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Abstract: Composing coherent and structured music is one of the main challenges in symbolic
music generation. Our research aims to propose a user-centric framework design that promotes
a collaborative environment between users and knowledge agents. The primary objective is to
improve the music creation process by actively involving users who provide qualitative feedback
and emotional assessments. The proposed framework design constructs an abstract format in which
a musical piece is represented as a sequence of musical samples. It consists of multiple agents that
embody the dynamics of musical creation, emphasizing user-driven creativity and control. This
user-centric approach can benefit individuals with different musical backgrounds, encouraging
creative exploration and autonomy in personalized, adaptive environments. To guide the design of
this framework, we investigate several key research questions, including the optimal balance between
system autonomy and user involvement, the extraction of rhythmic and melodic features through
musical sampling, and the effectiveness of topological and hierarchical data representations. Our
discussion will highlight the different aspects of the framework in relation to the research questions,
expected outcomes, and its potential effectiveness in achieving objectives. Through establishing a
theoretical foundation and addressing the research questions, this work has laid the groundwork for
future empirical studies to validate the framework and its potential in symbolic music generation.

Keywords: artificial intelligence; deep reinforcement learning; human computer interaction; machine
learning; multi-agent systems; symbolic music generation

1. Introduction

Symbolic music generation refers to creating music in a format that represents musical
notes and symbols rather than audio recordings. Indeed, the output of such models is a
structured sequence of musical symbols that can be rendered into sound using software or
played by musicians. The structure in symbolic music generation refers to the organization
and arrangement of musical elements that conform to specific patterns and rules. It
creates a coherent and logical progression within a composition. The symbolic music
generation models are often trained to recognize and replicate these structural elements
by exposing them to a large dataset of music examples [1]. However, simply mimicking
existing structures is not sufficient for generating music that is perceived as original and
engaging [2]. The models should be able to manipulate such structures creatively to
produce original compositions while maintaining coherence and musical logic.

To enhance the structural aspect of generated music, we can incorporate domain-
specific knowledge, such as music theory or compositional techniques, into the model’s
architecture or training process [3]. We may encode these rules directly into the model to
ensure that the music conforms to specific music-related rules, such as harmonic progres-
sion. Similarly, we can use specialized loss functions that penalize structural incoherence.
In addition, we may utilize hierarchical modeling techniques, where different model layers
focus on different levels of structure, ranging from the micro level, such as note-to-note
transitions, to the macro level, such as the overall form of the piece [4].
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The process of creating symbolic music involves a delicate balance between structure
and creativity [5]. The tension between these two elements is inherent in the composition
process. We can consider creativity in music as generating novel ideas, motifs, and progres-
sions that are aesthetically pleasing and evoke emotions. It requires the ability to break
free from established patterns and to introduce elements of surprise and innovation. In
this context, the structure provides a framework that helps to understand and appreciate
creativity. It includes repeating themes, considering rhythmic and harmonic conventions,
and organizing musical ideas into coherent forms such as sonatas or rondos.

Indeed, repetitions in music create a sense of form and familiarity for the listeners [6].
It enables them to identify and anticipate particular components within a composition.
Variations, on the other hand, introduce diversity and complexity. It prevents monotony
and sustains the listener’s interest. The interplay between repetition and variation is a
distinguishing feature of musical creativity and structure. It leads to forms like the theme,
where a fundamental musical idea is repeated but altered in subsequent iterations.

The structure and creativity challenge is further complicated by the subjective nature
of music. What one listener considers a creatively successful piece of music may differ from
another listener’s opinion, and this can vary widely across cultural contexts. Similarly, the
degree of structure considered optimal may differ based on the genre of music and the
audience’s expectations. However, a user-centered approach can help music generation
systems navigate these subjective complexities.

A user-centered approach to music generation involves actively involving users in the
system’s design, development, and refinement [7]. This approach prioritizes users’ needs,
preferences, and feedback to create a more personalized and satisfying musical experience.
The goal is to generate music tailored to individual tastes, cultural contexts, and specific
use cases. By incorporating user feedback, the system can adapt and evolve to create music
that resonates more with its audience. This approach enhances the relevance and appeal of
the generated music. It also ensures that the system remains flexible and responsive to the
diverse and changing human musical preferences.

1.1. Design Considerations

The challenge for music generation models in this context lies in their tendency
to either over-generalize, which leads to excessive repetition and lack of variation, or
to produce random sequences, resulting in a lack of coherence and structure. These
models are required to internalize the complex and often implicit rules that govern musical
composition. They learn from examples in existing music datasets to create and balance the
recurrence of specific patterns. However, these datasets often lack the diversity of musical
tastes and the contextual nature of music preferences [2].

As [8] suggests in their work on MuseMorphose, there is a need for models that can
exceed simple pattern replication to capture the essence of musical creativity. Potentially, we
can achieve this through a framework using reinforcement learning algorithms. However,
the definition of a reward function that covers objective and subjective characteristics
of music remains challenging [2]. Furthermore, RL algorithms are limited in scalability,
modularity, and homogeneous architecture, which can restrict their ability to handle the
diverse and dynamic aspects of music generation. Therefore, multi-agent systems can be
effective solutions with their distributed nature and collaborative approach. Such systems
can effectively address issues of scalability and modularity by allowing multiple specialized
agents to collaborate.

However, we need to ensure that learning and coordinating the actions of multiple
agents is simple enough. Indeed, high complexity can lead to high computational demands
and difficulties in maintaining the whole system’s coherence while ensuring individual
agents’ autonomy. The integration of RL within a multi-agent systems (MAS) framework
can be particularly effective [9]. By employing RL, agents within a MAS can independently
refine their behaviors through a self-learning process considering exploration and exploita-
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tion. This combination allows the agents to adapt not only to the musical context but also
to the actions and behaviors of other agents.

In this direction, this paper introduces a new framework for generating symbolic music
that puts the user at the center of the process. Our approach involves multiple knowledge
agents and users working collaboratively to generate music. Our scientific contribution
lies in the development of a multi-agent system (MAS) that integrates reinforcement
learning (RL) with hierarchical data representations to foster a dynamic and adaptive
music creation process. Our framework aims to balance user control and system autonomy,
allowing users to guide the music generation process while enabling the system to learn and
suggest creative ideas. This approach enhances the user’s creative agency while improving
the system’s understanding of music composition through continuous user interaction
and feedback.

1.2. Research Objectives

The objective of our research has been to analyze the shortcomings of existing ap-
proaches and attempt to create a synthesis of methods that overcome these shortcomings.
Hence, our objective has been to design a framework that can lay the foundation for the
symbolic music generation.

One of the crucial aspects we have considered is the user’s role. Symbolic music
generation needs to engage the user in the music creation process. The user is required
to be in the loop, provide qualitative feedback, add emotional assessments, and lay the
premises for the music generation. Hence, the framework needs to be user-centric in the
sense that it assigns an active role for the user as an agent that can take an equal part
in a collaborative effort with other knowledge agents. This means the user should be
encouraged to interact and provide feedback to make his musical preferences salient. As
such, we are pursuing an effective symbiosis of the system and the user.

In this direction, the framework is designed to adapt to new challenges and recover
from potential failures in a practical and efficient manner. Agents within this framework
can share and develop ideas, fostering a collaborative and rich process. The generative
agent in such a framework can evolve by learning from past compositions, efficient agent
communication, and active user interaction to enhance future results. Therefore, such
a collaborative and adaptive framework needs to include an effective method for the
underlying agent’s interaction. This method will help the agents build on each other’s
strengths and compensate for weaknesses. Such collaborative interaction is essential when
facing unforeseen challenges or recovering from errors and failures. Indeed, a shared
understanding of the problem space allows agents to quickly realign their strategies and
coordinate their efforts to address issues effectively.

Furthermore, the type of framework targeted needs to strike a balance between struc-
tured repetition and creative variations. This framework should be able to capture both
short-term and long-term musical structures. Instead of traditional musical notes, such a
framework is designed to use pre-recorded samples representing melodic patterns. There-
fore, the agents within the framework aim to arrange these samples into compositions
that replicate human-made music. By incorporating user feedback, they can improve their
performance over time. This will result in customized musical outputs that cater to each
user’s taste and preference. In addition to user feedback, incorporating musical metrics as
part of the reward function is crucial for guiding the agents toward generating high-quality
music. It ensures that the generated music meets a certain level of technical proficiency
while catering to individual user tastes.

Moreover, it is essential to consider the topological accuracy of the framework, as it
ensures that the intrinsic relationships within music data are preserved. This allows for
meaningful clustering and continuity, reflecting the perceptual and structural similarities in
the musical samples. Indeed, topological integrity is crucial for maintaining the proximity
of similar musical elements, which is essential for such a framework to acquire required
musical knowledge and analyze musical influence across different generations. In addition
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to topological accuracy, the framework needs to consider the hierarchical aspect of music
data due to the layered nature of musical composition and production. The hierarchical
structure allows for the representation of music at different levels of abstraction. Thus, the
combined topological and hierarchical properties provide an exhaustive framework for
analyzing and understanding music samples.

