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Abstract
This thesis proposes a secure and resilient system for generating and managing
unique Identification (id) number series for tracing food products within the
Norwegian fishing industry, without relying on a central authority. Given the
context of mutual mistrust among stakeholders and the threat of hostile entities,
this project proposes a blockchain-based solution to ensure the uniqueness and
security of each id in a decentralized environment. The core of this research
involves designing and implementing a smart contract on an Ethereum Vir-
tual Machine (evm)-compatible blockchain to manage the id series efficiently.
The thesis begins with an analysis of current industry standards and reviews
existing blockchain applications for product tracing, forming the basis for the
proposed id scheme and data models. The practical aspect includes devel-
oping a smart contract for id generation and management, highlighting the
application’s ability to prevent id collisions and ensure secure, verifiable ids.
The thesis also includes the design and implementation of a Web3 application,
serving as an interface for users to interact with the blockchain system. This ap-
plication facilitates the generation and management of id series, and extends
to include product tracing functionalities. This research aims to demonstrate
the feasibility and effectiveness of using blockchain technology and smart con-
tracts to enhance the traceability and security of food products in the fishing
industry.
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1
Introduction
The ocean provides 15.3% of the global production of animal proteins, high-
lighting its importance as a crucial food source worldwide [3]. In Norway,
the fishing industry is a significant economic contributor, with seafood exports
valued at 43.0 billion NOK and aquaculture exports reaching 128.7 billion NOK
in 2023 [10]. Salmon, in particular, stands out as the largest export product,
underscoring Norway’s prominent position in the global seafood market.

Despite its economic importance, the fishing industry faces severe challenges
due to various illicit activities such as illegal fishing, document fraud, andmoney
laundering [48]. These activities not only threaten the economic stability of the
industry but also undermine efforts towards sustainability and environmental
conservation. Addressing these issues requires innovative solutions that can
enhance transparency, traceability, and trust among all stakeholders involved
in the seafood supply chain.

One promising approach to combating illegal fishing and related crimes is
the implementation of comprehensive product tracing systems. By tracking
seafood products from the point of capture to the consumer’s table, both control
authorities and consumers can verify the authenticity and origin of the products.
Blockchain technology, with its immutable ledger and decentralized nature,
offers a robust foundation for such traceability systems. This technology can
facilitate transparency and trust among various stakeholders in the supply
chain. However, effective product tracing also requires physical marking of
products with unique digital identification numbers to ensure accurate and

1



2 chapter 1 introduction

reliable tracking throughout the supply chain.

This thesis explores the development of a secure and resilient method for creat-
ing and managing unique identification series for tracing food products within
the fishing industry. By leveraging blockchain technology, specifically through
the implementation of evm-compatible smart contracts, this research aims to
address the challenges of mutual mistrust among organizations and the threat
of hostile entities. The project includes the development of a proof-of-concept
system to demonstrate the practical application of blockchain for product trac-
ing, ultimately contributing to enhanced transparency and accountability in
the seafood supply chain.

1.1 Problem Definition

This project aims to develop a secure and resilient method for creating and
managing unique id number series for tracing food products within the fishing
industry without relying on a central authority. The project should address the
challenge of mutual mistrust among organizations and the threat of hostile
entities aiming to exploit the system. Our thesis is that:

blockchain-based smart contracts can effectively be used to manage unique id
series for product tracing.

We approach our thesis by designing and implementing an evm-compatible
smart contract for the generation and management of these ids, leveraging
existing blockchain-based product tracing methodologies. Additionally, the
project encompasses the development of a Web3 application to facilitate user
interaction with the blockchain for id management and product tracing.

1.2 Scope and Limitations

The primary focus of this thesis is on the development and evaluation of a
system for securely generating and managing product ids using blockchain
technology. The objectives include implementing a blockchain-based solution
to generate unique, tamper-proof product ids that can be tracked throughout
the supply chain. Additionally, a functional proof-of-concept system will be
developed to demonstrate the practical application of the blockchain solution.
This system will enable users to interact with the blockchain to manage product
ids, ensuring traceability and data integrity.
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Several assumptions and constraints define the boundaries of this thesis. It
assumes the existence of a private consortium blockchain running on the
Avalanche platform, restricted to members who have been securely onboarded
through a dedicated onboarding service. It is assumed that the Norwegian
Ministry for Trade, Industry, and Fisheries hosts the consortium blockchain,
the onboarding service, and the application itself. While the ministry provides
the infrastructure, it does not exert control over the blockchain’s operations,
maintaining the decentralized and autonomous nature of the network.

While the system is designed with security and integrity in mind, detailed
exploration of regulatory compliance (e.g., General Data Protection Regulation
(gdpr)) is beyond the scope of this thesis. The focus is primarily on the
technical implementation and evaluation of the blockchain solution. The proof-
of-concept systemwill be tested in a controlled environment using a testnet, and
the results may differ when deployed in a real-world, production environment
due to variables such as network conditions and user behavior that are not
replicated in the testnet. The security analysis assumes a baseline level of
network integrity and does not account for all possible attack vectors, meaning
real-world deployments might encounter additional security challenges not
fully addressed in this thesis.

Extensive user feedback and usability testing are limited, with the usability
evaluation primarily theoretical, and based on own tests, rather than com-
prehensive user studies. Lastly, the system is built using current blockchain
technologies and standards, which may evolve, necessitating adjustments to
the implementation presented in this thesis.

By outlining these scopes and limitations, this thesis aims to provide a clear un-
derstanding of the project’s objectives, the boundaries within which it operates,
and the assumptions underlying the research and development process.

1.3 Context

This thesis will be completed in the context of the csg group at University
of Tromsø (uit). The csg group is a research group that focuses on key
challenges in the realm of large-scale information access applications. Its main
goal is to develop effective strategies for designing and implementing systems
that can manage and access vast amounts of information efficiently and reliably.
This involves breaking down complex applications into smaller, cooperating
modules, enhancing the way these modules interact with each other and with
users, and determining the best deployment strategies. Additionally, the csg
group emphasizes the importance of maintaining integrity, security, and fault-
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tolerance within these systems. To achieve these objectives, the csg group
primarily adopts an experimental approach, building prototype middleware
systems to address specific research questions.

The csg group has had considerable focus on how blockchain technology can
be used within the fishing industry, especially for product tracing [15]. This
thesis will continue working on this use case with the same goal in mind,
mitigating crimes within the industry [29]. The thesis is part of an ongoing
research interest at the csg group. Previous works by the research group
include studies on low bandwidth communication in remote sensing for fishing
vessels [32], transaction latency prediction using deep learning in blockchain
systems [46], transaction fees in blockchain systems [45], the development of
datasets like Njord [30] for fishing trawler surveillance, and blockchain-based
seafood industry applications such as the Áika system [1]. These contributions
provide a solid foundation and context for the current research, focusing on
enhancing transparency and accountability in the seafood supply chain through
secure id generation and management.

1.4 Method

In their 1989 report, the Task Force on the Core of Computer Science proposed
a structured approach to outline the discipline of computing into three major
paradigms: theory, abstraction, and design. These paradigms offer a compre-
hensive framework for the advancement of computer science, each following
a distinct process to contribute uniquely to the field [9]. Below is a detailed
explanation of each paradigm and its respective methodology.

The theory paradigm is deeply rooted in mathematical principles and follows a
rigorous four-step process aimed at developing a coherent and valid theoretical
framework

1. Definition: This initial step involves characterizing the objects of study
to ensure clarity and consistency in the theoretical exploration.

2. Theorem: Based on the defined objects, hypotheses are formulated about
the potential relationships among them.

3. Proof: Evaluating the theorems by proving or disproving them, testing
the validity of the proposed hypotheses.

4. Interpretation: Results obtained from the proof stage are interpreted.
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Rooted in the experimental scientific method, the abstraction paradigm follows
a systematic process to model and investigate phenomena:

1. Hypothesis: A hypothesis is formulated about the phenomenon under
investigation, proposing a tentative explanation or prediction that the
study aims to test.

2. Model and Predict: A model is constructed based on the initial hypothe-
sis, which is used to predict the behavior or outcomes of the phenomenon.

3. Experiment and Collect data: An experiment is designed to test the
model’s predictions, and data is collected to capture the outcomes of the
experiment.

4. Analyze: The collected data is analyzed to evaluate the model’s accuracy
and the validity of the hypothesis.

Drawing on engineering principles, the design paradigm encompasses a struc-
tured approach to developing systems that address specific problems:

1. Requirements: The process begins with the identification of the system’s
requirements, detailing the needs and constraints that the system aims
to fulfill.

2. Specifications: Detailed specifications are outlined, which guide the
design and functionality of the system.

3. Design and Implementation: Based on the specifications, the system is
designed and then implemented.

4. Testing: Testing is conducted to ensure that the system operates as
intended, meeting the initial requirements and specifications.

AquaTrace falls within the design paradigm. Based on a problem definition,
we will design, implement, and evaluate a proof-of-concept system defined by
the requirements and specifications we have stated.

1.5 Outline

This section outlines the structure of the thesis.

Section 2 - Background: Provides the necessary context and background
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information on blockchain technology and other relevant technical details that
readers need to understand the thesis

Section 3 - Requirements: Outlines the functional and non-functional re-
quirements for the AquaTrace system, detailing the system’s objectives and
performance criteria.

Section 4 - Design and Implementation: Describes the architecture, design
decisions, and implementation details of the AquaTrace system.

Section 5 - Evaluation: Assesses the performance of AquaTrace against the
defined requirements, presenting the results of various tests and analyses to
determine how well the system meets its goals.

Section 6 - Discussion: Discusses the evaluation results with regards to non-
functional requirements, the effectiveness of the design and implementation,
and areas for potential improvement. It also covers the rationale behind the
choice of blockchain.

Section 7 - Conclusion: Summarizes the key findings, reflects on the overall
success of the project, and suggests directions for future research and develop-
ment.



2
Background
This chapter provides the knowledge necessary for understanding the thesis
that follows. It begins with an explanation of blockchain technology, including
its structure, types, and consensus protocols, with a specific focus on Proof-of-
Work (pow), Proof-of-Stake (pos), and the Avalanche consensus mechanism.
The chapter also explains the evm and smart contracts, highlighting their
role in enabling Decentralized Applications (dapps). Additionally, it covers the
Avalanche platform,Web3 principles, the use of Docker for containerization, the
importance of cryptographic hashing functions, and key terminology relevant to
the thesis. By detailing these concepts, the reader will gain sufficient theoretical
knowledge to comprehend the subsequent chapters.

2.1 Blockchain

A blockchain is a distributed database or ledger that is shared among the nodes
of a Peer-to-Peer (p2p) computer network [21]. Its most distinctive feature,
which sets it apart from a traditional database, is its structure: it organizes data
into blocks, which are then chained together using cryptographic principles.
This structure provides several unique properties and benefits that are crucial
for various applications, especially in areas requiring high security and trust,
such as finance, supply chain management, and identity verification [16].

The core of blockchain lies in its decentralization. Unlike conventional databases

7



8 chapter 2 background

governed by a central authority, blockchain distributes its data across a net-
work of computers, eliminating single points of failure and diminishing the
control of any single entity over the entire system. This decentralization is
crucial, not only for enhancing security but also for contributing to a new level
of transparency in digital transactions. Every transaction on a blockchain is
visible to all participants and is immutable, meaning once it is recorded, it
cannot be altered or deleted. Figure 2.1 shows how blocks within a blockchain
are cryptographically chained together.

BLOCK 0
prevBlockHash
timestamp

nonce
merkleRoot

BLOCK 1
prevBlockHash
timestamp

nonce
merkleRoot

BLOCK 2
prevBlockHash
timestamp

nonce
merkleRoot

BLOCK N
prevBlockHash
timestamp

nonce
merkleRoot

Figure 2.1: Visualization of how blocks are linked together in a blockchain

2.1.1 Types of Blockchain

Each type of blockchain serves different purposes and offers a unique set of
advantages and limitations. The choice between them depends on the specific
requirements of the application, including considerations of security, privacy,
transparency, and control.

Public Blockchain

A public blockchain is a decentralized network that anyone can join and par-
ticipate in without any restrictions. These blockchains are completely open,
allowing anyone to read,write, or participate in the consensus process (i.e.,min-
ing or staking). Bitcoin and Ethereum are classic examples of public blockchains.
The main advantages of public blockchains include their high level of security,
transparency, and immutability. However, they often face challenges related to
scalability, privacy, and transaction cost [43, 44], given their open nature.

Private Blockchain

A private blockchain, in contrast, operates within a closed network. It is typ-
ically controlled by a single organization or entity that determines who can
join the network, submit transactions, or participate in the consensus process.
Private blockchains offer greater control over the network, which can lead to
improvements in speed and scalability compared to public blockchains.
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Permissioned Blockchain

A permissioned blockchain is a broader category that can be either public
or private but requires approval for participants to join the network. In a
permissioned blockchain, the controlling entity or entities set rules for who
can participate in the network, execute transactions, and in some cases, view
certain data.

Consortium Blockchain

A consortium blockchain is a specific type of permissioned blockchain that
is governed by a group of organizations rather than a single entity. In this
setup, multiple organizations collaborate and share the responsibilities of
maintaining the blockchain, including managing the consensus process and
validating transactions. Consortium blockchains combine the benefits of both
private and public blockchains, offering a balance between decentralization,
security, and scalability. They are ideal for scenarios where participants need
to share data securely and efficiently while maintaining equal control over the
network.

