o~
L]

a .
— “‘J future internet

Article

Performance Evaluation of Lightweight Stream Ciphers for
Real-Time Video Feed Encryption on ARM Processor

Mohsin Khan *©, Hivard Dagenborg

check for
updates

Citation: Khan, M.; Dagenborg, H.;
Johansen, D. Performance Evaluation
of Lightweight Stream Ciphers for
Real-Time Video Feed Encryption on
ARM Processor. Future Internet 2024,
16,261. https://doi.org/10.3390/
£i16080261

Academic Editor: Xuebin Ren

Received: 31 May 2024
Revised: 13 July 2024

Accepted: 22 July 2024
Published: 25 July 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Dag Johansen

Department of Computer Science, UiT The Arctic University of Norway, 9037 Tromsg, Norway;
havard.dagenborg@uit.no (H.D.); dag.johansen@uit.no (D.].)
* Correspondence: mohsin.khan@uit.no

Abstract: In resource-intensive Internet of Things applications, Lightweight Stream Ciphers (LWSCs)
play a vital role in influencing both the security and performance of the system. Numerous LWSCs
have been proposed, each offering certain properties and trade-offs that carefully balance security and
performance requirements. This paper presents a comprehensive evaluation of prominent LWSCs,
with a focus on their performance and resource consumption, providing insights into efficiency,
efficacy, and suitability in the real-world application of resource-intensive live video feed encryption
on an ARM processor. The study involves the development of a benchmarking tool designed to
evaluate key metrics, including encryption frame rate, throughput, processing cycles, memory
footprint, ROM utilization, and energy consumption. In addition, we apply the E-Rank metric, which
combines key performance and resource metrics to derive a unified comparative measure for overall

software performance.

Keywords: lightweight cryptography; stream cipher; performance evaluation; Internet of Things;
resource-intensive application

1. Introduction

The extensive adoption of Internet of Things (IoT) devices across industrial, scien-
tific, commercial, and public sectors highlights their increasing importance in modern
society. Their compact size and seamless integration capabilities enable a wide range of
applications, leading to their rapid adoption. However, due to their limited capabilities,
such as processing power, energy consumption, and memory resources, ensuring secu-
rity for these devices is a significant challenge. While traditional cryptographic methods
like RSA [1] and AES [2] offer security, their computational demands often make them
impractical for resource-constrained IoT devices, leading to issues related to computa-
tional complexity, memory constraints, energy usage, and overall efficiency. To address
these challenges, Lightweight Cryptography (LWC) emerged as a customized solution for
resource-constrained devices [3].

LWC is categorized in two primary categories: Lightweight Block Ciphers (LWBCs)
and Lightweight Stream Ciphers (LWSCs). LWBCs are designed for processing or en-
crypting discrete blocks, making them suitable for tasks like encrypting sensor data or
enabling secure communication between IoT devices and edge gateways, while LWSCs
are designed for handling continuous data streams, such as encrypting live video feeds or
securing audio communication channels. Although LWSCs are specifically designed for
encrypting continuous data streams, their suitability in resource-intensive IoT applications
remains debatable, especially for devices with restricted memory, processing power, and
energy consumption.

In this study, we aim to assess the performance of prominent LWSCs, including Grain-
v1, Mickey, Trivium, Salsa, Sosemanuk, and an optimized version of Grain-128a. Through
comprehensive performance analysis, we provide insights into the efficiency, efficacy, and

Future Internet 2024, 16, 261. https:/ /doi.org/10.3390/£i16080261

https:/ /www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16080261
https://doi.org/10.3390/fi16080261
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-1815-8642
https://orcid.org/0000-0002-1637-7262
https://orcid.org/0000-0001-7067-6477
https://doi.org/10.3390/fi16080261
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16080261?type=check_update&version=1

Future Internet 2024, 16, 261

2 of 15

suitability of these LWSCs for the real-time, resource-intensive encryption of live video
feeds. The experiment was carried out using a Raspberry Pi Zero W, featuring a single-core
ARM11 processor and enabling the seamless integration of the camera module. To precisely
assess the performance and resource consumption of each selected LWSC, we developed a
benchmarking framework that considers the following measurement metrics: encryption
frame rate, throughput, Cycles per Byte (CpB), memory footprint, ROM utilization, and
energy consumption. Energy consumption during LWSC operations is measured using an
Arduino coupled with a power measurement sensor. Furthermore, we utilized the E-Rank
metric established in our recently conducted study, derived from the Rank [4] metric and
incorporating insights from the FoM [5] metric. This metric serves as a comprehensive
and optimal means of evaluating overall software performance by balancing performance,
energy consumption, and resource utilization into a unified comparative measure.

This paper is organized as follows: Section 2 offers a brief explanation of the structure
of the selected LWSCs and reviews a few existing benchmarking tools, pointing out their
limitations and explaining why they are not suitable for our research. Section 3 details our
research methodology, including the development of the tool, selection criteria for LWSCs,
hardware requirement factors, and benchmarking metrics. Sections 4 and 5 visually present
our results through graphs and offer a detailed analysis and discussion on the implications
and explanations behind the performance, resource usage, and overall software perfor-
mance of the selected LWSCs. Finally, Section 6 presents a comprehensive summary of the
main findings and insights from the study while also highlighting potential avenues for
future research.

2. Background and Related Work

The European Network of Excellence for Cryptology (ECRYPT) Stream Cipher Project
(eSTREAM) was launched in 2004 by the Information Society Technologies Programme
of the European Commission with the aim of discovering new and more efficient stream
ciphers for modern resource-restricted devices [6]. The program received submissions
of 34 ciphers from various researchers, of which 7 were selected as finalists following a
rigorous multi-tiered selection process. These submitted ciphers underwent assessment
across three phases and were categorized into Profile 1 (software-oriented) and Profile 2
(hardware-oriented). Profile 1 comprises ciphers optimized for software applications requir-
ing high throughput, while Profile 2 contains ciphers developed for hardware applications
with constrained resources.