To achieve these objectives, some key research questions need to be answered:

• RQ1: What level of system autonomy should be traded in exchange for user involvement?
• RQ2: Can musical patterns and underlying relationships be revealed by extracting an

exhaustive set of rhythmic and melodic features through musical sampling?
• RQ3: How effective can the topological and hierarchical representation of data be in

organizing and adapting musical features at different levels of abstraction?
• RQ4: Can we establish metrics to ensure that a generative element of a system based

on this framework maintains consistent musical styles or structures?
• RQ5: How effective can user involvement be in such a framework in navigating the

agents toward understanding the user’s musical preferences?
• RQ6: How can we incorporate user feedback into the agent’s learning process while

adapting to various stages of musical development within a framework?
• RQ7: Can we establish an effective communication method for agents to share and

develop musical experiences and ideas?

The remainder of this paper is organized as follows: Section 2 reviews the existing
relevant music generation models, highlighting their strengths and limitations and situating
our work within this context. Sections 3 and 4 detail the computational techniques and
algorithms employed by our framework, including data preprocessing, feature extraction,
and the mechanics of the multi-agent system. Section 5 describes the distinct functions
of the perceiving, generative, and human agents and how they collaborate within the
music generation process. Sections 6 and 7 outline the iterative procedure for creating and
refining music within our framework, and interface design considerations, respectively.
Section 8 reflects on the implications of our user-centric approach and the potential for
system expansion. Finally, Section 9 summarizes our findings and proposes directions for
future research.

2. Related Works

Deep learning models can address several challenges in symbolic music generation
in various ways, as highlighted by [1,2]. Among these models, MusicVAE [4] employs
a hierarchical variational autoencoder framework to generate music with a structured
approach. The Music Transformer [10] leverages the self-attention mechanism to capture
long-range dependencies within musical pieces, thereby enhancing the coherence of the
generated output. MuseGAN [11] utilizes generative adversarial networks to produce
polyphonic music by learning and mimicking the input data distribution. Refer to [1,12]
for a comprehensive overview of the deep learning models in symbolic music generation.

As stated earlier in Section 1, deep learning models for music generation mainly use
a note-based approach. This can limit the models’ ability to create music naturally incor-
porating repetitions and variations, particularly in longer compositions. These elements
are crucial to the aesthetic and structural aspects of musical composition. Various models,
including Museformer [13], GetMusic [14], MeloForm [15], and Music Transformer [10],
address the challenges of generating music with structural integrity. However, these mod-
els rely on large datasets to learn and generate music and do not incorporate direct user
feedback. Additionally, these models are complex and require significant computational
resources for training and inference.

Table 1 summarizes the related studies in reinforcement learning (RL), user preference,
and multi-agent systems (MAS). They offer insights into addressing the shortcomings of
deep learning (DL) models in symbolic music generation. These studies highlight the
potential of user interaction and adaptive learning mechanisms to enhance the music
generation process.
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Table 1. Relation of existing studies to the proposed framework.

Study Reference Methodology Results Relation to Proposed
Framework

RL-Tuner [3] DQN and RNN models Generated melodies using
user-defined constraints

Suggests reinforcement
learning integration in
proposed framework

RE-RLTuner [16] Extension of RL-Tuner
with LDA

Improved handling of
complex user constraints

Supports user involvement
aspect of proposed framework

LSTM RNN composition [17] LSTM RNN Composed melody
and chords

Provides a basis for sequential
pattern learning in proposed
framework

RL-Duet [18] Actor-critic with GAE Generated melodic and
harmonic parts in real time

Informs real-time interaction
and feedback in proposed
framework

RL-Chord [19] RL with conditional LSTM Generated chord progression
Informs real-time interaction
and feedback in proposed
framework

Guzheng music [20] RL and LSTM with DQN Composed Guzheng music
Shows adaptability to specific
musical styles for proposed
framework

MusicRL [21] RL-based method
Adapted to human
preferences and Fine-tuned
music generation

Emphasizes user feedback for
personalization in proposed
framework

NLP transformer [22] NLP with transformer
architecture

Created music based on user
preferences

Supports user preference
integration in proposed
framework

Statistical ML [23] Four modules for different
music aspects

Generated music imitating
styles from a seed song

Informs style imitation and
personalization in proposed
framework

Interactive GA [24] DNN and transformer with
genetic algorithm

Personalized music
generation

Informs user interaction for
refinement in proposed
framework

Hierarchical CRNN-SA [25] CRNN with self-attention Categorized and suggested
music based on user history

Informs user history-based
adaptation in proposed
framework

NN music [26] MLP neural networks with
PQF architecture

Trained networks by
similarity algorithm

Suggests modular architecture
for proposed framework

Musical agent with ART and
RL [27] ART and RL Generated monophonic

melody

Informs continuous learning
and agent interaction in
proposed framework

Improvagent [28] Sarsa RL algorithm
Generated music with
feedback from human
musician

Supports improvisational and
feedback aspects of proposed
framework

CTRNNs and GA musical
agent [29]

CTRNNs and genetic
algorithms

Evolved multiple CTRNNs for
sound events

Informs evolutionary aspects
and sound event generation in
proposed framework

Autonomous agents for
melody and harmony [30]

RNN for melody and
statistical model for harmony

Generated melodies and
harmonies with feedback loop

Demonstrates agent
specialization and feedback in
proposed framework

2.1. Reinforcement Learning

Reinforcement learning (RL) algorithms emphasize the importance of interaction
with the environment in the learning process. RL models engage in a process of trial and
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error to adapt to new tasks and environmental changes. The adaptability of RL models
originates from their ability to learn optimal policies through evaluating actions based on
the rewards received. In symbolic music generation, an RL agent can be trained to recognize
which sequences of notes, rhythms, or harmonies are more likely to lead to a structured
and aesthetically pleasing composition. The agent’s interaction with the environment,
which in this case includes the musical framework and possibly feedback from listeners,
allows it to refine its understanding of what constitutes successful melodic patterns. RL is
especially useful in music generation, where creative exploration and the ability to respond
to changing constraints are essential. In this context, the objective function is designed to
capture various aspects of musicality. These aspects may include harmony, melody, rhythm,
structure, novelty, tension-resolution patterns, and adherence to a particular musical style
or genre. The design of this function is quite challenging as it needs to balance the core
aspects of music theory with the subjective nature of music.

RL-Tuner [3] utilizes two DQN and two RNN models to generate melodies using
user-defined constraints. Later, ref. [16] proposed an extension to the RL-Tuner that uses
the latent Dirichlet allocation (LDA) called RE-RLTuner. This extension aims to expand the
possibilities of music generation by improving the model’s ability to handle complex user
constraints. Ref. [17] used LSTM RNN to compose melody and chords, where the agent’s
objective is to find a suitable combination of sequences. RL-Duet [18] can generate melodic
and harmonic parts in an online accompaniment framework using an actor-critic with a
generalized advantage estimator (GAE). This model can generate music in response to input,
like a human musician improvising in real time. RL-Chord [19] is a melody harmonization
system using RL and conditional LSTM (CLSTM) to generate chord progression. Ref. [20]
proposed a method using RL and LSTM to compose Guzheng music. They first trained
the LSTM model on MIDI examples and optimized it by introducing the Guzheng playing
techniques using the DQN algorithm.

2.2. User Preference

User preference studies aim to create systems that can adapt and respond to individual
preferences by placing users at the center of the process. Within music generation tasks,
this approach recognizes the subjective nature of music and seeks to personalize the music
generation process by tailoring it to personal tastes, cultural contexts, and specific use
cases. Researchers have explored various methods for capturing and integrating user
feedback to achieve this. User preference studies and reinforcement learning models in
music generation serve different but complementary purposes. User preference studies are
primarily concerned with personalizing music to individual tastes, while reinforcement
learning models focus on learning strategies to generate music that meets specific compo-
sitional goals. The following related user-centric music generation systems showcase the
integration of machine learning techniques with user feedback mechanisms to refine and
personalize the music creation process.

MusicRL [21] is an RL-based method for generating music that adapts to human
preferences. It utilizes MusicLM to learn from user feedback and fine-tune music generation.
MusicRL aims for ecologically valid music tested in real-world settings and is evaluated
by human raters. Researchers in [22] combine natural language processing (NLP) with
transformer architecture to create music based on user preferences. They trained the model
on the TheoryTab database. User ratings guide the system to refine music generation,
with higher scores leading to similar future segments. Listening tests assess the system’s
genre and mode accuracy. A statistical machine learning system in [23] generates music
by imitating styles from a seed song. It uses four modules for different music aspects and
a dataset of MIDI songs. The system is evaluated with ten pop songs to capture musical
structure and style nuances.

The author in [24] suggests an interactive genetic algorithm system that uses a deep
neural network (DNN) and transformer architecture to personalize music generation. The
system is trained on the MAESTRO dataset, and user feedback is used to refine the system.
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This ensures that the generated music aligns with individual tastes measured by user
satisfaction. The system in [25] aims to enhance music-driven services by categorizing and
suggesting music based on user history and preferences. It uses a hierarchical convolutional
recurrent neural network with self-attention (CRNN-SA) to extract user music preferences
from audio features. The system is trained on the Echo Nest dataset. It employs contrastive
learning to capture user preferences. The model’s performance is evaluated through
objective measures, such as validation losses and positioning, and subjective experiments
involving user satisfaction ratings.