2.2 Consensus Protocols

Blockchain operation is fundamentally rooted in consensus mechanisms, such
as pow or pos, which ensure all transactions are validated by multiple nodes
in the network before being added to the ledger. This validation process not
only secures transactions against fraud but also enhances security through
advanced cryptographic techniques. Beyond pow and pos, other consensus
algorithms like Practical Byzantine Fault Tolerance (pbft) and Raft are uti-
lized, particularly in permissioned blockchain settings where efficiency and
fault tolerance are important. pbft achieves consensus through a determin-
istic voting process among nodes, ensuring robustness and reliability, while
Raft simplifies consensus through leader election and log replication [6, 31].
The selection of an appropriate consensus algorithm is critical as it directly
impacts the integrity, scalability, and performance of the blockchain network,
influencing its suitability for various applications.

2.2.1 Proof-of-Work

Proof-of-Work is a consensus algorithm used by some blockchain networks to
validate transactions and create new blocks [45]. It requires participants, also
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called miners, to solve complex mathematical puzzles, a process that demands
significant computational power and energy. pow provides a high level of
security due to the extremely costly and time consuming process of altering
the blockchain. Though secure, it comes with drawbacks such as high energy
consumption and scalability concerns [24].

2.2.2 Proof-of-Stake

Proof-of-Stake is another consensus algorithm that tries to improve some of
the limiting factors of pow. In a pos network validators are selected based on
the amount of cryptocurrency they have placed as a collateral. The higher the
stake, the higher the chance of being chosen to validate transactions and add
a new block to the blockchain. pos is much more energy-efficient than pow
because it eliminates the need for energy-intensive mining activities. Validators
are chosen through a deterministic process, depending on their stake, rather
than solving cryptographic puzzles [11].

2.2.3 Avalanche consensus

The consensus protocol the Avalanche blockchain uses differs from pow
and pos. Utilizing an approach known as repeated sub-sampled voting, the
Avalanche protocol ensures rapid and secure transaction validation through a
decentralized and democratic process. This protocol boasts features such as
speed, scalability, energy efficiency, and adaptive security [17]. In this consen-
sus protocol, when a node seeks to validate a transaction, it does not consult
the entire network. Instead, it selects a small, random group of other validator
nodes and queries whether the transaction should be accepted. This method
allows for a scalable and efficient consensus process without compromising
security. Each of these randomly chosen validators then responds based on
its current knowledge of the transaction’s validity. The inquiring node collects
these responses and sides with the majority opinion among the sampled valida-
tors. This process is repeated across multiple rounds and among various node.
This approach reduces the chance of fraudulent transactions being accepted,
as manipulating the consensus would require influencing the majority of re-
sponses across numerous, unpredictable subsets of validators [37]. Figure 2.2
depicts the basis of how the Avalanche consensus protocol works.



2.3 ethereum virtual machine 11

Transaction (Tx)
issued

Validator receives
many transactions Confirm Tx is valid Valid? No X

Ignore
Yes

Add Tx to list of
valid Txs

Begin repeated
random subsampling

Select K random validators
(weighted by stake)

Query K validators
on preferred Txs

Update Tx
confidences

Confidence
threshold met? Yes

No Accept

Reject any
transactions that
conflict with the

accepted transaction

Figure 2.2: Flowchart of the Avalanche consensus protocol, based on a figure from
Ava Labs [17]

2.3 Ethereum Virtual Machine

The Ethereum VirtualMachine serves as the runtime environment for smart con-
tracts on Ethereum and other evm-compatible platforms like Avalanche [27].
The evm is Turing-complete, which means it can execute any computation
that a Turing machine can, provided sufficient time and resources are avail-
able [47]. This environment offers a sandbox for executing smart contracts
written in higher-level languages, such as Solidity. Solidity is a statically-typed
programming language designed specifically for developing smart contracts
that run on the evm. It is used to implement logic, define state variables,
and handle events within smart contracts. Each operation within the evm
consumes a specific amount of gas, which is a unit reflecting computational
effort. Gas fees are payable in the blockchain’s native cryptocurrency (e.g., ETH
for Ethereum, AVAX for Avalanche). Fees help prevent spam and incentivize
validators to process transactions. Every operation on the evm is processed
by every node within the network, ensuring consistency and correctness due
to the evm’s deterministic nature, meaning identical inputs always result in
identical outputs. This mechanism ensures all computations are performed
accurately across the network.

2.3.1 Smart Contracts

A smart contract is a program that is running on a blockchain. Both its code
(functions) and its data (state) is stored on-chain [28]. Smart contracts can
automatically execute transactions and other specified actions when prede-
fined conditions and rules are met. Smart contracts are highly programmable,
extending the functionality of blockchains beyond simply recording financial
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transactions. Executing smart contracts incurs costs in the form of gas fees,
which vary based on network demand. Once a smart contract is created and
deployed on the blockchain, it cannot be changed. This immutability ensures
that no one can alter the contract’s terms after it has been deployed. Due to
this it is also important to rigorously test the contract to avoid irreversible bugs
once deployed [38].

2.4 Avalanche

The Avalanche blockchain platform, developed by Ava Labs, is an open-source
platform designed to build Decentralized Applications (dapps). Avalanche
has its own unique consensus algorithm as explained earlier which allows for
near-instant transaction finality [19]. The platform’s compatibility with the
evm allows for seamless migration of smart contracts and dapps from other
Ethereum ecosystems. Another core strength of Avalanche is its scalability. The
platform can process thousands of Transactions Per Second (tps), significantly
higher than many traditional blockchains like Bitcoin or Ethereum in its initial
versions [5]. This makes it an attractive platform for developers looking for a
blockchain foundation for high-volume applications. Avalanche allows for the
creation of subnets, or sub-networks, which are essentially custom blockchains
tailored for specific use cases. These subnets can have their own validators
and operate with their unique rules and parameters, providing a high degree
of customization. This feature enables various industries and projects to build
their blockchain solutions within the Avalanche ecosystem, catering to their
specific needs [18].

2.5 Web3

Web3 is perhaps the next phase of the Internet, envisioning a decentralized
online ecosystem backed by blockchain technology. This new web model seeks
to address the limitations and concerns of the current internet landscape,
known asWeb2, particularly regarding data privacy, security, and ownership. By
leveraging blockchain technology, Web3 enables p2p transactions, interactions,
and exchanges without the need for intermediaries [25].

Unlike Web2, where centralized servers store data, Web3 uses blockchain to
distribute data across numerous nodes, making it nearly impossible to control
or censor information by any single entity. Another key feature of Web3 is that
platforms operate on open protocols, allowing anyone to participate. The trust-
less nature of blockchain ensures transactions and interactions are secure and
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verifiable, reducing the reliance on trust in third parties. Lastly, cryptocurrencies
and tokens are an integral part of Web3, making it easier to exchange assets
without the need for traditional financial institutions. This opens up global
access to financial services, especially for those in need of a proper banking
system. It also removes the reliance on old banking infrastructure.

While Web3 promises a decentralized and user-empowered Internet, it is not
without its challenges and drawbacks. One of the primary concerns with Web3,
particularly blockchain technology, is scalability. Current blockchain networks
can struggle to handle high transaction volumes quickly and efficiently, lead-
ing to slower processing times and higher costs compared to traditional Web2
platforms. Another crucial aspect is the usability and accessibility. Web3 tech-
nologies often face criticism for their lack of user-friendliness. The complexity
of blockchain concepts, along with the need for secure management of crypto-
graphic keys and wallets, can be intimidating for average users.

2.6 Decentralized Applications

A Decentralized Application is a type of digital application that operates not
on a single computer or server but across a distributed blockchain network.
This decentralized framework ensures that all data associated with the dapp
is stored and managed on the blockchain, providing a level of security, trans-
parency, and resistance to censorship that traditional centralized applications
cannot match.

While dapps inherit the advantageous characteristics of blockchain technol-
ogy, such as immutability, decentralization, and transparency, they also face
some inherent challenges. Notably, one significant drawback is the difficulty in
updating or modifying the application’s code after it has been deployed to the
blockchain. Unlike traditional software that can be updated or patched rela-
tively easily, making changes to a dapp requires a consensus from the network
participants or the deployment of a new smart contract, which can compli-
cate maintenance and agile development [22]. This characteristic underscores
the need for thorough testing and validation of dapps before deployment,
as any flaws or vulnerabilities in the code become challenging to address
post-launch.
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2.7 Docker

Docker is an open-source platform designed to facilitate the creation, deploy-
ment, and operation of applications using containers. It employs a client-server
architecture, where the Docker client communicates with the Docker daemon,
which builds, runs, and manages the containers. Containers enable developers
to package an application with all necessary components, such as libraries and
dependencies, and distribute it as a single package [12]. This modular approach
ensures that the application can run on any machine, regardless of specific
machine configurations. Docker is particularly effective in microservices archi-
tectures, allowing for the independent deployment of individual components
in separate containers. Additionally, containers are isolated from each other
and from the host system, enhancing security by reducing the risk of accidental
or malicious access to system files and resources.

2.8 Hashing Functions

A hash function is a function that can map data of an arbitrary size to a
fixed-size string of bytes, or a digest. Cryptographic hash functions are a
specialized type hash functions that possess specific properties [23]. These
types of hash functions are quick to compute, deterministic (same input always
yields the same output), pre-image resistant (computationally infeasible to
reverse-engineer the input based on the output), sensitive to input changes
(small change in input drastically changes the output), and collision-resistance
(unfeasible to find two different inputs that generate the same output). Solidity
uses the Keccak256 hashing algorithm, which is part of the SHA-3 family of
hashing algorithms [2]. Keccak256 is used for tasks like computing unique hash
values that ensure data integrity and generating random numbers.

2.9 Terminology

This section describes terminology used within the thesis that may not neces-
sarily require its own dedicated section but still deserves an explanation.

Remote Procedure Call (rpc)s occur when a program invokes a subroutine
or procedure on another computer, typically within a distributed system [26].
rpcs help abstract communication so that developers do not have to directly
integrate with the network environment. They can be synchronous, where the
calling program waits for a response before continuing, or asynchronous, which
allows the program to continue executing while waiting for a response.
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JavaScript Object Notation (json) is a key/value data-interchange format
that is easy for humans to read and write, and easy for machines to parse and
generate. Though it originally stems from JavaScript, JSON is now a language-
independent format that is universally supported across modern programming
environments [4]. It is commonly used for transmitting data in web applications
between clients and servers.

Application Programming Interface (api) provides an interface for programs
to communicate with each other. APIs are a kind of software interface which
helps link programs together [36]. They often send data in JSON format
and can vary significantly in their design, such as RESTful apis, which use
HTTP requests to manage data, or SOAP APIs, which use XML for message
transmission.

User-Interface (ui) enable humans to interact with computer programs visu-
ally through peripherals such as screens, mice, or keyboards. ui design focuses
on optimizing the user’s experience by ensuring that interactions are intuitive
and efficient. Different types of user interfaces include Graphical User Interfaces
(GUIs), which allow interaction through graphical icons and visual indicators,
Command-Line Interfaces (CLIs), which interact through text commands, and
touch interfaces [49].

2.10 Summary

This chapter lays the groundwork for understanding the thesis by explaining key
concepts related to blockchain technology. It delves into different blockchain
structures, consensus protocols like pow, pos, and Avalanche, and the evm. It
also covers smart contracts, the Avalanche platform, Web3 principles, Docker
containerization, cryptographic hashing, and essential terminology.





3
Requirements
This chapter will be dedicated to the formulation and presentation of both
functional and non-functional requirements for AquaTrace. These requirements
are important as they lay down the specifications that the software must
adhere to, ensuring that it functions effectively within the domain of seafood
traceability and supply chain management.

3.1 Functional Requirements

Functional requirements in software engineering define the specific behaviors,
actions, and functionalities that a software system must provide to its users.
These requirements describe what the system should do, detailing the actions
the system performs with its inputs. Functional requirements vary between
applications and must be tailored to each specific application to meet user
needs effectively [39, p. 92].

Requirement 1 (ID Generation). AquaTrace must be able to generate unique
identification numbers for each new product entering the supply chain. Each
id should be unique and generated in a manner that prevents duplication.

Requirement 2 (ID Tracking). AquaTrace must track the location and status
of each product throughout its journey in the supply chain, from catch to
consumer. This includes real-time updates and historical data retrieval.

17
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Requirement 3 (Owner verification). AquaTrace must verify the identity of
users attempting to create or modify product ids. This ensures that only
authorized personnel can make changes to the product information.

Requirement 4 (Status updates). Users must be able to update the status of
each product (e.g., caught, processed, shipped) through predefined stages in
its lifecycle. These updates should reflect immediately in the system.

Requirement 5 (Geo-location tracking). AquaTrace should record and display
the geographic coordinates of products at various stages of the supply chain
to verify their location and compliance with geographic regulations.

Requirement 6 (Historical data access). Stakeholders should have the ability
to access and review the historical data of any product, including its entire
transaction history on the blockchain.

Requirement 7 (User Interface). There must be a user-friendly interface that
allows various stakeholders to interact with the system easily. This interface
should support all other functional requirements, providing access for id gen-
eration, updates, and tracking.

3.2 Non-Functional Requirements

Non-functional requirements define the operational qualities and character-
istics of a system that dictate how it must perform and operate, rather than
what the system must do (which is defined by functional requirements). These
requirements are critical as they often influence the user experience, system
efficiency, and maintainability [39, p. 95].

Requirement 8 (Responsiveness). AquaTrace should be able to execute trans-
actions and provide feedback to users within an acceptable timeframe. Given
the system’s reliance on blockchain technology, responsiveness is influenced
by blockchain-specific factors like block time and network congestion. During
periods of high transaction volume or network congestion, the system should
manage user expectations and system performance effectively. To help with
this users could be allowed to up their transaction fees so their transactions
are prioritized during peak times.