Profile 1 consists of four cryptographic algorithms: Rabbit [7], Salsa [8], HC-128 [9], and
Sosemanuk [10]. Our research in this paper is aimed at conducting experiments specifically
focused on the Salsa and Sosemanuk ciphers. Therefore, we will briefly introduce their
structures. The Salsa cipher operates on 64-byte data blocks. It utilizes an expansion
function that takes a secret key (128 or 256 bits) and combines it with a 64-bit nonce,
followed by an additional block. The cipher employs a pseudorandom function based
on a hash function core, utilizing operations such as addition modulo, bitwise XOR, and
32-bit constant distance rotation. The hash function processes the output obtained from
the expansion function by operating on a sequence comprising the secret key, nonce with
a block number, and four constant vectors from the expansion function. The resulting
output is then XORed with the data block to produce the ciphertext. Salsa20 is built on a
20-round process and makes use of an invertible quarter-round function as its foundational
component. Sosemanuk is a cryptographic algorithm that combines features from both
synchronous stream ciphers and block ciphers. It offers flexible key length options, ranging
from 128 to 256 bits, and utilizes a 128-bit initialization vector (IV). During the key setup
phase, the algorithm loads the key into a 256-bit internal state and then expands it using
the key scheduling algorithm, resulting in an intermediate key array. This array is used
to initialize a Linear Feedback Shift Register (LFSR) and a Finite State Machine (FSM).
Then, the LFSR and FSM, inspired by the design strategy of the SNOW stream cipher [11],
leverage a 4-bit S-box inspired by the Serpent block cipher [12] to generate a keystream.

Future Internet 2024, 16, 261

30f15

The LFSR enables rapid and efficient bit generation, while the FSM manages the non-linear
transformation of the state. The resulting keystream is then used to XOR the plaintext,
resulting in the ciphertext.

Profile 2 consists of three cryptographic algorithms: Trivium [13], Grain [14], and
Mickey [15]. Trivium is designed with a focus on simplicity, utilizing only three shift regis-
ters and a few logical operations. The cipher operates in two distinct phases: initialization
and keystream generation. In the initialization phase, the cipher loads both the 80-bit key
and the 80-bit IV into an internal state of 288 bits. It then progresses through 1152 cycles to
ensure thorough diffusion. During the keystream generation phase, the cipher generates
output bits by applying a non-linear function that extracts specific bits from the internal
registers and combines them using XOR and AND operations. These keystream bits are
then XORed with plaintext bits to produce the ciphertext. Similarly, Grain-v1 follows a
two-phase approach. In the first phase, the Non-linear Feedback Shift Register (NLFSR) is
initialized with an 80-bit key, while the LFSR is set up with an 80-bit IV. During the second
phase, the cipher generates each final keystream bit by combining feedback from both the
NLFSR and LESR through XOR operations with the corresponding input bit. Subsequently,
each keystream bit is XORed with the corresponding plaintext bit to produce the ciphertext.
Grain-128a improves upon the design of Grain-vl by making significant enhancements
to its security parameters. These include increasing the key size from 80 bits to 128 bits
and the internal state from 160 bits to 256 bits, resulting in a higher level of cryptographic
strength. Additionally, an authentication mechanism has been integrated to strengthen
security and resilience against potential vulnerabilities further. The Mickey-v1 cipher is
designed with a key size of 80 bits and an IV ranging from 0 to 80 bits for initializing
the internal state, ensuring a higher degree of diffusion through initial mixing steps. The
cipher enhances randomness by irregularly clocking shift registers. This irregular clocking
mechanism, in combination with non-linear feedback from one register and linear feedback
from another register, each with 80 stages, produces a complex and secure keystream. Each
stage in these registers generates one bit of the keystream. The resultant keystream is then
XORed with plaintext bits for encryption.

Our study commenced with a comprehensive assessment of existing benchmarking
tools developed for evaluating the performance of LWSCs on resource-constrained devices.
While some tools offered specific performance metrics, they exhibited constraints and
operational deficiencies that were not aligned with our research objectives. Our research
aims to evaluate the performance characteristics and resource utilization to examine the
efficiency, efficacy, and suitability of LWSCs during the encryption of a resource-intensive
task on resource-constrained IoT devices. Moreover, current tools face significant challenges
due to the intricate network of platform interdependencies. This can lead to compatibility
issues and hinder smooth operation across various systems. The complexity of the code
adds to the difficulty of maintaining the tools, making it hard to manage and update
them effectively. Also, there are significant constraints in integrating new ciphers, as these
tools often lack the flexibility and adaptability required to accommodate other lightweight
cryptographic algorithms.

The research study by Ertaul and Woodall [16] provides a detailed examination of
the performance attributes of eSSTREAM profile-1I (hardware-oriented) ciphers, focusing
on Grain-v1l, Mickey, and Trivium. The evaluation includes important metrics such as
throughput, memory utilization, and the power consumption of the ciphers. However,
there are considerable limitations as the study does not cover eSTREAM profile-I ciphers
(software-oriented) and does not provide insights into the performance of these ciphers
under resource-intensive application scenarios.

In the study conducted by Deb and Bhuyan [17] and Gorbenko et al. [18], researchers
undertake both statistical security evaluations and performance assessments of specific
LWSCs. While statistical security evaluations provide valuable insights by analyzing
the randomness of the generated keystream, performance evaluations offer information
regarding throughput and memory consumption in the former case and only throughput

Future Internet 2024, 16, 261

4of 15

in the latter case. However, neither study addresses energy consumption or the feasibility
of using these LWSCs in resource-intensive applications, creating a gap in understanding
their applicability.

The existing literature lays the groundwork for understanding the performance and
characteristics of various LWSCs. However, current frameworks only focus on specific
metrics and do not provide comprehensive assessments of the suitability of LWSCs for
data-intensive tasks involving continuous data streams. There is an evident need for
comprehensive benchmarking tools and methodologies to evaluate these ciphers. Our
framework seeks to address these challenges by offering a customized solution in a con-
trolled environment for evaluating LWSCs in a real-world, real-time, data-intensive scenario
within a constrained IoT environment.