2.3. Multi-Agent Systems

A multi-agent system (MAS) is a type of distributed system consisting of multiple
intelligent agents interacting with each other [31]. In a MAS, each agent is an independent
entity with specific abilities, knowledge, and objectives. It can perceive the environment,
process information, make decisions, and act independently without relying on other
agents. The agents in a MAS can either be homogeneous, meaning they have similar
abilities, or heterogeneous, meaning they differ in their capabilities, knowledge, and goals.
The interactions between these agents can lead to complex behaviors, enabling the system
to solve problems beyond individual agents’ abilities. The agents communicate and work
together through these interactions to achieve a common goal. Effective communication is
crucial as it allows the agents to exchange knowledge and intentions, while cooperation
requires them to harmonize their efforts. Indeed, the cooperation mechanism aligns agents’
contributions and actions, preventing conflicts.

In symbolic music generation, MAS translates to a system where different agents
can be responsible for various aspects of music composition. Each agent optimizes its
musical task by utilizing its specific set of rules or learned behaviors. NN music [26] is a
musical agent that uses multi-layer perceptron (MLP) neural networks with PQF modular
architecture [32]. The PQF architecture includes three modules: listening and analysis (P),
performing/synthesis (Q), and generation (F). The model uses a similarity algorithm to
train the networks by checking the similarity of the current states with the ones used in
training. Smith and Garnett [27] propose a musical agent with adaptive resonance theory
(ART) and reinforcement learning (RL) to generate monophonic melody. ART [33] is a
framework that helps multiple autonomous agents learn to interact with their environment
and each other in a stable and adaptive manner. The RL agents employ the ART to update
their internal representations of the musical corpus continuously. They communicate
through a shared representation of the musical state. This representation includes current
chord progression, melody, and improvisational context information.

Improvagent [28] is a musical agent that utilizes the Sarsa reinforcement learning
algorithm. Improvagent represents each note by pitch, duration, and velocity. The agent
interacts with its environment by generating music and receiving feedback from a human
musician or another agent. Given the inputs, the agent computes a set of features like
onset, pitch, and rhythm. It considers the features as the states of the environment and
clusters them using the k-nearest neighbors algorithm with Euclidean distance. Bown [29]
introduces a musical agent that combines continuous-time recurrent neural networks
(CTRNNs) and genetic algorithms (GA). The musical agent utilizes the CTRNN output to
map synthesis parameters and trigger sound events. GA evaluates the CTRNN’s success
and evolves multiple CTRNNs in parallel.

The system proposed by [30] utilizes two autonomous agents, one focused on gen-
erating melodies and the other on harmonies. The melody agent uses a recurrent neural
network to create melodic patterns, while the harmony agent employs a statistical model
based on musical grammar to create harmonic progressions. The two agents respond to
each other’s outputs and communicate explicitly through this feedback loop. The sys-
tem also includes a feature to generate different musical styles for the harmony agent by
implementing various statistical models.
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2.4. Research Gaps and Contributions

Studies such as RL-Tuner and RL-Duet have made notable progress utilizing reinforce-
ment learning (RL) for generating music. They focus on optimizing musical compositions
based on predefined reward functions that capture musicality and structure. However,
these models often lack mechanisms for adapting to real-time user feedback, which is
crucial for personalizing the music generation process. On the other hand, studies con-
sidering user preferences in music generation have shown the importance of tailoring the
musical output to individual tastes. These studies usually rely on static datasets of user
interactions or feedback to inform the generative process. While they achieve some level of
personalization, they offer a different level of adaptability and responsiveness compared to
an RL approach.

On the other hand, the MAS-based models mimic collaborative human interactions
and often provide an improvisational system. These multi-agent systems demonstrate
the potential for complex, emergent behavior arising from the interactions of multiple
agents. However, agents within these systems must be exposed to a wide range of musical
examples or scenarios to interact effectively and produce results that correspond to human
musicians. In fact, the degree to which users can directly or creatively influence the system’s
interactions and outcomes is limited.

Additionally, there is a concern about the applicability of these methods across different
musical genres and styles. Models tend to perform best within the specific context they
were trained in but often struggle to replicate the nuances of other musical styles accurately.
This difficulty is due to each genre’s unique structural and rhythmic characteristics, which
may not be fully captured within the model’s learned feature space. Furthermore, these
models utilize datasets that require time and expertise to construct and use effectively.
Assembling and curating such datasets requires resources, which can be challenging for
users, research teams, or creative projects with limited means. Consequently, adapting
these models to diverse musical preferences is not an easy task.

Here, we present a new framework that combines reinforcement learning (RL) models
with user preference studies to create adaptive music. The framework incorporates a multi-
agent system (MAS) that uses hierarchical data representation to respond to user feedback
and generate music. The framework’s user-centered approach allows the system to learn
from both the deep learning model’s structural patterns and the evolving preferences of
users through continuous interaction. Figure 1 illustrates the components and procedures
of the proposed multi-agent framework for symbolic music generation.

Our study extends RL applications by introducing a framework that actively involves
the user in the RL loop. Indeed, our framework benefits from the adaptability and long-
term planning capabilities of RL models while also ensuring that the music generated is
personalized, as emphasized in user preference studies. Integrating these methods allows
for a more holistic approach to music generation that respects the composition’s artistic
integrity and the listener’s subjective experience.

Moreover, our study proposes a new approach to maintaining coherence in the music
generated by multi-agent systems (MAS) while balancing the autonomy of individual
agents. This is achieved through an organizational structure where each agent specializes in
music generation and user interaction. It allows for a refined approach to music generation
that can adapt to the user’s evolving tastes. Our framework learns from user interactions
and adapts the generative strategies based on feedback. It ensures that the music produced
is aligned with the user’s current preferences.
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Figure 1. This diagram demonstrates the components and procedures of the proposed multi-agent
framework for symbolic music generation. The “GHSOM Training” process explains how to create
a hierarchical representation of music samples. To begin with, MIDI samples are pre-processed to
obtain feature vectors, which are then prepared to train the growing hierarchical self-organizing
maps (GHSOM). The obtained clusters are then visualized and analyzed for optimization. The
reinforcement learning deep Q-network, “RL DQN”, which interacts with the user and the environ-
ment, represents the framework’s learning component. The “Generation Process” demonstrates the
different steps and agent interactions involved in the music generation process. For more details,
refer to Sections 5 and 6.

3. Methods of Use

The designed framework consists of methods that work together to achieve a subtle
understanding and create musical sequences. The framework’s musical knowledge relies on
a set of MIDI samples providing structured musical information for learning and generation.
The growing hierarchical self-organizing map (GHSOM) organizes musical knowledge in a
hierarchical structure. The recurrent neural network with long short-term memory (RNN
LSTM) captures temporal relationships within musical sequences. The framework’s output
is optimized through reinforcement learning (RL), which balances objective musicality with
subjective aesthetic judgment. Additionally, t-distributed stochastic neighbor embedding
(t-SNE) helps with dimensionality reduction and dataset structuring. Moreover, it facilitates
guiding the GHSOM’s configuration to represent musical samples better. These methods
form the main framework’s components and contribute to the overall functionality and
performance.

3.1. Data

The framework uses a dataset of samples to acquire musical knowledge. This dataset
includes a collection of melodic patterns. Samples can be recordings of real instruments,
like guitar riffs, piano chords, or a sequence of musical notes. They are repeating sections
of a sound recording or musical piece that provide repetition and structure. They can be
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played back in sequence to create a continuous and rhythmic pattern. They come in the
form of audio or MIDI representation. Percussive samples, like drum patterns or grooves,
are commonly used to maintain a consistent beat and drive the music forward. Additionally,
harmonic and melodic samples consist of repeating melodic phrases or chord progressions.
These samples can serve as the foundation for the composition and can be layered to create
musical arrangements. In this study, we consider a dataset of melodic samples in MIDI
representation to explain the underlying processes within the framework. The dataset
comprises 1222 MIDI samples in three main genres: Jazz, Funk, and Soul. Figure 2 presents
the distribution of the genre and the sample length.

(a) (b)

Figure 2. (a) The genre distribution of dataset samples. (b) The distribution of samples duration in
seconds. The annotations on top of the bars indicate the corresponding number of samples for the
specific value (bar).

Musical timing is out of the scope of this study. Therefore, to ensure consistent timing
throughout the dataset, we impose a fixed time signature of 4/4, a velocity of 80, and
a tempo of 120 BPM for all samples. This standardization allows for a more uniform
comparison of musical features across samples. Furthermore, all the samples are quantized
to 16th s, meaning that the timing of the musical events is aligned to a predefined grid or
rhythmic structure. The quantization ensures that all samples have a consistent rhythmic
alignment. This allows for a fair comparison of their melodic and harmonic features and
facilitates extracting meaningful musical features.

The framework uses this dataset to train the GHSOM model, which serves as a
knowledge base for the system. During the generation process, the framework can also
receive complete MIDI songs that serve as structural guidance for the RL agent. We will
elaborate on this later in Section 6.

3.2. Growing Hierarchical Self-Organizing Maps (GHSOM)

Therefore, in the designed framework, the growing hierarchical self-organizing maps
(GHSOM) represents a potential method that can be used as musical knowledge. The
GHSOM can better represent music data due to its topological and hierarchical properties.
Topologically, GHSOM preserves the spatial arrangement of the input music data in a
lower-dimensional grid, which helps maintain the relationships between different musical
features. This is important in clustering samples with similar characteristics such as tempo,
rhythm, and harmonic progressions. Hierarchically, GHSOM reflects the layered structure
of music by adaptively growing its architecture to various levels of granularity based on
the complexity of the data.