Requirement 9 (Reliability). AquaTracemust consistently perform its intended
functions correctly and dependably over time, even under stress or in unex-
pected conditions. It should consistently generate and manage ids without
errors or interruptions, ensuring that all operations, such as creating new ids
or updating existing ones, are executed as expected.

Requirement 10 (Availability). Availability in this scenario refers to the ability
of the system to be accessible and operational at all times, providing uninter-
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rupted service to its users. AquaTrace should be operational and accessible
without unplanned downtime, supporting the 24/7 nature of the global fishing
industry.

Requirement 11 (Security). AquaTrace must ensure the confidentiality, in-
tegrity, and availability of the information it handles, while protecting against
unauthorized access and data tampering. The inherent security features of
blockchain technology, such as cryptographic hashing and the chaining of
blocks, contribute to these goals. However, additional security measures are
necessary to address potential vulnerabilities in the smart contract code. Specif-
ically, the smart contract code must be thoroughly audited and analyzed before
deployment to prevent exploits. The system must enforce strict access controls,
ensuring that only authorized users can create, access, and modify ids within
the system. While most data will be stored on-chain and therefore immutable,
it is essential to maintain transparency and auditability without compromising
data security. Furthermore, AquaTrace must comply with data protection reg-
ulations, such as gdpr. The system will minimize the amount of data it stores
and will not store any Personally Identifiable Information (pii) on-chain.

Requirement 12 (Usability). Usability encompasses the ease of use, intuitive-
ness, and overall user experience provided by both the Web3 application and
the underlying smart contract interactions. Usability is critical to ensure that
all stakeholders can efficiently and effectively interact with the system. The
user interface needs to be simple, intuitive, and tailored to the needs of users
in the fishing industry, including fishermen, distributors, and regulators with
various levels of technological competence. The interface should allow users
to perform common tasks (e.g., generating ids, viewing product history) with
no more than a few clicks.

Requirement 13 (Maintainability). Maintainability encompasses the ease with
which the system can be corrected, improved, updated, or adapted over time. Ef-
fective maintainability ensures that the system remains functional and relevant
as user needs evolve and the blockchain technology evolves. A well-maintained
system could make it easier to migrate to other blockchains if the need ever
arises.

Requirement 14 (Resilience). Resilience refers to the system’s ability to handle
and recover from failures, disruptions, or attacks without significant degrada-
tion of performance or loss of data. Due to blockchain’s inherent decentraliza-
tion, both data and processing is distributed across a network of nodes which
reduces the risk of single point of failures.
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3.3 Summary

This chapter defines the system’s functional and non-functional requirements.
It specifies what the AquaTrace system must achieve, such as generating unique
ids and tracking product history, and outlines criteria for performance, usability,
maintainability, security, and resilience.



4
Design and
Implementation

This chapter details the design and implementation of the AquaTrace system.
It covers the system architecture, smart contract development, frontend and
backend functionalities, and deployment procedures. By breaking down the
system into distinct components, we illustrate how each part contributes to the
overall functionality, security, and scalability of AquaTrace.

4.1 System Architecture

AquaTrace is structured into several distinct layers and components. This sys-
tem architecture enhances the system’s scalability, maintainability, and security.
The layered and component-based architecture of AquaTrace boosts scalability
by allowing individual elements to be scaled independently and facilitating
easier integration with other systems. This design also enhances maintainabil-
ity through simpler updates and debugging, as components can be modified
or replaced without impacting the entire system. Furthermore, security is
strengthened by isolating critical components. The architecture is divided into
four main components: the frontend (1), the backend (2), external sources (3),
and the Web3 library (4) in Python and JavaScript. The Web3 library facilitates
communication with the smart contract hosted on the Avalanche blockchain.

21
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Figure 4.1 depicts how the different components communicate.

External sources
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blockchain
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contract
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API
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Figure 4.1: AquaTrace system architecture

The Web ui serves as the primary interface for end-users, enabling them to
interact with the AquaTrace system. The ui is designed to be user-friendly,
providing intuitive access to functionalities such as registering new product ids,
updating existing ids, and retrieving historical data related to specific ids. The
frontend is implemented using React, which is a popular JavaScript library for
building single-page applications. React allows for efficient rendering updates,
which is beneficial for real-time data interaction such as when viewing and
managing product ids.

The backend of AquaTrace, while not essential for the core functionalities of the
system, which are primarily managed through direct interactions between the
frontend and the blockchain via Web3, serves a complementary role. It offers
an API that replicates some of the functionalities available on the frontend.
This setup could prove valuable for developers or other third-party services that
require programmatic access to AquaTrace. The API provided by the backend
does not perform any direct data manipulation or storage functions on the
blockchain. Instead, it focuses on fetching data from the blockchain via smart
contract functions. Table 4.1 shows the available API endpoints and briefly
describes them. Python Flask is utilized for the backend framework due to its
simplicity and effectiveness in creating lightweight REST APIs. Flask allows for
easy setup of route endpoints that can serve data requests by returning JSON
formatted responses, which makes integration with other systems easier. Both
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the frontend and backend utilize their respective Web3 libraries to directly
interact with the blockchain. In the frontend it is used to facilitate direct
blockchain transactions like generating new ids, while in the backend it is
used to perform read operations from the blockchain.

Endpoint Method Description

/api/owners/<string:address>/ids GET
Fetches all ids associated with an ad-
dress. Returns a list of ids in hexadec-
imal format.

/api/ids/<int:id>/history GET Fetches the history of a specific id. Re-
quires the id in hexadecimal format.

/api/ids/<int:id>/metadata GET
Retrieves metadata for a specific id.
The id must be in hexadecimal for-
mat.

/api/contract/address GET
Retrieves the address where the
smart contract is deployed. Address
is in hexadecimal format.

Table 4.1: API Descriptions for Product id Management System

The external resources of AquaTrace consists of a smart contract, which is
deployed on the Avalanche blockchain. This smart contract handles all interac-
tions with the on-chain data and ensures all operations, such as id creation and
status updates, are executed according to the same rules. All operational data,
including id generation, updates, and historical tracking, is stored directly
on the Avalanche blockchain. This approach eliminates the need for sepa-
rate local data storage and leverages blockchain’s inherent data immutability
features, securing data against tampering. Having all data on-chain also sim-
plifies the architecture by reducing the amount of components that must be
managed.

Although the core data management and processing are performed on the
Avalanche blockchain, AquaTrace provides a comprehensive API and user
interface, making it accessible to various stakeholders. The application could
be hosted and managed by a trusted entity such as the Norwegian Ministry of
Trade, Industry, and Fisheries. This hosting ensures that the system adheres
to national regulations and standards for data security and privacy while
providing centralized oversight of the critical infrastructure.

4.2 Smart Contract

In the design of the AquaTrace system, the implementation of smart contracts
is central to the functionality of the blockchain-based id management system.
The following sections outline the design choices and structures used within
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the Solidity smart contract to manage product metadata and track changes
over time.

The smart contract for AquaTrace consists of several functions, data structures,
also called structs, and events that are required for its operation. AquaTrace’s
functions can be seen in Table 4.2 while the structs and events will be de-
scribed in the following section. These components are crucial for ensuring the
integrity, traceability, and accessibility of product data throughout the supply
chain.

Function Type Description

generateIDs NONPAYABLE

Generates unique ids for new prod-
ucts by using a nonce, timestamp, and
sender’s address, ensuring unique-
ness.

updateIDStatus NONPAYABLE
Updates the status and location of an
existing id after verifying user autho-
rization.

getIDMetadata VIEW
Returns metadata for a specific id, in-
cluding ownership details and prod-
uct status.

getIDHistory VIEW
Retrieves a history of changes for an
id, showing past statuses and loca-
tions to support traceability.

getOwnerIds VIEW
Lists all ids registered to a specific
owner, providing a quick reference for
user-owned products.

Table 4.2: Descriptions of the different functions within the smart contract.

In Solidity functions can be defined with specific types that dictate their
behaviour and restrictions [8]. View functions promise not to modify the state
of the contract. They are read-only functions that can return data and operate
on the blockchain without any gas cost when called externally by users. If they
are used internally within other functions to alter the state they will incur gas
costs. Pure functions neither read or modify the state of the contract in any
form. They only use function arguments and other local scope variables to
compute and return values. Nonpayable, while not a keyword in Solidity, is
the default function type if no other type is specified. Nonpayable functions
has the ability to both read and alter the contract state and will incur gas costs
when called. Payable functions are the only type of functions that can receive
Ether. They are necessary for any function that needs to handle Ether transfers
to the contract. This function type must be used if you expect to receive or
handle Ether in transactions.
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4.2.1 Generating IDs

The generateIDs function, seen in Figure 4.2, in the AquaTrace smart contract
is a critical component designed to create unique identification numbers for
new products as they enter the supply chain, fulfilling Requirement 1. This
function takes two parameters: numIds, which specifies the number of ids to
be generated, and productType, which describes the category of the products.
The function first checks that the number of ids requested is greater than zero
and that a product type has been provided, ensuring valid input data. It then
enters a loop to generate the specified number of ids.

1 Function generateIDs ( numIds : uint 256, productType : string )
2 Require numIds > 0
3 Require length ( productType ) > 0
4
5 For i from 0 to numIds - 1 do
6 id := hash(block. timestamp , sender address , nonces [

↩→ sender ])
7 ownerIds [ sender ].push(id)
8
9 idToMetadata [id] := {
10 ownerId : sender ,
11 timestamp : block. timestamp ,
12 productType : productType ,
13 status : " Generated ",
14 latitude : 0,
15 longitude : 0
16 }
17
18 idHistories [id].push({
19 timestamp : block. timestamp ,
20 status : " Generated ",
21 latitude : 0,
22 longitude : 0
23 })
24
25 nonces [ sender ] := nonces [ sender ] + 1
26 Emit IDGenerated (id, sender , block. timestamp )
27 End For
28 End Function

Figure 4.2: Pseudo-code for the generateIDs function in AquaTrace

Within the loop, each id is created using the cryptographic hash function kec-
cak256, which is the hashing function used in Solidity. This function combines
the current blockchain timestamp, the address of the sender, and a nonce. The
nonce ensures that each id is unique even if the other parameters remain
constant. This newly created id is then associated with the sender’s address
and stored, along with the product’s metadata, which includes the type, status,
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and initial coordinates set to zero, in the idToMetadata mapping. The id and
its creation details are also logged in the idHistories mapping to keep a
history of each id’s state changes. After setting up the metadata and history,
the nonce for the sender is incremented to prepare for the next potential id
generation. Finally, the function emits an IDGenerated event to signal that a
new id has been successfully created, along with relevant data such as the id
number, owner’s address, and timestamp.

4.2.2 Data Structures

Structs allow for the grouping of related data points, which simplifies data
management and enhances the efficiency of data retrieval operations. In Aqua-
Trace, structs are particularly useful for organizing data related to product ids.
For example, they can be used to bundle metadata such as product type, status,
and coordinates into a single structure. This organization not only makes the
code more readable and maintainable but also optimizes the handling and
storage of product information within the smart contract.

Product Metadata

The ProductMetadata struct, seen in Figure 4.3, is designed to encapsulate
all relevant information about a product within a single data structure. It
includes the address of the owner of the product which is crucial for tracking
ownership throughout the supply chain. Additionally, a Unix timestamp of
the last product update, this helps to maintain a chronological record of all
changes. The type of product it is such as "King crab or "Salmon" is also included,
helpful for managing certain product types or sorting. The current status of
the product i.e. "Caught", "In transit", or "Processed" so stakeholders can easily
know where in the processing stage the product is. Furthermore latitude and
longitude stores the last known geographical location of the product which
helps in logistic tracking or for verifying a products location, which fulfills
Requirement 2. This struct facilitates easy management throughout a products
lifecycle.

ID History

The IDHistory struct, highlighted in Figure 4.4, is designed to complement
the ProductMetadata by recording the historical changes of each product
id within the AquaTrace system. It stores several essential fields that mirror
those of the ProductMetadata struct, although with a focus on the chronology
of events, fulfilling Requirement 6. This struct ensures robust traceability by
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1 struct ProductMetadata {
2 address ownerId ;
3 uint256 timestamp ;
4 string productType ;
5 string status ;
6 int32 latitude ;
7 int32 longitude ;
8 }

Figure 4.3: Solidity struct for product metadata

maintaining a detailed and immutable log of all changes, which is essential
for compliance, auditing, and maintaining the integrity of the supply chain
information.

1 struct IDHistory {
2 uint256 timestamp ;
3 string status ;
4 int32 latitude ;
5 int32 longitude ;
6 }

Figure 4.4: Struct for tracking historical changes of product IDs

4.2.3 Events

Events in the AquaTrace smart contract serve as mechanisms for notifying
external consumers (like user interfaces or other smart contracts) about specific
actions that have occurred within the contract.

ID Generated

The IDGenerated event, as introduced in Figure 4.5, functions as a notification
mechanism within the AquaTrace system, signaling the creation of new product
ids. This event is designed to work in conjunction with the ProductMetadata
struct, providing real-time alerts that synchronize with the registration of new
product information. When a new id is successfully generated, the idGenerated
event is emitted. By broadcasting the creation of each new product id it
ensures that all participants in the supply chain are immediately aware of new
entries.
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1 event IDGenerated (
2 uint256 indexed id,
3 address ownerId ,
4 uint256 timestamp
5 );

Figure 4.5: Event emitted upon successful generation of a new product ID

ID Updated

The IDUpdated event, detailed in Figure 4.6 is used for announcing modifi-
cations to the existing product ids, fulfilling Requirement 4. It functions in
conjunction with the IDHistory struct, ensuring stakeholders are informed
about changes to a product’s record. Broadcasting these events in real-time
enhances the transparency of the AquaTrace system. The struct enables all
involved parties have access to accurate and timely information regarding a
product’s lifecycle.