3. Research Methodology

In this experimental study, we present a structured methodology for assessing the
software performance of LWSCs while encrypting resource-intensive live video feeds on
an ARM11 processor. The research methodology provides the development of a bench-
marking tool specifically customized for ARM11 processors, which involves a thorough
analysis of requirements, the establishment of implementation criteria, rigorous testing,
debugging, and optimization. LWSCs are carefully selected based on their capability to
address IoT security challenges and their importance in the lightweight cryptographic
community. Additionally, specific implementation considerations for ARM processors are
outlined to ensure limitations in computational power and memory capacity for proving
a resource-constrained IoT environment. Evaluation metrics, including encryption frame
rate, throughput, processor cycles, memory footprint, flash memory usage, and energy
consumption, are defined and scrutinized to comprehensively assess the efficacy, efficiency,
and suitability of LWSCs in resource-intensive applications.

3.1. Development of Benchmarking Tool

The benchmarking tool was designed to be lightweight, adaptable, and easy to use.
We utilized Python as the foundation and integrated the C implementation of ciphers via
shared object files, thereby enhancing its capabilities. By integrating shared object files
with Python, we established a straightforward and efficient solution for cryptographic
operations and system performance monitoring. In the upcoming sections, we will pro-
vide an elaborate overview of the development process, covering each stage and the
methodologies implemented.

3.1.1. Requirement Analysis

The initial step focused on a comprehensive assessment of the necessary requirements
and goals essential for developing the benchmarking tool. In this phase, we determined
the specific characteristics, input parameters, and output evaluation metrics needed for
the benchmarking tool. Based on these requirements, we created a detailed design for
the benchmarking tool, which is illustrated in Figure 1. This design shows the structure
and workflow of the tool, including modules for input processing, basic cryptographic
functions, and key evaluation metrics.

Future Internet 2024, 16, 261

50f 15

"/ SERVER SIDE (Local Machine)

‘.
1
]

Y
Start timer Input stream of /
(in secs) encrypted frame
Initiate energy measurement on
Arduino via INA219 sensor v v
Initiate CPU cycle count via Input stream of Using OpenCV to
hardware registers live video feed capture the video
Initiate memory monitoring frames
using Resident Set Size (RSS) \ 72
Using OpenCV to Y
capture the video Key Stream Generation
frames

Decrypting frames using

Key Stream Gt ti
€y Stream Leneration C-imp shared object file

Y
Encrypting frames using
C-imp shared object file

Using OpenCV to
capture the decrypted
video frames

Y

|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
;
1
Y !
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
T
1
1
1
1
1
1
1
1
1
1
1
L)

Encrypted v
Calculate

Frames Decrypted
» Frames encrypted per sec (FPS,.) Frames

« Throughput (Kbps)

« Processor cycle count (CpB)

« Memory footprint (bytes) ¢ _

« Energy consumption (mJ/frame) Yes No

Figure 1. Flowchart illustrating the encryption and decryption processes between the client and
server, along with the initialization of performance tracking on the ARM11 processor (client side).

3.1.2. Implementation

During the implementation phase, our primary objective was to translate the design
and architecture of the benchmarking tool into operational code. This involved integrating
the C implementations of the selected LWSCs with Python utilizing the ctypes library [19].
By doing so, we enabled the direct invocation of C-implemented shared object functions
from Python. This approach was designed to maximize the speed and efficiency of the
tool by harnessing the swift processing power of C language for cryptographic operations
while leveraging Python'’s extensive capabilities for orchestrating system procedures and
handling data to capture key evaluation metrics. The decision to utilize Python as the pro-
gramming platform for performance measurements was driven by its favorable attributes,
such as simplicity, a rich library ecosystem, and rapid prototyping capabilities. During this
phase, several key functionalities were implemented, including the following:

e Input Processing: The system is designed to prompt user input specifying the selected
LWSC at the server side and client side. The client-side comprises the Raspberry Pi
Zero connected with a camera module, while the server side consists of the local
machine connected through the local network. The user input prompt invokes the
OpenCV (Open Source Computer Vision Library) [20], which provides a wide range
of functionalities for image and video processing tasks. In our case, we opted for
the stripped-down version of the OpenCV library on the client side to accommodate
the limited resources of the Raspberry Pi Zero. The program uses the library to
capture frames for input processing (encryption) on the client side. Subsequently,
these encrypted frames are transmitted to the server side, which may function as an
edge node; however, in our case, we are conducting the experiment within a local
network environment. On the server side, the received encrypted frames serve as
input for decryption processing.

Future Internet 2024, 16, 261

6 of 15

* Cryptographic Operations: The process of encrypting and decrypting live video feed
involves carrying out specific operations while using defined parameters. This is done
by incorporating the shared object file that is created from the C implementation of
the selected LWSCs.

¢ Performance Measurement: The benchmarking tool has been specifically designed
to integrate libraries, functions, and system calls for the purpose of measuring a
wide range of key performance and resource consumption metrics. These metrics
encompass encryption frame rate, throughput, CpB, memory usage, and energy con-
sumption. By collecting data on these metrics, the tool facilitates a comprehensive
comparison of selected LWSCs. This quantitative comparison provides a comprehen-
sive evaluation of cipher performance in resource-intensive applications, specifically
in live video feed encryption under controlled experimental conditions.

¢ Result Analysis: The data obtained from the benchmarking tool are used to create
graphical illustrations that showcase the performance of each LWSC across various
evaluation metrics. To ensure the accuracy of these graphs, we establish the confidence
interval by evaluating the performance of each cipher iteratively over multiple distinct
time intervals, using a 95% confidence level. This statistical technique provides a
deeper understanding of performance consistency and potential variability, ultimately
enhancing the interpretive value of the data. Incorporating confidence intervals into
the bar graphs enables us to gain detailed insights into the stability and consistency of
each LWSC.