To elaborate more, GHSOM is an unsupervised machine learning algorithm that learns
to represent high-dimensional input data in a lower-dimensional space [34]. GHSOM
extends the capabilities of the traditional self-organizing map (SOM) [35] to better handle
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complex and hierarchical data structures. It has the ability to dynamically grow and adapt
its architecture to represent the input data more accurately. This feature allows it to provide
a more nuanced and detailed representation of high-dimensional datasets.

The GHSOM algorithm uses competitive learning to operate. It achieves this by adjust-
ing prototype vectors, also known as codebook vectors, through iterative processes to repre-
sent input data best. These vectors serve as neurons or map nodes. The algorithm organizes
them in a way that preserves the topological properties of the input space. This ensures
that similar data points are mapped close to each other in the lower-dimensional space.

The GHSOM is characterized by its hierarchical structure, which is not predetermined
but obtained from the data. This means the algorithm adapts to the data’s structure without
prior knowledge or assumptions. This approach enables the GHSOM to represent the
hierarchical relationships present in the data. One can choose a broader, flatter represen-
tation with detailed refinements at each layer or a deeper hierarchy that emphasizes the
separation of subclusters into distinct maps. This feature allows customizing the level of
detail in data representation based on specific needs.

Furthermore, the architecture of GHSOM is defined by parameters that determine the
balance between shallow and deep hierarchies. Its goal is to distribute data samples evenly
across the map space to facilitate exploratory data analysis. This uniform distribution is
critical in densely populated regions of the data space where subtle differences between
clusters can be captured. The algorithm uses the quantization error of individual units to
better represent these nuances instead of the mean quantization error.

The GHSOM uses parameter τ to determine the global stopping criterion. This
criterion affects the size of the map and its level of detail. One noteworthy characteristic
of the GHSOM is that its training process often results in an imbalanced hierarchy with
branches of varying depths. However, this is actually an advantage over other hierarchical
models because it allows the GHSOM to adapt its structure to the complexity and diversity
of the input data, especially musical data, which can have many aspects or features.

3.3. Recurrent Neural Networks (RNNs)

Recurrent neural networks (RNNs) are a class of neural networks that process se-
quential data by allowing information to persist over time. The recursive nature of RNNs
enables them to retain a form of “memory”. This mechanism makes them proficient at
tasks where context from previous inputs is crucial for understanding current and future
data points. However, despite their usefulness, RNNs can suffer from the vanishing and
exploding gradient problem. This limits their ability to capture long-term dependencies in
sequential data.

During the backpropagation phase, the gradients of the loss function are sent backward
in time to update the network’s weights. However, when these gradients are sent over
multiple time steps, they can either shrink exponentially, leading to vanishing gradients, or
increase exponentially, resulting in exploding gradients. The vanishing gradient problem
makes it challenging for the network to learn and maintain information over long sequences,
thus limiting its ability to capture long-term dependencies. On the other hand, exploding
gradients can cause learning to diverge, leading to unstable network behavior.

Long short-term memory (LSTM) is a type of RNN that effectively addresses this
problem with a gating mechanism that regulates information flow. This mechanism consists
of three sigmoidal gates and one hyperbolic tangent gate that selectively update, forget, and
output information. The input gate plays a role in regulating the inflow of new information
into the cell state. On the other hand, the forget gate determines which part of the existing
information needs to be disregarded. Finally, the output gate determines the information
that should be outputted at the current time step.

Therefore, LSTMs can maintain a stable gradient over time by selectively updating
and forgetting information. This allows them to learn from and remember information
over extended sequences. This characteristic makes LSTMs highly effective for many appli-
cations that require modeling long-term dependencies, such as music structure. Therefore,
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the designed framework utilizes the LSTM model to capture short-term and long-term
musical structures.

3.4. Reinforcement Learning (RL)

Reinforcement learning (RL) is a machine learning subfield that trains agents to make
sequential decisions. RL is characterized by an interactive process where an agent learns
to perform tasks by operating within an environment and receiving feedback through
rewards or punishments. Through the interaction, the agent learns from feedback and
adapts behavior to achieve a specific goal. The agent aims to maximize its cumulative
reward over time by learning a policy that maps states to actions.

RL algorithms can be value based or policy based. Value-based methods aim to learn
the optimal value function. The optimal value function represents the expected long-term
return for each state, or state-action pair, under an optimal policy. The value function
quantifies the quality of states and actions. It guides the agent towards the most rewarding
decisions. One of the most well-known value-based algorithms is Q-learning, where the
agent learns an action-value function that gives the expected utility of taking a given action
in a given state and following the optimal policy after that.

On the other hand, policy-based methods aim to learn the best policy directly without
requiring value estimation as an intermediate step. These approaches adjust the parameters
of the policy in a manner that maximizes the expected return. Policy-based methods can be
more effective in high-dimensional or continuous action spaces where value-based methods
may have limitations.

Additionally, there are hybrid approaches, such as deep Q-networks (DQNs) [36],
which combine Q-learning with deep neural networks to approximate the Q-value function
and handle large and continuous state spaces. DQN tackles the challenge of Q-learning
becoming impractical in environments with large or continuous state spaces. This is due
to the Q-function becoming too complex to represent with a simple tabular approach. In
the DQN algorithm, the neural network receives the current state of the environment as
input and produces a Q-value for each available action. The main advantage of DQN is its
capability to generalize from the observed states to the unobserved ones, which empowers
the agent to make informed decisions even in unfamiliar regions of the state space.

The designed framework uses the DQN algorithm to understand and optimize the
learning of musical composition and structure. By framing the task of music structure learn-
ing as a sequential decision-making problem, DQNs can identify patterns and transitions
that are specific to different musical styles. Here, the deep neural network component of
DQNs consists of the LSTM model, which enables the RL agent to predict and generate
musically coherent sequences. Additionally, the agent’s ability to continuously enhance its
policy through interaction with a musical environment allows for dynamic adaptation to
various genres or preferences.

3.5. t-Distributed Stochastic Neighbor Embedding (t-SNE)

Dimensionality reduction is a technique to decrease the number of features or variables
in a dataset without losing important information. There are two types of dimensionality
reduction techniques: linear and nonlinear. The t-distributed stochastic neighbor em-
bedding (t-SNE) [37] algorithm is a nonlinear technique that can be used to visualize
high-dimensional data. The main objective of t-SNE is to reduce the high-dimensional data
space and display it in a lower-dimensional space while maintaining its local structure as
much as possible. t-SNE is highly effective for analyzing complex datasets where the rela-
tionships between data points are not easily visible in the original high-dimensional space.

t-SNE has an advantage in capturing data’s local and global structure by revealing
clusters at various scales. This is accomplished by the perplexity parameter, which functions
as a knob that determines the number of effective nearest neighbors. It balances attention
between the local and global aspects of the data and can be adjusted to emphasize different
structures within the data. For music, Refs. [38,39] compared various dimensionality
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reduction methods using extracted meaningful features from music and textural sound
data. They observed that t-SNE performs much better in preserving the local structure of
the original data and keeping the distinct sub-groups separated in visualization.

The designed framework uses the t-SNE algorithm as a preprocessing step to pre-
pare training examples for the GHSOM model. The t-SNE algorithm helps visualize
high-dimensional data in two or three dimensions, which can reveal the data’s intrinsic
clustering and structure. This visualization assists in making decisions about the GHSOM’s
parameters to control its hierarchical depth and architecture. Furthermore, the t-SNE algo-
rithm can effectively separate clusters even when they are nonlinearly related. This results
in more distinct training examples for the GHSOM model, which can improve its ability
to identify fine-grained patterns and hierarchical relationships. The algorithm’s focus on
preserving local neighborhoods can also act as a feature denoising mechanism, reducing
noise and emphasizing relevant features, resulting in more robust training outcomes.

Moreover, the reduced dimensionality can make it more efficient to train the GHSOM
model, particularly with large datasets. The nonlinear relationships that t-SNE can uncover
help to reveal complex data interactions suitable for GHSOM learning. This can potentially
lead to faster convergence and improved model performance. However, it is essential
to remember that t-SNE can be computationally intensive, and it is necessary to avoid
overfitting the visual patterns it discovers.

4. Data Preprocessing

Data preprocessing is a crucial step before training machine learning models. It in-
volves several steps to clean and organize the raw data, making it suitable for model
training. It ensures that the machine learning model can effectively learn from the in-
formation provided. The designed framework, after feature extraction, performs data
transformation and reduction.

Data transformation is a powerful tool that converts data into a more suitable format
for model training. It includes encoding categorical variables into numerical representa-
tions, a process allowing the model to understand and learn from them. It also involves
scaling features to a standard range, ensuring that all features have an equal opportunity to
influence the model’s learning. Lastly, it includes normalizing data, ensuring all features
contribute equally to the model’s learning process.

Data reduction is the final step in data preprocessing. It aims to reduce the dimension-
ality of the data while preserving its essential information and the underlying structure.
This is particularly useful when dealing with large and complex datasets. Indeed, reducing
the complexity of the dataset while maintaining its quality helps to decrease the compu-
tational cost associated with clustering tasks. Additionally, it can filter out irrelevant or
redundant features to minimize the impact of noise on the model’s performance.

4.1. Feature Extraction

To facilitate the analysis of the samples within the dataset, the designed framework
processes the MIDI files to extract a set of relevant musical features. The feature extraction
is performed using the pretty_midi [40] and MusPy [41] libraries. These features are
represented as a vector for each music sample, which provides a structured and quantifiable
profile of the musical content. The resulting feature vector includes various aspects of a
musical piece, from pitch characteristics to rhythmic patterns. Table 2 summarizes the
musical features included in the feature vector.