Only the owner of an id is authorized to update its information, ensuring that
unauthorized parties cannot make changes. This owner verification mechanism
fulfills Requirement 3, as it guarantees that updates to the product id can only
bemade by the entity that generated it. This enhances the security and integrity
of the data within the AquaTrace system.

1 event IDUpdated (
2 uint256 indexed id,
3 uint256 timestamp ,
4 string newStatus ,
5 int32 latitude ,
6 int32 longitude
7 );

Figure 4.6: Event Emitted When a Product ID’s Metadata Is Updated

4.2.4 Gas Optimization

Gas consumption is a critical consideration in the design of the smart contract.
Gas is the unit that measures the amount of computational effort required to
execute operations on the evm. Each operation consumes a certain amount of
gas, and users must pay for this gas in the blockchain’s native cryptocurrency
(e.g., ETH for Ethereum, AVAX for Avalanche). Optimizing gas usage is im-
portant for several reasons: it directly translates to lower transaction costs for
users, particularly important for applications like AquaTrace where frequent
interactions with the smart contract are expected. Efficient gas usage also
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enhances scalability by allowing the system to handle a larger number of trans-
actions without excessive costs. Additionally, by minimizing gas consumption,
the overall load on the blockchain network is reduced, contributing to better
network performance and reducing the risk of congestion.

To optimize gas usage in AquaTrace, several strategies were employed:

• Efficient Data Structures: Using mappings for quick data retrieval and
storage helps reduce the computational effort required for operations,
thereby saving gas.

• Minimized Storage Operations: Storage operations are costly in terms
of gas. By minimizing the number of storage writes and utilizing events
for logging data that doesn’t need to be persistently stored on-chain, we
reduce gas costs.

• Batch Processing: Where possible, operations such as generating mul-
tiple ids are batched into a single transaction to leverage the inherent
efficiency of batch processing.

These strategies collectively ensure that the AquaTrace system operates in
a cost-effective and scalable manner, optimizing the use of gas and thereby
reducing transaction costs and improving overall system performance.

4.2.5 Error Handling and Security

Security and robust error handling are crucial in the smart contract implemen-
tation. Ensuring that only authorized users can perform specific operations
and that all inputs are valid is essential for maintaining the integrity and relia-
bility of the system. Implementing these measures helps prevent unauthorized
access and common vulnerabilities, safeguarding the contract against potential
attacks and ensuring it operates as intended.

Access control is enforced using require statements that check the sender’s
permissions as seen in Figure 4.7, ensuring only authorized users can perform
certain operations. Input validation ensures that only valid data is processed
by the contract, preventing common vulnerabilities such as buffer overflows.
These strategies contribute to the overall efficiency, security, and reliability of
the AquaTrace system, ensuring that it can handle the demands of a real-world
seafood supply chain while maintaining the integrity and security of product
data.

These strategies and mechanisms contribute to the overall efficiency, security,
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1 Function updateIDStatus (id: uint 256, newStatus : string ,
↩→ latitude : int 32, longitude : int 32)

2 Require idToMetadata [id]. ownerId == msg. sender
3 Require latitude >= -90 * 1e5 AND latitude <= 90 * 1e5
4 Require longitude >= -180 * 1e5 AND longitude <= 180 * 1e5
5
6 newHistory := IDHistory (block. timestamp , newStatus ,

↩→ latitude , longitude )
7 idHistories [id].push( newHistory )
8
9 idToMetadata [id]. timestamp := block. timestamp
10 idToMetadata [id]. status := newStatus
11 idToMetadata [id]. latitude := latitude
12 idToMetadata [id]. longitude := longitude
13
14 Emit IDUpdated (id, block. timestamp , newStatus , latitude ,

↩→ longitude )
15 End Function

Figure 4.7: Pseudo-code for the updateIDStatus function in AquaTrace

and reliability of the AquaTrace system,ensuring that it can handle the demands
of a real-world seafood supply chain while maintaining the integrity and
security of product data.

4.3 Frontend

The frontend of AquaTrace serves as the primary interface of the application and
tries to fulfill Requirement 7. It functions as a Decentralized Application (dapp)
that allows users to engage directly with the blockchain-based functionalities of
the smart contract. The following sections will describe functionalities provided
by the frontend, and how it facilitates interaction between the users and the
AquaTrace smart contract.

4.3.1 Interacting with Contract Functions

When users need to interact with a smart contract function on AquaTrace,
whether to generate new ids or to check the history of an existing one, they
can do so through the designated Contract page. This page is depicted in
Figure 4.8. To interact with payable functions, users are required to have a
cryptocurrency wallet browser add-on installed that supports the Avalanche
blockchain. Compatible wallets include MetaMask, TrustWallet, and Core, the
latter being used in this example. Additionally, users must ensure that their
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wallet is funded with AVAX, which is the native currency of the Avalanche
network.

Figure 4.8: Screenshot displaying the page where users can interact with different
smart contract functions.

The Contract page facilitates interactions with all types of contract functions,
both payable and view. For example, if a user wants to generate new ids, they
simply enter the desired quantity and specify the product type, such as salmon,
king crab, or prawns. After entering this information, the user would click the
Generate IDs button. This action triggers a confirmation screen, as shown in
Figure 4.9, which allows the user to review and adjust transaction details such
as gas costs and gas limits, and to either approve or deny the transaction.

While view functions are accessible on this page, for user convenience, there
is a dedicated tracking page specifically designed for these functions, which
offers a tailored user interface that focuses on monitoring and retrieving data.
This separation ensures that operational functions and tracking functionalities
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Figure 4.9: Screenshot displaying the transaction confirmation users are prompted
with when calling payable functions.

are intuitively organized, improving navigation and usability. The specific
design of the tracking page and its user interface will be discussed in a later
section.

After the transaction has been approved, it enters a comprehensive transac-
tion lifecycle [34] where different processes happen behind the scenes. The
transaction is encapsulated within an rpc and distributed to various nodes
across the network. As nodes receive the transaction they have to validate
it to confirm the authenticity of its contents such as signatures, nonce, and
gas limits. Once transactions are validated they are added to the individual
nodes memory pool, which is a sort of waiting area where transactions wait
to be mined or validated further by the network. Depending on the gas prices
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associated with a transaction it could be prioritized higher or lower. Higher gas
prices result in faster processing. When a new block is formed the transaction
is executed as part of the block’s creation. This includes the execution of any
smart contract function called by the transaction, the result is then recorded
on the blockchain. The newly formed block is then broadcasted to the network
where other nodes verify the validity of it themselves. The network then has to
reach consensus using the Avalanche-specific consensus protocol, as described
earlier. Once consensus is achieved and the block is added to the blockchain,
the transactions contained within are considered fully confirmed.

1 {
2 " blockHash ": "0 x963c173 ...",
3 " blockNumber ": "32644960" ,
4 " cumulativeGasUsed ": "221067" ,
5 " effectiveGasPrice ": "25500000000" ,
6 "from": "0 x6169f ...",
7 " gasUsed ": "221067" ,
8 "logs": [ ... ],
9 " logsBloom ": "0 x000800 ...",
10 " status ": "1",
11 "to": "0 x8afd11 ...",
12 " transactionHash ": "0 xb1d41 ...",
13 " transactionIndex ": "0",
14 "type": "2",
15 " events ": {
16 " IDGenerated ": {
17 ...,
18 " returnValues ": {
19 ...,
20 "id": "1805884447..." ,
21 ...,
22 }
23 ...,
24 }
25 }
26 }

Figure 4.10: Example of a transaction receipt when generating new ids. Longer fields
and values have been truncated for readability, for the full transaction
receipt see A.1. For an explanation of what each field is see Table A.1.

After a transaction has been confirmed, the transaction receipt becomes avail-
able, providing a record of the transaction’s completion and the effects it had on
the blockchain. The transaction receipt is generated by the blockchain network
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after the transaction has been included in a block and validated by the network
nodes. Figure 4.10 displays a partial transaction receipt which notably includes
the events emitted during the transaction. This receipt allows users to verify
the details of the generated ids and access other specific details related to
the transaction. Once ids have been generated, users can then proceed to the
tracking page to begin managing and monitoring them actively.

4.3.2 Product Tracking Using IDs

Building on the contract functions introduced earlier, this subsection explains
how AquaTrace leverages these capabilities for product tracking. By assign-
ing unique ids to each product, the system enables continuous monitoring
from the point of capture to delivery to consumers. This approach provides
users and stakeholders with real-time updates about their products, ensuring
transparency and reliability throughout the supply chain.

To start tracking andmanaging products users can navigate to the tracking page
within the AquaTrace web application. Users aremet by a user-friendly interface
featuring a blank world map alongside a dropdown box. This dropdown allows
users to select an id to view its history and interact with a form to update the
product’s status, as illustrated in Figure 4.11.

Figure 4.11: Screenshot displaying what the ID tracking page looks like with no IDs
selected.

After selecting an id, users can retrieve detailed information about the product
by clicking the Get ID History button. The resulting display, shown in Fig-
ure 4.12, includes several tables providing essential details such as the current
status, location, owner, product type, and the timestamp of the last update.
An additional table presents a comprehensive timeline of the product’s life-
cycle, noting every significant event along with corresponding locations and
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timestamps. Additionally, each id is associated with a QR code, enabling quick
scanning for convenient status checks or modifications directly from mobile
devices.

Figure 4.12: Screenshot displaying what the ID tracking page looks like when an ID
has been selected.

For products with more than one tracking point, users can visually trace the
entire journey on a Leaflet map, as depicted in Figure 4.13. This feature en-
hances user understanding by providing a visual representation of the product’s
journey, making it more intuitive than deciphering longitudinal and latitudinal
coordinates alone. This fulfills Requirement 5 by enabling precise geo-location
tracking of products, ensuring transparency and accountability as stakehold-
ers can easily access and review the product’s movement through the supply
chain.

4.4 Deployment

The deployment of AquaTrace involves several steps that integrate both the
blockchain components and the web application components. This section out-
lines the process through which the smart contract is compiled and deployed
to the Avalanche Fuji testnet, and how the frontend and backend are container-
ized, stored, and deployed using Azure services. A central trusted authority
will be hosting the blockchain and other infrastructure such as containers,
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Figure 4.13: Screenshot displaying the tracking of a product using a Leaflet map.
This map visually represents the journey of a product that was fished in
the Norwegian Sea, unloaded in Tromsø, processed in China, and then
shipped back to Norway for distribution to consumers.

source code, and backend servers, ensuring centralized oversight and support.
However, it is important to note that while the trusted authority provides the
hosting infrastructure, they do not exert control over the blockchain itself,
maintaining the decentralized nature of the system.

4.4.1 Smart Contract Compilation and Deployment

The first step in deploying AquaTrace involves compiling the smart contract
using the Solidity compiler via the Web3 library, which facilitates interaction
with the Ethereum blockchain. The compilation process translates the high-
level Solidity code into bytecode that can be executed on the blockchain.
Additionally, Web3 is used to generate the contract’s Application Binary In-
terface (abi), which acts as an interface between the smart contract and the
application.

1. Compiling the Contract: The Solidity code is compiled using the solc
compiler integrated into the Web3 library. This process checks for any
syntax or logical errors and ensures the contract is ready for deployment.
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2. Deploying to Avalanche Fuji Testnet: Once compiled, the contract
bytecode and abi are used to deploy the contract to the Avalanche
Fuji testnet. This testnet provides an ideal environment for testing the
contract’s functionality without incurring the costs associated with the
mainnet deployment. The deployment is initiated through a function
that specifies the Fuji network details and supplies the necessary gas and
contract details.

4.4.2 Containerization and Image Deployment

Both the frontend and backend of AquaTrace are containerized using Docker,
which ensures that they can operate reliably across different computing envi-
ronments. These Docker containers are then pushed to an Azure Container
Registry, from where they can be managed and deployed.

1. Building Docker Images: Dockerfiles are created for both the fron-
tend and backend, specifying the base images, dependencies, and build
commands. The images are built locally and tested to ensure that all
components operate correctly.

2. Uploading to Azure Container Registry: Once validated, the Docker
images are tagged and pushed to a repository in the Azure Container Reg-
istry. This registry acts as a single point of access for image management
and version control.

4.4.3 Deployment Using Azure Container Apps

The final deployment is managed using Azure Container Apps, which allows
for scaling and managing applications efficiently [50]. The deployment process
involves the following steps:

1. Deployment Configuration: A deployment configuration file called
deployment.bicep is prepared. This file defines the infrastructure re-
quirements, such as compute resources, scaling rules, and network con-
figurations.

2. Executing Deployment: The deployment is executed using the Azure CLI.
This command-line tool communicates with Azure to create and manage
resources based on the deployment.bicep file, effectively rolling out
the application to production.
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4.5 Summary

This chapter describes the architecture and development of AquaTrace. It covers
the system’s layered structure, detailing the roles of the frontend, backend,
external sources, and Web3 library. The implementation of the smart contract
on the Avalanche blockchain and the containerization process using Docker
and Azure services are also discussed.



5
Evaluation
This chapter will be focusing on the evaluation of the AquaTrace smart contract
implementation. Since the smart contract is the backbone of our system it is
important to ensure that all operations like generating, tracking, updating
ids, and retrieving data works efficiently and securely. The evaluation aims
to assess that the smart contract meets the requirements and to identify any
potential areas for optimization.

5.1 Setup

The evaluation will utilize a suite of tools and libraries to deploy the smart
contract, execute tests, collect performance data, and analyze results. The
specifics of these tools and their roles in the evaluation process are detailed in
Table 5.1.