3.1.3. Testing and Debugging

During this phase, we conducted multiple tests to enhance the stability and reliability
of the benchmarking tool. Regression testing was performed to ensure that new changes
did not disrupt the existing functionality of the tool. We also performed statistical analysis,
as explained earlier, to validate the accuracy of the data, which involved checking for
consistency and stability in data outputs. Lastly, load testing allowed us to evaluate the
system’s performance under various stress conditions, including scenarios such as increas-
ing the frame rate or implementing image filtration using the OpenCV library. Through
comprehensive validation against established benchmarks and reference implementations,
we ensured the accuracy of the tool. The feedback we received during this phase was
essential in identifying and addressing any issues, bugs, or inconsistencies, resulting in a
significant enhancement in the overall effectiveness of the tool.

3.1.4. Optimization and Performance Tuning

We improved our benchmarking tool by implementing optimization techniques to
enhance efficiency and effectiveness. One key aspect of this involved integrating efficient
and validated C implementations of LWSCs, which we acquired from their respective
research implementations. This allowed us to carry out essential cryptographic operations
at faster speeds while ensuring low-level access. Similarly, we approached the selection
and use of necessary libraries carefully to improve performance measurement accuracy
and minimize resource usage. As a result, we were able to effectively reduce unnecessary
overhead and significantly improve the responsiveness of the tool without increasing
its overall resource demands. Utilizing these optimization techniques is essential for
evaluating performance in resource-constrained IoT environments and ensuring the reliable
transfer of encrypted data streams.

3.2. Selection Criteria for Lightweight Stream Ciphers

In this study, we selected six LWSCs for evaluation based on their relevance to the
eSTREAM project. The selection includes Grain-v1, Trivium, Mickey, Salsa, and Sosemanulk,
all of which were finalists in the ECRYPT Stream Cipher Project, demonstrating their
robust cryptographic strength and operational efficiency. We also integrated an optimized
version of Grain-128a, which includes speed enhancements and strengthened security

Future Internet 2024, 16, 261

7 of 15

features. This diverse set of LWSCs enables a comprehensive examination of cryptographic
methodologies suitable for resource-intensive applications on resource-constrained IoT
devices, focusing on their performance characteristics and resource utilization.

3.3. Implementation Considerations for ARM-Processor

The benchmarking tool has been optimized for deployment on the Raspberry Pi Zero,
which is characterized by its single-core ARM11 processor [21] and seamless integration
with the camera module. This processor was selected due to its limitations in computa-
tional power and memory capacity, which are key factors in simulating the performance
characteristics of lightweight cryptographic algorithms in constrained environments. The
Raspberry Pi Zero is equipped with 512 MB of RAM and effectively manages memory
to thwart bottlenecks during the processing of resource-intensive live video stream feed.
The header on the device is strategically utilized, with specified pins used for providing
power to the device and for serial data transfer. This enables the use of the transfer (Tx)
line on the Raspberry Pi to communicate with the Arduino. This is essential for indicating
the start and end of power and energy measurements at the beginning and end of each
cryptographic process. This configuration ensures the precise tracking of the Raspberry
Pi’s energy consumption while executing the selected LWSC. Further explanation of this
connection and its role in the benchmarking framework will be provided in the subsequent
section on evaluation metrics.

3.4. Evaluation Metrics

The following metrics were used in our evaluation: encryption frame rate, throughput,
CpB, code size, memory footprint, energy consumption, and E-Rank.

Encryption Frames per Second (FPScpn.) measures the number of frames that can
be encrypted within a second using selected LWSCs. FPSenc presents a mechanism to
compare the efficacy of LIWSCs and assess their suitability for encrypting real-time, resource-
intensive live video feeds. This metric is essential for determining which ciphers can meet
the resource-intensive requirements of live video feed encryption on resource-constrained
IoT devices. Higher values of FPSep. indicate a greater number of frames being encrypted
per second, indicating better efficacy and suitability.

Throughput is defined as the rate at which data are processed within a given period
of time. In the context of this paper, throughput is defined as the speed at which an LWSC
can encrypt a live video feed, measured in kilobits per second (Kbps). In resource-intensive
applications like live video streaming, real-time surveillance, or high-speed data transfers,
a higher throughput value represents a faster rate of encryption or decryption, which is
important for maintaining optimal system performance and responsiveness.

Cycles per Byte (CpB) represents the average count of processing cycles needed to
handle each byte of data. To enhance the precision of CpB measurements for LWSCs on
the ARM11 processor, we implemented a specialized approach. This approach involves
direct access to the ARM timer registers and system timer registers, which are integral for
managing various timing and scheduling operations within the Raspberry Pi’s Linux-based
operating system. Our program directly interfaces with hardware registers to capture timer
values, enabling the precise measurement of processor cycles. The system calculates a
baseline CpB exclusively for background processes running on the processor and averages
it over time. During LWSC execution, CpB is derived for that specific cipher by subtract-
ing this baseline CpB from observed CpB values at regular intervals, ensuring accurate
measurement and mitigating the processor cycles utilized by the background processes.
Lower CpB values in the context of LWSCs indicate faster performance, as they signify
that fewer processing cycles are required for the encryption or decryption of a continuous
stream of data.

Code Size represents the volume of memory consumed in the non-volatile storage.
In the context of the Raspberry Pi Zero, it specifies the storage capacity occupied by each
LWSCs in the flash memory of the device, expressed in bytes.

Future Internet 2024, 16, 261

8 of 15

(a) Physical configuration

Memory Footprint refers to the memory utilized by a process throughout its operation.
In our methodology, the memory footprint of LWSCs is calculated by evaluating the
volatile memory utilized by each cipher and dividing it by the size of the input data
stream of the video feed, thereby quantifying the amount of volatile memory (measured
in bytes) required to process each byte of input. This process leverages the Resident Set
Size (RSS), which specifies the memory allocated to a process in the main memory. Within
this research framework, RSS represents the allocation of memory by LWSCs in primary
storage, encompassing critical segments like the code segment, data segment, heap, and
stack. This approach provides a holistic view of actual memory usage by each LWSC,
excluding any data stored on disk. The memory footprint provides valuable insights into
the actual memory requirements of the ciphers and how they impact the allocation of
system resources.