These features are expected to assist the agents in recognizing musical patterns and
analyzing the dataset for learning and generating coherent music.

To elaborate, structural features such as the number of notes, the duration of samples,
and note density maintain the music’s form, pacing, and complexity characteristics. Tonal
features, including the pitch range and the average pitch, provide insights into the tonal
characteristics of the sample. They help to maintain a consistent tonal center and utilize a
musically relevant pitch range during music analysis and generation.
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Table 2. Summary of musical features.

Parameter Description

number_of_notes Number of notes of the sample.

length_sec Duration of the piece in seconds.

pitch_range_min_note Lowest note value in the sample’s MIDI note range.

pitch_range_max_note Maximum note value in the sample’s MIDI note range.

number_pitches_used The total number of unique pitches in the sample.

number_pitch_classes_used The total number of unique pitch classes used in the sample.

overall_pitch_contour
General shape or trend of the pitch over time, which can be
ascending, descending, or static.

average_pitch Mean pitch value across all notes measured in Hz.

pitch_entropy
Measure of the diversity of pitches in the sample. Higher values
indicate greater diversity in pitch usage.

pitch_class_entropy
Measure of the diversity of pitch classes in the sample. Higher
values indicate greater diversity in pitch classes usage.

interval_range_min
Minimum interval between consecutive notes. It provides
insight into the sample’s melodic intervals.

interval_range_max
Maximum interval between consecutive notes. It can indicate
the presence of large leaps within the sample.

groove
Rhythmic feel or swing in the music. It helps to perceive style
and mood of the sample.

average_polyphony
The average number of pitches played concurrently. It reflects
the textural complexity of the sample.

maximum_polyphony
Maximum number of pitches played concurrently. It indicates
the maximum textural density of the sample.

note_density
Density of notes measured as notes per unit of time. It indicates
the sample’s overall complexity.

average_pitch_category
Distinct categories of the average pitch of a sample based on the
frequency range it falls into.

Melodic features such as pitch contour and interval ranges guide specific melodic
trajectories. The overall_pitch_contour feature provides information about the general
direction of the melody over time. The interval_range_min and interval_range_max
features capture the smallest and largest intervals between consecutive notes within a
sample. These features facilitate understanding the melodic range and the potential for
expressive leaps within a piece.

Features that measure polyphony capture harmonic texture. They refer to the overall
texture density of the sample. The average_polyphony feature measures the average
number of notes played simultaneously throughout a piece. For instance, a lower value of
this feature might indicate a piece with a simpler texture, such as a solo melody line or a
melody with sparse accompaniment. On the other hand, the maximum_polyphony feature
indicates the maximum number of notes played simultaneously at any point in the sample.
It can reveal the peaks in textural density and the potential for harmonic fullness within
the sample.

The groove feature maintains the rhythmic feel of the music. We obtain this feature
by analyzing the microtiming deviations between the onset times of the notes. First, we
extract the onset times of the notes. Then, we calculate the inter-onset intervals between
the notes. Finally, we use the standard deviation of these intervals to measure the groove
of the sample. We use the following equation to calculate the groove:
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groove = std(inter_onset_intervals) (1)

where inter_onset_intervals is an array of the time intervals between the onsets of each
note in the sample, and std is the standard deviation of these intervals.

Features measuring pitch and pitch class entropy indicate tonal diversity and unpre-
dictability. The pitch_entropy feature considers the specific octaves in which pitches are
played and calculates their unpredictability throughout a piece. For instance, a high en-
tropy value suggests that the composition uses a wide range of pitches in a less predictable
manner. Meanwhile, a low pitch entropy indicates that the piece relies on a more limited
set of pitches and may follow a more predictable pattern. However, pitch_class_entropy
calculates the entropy for the pitch classes. This measure provides insight into the diversity
of note choices in a more tonal sense. A high entropy value for this feature indicates the
use of various notes, which can contribute to a richer harmonic language.

In addition to these features, the path to each sample on the storage is maintained for
future processes such as generation and sampling.

4.2. Categorizing Average Pitch Frequency

The smooth integration of various musical elements is crucial in producing a com-
pelling and well-balanced musical piece. Each instrument, vocal element, and percussive
sound occupy a specific frequency range, which contributes to the overall sonic texture.
When these frequency ranges are not carefully allocated, they can clash, resulting in an
unclear or unpleasant sound.

The analysis and processing of musical data are simplified by categorizing the average
sample’s pitch frequency into distinct frequency ranges. This categorization reduces the
complexity of the dataset and allows for a better understanding of the relationship between
frequency ranges and the musical elements they represent. By categorizing the data, it is
easier to identify the sample’s tonal center on the frequency spectrum and recognize the typ-
ical instruments within these ranges. This categorization also leads to more homogeneous
and musically coherent clusters. Following this step, the average_pitch_category feature
is obtained. The frequency ranges used for the average_pitch categorization are provided
in Table 3. For more information on audio frequency ranges and their corresponding
musical elements, refer to [42,43].

Table 3. Frequency Ranges and their Corresponding Musical Elements.

Frequency Range Musical Elements

Sub-bass (16–60 Hz)
The sample is characterized by very low frequencies,
typical of instruments like the upright bass, tuba, and
bass guitar.

Bass (60–250 Hz)
A value in this range suggests that the sample has a
frequency range similar to the normal speaking voice and
may be rich in bass elements.

Lower Midrange (250–500 Hz)
This category indicates that the sample’s average pitch is
within the range of brass instruments and
mid-woodwinds, such as the alto saxophone.

Midrange (500 Hz to 2 kHz)
A value in this range captures the higher end of the
fundamental frequencies of most musical instruments,
including those like the violin and piccolo.

Higher Midrange (2 to 4 kHz) This range is associated with the harmonics of instruments
like the trumpet, which add brightness to the sound.

Presence (4 to 6 kHz) A value in this range includes harmonics for instruments
like the violin and piccolo.

Brilliance (6 to 20 kHz)
This category includes high-pitched sounds and
harmonics of percussive elements like cymbals, which add
sparkle and airiness to the music.



Electronics 2024, 13, 1116 16 of 31

4.3. Normalizing Data

Data normalization is a process that ensures that each feature in a dataset has a similar
range. This process aims to prevent any single feature from dominating the distance
calculations performed by machine learning models during training. By normalizing the
data, the model can consider the relative contributions of all features effectively.

Moreover, dimensionality reduction algorithms are sensitive to the scale of the data. If
features in a dataset have different scales, the algorithm may give more weight to features
with larger values, leading to inaccurate results. Normalizing the data to a specific range
can reduce the influence of any outliers or extreme values present in the dataset. This can
improve the quality of the low-dimensional representation of the data.

In this framework, the extracted feature vectors are scaled using MinMax scaling to fit
a range of (−1, 1).

4.4. Dimensionality Reduction

Dimensionality reduction is an important technique in machine learning and data
analysis that transforms complex, high-dimensional data into a more manageable and
interpretable form. It plays an essential role in addressing several challenges and enhancing
the overall effectiveness of data-driven approaches. This technique can mitigate overfitting,
improve computational efficiency, reduce noise, enable data visualization and exploration,
extract relevant features, optimize data storage and transmission, and enhance model
interpretability and explainability.

In the designed framework, the t-SNE algorithm is used to transform the extracted fea-
ture vectors into two dimensions to facilitate analysis, visualization, and training processes.

5. Agent Roles and Interactions

The designed framework involves two agents: the perceiving agent and the generative
agent. As an entity, these agents are involved in the generation process using the methods
described in Section 3.

The perceiving agent has two main roles: learning and evaluating. It learns the under-
lying musical characteristics based on the feature vectors extracted from the samples in the
dataset. It evaluates and provides feedback on the musical characteristics of the generative
agent’s output. On the other hand, the generative agent carries out the output and employs
reinforcement learning to optimize its outcomes. These agents work collaboratively, simi-
lar to the collaboration of a composer with a music theorist. The perceiving agent gives
the generative agent a better understanding of the environment by encoding the musical
samples in a higher level of abstraction. Consequently, the generative agent concentrates
more on its action improvement and interaction with the user.

Here, the framework assigns an active role to the user. Therefore, the user is considered
an agent who interacts with other agents within the musical environment. The user’s role
is to evaluate the model’s output and provide new inputs to guide the generations. User
feedback enables the generative agent to adapt and learn the user’s preferences, potentially
introduce novelty and creativity, and navigate complex environments such as musical
structure. Indeed, the perceiving agent provides objective feedback based on its musical
knowledge, and the user offers subjective feedback. The user considers aspects that are
difficult to quantify, such as emotional impact, stylistic relevance, and overall musicality.
Note that the perceiving agent also observes the changes in the environment, such as the
human feedback given to the generative agent. Hence, it can provide input according to
the related musical context of the generative agent.

In the following, we delve deeper into the details of the agents and their underlying
processes.

5.1. Perceiving Agent

The perceiving agent is designed to understand and interpret the characteristics of
musical samples. Its primary function is to learn the patterns and similarities among
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musical samples using the extracted feature vectors. To achieve this, the perceiving agent
employs a growing hierarchical self-organizing map (GHSOM) to capture the hierarchical
and topological structure of data.