The hardware setup for conducting the experiments includes a high-performance
Dell OptiPlex Tower Plus 7010, this ensures that the evaluation process will
not be bottlenecked by resource demands. Specifications of this system are
detailed in Table 5.2.

After developing and testing the smart contract in Remix IDE, the contract was
deployed to an Ethereum Virtual Machine-compatible blockchain, specifically
the Avalanche Fuji testnet, for evaluation. The experiment process involved

39
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Tool/Library Purpose
Python ^3.10.12 [13] Used for scripting test cases, data handling, and performing

data analysis tasks necessary for evaluating system perfor-
mance.

web3.py [33] A Python library for interacting with Ethereum-based
blockchains, used to connect to and perform actions on the
blockchain, such as deploying contracts and making transac-
tions for testing.

matplotlib.py [40] A plotting library in Python, utilized for creating visualizations
of data related to transaction times, costs, and other analyses
during the evaluation phase.

Solidity ^0.8.0 [42] The programming language used to write smart contracts
deployed on Ethereum-based blockchains, essential for devel-
oping the contract logic that will be evaluated.

Remix IDE [41] An open-source web and desktop application that simplifies
the process of writing, testing, and deploying smart contracts,
used for quick iterations during contract evaluation.

Table 5.1: Tools and libraries required for the evaluation of AquaTrace, detailing their
purpose in the testing and validation processes.

Component Specification
Central Processing Unit (cpu) 13th Gen Intel(R) Core(TM) i7-13700 (16C/24T@2.10GHz)
Grahpics Processing Unit (gpu) NVIDIA GeForce RTX 3070
Random Access Memory (ram) 128gb ddr4 ram, running at 3600MHz
Storage Micron 3400 sed nvme 1024gb, 6600 MBps (read) / 3600

MBps (write)
Ethernet adapter Intel(R) Ethernet Connection (17) I219-LM, Link speed

1000/1000 (Mbps)
Operating System (os) Windows 11 Enterprise version 22H2

Table 5.2: Hardware specifications of the system used to conduct the experiments.

using the web3.py library to interact with the blockchain, perform necessary
transactions, and gather data for analysis. This setup enabled the systematic
evaluation of the AquaTrace system’s performance under various conditions,
ensuring robust and reliable results.

In a real-world situation, gas prices can fluctuate based on network conges-
tion, affecting transaction costs and confirmation times. However, since this
evaluation is conducted on a testnet, such fluctuations are minimal and not as
noticeable. This controlled environment allows for consistent testing conditions,
ensuring that the performance data accurately reflects the smart contract’s
capabilities without the variability introduced by mainnet traffic.
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5.2 Experiments

This section details each experiment conducted to assess the performance and
reliability of the AquaTrace smart contract. The experiments are designed
to examine various aspects of the smart contract’s operations, from its effi-
ciency and cost-effectiveness to its responsiveness and security. By analyzing
each experiment, this section aims to provide a comprehensive view of the
system’s operational efficiency and responsiveness. There are many objectives
with these experiments. Primarily we seek to verify that the AquaTrace smart
contract adheres to its design specifications and meets the standards necessary
for real-world applications. This evaluation will help ensure that AquaTrace
can be confidently deployed with a clear understanding of its capabilities and
limitations. It also aims to lay a foundation for ongoing improvements and
provide a benchmark for future enhancements. By the end of this section,
readers should have a thorough understanding of how AquaTrace has been
tested, the results of these tests, and the implications for its future deployment.
This comprehensive approach ensures that every side of the AquaTrace smart
contract has been examined carefully, providing stakeholders with the assur-
ance that the technology is not only innovative but also robust and reliable for
its intended use.

5.2.1 Cost of Executing Different Smart Contract Functions

Our first experiment focus on quantifying and analyzing the gas costs asso-
ciated with various functions of the AquaTrace smart contract to optimize
cost-efficiency and economic viability. By systematically invoking each function
within the smart contract and recording the gas consumed, the objective is
to identify which functions may require further optimization to reduce op-
erational expenses [7]. This evaluation is critical as it directly impacts the
overall cost-effectiveness of deploying the smart contract in a real-world sce-
nario.

To gather the results for this test, each function of the AquaTrace smart contract
was executed once, and the gas cost for each operation was recorded. This
process included deploying the smart contract, generating ids, updating id
statuses, and retrieving data. The gas consumed for each function was mea-
sured to provide a clear picture of the operational costs associated with each
smart contract action. These measurements were performed on the Avalanche
Fuji testnet, which provides a controlled environment for testing without the
variability and congestion often encountered on the mainnet.

Table 5.3 outlines the cost of invoking each of the contract functions, including
deploying the contract it self onto the blockchain. The cost of generating ids
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(marked with *) is the cost of generating 1 id. Further cost analysis in Table 5.4,
which provides a detailed breakdown of costs when generating ids at scale.
Pure and view functions (marked with **) do not incur gas costs and are free
to call when called externally from a transaction, thereby not affecting the
blockchain state. If they are called within other functions they will incur a gas
cost as usual. On the Avalanche Fuji testnet, the base fee is set at 25 nAVAX
per gas unit. To determine the cost of a transaction in AVAX, multiply this
base fee by the number of gas units used. The conversion from AVAX to USD
is calculated by multiplying the AVAX amount by the current exchange rate,
which is approximately 1 AVAX ≈ $33.30 as of May 13, 2024.

Function Costs
Gas units AVAX USD

Deploy smart contract 1,910,414 0.047760 $1.59
Generating IDs* 255,387 0.006384 $0.21
Updating ID status 98,905 0.002472 $0.08
Get ID metadata** 36,107 0.000902 $0.03
Get ID history** 33,254 0.000831 $0.03
Getting all owned IDs** 26,695 0.000667 $0.02

Table 5.3: Gas costs for executing different smart contract actions on the Avalanche
blockchain.

Analyzing the table we see that deploying the smart contract is the most
expensive operation. Though it is relatively costly compared to the other
functions, this is a one-time operation and should be considered a fixed startup
expense. This is typical for smart contract where the initial deployment incurs
a higher cost due to the storage of the bytecode on the blockchain. Generating
ids is one of the core functionalities of AquaTrace and is relatively costly in
terms of gas usage. Since this function will be used frequently, especially as
new products are added to the system, its cost efficiency is crucial. Efforts to
optimize this function could include minimizing state changes or restructuring
how data is stored and retrieved. Further cost analysis regarding id generation
will performed in another experiment.

Updating the status of ids is also a function that will be used frequently
as products move through different stages of the supply chain. The cost is
moderate, and optimizing this function could prove hard due to it already
storing the minimum amount of information necessary to track a product.
The rest of the functions can be invoked to read data from the blockchain
without any cost when called externally. These functions do not modify the
blockchain state and are crucial for providing stakeholders with access to data
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without incurring transaction costs. The reported costs apply only when these
functions cause state changes, such as during internal calls made by other
functions within the smart contract.

This detailed cost analysis helps in identifying potential optimizations and
provides a benchmark for stakeholders to evaluate the economic feasibility
of implementing the AquaTrace system on the Avalanche platform. Under-
standing these costs is essential for managing the financial aspect of running
decentralized applications and ensuring sustainable operations.

5.2.2 Cost Analysis of Generating IDs

The operational expenses associated with generating ids in the AquaTrace
system are examined in this experiment to assess how scaling affects costs. The
gas consumption necessary to generate varying numbers of ids under simulated
real-world conditions is quantified, providing insights into the scalability and
financial feasibility of the AquaTrace system.

To measure the gas costs associated with generating ids, the estimate_gas
function in the web3.py library was used. This function provides an estimate
of the gas required to execute a given function on the blockchain. For this
experiment, ids were generated in batches ranging from 1 to 100, and the gas
costs for each batch size were recorded. Table 5.1 outlines the cost for a select
number of ids, while Table A.2 provides the cost for all recorded values from 1
to 100.

Number of IDs 1 5 10 25 50 75 100
Cost (Gas units) 255,387 1,009,941 1,952,968 4,782,230 9,498,278 14,215,077 18,932,643

Table 5.4: Gas costs for generating a given amount of IDs.

To quantify the relationship between the number of ids generated and the
associated gas costs, we can use linear regression analysis. The steps of the
analysis are:

1. Calculate the means of the number of IDs (𝑥𝑖) and the corresponding
gas costs (𝑦𝑖):

𝑥 =
1
𝑛

𝑛∑︁
𝑖=1

𝑥𝑖 𝑦 =
1
𝑛

𝑛∑︁
𝑖=1

𝑦𝑖
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2. Compute the slope (𝑚) of the best-fit line:

𝑚 =

∑𝑛
𝑖=1(𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦)∑𝑛

𝑖=1(𝑥𝑖 − 𝑥)2

3. Determine the y-intercept (𝑐):

𝑐 = 𝑦 −𝑚𝑥

4. The resulting first-degree polynomial describing the cost model is:

𝑦 =𝑚𝑥 + 𝑐

Applying the derived linear regression model to the data from Table 5.4,
we obtain an equation that effectively predicts the gas costs associated with
generating varying numbers of ids:

𝑦 = 188656𝑥 + 66308

This model equation reveals that for each additional id generated, the incre-
mental gas cost is 188,656 units. This cost, when converted using the current
base fee of 25 nAVAX per gas unit, equates to 0.0047164 AVAX. Based on the
prevailing exchange rate of 1 AVAX ≈ $33.30, this translates to approximately
$0.15 USD per id. Figure 5.1 shows the linear correlation between the amount
of ids generated and gas cost. This mathematical model and the associated
visual representation allow us to verify the linear relationship between the
number of ids and their generation costs.

This cost breakdown is useful for stakeholders in assessing the economic
implications of scaling operations within the AquaTrace system. It provides
a clear metric for budgeting and financial planning as the deployment scales,
ensuring that the system remains economically viable as the number of ids
generated increases.

5.2.3 Time to Generate IDs Based on Gas Price

In the next experiment we explore the correlation between gas price and
the time required for id generation within AquaTrace, demonstrating that
increased gas prices can reduce the transaction confirmation time.

The methodology involves performing id generation transactions at different
gas prices, starting from the network’s average rate to 20% and 50% above
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Figure 5.1: Graphical representation showing that the cost of generating IDs rises
linearly with the number of IDs produced.

it, and measuring the time until transaction confirmation. Each trial was con-
ducted with a consistent number of ids to ensure that the data comparison
remains valid across different gas price settings. The results indicate that in-
creasing the gas price by 20% and 50% reduces the time taken to generate ids,
as shown in Figures 5.2, 5.3, and 5.4. This improvement occurs because higher
gas prices incentivize miners to prioritize these transactions, leading to quicker
inclusion in blocks and thus faster confirmations. However, the improvement
in speed must be balanced against the increased cost [45], as higher gas fees
could significantly inflate operational expenses. Additionally, the figures reveal
that generating a larger batch of ids does not take more time than generating
a smaller batch, showcasing the efficiency of the AquaTrace system in handling
bulk operations.

The figures 5.2, 5.3, 5.4, and 5.5 provide a visualization of howminor adjustments
in gas price can affect operational efficiency. For instance, the time reductions
observed at 20% and 50% increases are not linear, suggesting diminishing
returns at higher fee levels. This behavior highlights the need for strategic
management of gas prices, especially in scenarios where transaction speed is
crucial but must be weighed against cost constraints.
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Figure 5.2: Graph showing the time it
takes to generate different
amounts of IDs using average
Gas Price with standard devia-
tions.
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Figure 5.3: Graph showing the time it
takes to generate different
amounts of IDs using a 20%
increased Gas Price with stan-
dard deviations.

For AquaTrace, these findings are important in optimizing the gas expenditure
versus transaction latency trade-off. The system can be configured to dynam-
ically adjust gas prices based on desired confirmation times and budgetary
allowances. For critical operations where delay could affect the supply chain’s
integrity or lead to logistical complications, opting for a higher gas price may be
justified. On the other hand, for less time-sensitive operations, it may be more
cost-effective to accept longer wait times at lower gas prices. Also, the fact that
generating a larger batch of ids does not increase the time required further
underscores the system’s efficiency, making AquaTrace a robust solution for
large-scale implementations.

5.2.4 Time Taken to Fetch Data from Blockchain

This experiment investigates the response times for retrieving data from the
blockchain, specifically focusing on the efficiency of data retrieval operations
using the getIdMetadata function. The goal is to understand the impact of
repeated access and varying delays between requests on the latency of data
retrieval, which is crucial for assessing user experience and system performance
in AquaTrace.

The methodology involves repeatedly calling the getIdMetadata function and
measuring the time taken for each request to be fulfilled. The experiment
was conducted under three different conditions: no delay between requests,
a 3-second delay between requests, and a 5-second delay between requests.
This setup helps in identifying how network latency and blockchain response
times vary under different conditions. Each trial consisted of ten consecutive
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Figure 5.4: Graph showing the time it
takes to generate different
amounts of IDs using a 50%
increased Gas Price with stan-
dard deviations.
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Figure 5.5: Graph comparing the average
time it takes to generate dif-
ferent amounts of IDs depend-
ing on Gas Price. All associ-
ated data can be found in Ta-
ble A.3, A.4, and A.5.

requests, and each trial was conducted five times to ensure consistency.

The results, as shown in Figures 5.6, 5.7, and 5.8, reveal interesting patterns.
With no delay between requests, the first request generally takes longer, while
subsequent requests are processedmuch faster. This behaviormay be attributed
to initial network overhead or caching mechanisms that speed up subsequent
requests. On the other hand, when a delay of 3 seconds and 5 seconds is
introduced, the response times for all requests increase significantly, suggesting
that the initial optimization effect is negated with increased intervals between
requests. This behavior could be due to the lack of continuous connection
or session persistence, resulting in each request being processed as a fresh
transaction.
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Figure 5.6: Time it takes to fetch data
from the blockchain with
no delay between runs, with
standard deviations.