Energy Consumption refers to the power consumption of a process during its opera-
tion over a defined duration of time. In the context of this study, it quantifies the energy
consumption of selected LWSCs on the ARM11 processor, measured in millijoules per frame
(m]/frame). This metric enables the assessment of the energy consumption of individual
frames, providing insights into the energy efficiency of the encryption process at a granular
level. The diagram illustrated in Figure 2b showcases a circuit schematic that has been
specifically designed for the purpose of measuring power and calculating energy. Power is
supplied to the Raspberry Pi board by an Arduino UNO through GPIO pin-4 (5V) and pin-6
(ground). The power line connection between the Arduino and the Raspberry Pi incorpo-
rates the INA219 sensor from Texas Instruments [22], which accurately monitors power
consumption in real time, and Arduino facilitates the computation and logging of energy
consumption. Furthermore, one-way serial communication is established by connecting
GPIO pin-14 on the Raspberry Pi to pin-0 on the Arduino. This communication channel
serves to initiate and terminate measurements related to power and energy consumption.
At the beginning of the encryption process, the Raspberry Pi sends the name of the cipher
through the serial communication channel to signal the Arduino to activate the INA219 to
start recording power consumption. After the encryption process is completed, another
message is sent to the Arduino to signal the termination of power and energy consumption
measurement for that specific LWSC. In order to accurately calculate the energy consump-
tion of a specific LWSC while excluding the influence of background processes, the power
consumption of the Raspberry Pi is first measured during an initialization phase where
only background processes are active. This average power consumption is then subtracted
from the current readings while the cipher is executed at discreet time intervals, isolating
the power utilized exclusively by that specific LWSC.

[

Raspberry Pi Zero s vouer ‘
(ARM11) 5V Power

-

BCM 14 (TXD), D0/RX RESET
BCM

3
@

®

Arduino -
—— UNO i
- or

veo
INA219

GND

IS [V IO Y

Power
Sensor
n-

D9 PWM A4/SDA
A5/5CL %_

Vin+

=1

(b) Schematic diagram of the connection setup

Figure 2. Connection setup between a Raspberry Pi and an Arduino UNO for power and energy
measurement using an INA219 module.

Future Internet 2024, 16, 261

9 of 15

Rank provides a unified metric for software performance by balancing performance
and resource consumption in lightweight cryptographic ciphers. The term was initially
introduced by Beaulieu et al. [4] and refers to the ratio between the speed at which data are
processed and the amount of memory, including both volatile and non-volatile memory,
utilized during the encryption process, as illustrated in Equation (1). However, in the
context of this research study, we utilized a modified version of Rank, denoted as E-Rank,
which incorporates insights from the Figure of Merit (FoM). The FoM was introduced by
Badel et al. [5] to evaluate their LWBC ARMADILLO, and it typically assesses hardware
performance, but the equation does not account for power dissipation, as indicated in
Equation (2). The authors clarify the exclusion of power dissipation by explaining the
direct relationship between dynamic power and total switched capacitance. In hardware
implementation of cryptographic ciphers, power is directly linked to the number of gates,
as each transistor within a gate contributes to the overall capacitance. When the number
of gates increases in a circuit, the total switched capacitance also increases proportionally.
The calculation of the Rank metric depends on total memory consumption, which does not
have a direct correlation with switched capacitance. Therefore, the incorporation of energy
measurement into the Rank provides a more refined evaluation metric for overall software
performance. This refined metric is called E-Rank and is presented in Equation (3). During
the calculation of E-Rank, applying unit normalization ensures the consistent expression of
all metrics in bytes.

_ Throughput
Rank = ROM +2 x RAM @
FoM — Throughput i o)
Clock freq x Gate count
E-Rank — Throughput 3)

(ROM + 2 x RAM) x Energy consumption

4. Experimental Results
4.1. Frames Encrypted per Sec (FPSeyc) Analysis

Figure 3 presents the real-time video feed frames encrypted per second (FPSenc) by
the selected LWSCs. The results demonstrate that Salsa and Sosemanuk outperform the
other ciphers, achieving the highest frame encryption rates. Grain-128a exhibits moderate
performance. In contrast, Grain-vl, Mickey-vl, and Trivium have the lowest FPSenc,
increasing in the aforementioned order.

3.5

E 3.19 3.18 i
o . - Key Size
& 3)
> 2.64 H 80-bit
g I
g %5 128-bit
wv
3 2
-3
»n
Q
£ 15
o
fre
] 1 0.76
2
3
c
w

0

Grain-vl Grain-128a Mickey-v1 Trivium Salsa Sosemanuk
(2005) (2006) (2005) (2006) (2005) (2008)

Lightweight Stream Ciphers

Figure 3. Frames encrypted per second by the selected Lightweight Stream Ciphers (LWSCs).

Future Internet 2024, 16, 261

10 of 15

4.2. Throughput Analysis

Figure 4 illustrates the throughput achieved by the selected LWSCs while encrypting
the video feed stream. Sosemanuk has the highest throughput, followed by Salsa and
Grain-128a. In contrast, Grain-v1, Mickey-v1, and Trivium have the lowest throughputs,
with their performance improving in the specified order.

100,000

- 1,609.07 Key Size
56,360.34 91,609.0
Z 10,000 4888.42 W 80-bit
a -
= 128-bit
1008.69
£ 1000 707.57
_g- 251.9
e
o 100
=
<
=
10
1
Grain-vl Grain-128a Mickey-v1 Trivium Salsa Sosemanuk
(2005) (2006) (2005) (2006) (2005) (2008)

Lightweight Stream Ciphers

Figure 4. Throughput of selected LWSCs.
4.3. CpB Analysis

Figure 5 shows the number of processor cycles required per byte for the encryption
of the real-time video feed by the selected LWSCs. Grain-v1 exhibits the highest number
of CpB, indicating relatively higher computational demands. Trivium and Mickey follow
with notable differences in processor cycle consumption compared to Grain-v1. In contrast,
Sosemanuk has the lowest CpB, whereas Salsa and Grain-128a demonstrate slightly higher
cycle counts compared to Sosemanuk, without any significant differences.

7000 .