As described in Section 3, various forms of the hierarchical structure of data can be
obtained using the GHSOM model. These forms are primarily determined by the choice
of parameters that control the GHSOM’s growth, resulting in lower or deeper hierarchies.
The choice of the hierarchy impacts the perceiving agent’s understanding of feature vectors.
Lower hierarchies with detailed refinements provide a broad view with granular analysis,
while deeper hierarchies offer a fine-grained understanding of nested feature vectors.
For instance, the agent focuses on specific subclusters in deeper hierarchies, which may
correspond to more nuanced musical styles or genres. The optimal choice can be a balance
between the breadth and depth of the hierarchical structure. This balance lets the agent
capture the sample’s broad characteristics and intricate hierarchical relationships. Figure 3
demonstrates lower and deeper GHSOM structure examples.

t-SNE is a useful tool for determining the optimal hierarchical structure parameters in
GHSOM. This is achieved by visually inspecting the resulting clusters or patterns in the
feature vectors. The hierarchical structure depth can be chosen based on the number of
clusters within the t-SNE embedding. The size of the maps is defined based on the data’s
local density in the lower-dimensional space. It is important to note that t-SNE is used for
exploration and interpretation purposes, not as a definitive guide for GHSOM parameter
selection. Once the parameters are determined, the GHSOM model is trained on the feature
vectors. The quality of the GHSOM map is then manually inspected using its latent space.
Figure 1 illustrates the GHSOM training process.

Figure 3. Illustrative comparison of the GHSOM model configurations showcasing (a) a hierarchical
structure with multiple levels, where each subsequent layer represents increasingly fine-grained
clusters of the data, and (b) a hierarchical structure with fewer levels, resulting in a broader and more
generalized representation of the data across larger maps with less emphasis on depth.

Once an optimal GHSOM model is obtained, the hierarchical structure serves as a
knowledge base. In this knowledge base, each neuron represents a cluster of similar data
points corresponding to similar samples. The perceiving agent utilizes this knowledge base
in two ways: clustering similarity and feature vector analysis.

5.1.1. Clustering Similarity

The agent receives new input samples and identifies which neurons in the GHSOM
are activated by each sample. Samples that activate the same or neighboring neurons
maintain a degree of similarity. Furthermore, the agent can assess the proximity of the
activated neurons. Neurons situated close to each other typically signify that the samples
they represent share more features in common. On the other hand, the agent can consider
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the hierarchical organization of the clusters to identify samples with broader similarities.
For instance, samples that belong to the same higher-level cluster or parent map but
are distributed among different subclusters or child maps may exhibit similarities with
nuanced distinctions.

5.1.2. Feature Vector Analysis

The agent can compare the feature vectors by calculating their distances and angles.
A feature vector associated with a neuron represents the cluster centroid of that neuron.
By calculating the distance and angle, the agent can assess the similarity between clusters.
A shorter distance or smaller angle suggests that the samples within the clusters share
features that are oriented similarly within the feature space. For instance, the Euclidean
distance might reveal similar samples in overall musical content, while cosine similarity
could identify patterns that share a common structure but differ in scale.

These methods can provide a basis for the perceiving agent’s analysis, comparison, and
exploration. By combining these methods, the perceiving agent can effectively determine
the similarity of patterns based on the GHSOM clusters and feature vectors. Moreover,
the results of the analysis can help the agent evaluate and comprehend the structure and
coherence of the sequences created by the generative agent. Consequently, the agent
can provide feedback to the generative agent and suggest further generative processes to
generate music that is varied and thematically consistent.

5.2. Generative Agent

The generative agent is designed to learn and actively engage in the creative process of
constructing a melodic sequence that is both structurally sound and aesthetically pleasing.
The agent’s objective is to understand the musical structure and develop new melodic
possibilities by sequencing different samples. At each step of the music generation process,
the agent selects the best-matching neuron in the GHSOM hierarchical structure. The
selected neuron represents a cluster of samples suitable for the corresponding time step in
the musical sequence. To guide the decision-making process, the generative agent uses a
policy that balances the likelihood of a neuron’s occurrence based on its learned knowledge
and the potential for discovering new, rewarding clusters. This represents reinforcement
learning, where the agent’s goal is to maximize a reward reflecting the quality of the
generated music.

Using the DQN algorithm, the agent learns the optimal policies through Q-learning,
which seeks to optimize the cumulative reward after each iteration. Policies are chosen
based on a minibatch of random samples from the main network. The main network
generates actions, while the target network generates a consistent target for calculating the
loss associated with the chosen action. At each time step, the agent generates an action, at,
following a policy, π, and based on the current state, st. The environment then generates
a reward, rt+1, and a new state, st+1. This process continues until a satisfactory result
is achieved.

The goal of training the main network is to approximate the optimal action-value
function Q(st, at). It denotes the expected total reward for taking an action, at, in a given
state, st, and following the optimal policy afterward. The network receives the current
state as input and outputs a vector of Q-values for each potential action in that state. The
network’s training involves a modified Q-learning algorithm that reduces the discrepancy
between the predicted and actual Q-values derived from the Bellman equation. The target
network is not updated during the Q-learning update step but is periodically updated
to match the weights of the main network. This helps to stabilize the training process by
preventing the Q-values from oscillating or diverging during training.

During the training process, the agent predicts a sequence of tokens. Each token
represents a neuron within the GHSOM’s hierarchical structure. The agent is trained from
scratch to learn the musical structure and capture the transitions between the samples.
Initially, the agent lacks related musical knowledge. During training, the agent is exposed
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to the input data and iteratively improves its understanding of how these musical elements
combine to create a coherent piece. The agent’s learning is driven by feedback mechanisms,
and over time, it refines its internal representations of music. This way, the agent learns to
generate new sequences considering the desired musical characteristics.

Furthermore, NoisyNet [44] is used to promote exploration within the action space.
NoisyNet tackles the exploration-exploitation dilemma by introducing noise into the net-
work’s weights, which are responsible for estimating Q-values or policies. The noise is
integrated to maintain the network’s differentiability. This method allows for continuous
training through gradient descent. NoisyNet’s primary benefit is its systematic approach
to managing exploration and exploitation. It eliminates the need to add extra exploration
noise to the actions.

The designed framework uses the LSTM model for the DQN network. The LSTM
model captures the temporal dependencies to predict the next token in the sequence.
The model architecture includes an LSTM layer with 128 units with a 0.2 drop-out rate,
followed by a densely connected layer to carry out the predictions. The exponential
linear unit (ELU) is used as an activation function for the LSTM layer, softmax for the
dense layer, and adaptive moment estimation (Adam) as an optimizer to minimize the
cross-entropy function.

5.3. Human Agent

In the designed framework, the user is considered an agent and has the role of
evaluator and collaborator. The primary responsibility involves observing the outputs
generated by the model and providing feedback accordingly. The user can also collaborate
with the agents by providing inputs after each iteration. Therefore, it can effectively guide
the generative agent’s future outputs to align better with the desired musical preferences.

Such interactions contribute to the agent’s learning, in which the agent incorporates
the feedback into its generative process. This interaction allows the user to influence the
agent’s creative direction, potentially leading to innovative results. The user’s feedback is
precious in complex creative environments, such as music composition, where the agent
requires a nuanced understanding that it may not possess inherently. The feedback may
encompass the music’s emotional impact, which can vary from user to user, depending on
personal perception of music. Moreover, the user can also consider stylistic relevance so
that the output is technically sound and appropriate for the intended purpose.

In addition to providing feedback, the user can guide the sequence generation by
passing inputs. The agents would incorporate the inputs to optimize the outputs and
refine the decision-making process. The inputs can come in two forms: complete songs or
samples. The complete songs serve as material for the agents to understand and learn the
desired musical structure. The perceiving agent creates vectors of best-matching neurons
for each segment within the given songs. These vectors serve as a ground truth for the
generative agent to guide the agent toward understanding the preferred musical structure.

On the other hand, the second form of input, the samples, is more related to the
perceiving agent. This input signals the agent to look for alternative directions within the
GHSOM hierarchical structure. We will explain the complete procedure in Section 6.

5.4. Definition of Reward Function

The designed framework combines and incorporates objective and subjective methods
as a reward function for the RL agent. This method helps the generative agent to optimize
its actions and produce music that aligns with human aesthetic preferences and adheres to
musical principles. This method needs to consider different aspects of music composition,
including melodic structure, hierarchical organization, transition between patterns, repeti-
tion, and variation. Indeed, these metrics and the human evaluation can form a composite
reward function. This reward function facilitates the agent’s understanding of its actions to
find optimal strategies and capture users’ preferences. Here, the definition of the reward
policy is based on three criteria:
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• Ground truth reward based on the target structure vectors denoted as rground_truth.
• Structure reward using GHSOM hierarchical structure denoted as rstructure.
• Human feedback reward denoted as rhuman_ f eedback.

5.4.1. Ground Truth Reward

The purpose of the ground truth reward is to encourage the generative agent to pro-
duce sequences similar to the ideal sequence of neurons’ tokens. This feedback mechanism
enables the agent to learn structural elements that characterize the given songs by the user.
Indeed, it ensures that the agent maintains a level of fidelity to the desired musical structure.

The similarity between the generated sequence and the ground truth is quantified
using the negative log-likelihood (NLL) loss. NLL is a statistical measure that calculates
the performance of a probabilistic model. Here, it assesses how well the model predicts the
sequence of neurons’ tokens. The NLL loss function evaluates the probability the model
assigns to the actual, observed sequence of tokens (the ground truth). The NLL loss will be
low if the model gives a high likelihood to the correct sequence, meaning a higher ground
truth reward. Conversely, The NLL loss increases if the model assigns a low probability,
resulting in a lower reward. Therefore, the objective is to decrease the loss as the agent
continues learning.