2 4 6 8 10
Run number

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ti
m

e 
(s

)

Time taken to fetch data from blockchain (3s delay between runs)
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from the blockchain with 3
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with standard deviations.
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Figure 5.8: Time it takes to fetch data
from the blockchain with 5
seconds delay between runs,
with standard deviations.
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Figure 5.9: Comparison of time it takes
to fetch data from blockchain
depending on delay between
runs.

The faster response times for subsequent requests with no delay highlight
the presence of initial overhead. For operations requiring rapid, consecutive
data retrievals, minimizing delay between requests is crucial. However, for less
time-sensitive operations, introducing a delay will be less resource intensive,
even if it increases individual request times. Balancing these factors will be key
to ensuring AquaTrace’s efficiency and user satisfaction.

5.2.5 Time Taken to Update the Status of an ID

This experiment focuses on measuring the efficiency and timeliness with which
the AquaTrace smart contract processes id status updates on the blockchain.
The goal is to evaluate the smart contract’s responsiveness to state changes, pro-
viding insights into the transaction processing speed and overall performance
of the AquaTrace system.

The methodology involved updating the status of an id and recording the time
taken for each transaction to process. This was done 10 times per trial, and
each trial was run 5 times to ensure consistency and reliability of the results.
The average gas price was used for all transactions to maintain standard testing
conditions. The latency times for these operations were recorded and analyzed
to understand the variations and overall performance.

The results, illustrated in Figure 5.10, show the time taken to update the status
of an id across different trials. The times are relatively consistent, with small
deviations observed across different runs. This consistency indicates a stable
performance of the AquaTrace smart contract in handling state updates.
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Figure 5.10: Time it takes to update the status of an ID with average gas prices.
Extensive results can be seen in A.9.

The experiment reveals that the time taken to update the status of an id is
generally consistent, with small deviations across different trials. The average
time per update was similar to the time taken to generate ids, suggesting that
both operations have comparable performance characteristics. The observed
deviations in latency times are minor and can be attributed to typical net-
work fluctuations and minor variances in blockchain processing times. This
consistency can be attributed to the efficient handling of transactions by the
AquaTrace smart contract and the underlying blockchain network.

The consistent performance in updating id statuses demonstrates the reliability
of the AquaTrace smart contract in handling frequent state changes. This
reliability is crucial for maintaining accurate and up-to-date information in the
food traceability system. The comparable performance in generating ids and
updating statuses suggests that the system is efficient in managing different
types of transactions.
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5.3 Summary

This chapter evaluates the AquaTrace system by focusing on key performance
metrics, such as transaction latency and gas costs. Through testing, the evalu-
ation provides insights into the system’s efficiency and scalability. The results
of these tests highlight the operational performance of AquaTrace, identifying
both strengths and potential areas for improvement.



6
Discussion
This chapter provides an in-depth discussion about the AquaTrace system,
focusing on the non-functional requirements outlined in Chapter 3 and the
reasons behind the choice of blockchain. Additionally, it includes a discussion
about real-world deployment considerations, covering aspects such as integra-
tion with existing systems, regulatory compliance, scalability and performance
testing, and infrastructure and hosting strategies.

6.1 Non-Functional Requirements

In this section, we will focus on how our non-functional requirements are
fulfilled and identify areas for potential improvement.

6.1.1 Responsiveness

The AquaTrace system features a responsive ui that immediately reacts to user
actions. Users can interact with the application seamlessly, and the ui updates
promptly to reflect these interactions. However, certain operations involving
blockchain transactions and data fetching introduce some latency. Evaluation
results indicate that performing transactions can take up to 3.5 seconds, while
fetching data from the blockchain typically takes about 0.5 seconds. These
delays are inherent to the blockchain validation process and the time required
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for rpc responses.

The primary challenge in improving responsiveness lies in the nature of
blockchain operations. Transactions must undergo a comprehensive valida-
tion process before being confirmed on-chain, which takes time. Similarly,
fetching data involves waiting for rpc calls to return the required information.
To address these challenges, several improvements can be considered.

As mentioned earlier, one approach could be to dynamically adjust gas fees for
transactions based on wanted transaction confirmation time (slow, medium,
fast). Higher gas fees can prioritize their transactions, potentially reducing
confirmation times during peak network usage. Additionally, implementing
batch processing for data retrieval operations where feasible can reduce the
overall wait time for users by fetching multiple pieces of data in a single rpc
call. Lastly, introducing caching for frequently accessed data would also reduce
the need for repeated rpc calls for the same information, thereby speeding up
the retrieval process.

These improvements could help AquaTrace enhance its responsiveness and
provide a more seamless and efficient user experience without compromising
the integrity and security of the system.

6.1.2 Reliability

AquaTrace has proven to perform reliably under testing conditions on the
Avalanche Fuji testnet. The system can consistently generate and manage
ids without errors or interruptions. The reliability in generating unique ids
is ensured by the sequential execution of transactions on the evm [5]. This
sequential execution guarantees that even if two users generate an id at the
same time, the transactions will still result in unique ids.

The robustness of AquaTrace’s reliability is theoretically supported by its design
and the underlying blockchain technology. Although stress testing on a testnet
posed challenges related to testnet funds, the principle of sequential execution
of transactions on the evm ensures that transactions are handled correctly and
efficiently. The use of the Avalanche blockchain, known for its high throughput
and low latency, further supports AquaTrace’s reliability by ensuring that the
system can handle a large number of transactions without significant delays or
failures.

The inherent reliability provided by the blockchain’s transaction handling also
helps AquaTrace. Each transaction is validated before being processed, ensuring
that only legitimate transactions are executed. This reduces the likelihood of
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errors and contributes to the overall reliability of the system.

These measures ensure that AquaTrace remains reliable, providing users with
a dependable system for generating and managing product ids, even under
varying loads and conditions.

6.1.3 Availability

The AquaTrace system aims for high availability, theoretically achieving 100%
uptime as long as the underlying blockchain is operational. Since the applica-
tion primarily serves as a frontend interface for blockchain data, its availability
is closely tied to the availability of the blockchain. However, if the frontend
becomes unreachable, it can impact user access, even though the blockchain
itself remains available.

Currently, there are no redundancy measures in place. However, given that
AquaTrace is containerized using Docker, it is feasible to implement redun-
dancy and scaling solutions using cloud services like Azure. This could involve
deploying multiple instances of the application and using load balancing to
ensure continuous availability even during high traffic periods or when some
instances fail.

By leveraging cloud services for redundancy and scaling, AquaTrace can en-
hance its availability, providing a more reliable and consistent user experi-
ence.

6.1.4 Security

Security is a fundamental aspect of AquaTrace, which is inherent in blockchain
technology. Blockchain provides robust security features that ensure the in-
tegrity, confidentiality, and availability of the datamanagedbyAquaTrace.

AquaTrace’s smart contract is designed to protect against unauthorized tam-
pering. Only the individual who generates an id can change or manage it,
ensuring that control remains with the rightful owner. This access control is en-
forced through the smart contract’s rules, which are immutable once deployed,
further enhancing security.

In terms of confidentiality, while the data on-chain is publicly accessible, this
transparency is intentional and beneficial for a food tracing system. It allows
for easy and transparent audits, ensuring that all stakeholders can verify the
authenticity and history of the products. This openness supports the goal of
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traceability and accountability within the food supply chain. From an integrity
standpoint, the data’s security is guaranteed by the blockchain’s inherent
properties. Each transaction is cryptographically secured, and the sequential
addition of blocks ensures that once data is recorded, it cannot be altered
without consensus from the network. This immutability protects the data from
unauthorized changes and ensures its reliability. Although availability has
been discussed previously, it is worth noting again that blockchain technology
contributes to this aspect by ensuring continuous access to data as long as the
blockchain network is operational.

A crucial aspect of AquaTrace’s security is its collision resistance when gen-
erating ids. ids are generated using the Keccak256 hashing function, which
ensures unique hash values. When generating ids, each user has a personal
nonce that is combined with other inputs such as the current timestamp and
the user’s address. This combination of inputs guarantees unique hash values
for each id generated. Given the vast number of possible outputs (2^256),
the likelihood of generating two identical hashes (collision) is astronomically
low. Even with a large number of ids, the probability of a collision remains
negligible. This number is unimaginably large, far beyond any practical scale of
id generation in the food traceability system. The collision resistance provided
by Keccak256 ensures that each id is unique and secure, which is vital for
maintaining the integrity and traceability of the product information within
the AquaTrace system.

By leveraging the security features of blockchain technology, AquaTrace en-
sures that its data remains secure, tamper-proof, and transparent, providing a
trustworthy platform for food product tracing.

6.1.5 Usability

The AquaTrace system is designed to be easy to use and navigate, with clear
menus and buttons. The ui employs consistent ui elements across all pages,
helping users become familiar with the system quickly. This consistency ensures
that once users learn how to use one part of the application, they can easily
apply that knowledge to other parts. The system also includes features to
help users input the correct data types. Input boxes are labeled and restricted
to accept only the appropriate data types (e.g., string inputs for text and
number inputs for numerical values). Dropdown boxes are also used to assist
users in selecting the correct values, reducing the likelihood of input errors.
Although AquaTrace currently lacks specific accessibility features, it does offer
a permanent dark mode, which can reduce eye strain for some users. Future
improvements could include developing a more comprehensive accessibility
mode to support users with disabilities.



6.1 non-functional requirements 55

From a performance perspective, the frontend is responsive, providing im-
mediate feedback to user actions. However, as mentioned earlier, rpcs and
transactions can introduce delays ranging from 0.5 seconds to 3.5 seconds. De-
spite these delays, the overall user experience remains functional and efficient
due to the design of the application.

Currently, there is no mobile version of AquaTrace. However, given that users
would typically use this application on the go, porting it to mobile or even to an
embedded device would be highly beneficial. Developing a mobile application,
particularly for iOS, would require significant effort and resources, including
an Apple developer account. Nonetheless, providing a mobile or embedded
solution would enhance usability by allowing users to access the system flexibly
and conveniently in various settings.

By maintaining a consistent design, AquaTrace ensures that users can inter-
act with the system efficiently and effectively. Future enhancements, such as
improved accessibility features, comprehensive documentation, and mobile
or embedded device support, will further improve the usability of the sys-
tem.

6.1.6 Maintainability

The AquaTrace system is designed with maintainability in mind, ensuring
that it can be efficiently managed and updated over time. To achieve this, the
system is split into separate containers for the frontend and backend, allowing
each component to be deployed and maintained independently. This modular
approach simplifies updates and debugging, as changes can be made to one
component without affecting the others.

Despite these efforts, maintaining the smart contract presents a unique chal-
lenge. Once deployed, the smart contract is immutable, meaning it cannot be
altered. This immutability ensures the integrity and security of the contract
but also necessitates thorough testing and auditing before deployment to avoid
any potential issues.

To enhance the maintainability of AquaTrace, logging and metrics could be
implemented for all services. This would enable continuous monitoring of
system health and facilitate easier debugging. Tools such as Docker logging
drivers and monitoring solutions like Prometheus can be integrated to collect
and analyze logs and metrics, providing valuable insights into the system’s
performance and potential areas for improvement.

By adopting these practices, AquaTrace can improve its maintainability, ensur-
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ing that the system remains robust and can easily adapt to future changes.

6.1.7 Resilience

AquaTrace leverages the inherent properties of blockchain technology to en-
hance its resilience. The decentralized nature of blockchain mitigates the risk of
single points of failure, ensuring that data remains accessible and secure even
if some nodes in the network go offline. By storing data on-chain, AquaTrace
benefits from the robustness of blockchain, which guarantees data integrity
and availability through consensus mechanisms.

The use of Docker containers further contributes to the system’s resilience.
Containerization allows AquaTrace to create additional instances of itself, en-
hancing redundancy and ensuring continuous operation even if some instances
fail. This capability is crucial for maintaining service availability during peak
loads or partial system failures.

To further enhance resilience, future improvements could include the imple-
mentation of error handling and recovery mechanisms. By integrating error
handling, AquaTrace can ensure that any issues are detected and managed
promptly, reducing the impact on users. Additionally, implementing recovery
mechanisms would enable the system to restore functionality quickly after a
failure.

Another potential enhancement is the introduction of backup data storage.
While the primary data is securely stored on-chain, maintaining backup copies
of critical information could provide an additional layer of protection. These
backups could be used to quickly restore data in case of unexpected issues,
ensuring that the system remains reliable and robust.

By leveraging the decentralization of blockchain technology and the flexibility
of Docker containerization, AquaTrace achieves a high level of resilience. The
suggested future enhancements will further strengthen the system’s ability to
provide continuous and reliable service under various conditions.

6.2 Choice of Blockchain

The choice of Avalanche as the blockchain for AquaTrace was motivated by
several factors, including scalability, speed, efficiency, and cost-effectiveness.
The most important criterion when selecting a blockchain was smart contract
compatibility. This compatibility allowed for the seamless use of existing tools
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designed for developing and testing smart contracts, significantly easing the
integration process. Additionally, Avalanche offers a public testnet, which was
invaluable during the development phase for deploying and testing smart
contracts without incurring high costs or risking real assets.

The discussions on scalability, speed, and efficiency are based on findings from
a comparative study [51], which evaluates several blockchains. According to
this study, Avalanche can handle approximately 5000 tps per subnet. This level
of scalability is crucial for AquaTrace, as it ensures that the system can handle
high transaction volumes efficiently, particularly during peak usage periods. In
comparison, Ethereum’s maximum tps is around 15. Such a limitation would
likely result in heavy network congestion and long transaction times, making
it less suitable for AquaTrace’s needs.

