevant are the features and functions to increasing physical

activity
o Feedback – suggestions on how to improve the application/chatbot

Metrics:

• Successful completion of tasks
• Time required to complete tasks (in minutes)
• Identified Errors: Critical – necessary to enhance the functioning of app/chatbot; Non-

critical
• Satisfaction
• Ease of use/ Learnability
• Appearance (prompt to say something about this if necessary)

Procedure:

• Welcome participant
• Explain the reason the participant is there. Show example of think aloud.
• Ask if the participant has read, understood and signed the informed consent
• Take the informed consent from the participant and check if it has been signed
• Ask if they have any questions about the testing
• Explain the process:

You will be asked to perform certain tasks related to the app/chatbot. In the process of
performing these tasks, you are required to think out loud. You do not need to think about
what you are going to say first. Just say whatever comes to mind when you look at the screen
and perform the tasks, including saying the things you are doing to perform the task. You can
also comment on the appearance of the app, chatbot, buttons, etc. There is no wrong way to
do this, so just feel free to say anything that comes to mind.

Thank you for agreeing to participate. Let us begin!

• Remember to prompt participants to keep talking, if necessary.

112 appendix a user testing procedures

A.4 Think Aloud Protocol

Tasks:

 Time to complete
task (mins)

Task completed (Y-
Yes; N- No)

Errors identified (C-
critical; NC – Non-
critical)

1. Download and install
the FysBot app

2. Sign in to FysBot –
create a username
and password

3. Give the chatbot a
name

4. Set step goal
5. Start chatting with

the chatbot

6. Find and read
information about
FysBot

7. Ask the chatbot to
recommend
exercises

8. Change step goal
9. Make a physical

activity plan for the
day

10. Ask the chatbot to
give feedback on
steps

11. Ask/Check for
overview of physical
activity

12. Ask the chatbot a
physical activity-
related question

13. Ask the chatbot a
general question

14. Check the overview
of steps

15. Check how many
badges you have
received

16. Ask the chatbot to
suggest a hike

Pre-test/Post-test checklist

 Preparation – print informed consent, find room for testing, recruit participants by
invitation

 Scheduling – find out when participants, observers and a room are available
 Location – convenient for participants
 Prototype – FysBot app/chatbot
 Observers - 2 people observe and write down what participants say. Compare notes at

the end of testing

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	1 Introduction
	1.1 Background
	1.2 Previous Work
	1.3 Objective
	1.4 Research Question
	1.5 Outline

	2 Technical Background
	2.1 Physical Activity
	2.2 Chatbots
	2.2.1 Overview
	2.2.2 Physical Activity Chatbots

	2.3 Large Language Models
	2.4 ChatGPT
	2.4.1 Overview
	2.4.2 Function Calling

	2.5 Security
	2.5.1 Data Protection
	2.5.2 Data Security
	2.5.3 JSON Web Token

	2.6 Android App Development
	2.6.1 Overview
	2.6.2 React Native

	3 Method
	3.1 Collaboration
	3.2 Software Development
	3.2.1 Agile Methodologies
	3.2.2 Personas
	3.2.3 User Stories

	3.3 Usability Study
	3.4 Ethics
	3.4.1 Test Approval
	3.4.2 Data Privacy and Protection

	4 Requirement Specification and Design
	4.1 Requirements
	4.1.1 Functional Requirements
	4.1.2 Non-Functional Requirements

	4.2 Design
	4.2.1 Choosing the Right LLM
	4.2.2 Handling Different Topics of Conversation Using Chatbot Personas
	4.2.3 Design of Chatbot Personas
	4.2.4 Goal Setting
	4.2.5 Badges
	4.2.6 Daily Schedule
	4.2.7 Step Collection
	4.2.8 Backend Architecture
	4.2.9 Scalable Architecture

	5 Security and Privacy
	5.1 Consulting a Security Expert
	5.2 Protecting API Endpoints with JSON Web Tokens
	5.3 Securing Credentials
	5.4 Securing Communication
	5.5 Protecting Privacy in Chatbot Messages

	6 Implementation
	6.1 Backend Server
	6.1.1 Azure VM Deployment

	6.2 Database Setup
	6.3 Securing API Endpoints
	6.3.1 Authentication
	6.3.2 NGINX and TLS

	6.4 Azure ChatGPT Deployment
	6.5 User Interface
	6.5.1 Contexts
	6.5.2 Login
	6.5.3 Create New User
	6.5.4 Log in Existing User
	6.5.5 Tab Navigation Bar
	6.5.6 Chatbot Messaging
	6.5.7 Daily Schedule
	6.5.8 Badges
	6.5.9 User Profile
	6.5.10 Firebase Push Notifications

	6.6 Publishing to Google Play Store

	7 Evaluation and Result
	7.1 Usability Study
	7.1.1 The Participants
	7.1.2 Downloading and Installing FysBot
	7.1.3 Logging into FysBot
	7.1.4 Chatbot
	7.1.5 Step Goal and Step Overview
	7.1.6 Finding Information About FysBot
	7.1.7 Badges and Daily Schedule
	7.1.8 Overall Thoughts

	7.2 System Performance And Cost

	8 Discussion
	8.1 Software Development Process
	8.1.1 Solving a Problem
	8.1.2 Usability test

	8.2 Avoiding Misuse of FysBot
	8.3 Complexities with Step Collection
	8.4 Lacking IOS Implementation
	8.5 Steps for Releasing FysBot to Production
	8.6 Gaining Insight into App Use
	8.7 Standalone App vs. Social Media Deployment
	8.8 Design Revision After Usability Study
	8.9 Facilitating Future Continuation of FysBot
	8.10 Research questions

	9 Future Work
	9.1 Improving User Experience
	9.1.1 Voice Communication
	9.1.2 Social Aspects
	9.1.3 Gamification
	9.1.4 Chatbot Personas

	9.2 Professional Integration
	9.3 System Reliability

	10 Conclusion
	Bibliography
	A User Testing Procedures
	A.1 Sikt Notification Form
	A.2 Information Letter
	A.3 Sikt Assessment
	A.4 Think Aloud Protocol