5.4.2. Structure Reward

The structure reward evaluates the transitions or changes between the samples within
the generated sequence. The main objective is to prevent the model from abrupt changes
that are relatively quick or completely irrelevant. This feedback mechanism uses the key
aspects of the perceiving agent’s analysis: clustering similarity and feature vector analysis.
The agent is responsible for evaluating the structural coherence of generated musical
sequences and providing feedback to the generative agent accordingly.

The agent utilizes clustering similarity to identify similarity between clusters of pre-
dicted neurons. Similarly, the agent analyzes the feature vectors associated with each
neuron using feature vector analysis. These feature vectors represent the centroid of the
clusters that the neurons belong to. This way, the agent assesses cluster similarity by calcu-
lating the distance between feature vectors. This feedback mechanism encourages smoother
transitions between similar clusters, resulting in more musically coherent sequences and
contextually related samples. The following shows how the perceiving agent’s analysis
results are incorporated into the structure reward.

The Euclidean distance between the activated neurons’ weight vectors is calculated
for clustering similarity analysis. Hence, the clustering reward is defined as follows:

rclustering = exp(−α · d(nt, nt−1)) (2)

where d(nt, nt−1) is the Euclidean distance between the weight vectors of the neurons
activated by consecutive samples at times t and t − 1. α is a scaling factor that adjusts
the sensitivity of the reward to the distance. The exponential function is used to ensure a
smooth decrease in reward as the distance increases.

Similarly, using the Euclidean distance, the reward based on the feature vector analysis
is defined as follows:

r f eature = exp(−γ · d( ft, ft−1)) (3)

where γ is a scaling factor that determines the sensitivity of the reward to the distance. The
overall structure reward is a composite of these aspects:

rstructure = β1 · rclustering + β2 · r f eature (4)

The weights β1 and β2 balance the contribution of each aspect to the total reward.
These weights can be tuned based on the importance of each aspect in the context of the
musical generation task. To prevent any single component from dominating the reward
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function and to keep the reward values manageable, each component is normalized in the
following way:

rstructure =
β1 · rclustering

Z1
+

β2 · r f eature

Z2
(5)

where Z1 and Z2 are normalization factors for each reward component, which can be
defined as the maximum possible rewards for each component.

5.4.3. Human Feedback Reward

The human feedback reward integrates human judgment into the evaluation frame-
work. This aspect of the reward system is essential because it allows the model to incor-
porate subjective evaluations that are not easily captured by objective measures such as
ground truth or structure rewards. Human feedback is gathered by presenting the gener-
ated sequences to human evaluators as system users. The users then provide assessments
based on their experience, expertise, and taste. This feedback can highlight successful
outcomes that might be infrequent or difficult for the agent to discover independently.
Moreover, it can encourage the agent to explore areas of the solution space that the initial
reward functions might not cover. Here, the user explicitly evaluates the generation with
+1 as a positive reward and −1 as a negative reward.

Finally, the definition of the final reward rt for the action to be taken at time t is
as follows:

rt = λ ∗ rground_truth
t + µ ∗ rstructure

t + ν ∗ rhuman_ f eedback
t (6)

where λ, µ, and ν are the weight factors that control the impact of each component of the re-
ward function on the agent’s learning process. Note that the weight factors are experimental
values and can be defined based on the specific goals or stages of development.

5.5. Agent Communication

Communication is an essential aspect of the multi-agent systems (MAS). It enables
agents to exchange information and coordinate their actions. The designed framework
utilizes the DQN replay buffer. The replay buffer is a fundamental component of the DQN
algorithm [45]. It serves as a repository for storing the generative agent’s experiences
as a tuple, including the current state, the action taken, the reward received, and the
subsequent state encountered. The replay buffer also plays an essential role in stabilizing
and enhancing the learning trajectory of the agent. It enables the agent to recall and learn
from past experiences and prevents short-term memory pitfalls and the volatility of online
learning [46].

The DQN replay buffer can be transformed into a communication repository accessible
to both the generative and perceiving agents by extending its functionality. After each
iteration, the generative agent stores its experiences in the replay buffer, which the perceiv-
ing agent then uses to enhance its actions and comprehension of the environment. This
communication framework encourages collaborative learning among the agents, allowing
them to coordinate their actions with a stronger sense of context and anticipation to operate
within the musical environment. Figure 4 illustrates the interaction of agents using the
replay buffer.



Electronics 2024, 13, 1116 22 of 31

Figure 4. This figure illustrates the communication process within the framework utilizing the DQN
replay buffer. The generative agent saves an experience tuple, which includes the state, action,
received reward, and subsequent state after receiving feedback from both the perceiving agent and
the user. The perceiving agent then reads the replay buffer to analyze current and past experiences
and enhance its input for future iterations.

6. Generation Process

The generation process of the designed framework is where the agents evolve and
their collaborative efforts come to fruition. It is an evolutionary procedure that hinges
on the dynamic interplay between the perceiving agent’s analytical capabilities and the
generative agent’s creative functions. During this stage, the agents engage in a continuous
loop of action, observation, and refinement, which allows them to adapt and improve over
time. Figure 1 depicts the generation process.

The process starts with the perceiving agent using the GHSOM to determine the
best-matching neuron or fitting cluster within the hierarchical structure of GHSOM for
a given input. Once the cluster is identified, the agent prepares an input vector for the
generative agent. This vector contains a sequence of neurons represented as tokens, and its
size varies depending on the input type provided by the user.

For instance, if the input is a sample, the vector size is one. However, if the input is a
complete song, the framework first performs a segmentation algorithm using the similarity
matrix described in [5]. This algorithm identifies each segment or pattern and annotates
the given song. The perceiving agent then receives the annotated song and determines the
best-matching neuron for each segment. The result is a vector containing the tokens for
the corresponding segments. The complete songs can be an example from the Clean MIDI
subset of the Lakh MIDI dataset (https://colinraffel.com/projects/lmd/, accessed on 12
March 2024) or any other sources. It is worth noting that the input vectors obtained from
complete songs are used as ground truth in Section 5.4. Figure 5 illustrates the perceiving
agent during the generation process. The generation process of the designed framework is
where the agents evolve and their collaborative efforts come to fruition. It is an evolutionary
procedure that hinges on the dynamic interplay between the perceiving agent’s analytical
capabilities and the generative agent’s creative functions. During this stage, the agents
engage in a continuous loop of action, observation, and refinement, which allows them to
adapt and improve over time. Figure 1 depicts the generation process.

https://colinraffel.com/projects/lmd/
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Figure 5. This figure illustrates how the perceiving agent handles different input types during
generation. The process starts with an input, a single sample resulting in a vector of size one or a
complete song segmented using a similarity matrix algorithm. After this, the perceiving agent assigns
the best-matching neuron token to each annotated segment, thus creating an input vector. These
vectors serve as input for the generative agent and the ground truth when defining rewards. The
complete process can be viewed in Figure 1.

The generative agent uses the vectors prepared by the perceiving agent as a basis
to learn the musical structure and improve its actions. It creates a sequence of segments,
ensuring the transitions between segments are coherent and musically pleasing. The
perceiving agent and human agent observe the environment and the generative agent’s
actions. They evaluate the generated sequence using the methods described in Section 5.4.
Using Equation (6), the generative agent receives feedback to refine its action. Using the
feedback, it aims to capture the user’s preferences and the nuances of music composition.
Figure 6 illustrates the interactions between the agents during the generation process.

Figure 6. This figure depicts how agents interact with each other during the music generation
process. The generative agent generates a sequence of samples to produce smooth and musically
pleasing transitions. The perceiving agent and human agent are responsible for monitoring the
environment and the output generated by the generative agent. They assess the music sequence using
different criteria and provide feedback to the generative agent. The feedback is intended to guide the
generative agent to align better with user preferences and the intricacies of musical composition.
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The perceiving agent uses the communication method to assess if its input is optimal. It
performs this by analyzing the experiences in a replay buffer. It clusters similar experiences
to identify patterns for better decision-making and reinforce optimal actions. The agent
extracts reward and action pairs and applies a clustering algorithm to group experiences. It
can perform clustering based on the experiences that lead to similar rewards or those that
involve similar actions. Therefore, the perceiving agent can identify suitable samples by
examining the clusters associating specific actions with successful outcomes. For instance, a
consistent cluster of experiences leading to high rewards may indicate an effective strategy.

6.1. Iterative Refinement

The user has the option to provide either a complete song or a sample with each
iteration. The complete songs enable the agents to refine their understanding of the
preferred structure and composition, making this input more focused on the generative
agent. On the other hand, the perceiving agent uses the samples to identify clusters or
neurons within the GHSOM that are closer to the user’s musical preferences. If the user does
not provide any input, the perceiving agent uses the previous output as new input. This
way, the agents assume that the previous generation aligns with the user’s expectations,
and the generation process continues until the user signals a new input or termination of
the process.

Furthermore, this iterative process allows the refinement of the clusters within the
GHOSM model with every round of feedback and generation. The framework discovers
and updates the clusters as the user provides more input. This continuous learning process
makes the system proficient at understanding the musical characteristics and meeting the
user’s musical expectations.