Furthermore, Avalanche’s speed and efficiency are significant advantages. The
study reports that Avalanche has a block time of around 2 seconds and a time
to finality of approximately 1 second. Time to finality refers to the time it takes
for a transaction to be irreversibly committed to the blockchain, meaning it can
no longer be altered or reversed. In contrast, Ethereum has a block time of 12-14
seconds and a time to finality of 60 seconds. Thesemetrics highlight Avalanche’s
superior performance in processing transactions quickly and finalizing them
almost instantaneously, which is essential for the real-time requirements of
AquaTrace.

Cost considerations also played a vital role in the decision. As of May 18, 2024,
the value of 1 ETH is equivalent to approximately 85 AVAX. Given that the base
gas price fee fluctuates with network congestion, performing operations on
Ethereum can be up to 85 times more expensive than on Avalanche, assuming
equivalent gas prices. This cost efficiency makes Avalanche a more economical
choice for AquaTrace, particularly for frequent transactions.

Both Ethereum and Avalanche boast large and active developer communities,
which is beneficial given that both ecosystems use Solidity for developing
smart contracts. This overlap facilitates the transfer of knowledge and re-
sources. While Ethereum’s community is larger due to its longer establishment,
Avalanche’s development team is actively producing articles and guides to
support new developers. This proactive approach helps to bridge the gap and
provides strong community support for those working on the platform.

Both Ethereum and Avalanche are under continuous development, ensuring
they remain at the forefront of blockchain technology. Ethereum’s recent tran-
sition from pow to pos has improved transaction throughput and reduced
energy consumption. Similarly, Avalanche is continually enhancing its platform,
promising ongoing improvements in performance and functionality.
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In conclusion, the choice of Avalanche for AquaTrace is driven by its technical
advantages, cost efficiency, and strong support ecosystem. Itsevm compatibility
and public testnet facilitated a smooth integration and development process.
The high scalability, speed, and economic benefits position Avalanche as a robust
platform to support the demands of AquaTrace, ensuring efficient, secure, and
cost-effective traceability solutions in the seafood supply chain.

6.3 Real-world Deployment Considerations

Deploying AquaTrace in a real-world environment involves addressing several
practical challenges to ensure its effective operation within the seafood supply
chain. This section discusses the key considerations and steps required for a
successful deployment.

6.3.1 Integration with Existing Systems

A significant aspect of real-world deployment is integrating AquaTrace with
other systems developed by the csg group. Given that AquaTrace is part of
an ongoing research interest within the csg group, it is essential to ensure
interoperability with these systems to enhance overall functionality and data
consistency.

The csg group has developed several systems that focus on different aspects
of supply chain management, particularly within the seafood industry. For
instance, SeaChain [15] aims to provide robust traceability within the fishing
industry, sharing a similar objective with AquaTrace, though with a different
focus. Integrating SeaChain with AquaTrace can enhance traceability features
and provide a more comprehensive view of the supply chain.

To address the challenge of limited connectivity at sea, AquaTrace can im-
plement edge computing strategies by processing data closer to its source
on fishing vessels. The csg group has developed the Dorvu file system [32],
part of the Dutkat framework, designed for efficient, secure, and compliant
data management in weakly connected environments. Integrating Dorvu with
AquaTrace can enhance data management by ensuring that only the most
relevant and critical information is transmitted over low-bandwidth satellite
links to central servers. This integration will address bandwidth limitations
while ensuring data privacy and regulatory compliance.



6.3 real-world deployment considerations 59

6.3.2 Regulatory Compliance

Compliance with local and international regulations is another critical aspect
of real-world deployment. AquaTrace must adhere to data protection laws such
as gdpr, ensuring that all personal and sensitive data is handled securely and
transparently. Additionally, the system must comply with industry-specific reg-
ulations governing the seafood supply chain, such as traceability requirements
and food safety standards.

The Dutkat framework [29], developed by the csg group, is specifically de-
signed to address regulatory compliance within the fishing industry. Dutkat
focuses on maintaining compliance with various regulatory requirements while
ensuring the privacy and security of the data collected. By integrating Aqua-
Trace with the Dutkat framework, the system can leverage Dutkat’s robust
compliance mechanisms to ensure that all activities within the supply chain
adhere to the necessary regulations.

6.3.3 Scalability and Performance Testing

Before full-scale deployment, extensive scalability and performance testing
are essential. This involves simulating high transaction volumes and vary-
ing network conditions to evaluate how AquaTrace performs under different
scenarios. Such testing helps identify potential bottlenecks and areas for op-
timization, ensuring that the system can handle the demands of a real-world
environment.

To enhance the realism of these tests, the Njord dataset [30] developed by
the csg group can be utilized. The dataset provides surveillance videos from
fishing trawlers, which include detailed annotations of activities and objects on
board. By integrating this dataset into the testing environment, AquaTrace can
simulate real-world conditions more accurately. This includes handling large
volumes of data generated from onboard cameras and sensors, processing this
data efficiently, and ensuring that the system remains responsive and reliable
under heavy load.

The Njord dataset can also help in testing the system’s ability to handle edge
computing scenarios, where data is processed locally on the vessel before
being transmitted over low-bandwidth connections. This is crucial for ensuring
AquaTrace’s performance and scalability in remote and bandwidth-constrained
environments commonly found in the fishing industry.
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6.3.4 Infrastructure and Hosting

The hosting infrastructure for AquaTrace needs to be robust and reliable to en-
sure continuous operation. Utilizing cloud services like Azure for containerized
deployment provides scalability, security, and ease of management. Addition-
ally, a central trusted authority, such as a governmental or industry body, can
oversee the hosting infrastructure to ensure compliance with industry stan-
dards and provide centralized support without compromising the decentralized
nature of the blockchain.

6.4 Summary

This chapter discusses how well the system meets non-functional requirements.
It explains the rationale behind choosing the Avalanche blockchain, consid-
ering its technical and economic benefits. Furthermore, the chapter explores
real-world deployment considerations, including integration with other CSG-
developed systems, compliance with regulatory standards, and ensuring robust
infrastructure.



7
Conclusion
This chapter provides an overview of the key findings and contributions of the
thesis. It begins with a review of related work, situating this research within the
broader context of blockchain applications in supply chain management. The
chapter then details the specific contributions of this thesis, particularly in the
secure generation and management of unique ids within the seafood industry.
It also outlines potential areas for future work, including the development of a
mobile application, real-world deployment, and the implementation of logging
and monitoring solutions. The concluding remarks reiterate the thesis state-
ment and summarize the implications of the research findings, highlighting the
potential of blockchain technology to enhance transparency and accountability
in supply chains.

7.1 Related Work

In exploring the use of blockchain technology for supply chain management,
it is essential to review existing literature and studies that have addressed
similar challenges and solutions. This section provides an overview of recent
and relevant work that has investigated the application of blockchain in various
supply chain contexts. While the primary focus of this thesis is on the seafood
and aquaculture sector, we will also examine studies from different sectors
to gather a comprehensive understanding of blockchain’s potential and its
diverse applications. By selecting recent papers, we aim to incorporate the
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latest advancements and insights that inform and support the development of
this thesis.

The paper titled Agricultural Food Supply Chain Traceability using Blockchain by
Rajput et al. [35] explores the use of blockchain technology to enhance traceabil-
ity in the agricultural food supply chain. The authors identify significant issues
within current agricultural supply chains, such as the involvement of numerous
participants, poor communication, distrust among members, and centralized
control, which can lead to inefficiencies and opportunities for fraudulent ac-
tivities. To address these challenges, the proposed system utilizes blockchain
technology to create a decentralized, immutable, and tamper-proof ledger that
tracks product information throughout the supply chain. The system integrates
various technologies, including sensors to gather data during the production
stages, the Interplanetary File System (ipfs) for secure data storage, and
Radio Frequency Identification (rfid) tags for easy access to information by
consumers. By storing data such as temperature, humidity, and other qual-
ity indicators in ipfs and linking it to the blockchain, the system ensures
that all relevant information is securely recorded and accessible. The authors
emphasize the benefits of blockchain in enhancing transparency, reducing man-
agement costs, and increasing the credibility of information within the supply
chain. Consumers can verify the quality and origin of agricultural products
through rfid tags, which access data stored on the blockchain. This approach
not only helps in maintaining trust among all stakeholders but also supports
the integrity and traceability of products from farm to fork. Overall, Rajput
et al. demonstrates the potential of blockchain technology to transform the
agricultural food supply chain by providing a robust and transparent traceabil-
ity system, ultimately benefiting both producers and consumers by ensuring
product quality and authenticity

Zhang et al.’s [52] paper, titled A Blockchain-Based Traceability Model for Grain
and Oil Food Supply Chain, presents a comprehensive blockchain-based trace-
ability model specifically designed for the grain and oil food supply chain. This
model tackles significant challenges such as data centralization, tampering,
and storage limitations by combining blockchain technology with Machine
Learning (ml) to ensure the authenticity and reliability of source data. The
system employs a lightweight blockchain-storage method and a data-recovery
mechanism to alleviate storage pressures and enhance fault tolerance. Built
on Hyperledger Fabric, an open-source blockchain framework designed for
enterprise use, the architecture allows for efficient multi-source heterogeneous
data uploading and secure data management. Key innovations include the use
of Internet of Things (iot) devices for real-time data collection and the integra-
tion of a three-layer anomaly-detection model to filter outliers, ensuring only
accurate data is recorded. The results demonstrate that public data queries
have an average latency of 0.42 seconds, private data queries 0.88 seconds,
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and data recovery 1.2 seconds, illustrating the model’s efficiency and reliability.
This study underscores the potential of blockchain to improve transparency,
security, and efficiency in the grain and oil food supply chain, offering a robust
framework for other agricultural sectors to follow.

The paper titled Blockchain Implementation in Pharmaceutical Supply Chains: A
Review and Conceptual Framework by Ghadge et al. [14] reviews the potential of
blockchain technology in addressing challenges within Pharmaceutical Supply
Chains (psc). It highlights the pressing issues of drug counterfeiting, lack of
transparency, and inefficiencies in pscs. Through a systematic literature review
of 65 articles published between 2010 and 2021, the authors identify key drivers,
barriers, and stages of blockchain adoption in pscs. The study proposes a con-
ceptual framework that outlines the initiation, adoption, and implementation
stages for blockchain integration. The framework emphasizes blockchain’s po-
tential to enhance traceability, data security, and operational efficiency within
the pharmaceutical sector. Additionally, the authors discuss the regulatory and
technological hurdles that must be overcome for successful implementation.
The paper underscores the need for further empirical research and provides
directions for future studies, aiming to bridge the gap between theoretical
exploration and practical application in the pharmaceutical industry.

The paper titled Toward an Intelligent Blockchain IoT-Enabled Fish Supply Chain:
A Review and Conceptual Framework by Ismail et al. [20] explores the integration
of blockchain technology with the iot to enhance traceability and transparency
in the fish supply chain. The authors review current research efforts and
existing solutions, discussing both traditional and smart supply chains enabled
by blockchain and IoT technologies. They propose an intelligent blockchain
IoT-enabled framework designed to track and trace fish products through
various stages of the supply chain, from harvesting to final delivery. This
framework leverages distributed ledger technology to build trustworthy and
decentralized traceability systems,providing timely and valuable information to
verify the authenticity and quality of fish products. The integration of Machine
Learning (ml) is also considered to enhance fish quality assessment, freshness
evaluation, and fraud detection. The paper highlights Hyperledger Fabric for its
role in ensuring data security and trust within the proposed framework. This
platform allows for controlled access, ensuring that only authorized participants
can validate transactions and access sensitive information, thus enhancing
the overall security and efficiency of the supply chain system. By addressing
significant challenges in the fish industry, including illegal, unreported, and
unregulated activities, the proposed system aims to provide a robust solution
for real-time monitoring and verification of fish products throughout the supply
chain.

These studies underscore the versatility of blockchain technology in addressing
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various challenges across different sectors, from agriculture and pharmaceuti-
cals to the fish industry. The integration of blockchain with other technologies
like IoT and ml further enhances its potential, providing robust solutions
for improving transparency, security, and efficiency in supply chain manage-
ment.

7.2 Contributions

To recap, the thesis statement is:

Blockchain-based smart contracts can effectively be used to manage unique id
series for product tracing.

This thesis specifically focuses on the secure generation and management of
ids within the seafood industry, addressing challenges such as mutual mistrust
among organizations and the threat of hostile entities. Unlike related works
that often look at the supply chain management aspect as a whole, this research
focuses on the issue of id uniqueness and security. By leveraging the properties
of blockchain technology, including its immutable ledger and decentralized
nature, this work ensures that ids are tamper-proof and verifiable. The system’s
design minimizes the risk of id collisions and enhances the traceability of
seafood products from capture to consumer.

7.3 Future work

Future enhancements to AquaTrace could focus on several key areas to improve
functionality and user experience. The most significant improvement would
be to develop a mobile application, making the system accessible for users on
the go. This would enhance the usability and convenience of the system for
stakeholders in the seafood supply chain. Another critical step would be to
deploy the system in a real-world application to validate its effectiveness, scal-
ability, and robustness under actual operational conditions, providing valuable
insights and guiding further refinements. Finally, implementing logging and
monitoring solutions, such as Docker logging drivers and Prometheus, would
provide deeper insights into system performance and facilitate easier debug-
ging. While these latter improvements are not necessary for a minimum viable
product, they would contribute to the overall robustness and maintainability
of the system.
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7.4 Concluding Remarks

This thesis has explored the hypothesis that blockchain-based smart contracts
can effectively manage unique id series for product tracing. By leveraging the
decentralized and immutable properties of blockchain technology, AquaTrace
aims to address the challenges of security, trust, and tamper-resistance in
the seafood industry. The thesis demonstrates how blockchain can potentially
eliminate the need for a central authority while ensuring the integrity and
uniqueness of product ids.