0211 Key Size
6000 m 80-bit
5000 128-bit
4000

Processor Cycles per Byte (CpB)

3000 2424.11 2600.07
2000 1730.5 1487.55 146138
1000
0
Grain-vl Grain-128a Mickey-v1 Trivium Salsa Sosemanuk
(2005) (2006) (2005) (2006) (2005) (2008)

Lightweight Stream Ciphers

Figure 5. Processor Cycles per Byte (CpB) of selected LWSCs.

4.4. Memory Consumption Analysis

In Figure 6, Salsa demonstrates the largest memory footprint, followed by Grain-128a,
while Sosemanuk exhibits the smallest footprint, followed by Grain-v1. Mickey-v1 and
Trivium have relatively moderate memory footprints.

In Figure 7, Sosemanuk displays the highest code size, significantly differing from the
other selected LWSCs, with Grain-128a following behind. Grain-v1 has the smallest code
size, followed by Salsa, Trivium, and Mickey.

Future Internet 2024, 16, 261 11 0of 15
1750 .
Key Size
- 1704.79)
8 1700 I m 80-bit
5 1655.64 128-bit
€ 1650
= 1604.73 1620.82 1625.95
2
3 i
& 1600 1576.25
z 1
£
b 1550
=
1500
Grain-vl Grain-128a Mickey-v1 Trivium Salsa Sosemanuk
(2005) (2006) (2005) (2006) (2005) (2008)
Lightweight Stream Ciphers
Figure 6. Memory footprint of selected LWSCs.
40,000 .
35,870 Key Size
__ 35,000
a W 80-bit
<. 30,000)
2 128-bit
o 25,000
N
wv
@ 20,000
T
S 15,000
10,742
10,000 8088
6122
, N
Grain-vl Grain-128a Mickey-v1 Trivium Salsa Sosemanuk
(2005) (2006) (2005) (2006) (2005) (2008)

Lightweight Stream Ciphers

Figure 7. Code size of selected LWSCs.

4.5. Energy Consumption Analysis

Figure 8 presents the energy consumption measurements of selected LWSCs during
the encryption of individual frames within live video feeds. Grain-v1 exhibits the highest
energy requirement per frame, followed by Mickey and Trivium. In contrast, Sosemanuk,
Salsa, and Grain-128a demonstrate relatively lower energy requirements for frame encryp-
tion, with subtle distinctions observed among them.

14,000

— Key Size
g 12.000 11,083.55
g 2 | 80-bit
s
E 10000 128-bit
c
S 8000
2
g 6000 5657.13
2 4688.18
o
;;.o 4000 3002.25 2840.72 2696.52
2 2000 :
w
0
Grain-vl Grain-128a Mickey-v1 Trivium Salsa Sosemanuk
(2005) (2006) (2005) (2006) (2005) (2008)

Lightweight Stream Ciphers

Figure 8. Energy consumed per frame by the selected LWSCs.

4.6. E-Rank Analysis

In Figure 9, the graph illustrates the E-Rank values for the selected LWSCs. Salsa
exhibits the highest E-Rank, with a notable lead over Sosemanuk. Contrarily, Grain-v1
displays the lowest E-Rank, with Mickey and Trivium following behind. Grain-128a
shows a relatively moderate E-Rank, positioning it in the middle tier of overall software
performance among the selected LWSCs.

Future Internet 2024, 16, 261

12 of 15

100 Key Size

10.42 | 80-bit
10

1
0.1

0.01

34 128-bit

E-RANK

Grain-vl Grain-128a Mickey-v1 Trivium Salsa Sosemanuk
(2005) (2006) (2005) (2006) (2005) (2008)

Lightweight Stream Ciphers
Figure 9. E-Rank of selected LWSCs.

5. Discussion

This study methodically evaluated the performance and resource usage of LWSCs
using a comprehensive benchmarking framework optimized for a resource-intensive ap-
plication, i.e., live video feed encryption on a resource-constrained ARM11-based IoT
device. Our analysis encompassed all key metrics, including frames encrypted per second
(FPSenc), processor cycles, energy consumption, and total memory utilization. The latter
includes both the memory footprint and code size. These metrics collectively provide
detailed insights into the performance and resource demands of the LWSCs, offering a
comprehensive understanding of their efficacy, efficiency, and suitability for real-time,
resource-intensive applications.

The performance analysis of the selected LWSCs, as illustrated in Table 1, indicates that
Sosemanuk and Salsa demonstrate the highest throughput, lowest CpB, and lowest energy
consumption. This can be attributed to their software-optimized architectures. Sosemanuk
incorporates features of both synchronous stream and block ciphers, allowing the more
direct mapping of data on the processor registers, which improves its initialization speed
and performance efficiency. Salsa, on the other hand, utilizes a refined structure involving
addition modulo, bitwise XOR, and constant distance rotation, making it highly efficient for
software implementation. This demonstrates that Salsa and Sosemanuk leverage arithmetic
and logical operations that align effectively with CPU instructions, enabling them to
execute efficiently within software implementation. Contrarily, hardware-oriented LWSCs
such as Grain, Mickey-v1, and Trivium generally exhibit lower software performance
efficiency. The efficiency of these structures arises from their utilization of shift registers
and feedback loops, which can be implemented using a minimal number of transistors
that can operate in parallel with high efficiency in hardware. However, adapting this
parallel operation to a sequential execution model in software leads to inefficiencies in
ARM11-based processors. Moreover, these ciphers function at the bit level, which poses
challenges for ARM-based general-purpose CPUs that are designed to handle operations
at the byte level. Handling individual bits in software can lead to more intricate and
time-consuming operations. For example, Grain, Trivium, and Mickey each undergo two
phases: initialization and keystream generation. During initialization, these ciphers load
the key and initialization vector into their internal state. Grain and Mickey utilize two
shift registers for their operations, while Trivium employs three shift registers. These
shift registers, in combination with feedback and non-linear functions, are responsible for
generating the keystream. However, when these ciphers are implemented on ARM11-based
processors, the need for complex bit manipulation operations like shifting and applying
non-linear functions can lead to decreased cryptographic throughput, increased processing
cycles, and energy consumption. This is particularly evident in ARM-based byte-oriented
CPUs. An exception in this experimentation is Grain-128a, which outperforms the selected
hardware-oriented LWSCs due to its speed-optimized design.