The deployment of an evm-compatible smart contract on the Avalanche
blockchain and the development of a Web3 application have been central
to this thesis. This approach aims to enable seamless interaction with the
blockchain, allowing for efficient and secure management and tracing of prod-
uct ids. The practical application of these technologies highlights the potential
of blockchain to enhance transparency and accountability throughout the sup-
ply chain.

In conclusion, AquaTrace represents a step in exploring the application of
blockchain technology for supply chain management. While the system has not
yet been tested in a real-life environment, the research outcomes suggest that
blockchain can be an effective tool in the seafood industry and potentially other
sectors. The system developed through this thesis provides a framework for
future innovations aimed at improving the security and traceability of products
in complex supply chains.
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A
Appendix A
A.1 Full transaction receipt

Field Description
blockHash The hash of the block in which the transaction was included.
blockNumber The block number in which the transaction was recorded.

cumulativeGasUsed Total amount of gas used in the block up until this transaction.
effectiveGasPrice The gas price set by the sender, which may be adjusted by the network.

from The address from which the transaction was sent.
gasUsed The amount of gas used by this specific transaction.
logs Array of log objects generated by this transaction.

logsBloom Bloom filter for the logs of the block.
status Transaction status, where ’1’ typically indicates success.
to The address to which the transaction was sent.

transactionHash Unique identifier for this transaction.
transactionIndex The index position of the transaction in the block.

type Type of the transaction (e.g., legacy, EIP-1559, etc.).
events Detailed events triggered during the execution of the transaction.

Table A.1: Description of fields in a blockchain transaction receipt

1 {
2 " blockHash ": "0 x963c173eec47e5c2dba50e75 ...",
3 " blockNumber ": "32644960" ,
4 " cumulativeGasUsed ": "221067" ,
5 " effectiveGasPrice ": "25500000000" ,
6 "from": "0 x6169fc23ca37fd5046811d64f041771d ...",
7 " gasUsed ": "221067" ,
8 "logs": [
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9 {
10 " address ": "0 x8afd11bd6f56af0506 ...",
11 " topics ": [
12 "0 x54f0f7c20d24cc292c0d60 ...",
13 "0 x27ecf19a3173f4db4 ..."
14 ],
15 "data": "0 x006169fc23ca ...",
16 " blockNumber ": "32644960" ,
17 " transactionHash ": "0 xb1d414fa5c8 ...",
18 " transactionIndex ": "0",
19 " blockHash ": "0 x963c173eec47e5cd ...",
20 " logIndex ": "0",
21 " removed ": false
22 }
23 ],
24 " logsBloom ": "0 x00080000000 ...",
25 " status ": "1",
26 "to": "0 x8afd11bd6f56af0506784f6ed07c12fc0 ...",
27 " transactionHash ": "0 xb1d414fa5c822ddf ...",
28 " transactionIndex ": "0",
29 "type": "2",
30 " events ": {
31 " IDGenerated ": {
32 " address ": "0 x8afd11bd6f56af050 ...",
33 " topics ": [
34 "0 x54f0f7c20d24cc292c ...",
35 "0 x27ecf19a3173 ..."
36 ],
37 "data": "0 x006169fc23ca37fd ...",
38 " blockNumber ": "32644960" ,
39 " transactionHash ": "0 xb1d414fa5 ...",
40 " transactionIndex ": "0",
41 " blockHash ": "0 x963c173e ...",
42 " logIndex ": "0",
43 " removed ": false,
44 " returnValues ": {
45 "0": "1805884447..." ,
46 "1": "0 x6169FC23c ...",
47 "2": "1714997190" ,
48 " __length__ ": 3,
49 "id": "180588444..." ,
50 " ownerId ": "0 x6169FC2 ...",
51 " timestamp ": "1714997190"
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52 },
53 "event": " IDGenerated ",
54 " signature ": "0 x54f0f7c20 ...",
55 "raw": {
56 "data": "0 x006169 ...",
57 " topics ": [
58 "0 x54f0f7c20d24c ...",
59 "0 x27ecf19a ..."
60 ]
61 }
62 }
63 }
64 }

Figure A.1: Full example of a transaction receipt when generating new IDs. Very long
values have been truncated, but not fields. For an explanation of what
each field is see Table A.1.
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A.2 Gas cost for generating IDs
Number of IDs 1 2 3 4 5 6 7 8 9 10
Gas cost 255,387 444,139 632,736 821,338 1,009,941 1,198,542 1,387,148 1,575,751 1,764,359 1,952,968
Number of IDs 11 12 13 14 15 16 17 18 19 20
Gas cost 2,141,575 2,330,186 2,518,799 2,707,410 2,896,025 3,084,638 3,273,255 3,461,875 3,650,491 3,839,112
Number of IDs 21 22 23 24 25 26 27 28 29 30
Gas cost 4,027,735 4,216,355 4,404,980 4,593,602 4,782,230 4,970,859 5,159,484 5,348,116 5,536,749 5,725,378
Number of IDs 31 32 33 34 35 36 37 38 39 40
Gas cost 5,914,013 6,102,644 6,291,282 6,479,921 6,668,556 6,857,197 7,045,840 7,234,478 7,423,123 7,611,764
Number of IDs 41 42 43 44 45 46 47 48 49 50
Gas cost 7,800,411 7,989,060 8,177,705 8,366,356 8,555,009 8,743,656 8,932,311 9,120,961 9,309,619 9,498,278
Number of IDs 51 52 53 54 55 56 57 58 59 60
Gas cost 9,686,931 9,875,592 10,064,255 10,252,912 10,441,577 10,630,236 10,818,904 11,007,573 11,196,235 11,384,907
Number of IDs 61 62 63 64 65 66 67 68 69 70
Gas cost 11,573,579 11,762,245 11,950,920 12,139,589 12,328,267 12,516,945 12,705,617 12,894,298 13,082,981 13,271,657
Number of IDs 71 72 73 74 75 76 77 78 79 80
Gas cost 13,460,341 13,649,020 13,837,707 14,026,395 14,215,077 14,403,768 14,592,460 14,781,145 14,969,840 15,158,528
Number of IDs 81 82 83 84 85 86 87 88 89 90
Gas cost 15,347,225 15,535,923 15,724,614 15,913,315 16,102,017 16,290,712 16,479,417 16,668,113 16,856,820 17,045,529
Number of IDs 91 92 93 94 95 96 97 98 99 100
Gas cost 17,234,229 17,422,940 17,611,652 17,800,356 17,989,071 18,177,777 18,366,494 18,555,212 18,743,922 18,932,643

Table A.2: Gas cost for generating a different amount of IDs
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A.3 Time to generate IDs based on Gas Price
Number of IDs 1 2 3 4 5 6 7 8 9 10 Average
Trial 1 - Time to generate IDs 4.30144 3.80096 4.07456 3.50992 3.47541 3.94581 3.53066 4.24715 4.06776 4.47861 3.94323
Trial 2 - Time to generate IDs 4.27566 3.28848 3.94156 4.04565 3.07451 4.04990 3.42715 4.86356 3.81089 3.88359 3.86610
Trial 3 - Time to generate IDs 4.61674 4.22037 4.09705 4.10302 3.51208 3.12337 3.97184 3.67041 4.51272 3.47959 3.93072
Average 3.91335

Table A.3: Time it took to generate a given amount of IDs from 1 to 10 using the base
Gas Price of 25 nAvax on the Avalanche Fuji Testnet. Each time is rounded
to 5 decimals and the test was done 3 times in total.

Number of IDs 1 2 3 4 5 6 7 8 9 10 Average
Trial 1 - Time to generate IDs 4.29332 4.13112 3.62570 4.23832 4.10993 2.61762 3.00923 2.95560 3.00949 2.98973 3.49801
Trial 2 - Time to generate IDs 2.66042 3.55103 2.97006 3.07858 3.30163 4.42033 2.94918 2.94597 2.83191 3.81706 3.25262
Trial 3 - Time to generate IDs 2.99225 3.28235 2.98525 3.57060 3.33617 2.63315 3.86704 2.99755 2.87252 3.35773 3.18947
Average 3.31337

Table A.4: Time it took to generate a given amount of IDs from 1 to 10 using a 20%
increased Gas Price (30nAvax) from the base price of 25 nAvax on the
Avalanche Fuji Testnet. Each time is rounded to 5 decimals and the test
was done 3 times in total.

Number of IDs 1 2 3 4 5 6 7 8 9 10 Average
Trial 1 - Time to generate IDs 4.78492 2.98059 3.24754 3.25913 3.02481 3.11442 2.68376 3.06382 2.59348 3.06554 3.18181
Trial 2 - Time to generate IDs 2.50447 3.15845 2.92925 3.39483 3.13172 3.14611 2.60998 2.69517 2.86260 2.94864 2.93813
Trial 3 - Time to generate IDs 3.38503 2.71354 3.11042 3.12073 3.33756 2.39629 3.12239 2.99020 3.15958 2.74531 3.00811
Average 3.04268

Table A.5: Time it took to generate a given amount of IDs from 1 to 10 using a 50%
increased Gas Price (37.5nAvax) from the base price of 25 nAvax on the
Avalanche Fuji Testnet. Each time is rounded to 5 decimals and the test
was done 3 times in total.
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A.4 Time to fetch data from blockchain
Run number 1 2 3 4 5 6 7 8 9 10 Average
Trial 1 times 0.77634 0.09574 0.09140 0.09847 0.10417 0.09258 0.09059 0.09958 0.09679 0.09022 0.16359
Trial 2 times 0.53037 0.09788 0.08968 0.09117 0.09123 0.09576 0.09329 0.09582 0.08448 0.09391 0.13636
Trial 3 times 0.47618 0.09672 0.09146 0.10693 0.09181 0.09257 0.09710 0.09780 0.11716 0.09818 0.13660
Trial 4 times 0.47575 0.09836 0.08892 0.08482 0.08971 0.09679 0.09095 0.08812 0.09188 0.08563 0.12910
Trial 5 times 0.59788 0.09408 0.10954 0.10839 0.09452 0.09628 0.09329 0.09193 0.10114 0.10393 0.14910
Average 0.14295

Table A.6: Time to fetch data from blockchain with 0 seconds delay between requests,
rounded to 5 decimals. For each of the 5 trials data was fetched 10 times
from the blockchain.

Run number 1 2 3 4 5 6 7 8 9 10 Average
Trial 1 times 0.49416 0.09672 0.58593 0.09971 0.34419 0.09013 0.69143 0.09417 0.63916 0.10461 0.32403
Trial 2 times 0.38104 0.08289 0.60686 0.09821 0.38193 0.09947 0.39412 0.08423 0.33810 0.09427 0.25612
Trial 3 times 0.42308 0.08981 0.33962 0.33420 0.08216 0.41141 0.09009 0.72986 0.09402 0.33669 0.29310
Trial 4 times 0.08631 0.39228 0.08522 0.38794 0.08341 0.33939 0.08485 0.39287 0.41785 0.09282 0.23630
Trial 5 times 0.65504 0.09545 0.33211 0.14024 0.41514 0.08686 0.39955 0.08308 0.57309 0.09855 0.28792
Average 0.27949

Table A.7: Time to fetch data from blockchain with 3 seconds delay between requests,
rounded to 5 decimals. For each of the 5 trials data was fetched 10 times
from the blockchain.

Run number 1 2 3 4 5 6 7 8 9 10 Average
Trial 1 times 0.75017 0.36597 0.75755 0.40817 0.39744 0.76540 0.45282 0.43768 0.42820 0.43353 0.51970
Trial 2 times 0.44188 0.43871 0.43060 0.43526 0.67587 0.43154 0.38067 0.42512 0.45133 0.67331 0.47843
Trial 3 times 0.43423 0.38648 0.36453 0.57127 0.40594 0.42357 0.44562 0.61383 0.42389 0.43169 0.45011
Trial 4 times 0.38810 0.41490 0.34467 0.34783 0.34753 0.40016 0.40372 0.60796 0.39987 0.37994 0.40347
Trial 5 times 0.35479 0.43460 0.41691 0.42360 0.43267 0.77214 0.63400 0.39806 0.40872 0.40935 0.46849
Average 0.46404

Table A.8: Time to fetch data from blockchain with 5 seconds delay between requests,
rounded to 5 decimals. For each of the 5 trials data was fetched 10 times
from the blockchain.
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A.5 Times taken to update status of IDs
Run number 1 2 3 4 5 6 7 8 9 10
Trial 1 times 3.94398 4.82210 3.16608 3.00885 4.74808 3.39571 2.79121 4.97620 2.62141 2.89268
Trial 2 times 2.72568 2.83859 3.54909 3.29411 4.68096 5.30088 2.86999 3.20916 2.08913 3.80802
Trial 3 times 4.56723 2.62864 4.66912 3.09266 5.06401 2.60206 2.73324 3.85052 2.75525 2.69498
Trial 4 times 3.62597 3.64994 3.63901 4.63560 5.01426 3.97030 2.99171 3.29634 3.14408 3.58011
Trial 5 times 2.73909 2.79801 3.37384 3.59904 3.84594 2.71881 3.39579 3.28422 4.62597 2.74939

Table A.9: Time taken to update the status of an ID in AquaTrace. This table showcases
the measured times across 50 runs, illustrating the responsiveness of the
smart contract to status update operations under various conditions.
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