Future Internet 2024, 16, 261

13 of 15

Table 1. Software implementation results of Lightweight Stream Ciphers (LWSCs) performed on
ARM processor along with E-RANK.

) K.ey Frames C(?de Memo.ry Processor Throughput Energy Energy
Ciphers Sl.ze Enc per Sec Size Footprint Cycles (Kbps) (m)/Frame) (u]/B) E-RANK
(Bits) (FPSenc) (Bytes) (Bytes) (CpB)

Grain-vl 80 0.76 3828 1604.73 6021.1 251.9 11,083.55 354.98 0.01
Grain-128a 128 2.64 10,742 1655.64 1730.5 4888.42 3000.25 96.09 0.45
Mickey-v1 80 15 8088 1620.82 242411 707.57 5657.13 181.18 0.04
Trivium 80 1.79 6122 1625.95 2600.07 1008.69 4688.18 150.15 0.09
Salsa 128 3.19 4025 1704.79 1487.55 56,360.34 2840.72 90.98 10.42
Sosemanuk 128 3.18 35,870 1576.25 1461.38 91,609.07 2696.52 86.36 3.4

The detailed analysis of resource consumption reveals that Sosemanuk exhibits the
highest code size, with Grain-128a and Mickey-v1 following closely behind. In terms
of memory footprint, Salsa has the highest footprint, followed by Grain-128a in second
place. This thorough analysis underscores a recurring trend wherein lightweight ciphers
that have the leading efficiency in performance, including throughput, CpB, and energy,
demand a greater allocation of memory resources. Consequently, there is a clear trade-off
that requires careful lightweight cipher selection to achieve a balanced performance in
throughput, memory usage, and energy consumption. This ensures the efficient opera-
tion of resource-intensive applications on resource-constrained IoT devices. This can be
delivered through the E-Rank metric that enables the effective integration of performance
metrics with resource utilization, offering a comprehensive evaluation of the overall soft-
ware performance of LWSCs. According to the E-Rank, Salsa demonstrates an optimal
performance in terms of throughput, memory usage, and energy consumption, followed by
Sosemanuk and then Grain-128a. These LWSCs effectively optimize resource consumption
and uphold high-performance standards, making them favorable for resource-intensive
IoT applications and, in the context of this paper, live video feed encryption. Grain-vl1,
Mickey-v1, and Trivium showed the lowest E-Rank, and thus, while using those ciphers in
the resource-intensive live video feed encryption, these LWSCs demonstrated processing
bottlenecks, scalability issues, and security risks due to prolonged encryption spans. The
speed-optimized version of Grain-128a demonstrated a higher E-Rank compared to Grain-
v1, Mickey, and Trivium. Therefore, it displayed intermediate favorability for encrypting
resource-intensive live video feeds on resource-constrained ARM11 processors.

The efficacy and suitability of ciphers are observed through the FPSe. metric. This
analysis reveals that Salsa, Sosemanuk, and the optimized version of Grain-128a are notably
more suitable and effective for resource-intensive applications, as demonstrated by their
encryption frame rates. This characteristic enables reduced latency during the transmission
of continuous encrypted data streams from resource-constrained devices to other devices
within a network.

6. Conclusions and Future Work

In this paper, we introduced an optimized benchmarking framework designed for
ARM processors to assess the efficiency, efficacy, and suitability of selected LWSCs for
resource-intensive loT applications. Sosemanuk, followed by Salsa, demonstrated the
lowest CpB, highest throughput, and lowest energy consumption, indicating the best
performance efficiency among the selected LWSCs. In addition, Sosemanuk and Grain-v1
have the smallest memory footprint, while Grain-v1 and Salsa exhibit the smallest code
size. This indicates that these ciphers are efficient in terms of resource consumption. These
results emphasize the trade-offs involved between efficiency in performance and resource
consumption that are inherent in lightweight cryptographic solutions designed for resource-
constrained environments. The E-Rank metric offered valuable insights by effectively

Future Internet 2024, 16, 261 14 of 15

balancing performance measurement with resource utilization, demonstrating Salsa and
Sosemanuk’s superior overall software performance due to its optimal and efficient balance
between performance and resource consumption. The analysis conducted through the
FPSenc metric revealed that Salsa, Sosemanuk, and the speed-optimized version of Grain-
128a exhibit better suitability and efficacy for the real-time encryption of continuous stream
of live video feed on resource-constrained IoT devices.

The experimental setup used in this study was customized for specific hardware and
software environments to allow for the precise measurement and analysis of LWSCs for
resource-intensive applications in resource-constrained IoT environments. While it may
not fully capture the complexities and diverse conditions in real-world IoT deployments,
we recognize the importance of considering challenges such as network variability, envi-
ronmental factors, and diverse hardware configurations of IoT devices. In future work,
we aim to address these limitations by validating our findings in more realistic settings,
including field deployment in actual IoT networks, simulating environmental conditions,
and conducting long-term continuous evaluations.

Author Contributions: Conceptualization, M.K., H.D. and D.J.; methodology, M.K., H.D. and D.J.;
software, M.K.; validation, M.K.; formal analysis, M.K,; investigation, M.K.; resources, H.D. and
D.J.; data curation, M.K.; writing—original draft preparation, M.K,; writing—review and editing,
H.D. and D.J; visualization, M.K,; supervision, H.D. and D.].; project administration, H.D.; funding
acquisition, H.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Data Availability Statement: The data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.

10.

11.

12.

Diffie, W.; Hellman, ML.E. New directions in cryptography. In Democratizing Cryptography: The Work of Whitfield Diffie and Martin
Hellman; ACM: New York, NY, USA, 2022; pp. 365-390.

Daemen, J.; Rijmen, V. AES Proposal: Rijndael; National Institute of Standards and Technology (NIST): Gaithersburg, MD, USA,
1999. Available online: https:/ /nvlpubs.nist.gov /nistpubs/FIPS/NIST.FIPS.197-upd1.pdf (accessed on 21 July 2024).

Dhanda, S.S.; Singh, B.; Jindal, P. Lightweight cryptography: A solution to secure IoT. Wirel. Pers. Commun. 2020, 112, 1947-1980.
[CrossRef]

Beaulieu, R.; Shors, D.; Smith, J.; Treatman-Clark, S.; Weeks, B.; Wingers, L. The SIMON and SPECK block ciphers on AVR 8-bit
microcontrollers. In Proceedings of the Lightweight Cryptography for Security and Privacy: Third International Workshop,
LightSec 2014, Istanbul, Turkey, 1-2 September 2014; Revised Selected Papers 3; Springer: Berlin/Heidelberg, Germany, 2015;
pp- 3-20.

Badel, S.; Dagtekin, N.; Nakahara, |, Jr.; Ouafi, K.; Reffé, N.; Sepehrdad, P.; Susil, P.; Vaudenay, S. ARMADILLO: A multi-purpose
cryptographic primitive dedicated to hardware. In Proceedings of the International Workshop on Cryptographic Hardware and
Embedded Systems, Santa Barbara, CA, USA, 17-20 August 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 398—412.
Robshaw, M. The eSTREAM project. In New Stream Cipher Designs: The eSTREAM Finalists; Springer: Berlin/Heidelberg, Germany,
2008; pp- 1-6.

Boesgaard, M.; Vesterager, M.; Pedersen, T.; Christiansen,]J.; Scavenius, O. Rabbit: A new high-performance stream cipher.
In Proceedings of the Fast Software Encryption: 10th International Workshop, FSE 2003, Lund, Sweden, 24-26 February 2003;
Revised Papers 10; Springer: Berlin/Heidelberg, Germany, 2003; pp. 307-329.

Bernstein, D.J. The Salsa20 family of stream ciphers. In New Stream Cipher Designs: The eSTREAM Finalists; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 84-97.

Wu, H. The stream cipher HC-128. In New Stream Cipher Designs: The eSSTREAM Finalists; Springer: Berlin/Heidelberg, Germany,
2008; pp. 39-47.

Berbain, C.; Billet, O.; Canteaut, A.; Courtois, N.; Gilbert, H.; Goubin, L.; Gouget, A.; Granboulan, L.; Lauradoux, C.;
Minier, M.; et al. Sosemanuk, a fast software-oriented stream cipher. In New Stream Cipher Designs: The eSTREAM Finalists;
Springer: Berlin/Heidelberg, Germany, 2008; pp. 98-118.

Ekdahl, P; Johansson, T. SNOW-a new stream cipher. In Proceedings of the First Open NESSIE Workshop, KU-Leuven, Leuven,
Belgium, 13-14 November 2000; pp. 167-168.

Biham, E.; Anderson, R.; Knudsen, L. Serpent: A new block cipher proposal. In Proceedings of the International Workshop on
Fast Software Encryption, Paris, France, 23-25 March 1998; Springer: Berlin/Heidelberg, Germany, 1998; pp. 222-238.

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-upd1.pdf
http://doi.org/10.1007/s11277-020-07134-3

Future Internet 2024, 16, 261 15 of 15

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

De Canniere, C.; Preneel, B. Trivium. In New Stream Cipher Designs: The eSTREAM Finalists; Springer: Berlin/Heidelberg,
Germany, 2008; pp. 244-266.

Hell, M.; Johansson, T.; Meier, W. Grain: A stream cipher for constrained environments. Int. J. Wirel. Mob. Comput. 2007, 2, 86-93.
[CrossRef]

Babbage, S.; Dodd, M. The MICKEY stream ciphers. In New Stream Cipher Designs: The eSTREAM Finalists; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 191-209.

Ertaul, L.; Woodall, A. IoT security: Performance evaluation of grain, mickey, and trivium-lightweight stream ciphers. In
Proceedings of the International Conference on Security and Management (SAM), Las Vegas, NV, USA, 17-20 July 2017; pp. 32-38.
Deb, S.; Bhuyan, B. Performance analysis of current lightweight stream ciphers for constrained environments. Sadhana 2020,
45,256 . [CrossRef]

Gorbenko, I.; Kuznetsov, A.; Gorbenko, Y.; Vdovenko, S.; Tymchenko, V.; Lutsenko, M. Studies on statistical analysis and
performance evaluation for some stream ciphers. Int. J. Comput. 2019, 18, 82-88. [CrossRef]

Python Software Foundation. Python Ctype Library Documentation; Python Software Foundation: Amsterdam, The Nether-
lands, 2024.

Itseez. The OpenCV Reference Manual, 2.3.1 ed.; OpenCV.org: Willow Garage, CA, USA, 2011. Available online: https://www.
opencv.org.cn/opencvdoc/2.3.1/opencv2refman.pdf (accessed on 21 July 2024).

ARM. ARM1176]JZF-S Technical Reference Manual rOp7; ARM Limited: Cambridge, UK, 2009.

Texas Instruments. INA219 Zero-Drift, Bidirectional Current/Power Monitor With I2C Interface, 2021. Available online:
https:/ /www.ti.com/lit/ds/symlink/ina219.pdf (accessed on 21 July 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1504/IJWMC.2007.013798
http://dx.doi.org/10.1007/s12046-020-01489-w
http://dx.doi.org/10.47839/ijc.18.1.1277
https://www.opencv.org.cn/opencvdoc/2.3.1/opencv2refman.pdf
https://www.opencv.org.cn/opencvdoc/2.3.1/opencv2refman.pdf
https://www.ti.com/lit/ds/symlink/ina219.pdf

	Introduction
	Background and Related Work
	Research Methodology
	Development of Benchmarking Tool
	Requirement Analysis
	Implementation
	Testing and Debugging
	Optimization and Performance Tuning

	Selection Criteria for Lightweight Stream Ciphers
	Implementation Considerations for ARM-Processor
	Evaluation Metrics

	Experimental Results
	Frames Encrypted per Sec (FPSenc) Analysis
	Throughput Analysis
	CpB Analysis
	Memory Consumption Analysis
	Energy Consumption Analysis
	E-Rank Analysis

	Discussion
	Conclusions and Future Work
	References