6.2. Content Generation

The framework’s output is a sequence of tokens, each representing a specific neuron
or cluster within the GHSOM hierarchical structure. Each cluster contains a collection
of musical samples that share similar features. When the framework generates content,
it predicts a token corresponding to one of these clusters. The token acts as a reference
point that indicates a specific location where the musical samples align with the user’s
preferences. The token selection is not the end of the generative process but rather a step
toward the music composition.

Once a token is predicted, the framework randomly samples from the corresponding
cluster within the GHSOM model to create the musical output. This random sampling can
introduce variation and creativity within the constraints of the user’s preferences. It also
allows for exploring new combinations and sequences of samples that may not have been
selected before but are still coherent within the cluster’s characteristics.

7. Interface

An interface is an intermediary that enables users to interact with and control such
frameworks effectively. In the proposed framework, the human agent listens to the music
as it is generated and provides feedback. This feedback translates into reward signals
for the agents. The ability of a framework to learn and adapt to user preferences largely
depends on the quality and consistency of the feedback it receives. Hence, it is crucial to
have an interface that encourages sustained engagement, as it is essential for gathering
feedback over time.

PureData (PD) (https://puredata.info/, accessed on 12 March 2024) is a programming
language that uses a visual interface to create interactive computer music and multime-
dia content. PD employs functional blocks called “objects” that can be manipulated and
connected to process and generate audio, video, and visual data. The real-time processing
capabilities of PD are crucial for creating a responsive and engaging feedback loop. More-
over, it is particularly advantageous for MAS interaction due to its capability to operate
in real time, which is essential for dynamic and responsive environments. With PD, users

https://puredata.info/
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can hear the immediate impact of their feedback on the music, which makes the experi-
ence more satisfying and helps them understand the relationship between their input and
the framework’s output. PD’s visual programming paradigm allows users to intuitively
construct and modify the framework’s behavior by connecting objects to represent the
data flow.

Furthermore, PD can connect the proposed framework and different digital audio
workstations (DAWs). It allows the transmission and reception of MIDI data, which enables
the MIDI output created by the framework to be sent through PD and straight into the
preferred DAW. This, in turn, allows for additional processing, mixing, and mastering
using the advanced features of the DAW.

PD (Pure Data) supports various communication protocols, including Open Sound
Control (OSC). OSC is a protocol for communication between computers, sound synthesiz-
ers, and other multimedia devices, especially for live performances and production. OSC
facilitates efficient communication between the PD interface and the underlying functional-
ities. It can handle complex data structures and support high-speed messaging, making it
an ideal choice for interactive systems. Using OSC, the interface can transmit various data
types, from simple messages to control structures, enabling a robust and flexible interaction
between the human agent and the MAS.

Moreover, PD offers a range of internal objects and external plugins that can be used
to render MIDI files. This library of objects provides users with different options for audio
synthesis and processing, which can be used to render the generated music within the PD
environment. This feature allows users to listen to and modify the framework’s output
per their requirements. This is particularly useful for users who do not have access to
a full-featured DAW, as it offers a standalone solution to preview and manipulate the
generated music. Moreover, they can save each generation process (experiment) with its
corresponding model parameters as a session, allowing them to resume their work for
further experimentation or development.

8. Discussion

Our framework addresses RQ1 by prioritizing user experience. It is designed to
accommodate users with varying musical backgrounds by emphasizing personalized and
adaptive interactions. The framework maintains a balance between autonomy and user
involvement to encourage creative exploration and remain responsive to user feedback.
Through a collaborative process, the user actively participates in the music generation
and development process by providing feedback and engaging in iterative interactions.
As a result, the framework can better understand and adapt to the user’s musical tastes
and creative expression. This implies a trade-off where user involvement is prioritized to
enhance the music creation experience.

8.1. Musical Pattern Recognition and Hierarchical Representation

The framework aims to balance structured musical repetition and creative variations,
capturing short and long-term musical structures. Instead of the notes, the framework
incorporates samples, each representing a melodic pattern. Using a dataset of samples,
a set of musical features is extracted from the MIDI samples, capturing the melodic and
rhythmic dimensions of music. This quantification forms a knowledge base for the agents to
draw comparisons, identify patterns, and potentially uncover the underlying relationships
between the musical samples. To enhance the agent’s perception and understanding of
music, the GHSOM hierarchical structure is employed. This structure offers a dynamic
representation of samples that can be adjusted or updated to meet specific objectives,
thereby facilitating a deeper understanding of music.

Regarding the RQ2 and RQ3, the perceiving agent uses the GHSOM model to dis-
cern relationships between various rhythmic and melodic elements and match clusters of
comparable musical samples. The GHSOM model can scale and adapt its structure dy-
namically, making it ideal for representing music features at different levels of abstraction.
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This adaptability is especially useful because it allows for a wide range of musical data
without requiring the definition of cluster dimensions. Moreover, it maintains topological
relationships, ensuring that similar features are mapped close together. This topological
accuracy and the model’s hierarchical nature allow contextual analysis of the musical
samples. This demonstrates the framework’s ability to organize and adapt musical samples
and recognize and use them in generating and evaluating musical sequences.

8.2. Maintaining Consistency in Musical Styles and Structures

Section 5 described two approaches of interactive exploration for the perceiving
agent, including clustering similarity and feature vector analysis. These methods offer
advantages for the perceiving agent in evaluating generated sequences by the generative
agent. Regarding the RQ4, the perceiving agent can quantitatively compare generated
sequences with a set of reference compositions or with each other. Metrics such as cosine
and Euclidean distances help evaluate the similarity and diversity among the generated
sequences. These metrics ensure that the variations produced by the generative agent
maintain a desired level of consistency with certain musical styles or structures. Grouping
the generated sequences into clusters based on their similarities further assists in identifying
common themes or outlier pieces that deviate from the expected patterns. This structured
approach facilitates the generative agent to refine its generative processes and provides
a clear framework for feedback. The agent can iteratively improve the generated music’s
overall quality and creative value through this framework.

8.3. Effectiveness of User Involvement

The adaptive nature of the framework allows the agents to adjust their behavior based
on the user’s feedback and input. Concerning the RQ5, the framework includes user
qualitative evaluations as a metric to guide the process of generating music and ensure
consistency in the output. Although the system does not solely depend on traditional
quantitative metrics, user feedback is a dynamic and adaptable metric that reflects the
desired musical styles or structures. The agents can create complete musical pieces that
reflect the user’s creative intent. This indicates a symbiotic relationship between the system
and the user. During the interaction, the user provides qualitative assessments, which
are valuable in guiding the music’s structure, style, and emotional content. The user can
also provide specific examples of the desired music. The agents analyze these examples to
discern the underlying patterns and stylistic features defining user preferences.

Additionally, the user engages with the perceiving agent’s objective analysis through
this interaction. The perceiving agent analyzes the samples based on their structural
coherence and technical aspects. This objective feedback is balanced by the user’s subjective
impressions, reflected in the input loop samples. Therefore, the framework forms a response
based on this balance of objective and subjective feedback. This ensures that the framework
can adapt to both the technical aspects of music and the emotional content desired by the
user and remain sensitive to the evolving musical context and user preferences, providing
a nuanced response to RQ3.

Indeed, it shapes the subsequent actions taken in the music creation process. Similarly,
the user’s feedback serves as a source of environmental context for the perceiving agent.
The agent can better understand the human role in the creative process by observing the
user’s reactions and feedback through the replay buffer. This understanding helps the
perceiving agent adjust its input to the generative agent. It ensures that the framework
remains sensitive to the evolving musical context influenced by human interaction.

8.4. Incorporating User Feedback in Learning

The proposed framework allows the agents to learn and fine-tune their behavior based
on the feedback they receive from the user. The user’s active participation in providing
continuous feedback facilitates the refinement of the agents’ understanding of musical
structure and preferences. To answer RQ6, the framework allows users to provide feedback
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at various stages. Users can provide a complete song or a sample, which the agents use
to refine their understanding and adjust their output. This iterative process ensures the
framework adapts to the user’s evolving musical preferences. Additionally, the perceiving
agent uses the previous output as new input, allowing the generation process to continue
as long as it aligns with the user’s expectations. The continuous adaptation and refinement
method through user feedback is central to the framework’s design.

However, several challenges involve incorporating human feedback mechanisms in
such an approach. One major challenge is to ensure that the evaluations are consistent and
reliable. Additionally, collecting human feedback can take time and effort to obtain at a
large scale. It may not always provide the exact reasons for success or failure. Moreover,
relying solely on human feedback can lead to conservative strategies where the agent might
only exploit known favorable actions to maximize the reward. All of these challenges are
directly related to RQ4 and RQ5.

To tackle such challenges, a composite reward function with additional objective
reward components is used. These objective measures help to stabilize the learning process
by providing consistent signals that counteract the variability of human feedback. This leads
to a more reliable and predictable training outcome. They also offer more frequent updates,
which guide the agent’s learning in between the less frequent instances of human feedback.
This helps the agent maintain a steady learning trajectory and prevents long periods
without meaningful reward signals. Additionally, these objective reward components
encourage exploration by rewarding novel or diverse behaviors that may not receive
immediate positive human feedback but are valuable for discovering new strategies or
solutions. Furthermore, they can establish a baseline level of performance that ensures
the agent meets certain minimum standards or criteria. This approach answers RQ4 by
utilizing objective reward components to enhance the learning process and encourage
exploration.

To control the influence of these components, weighting factors described in Section 5.4
are included. The weighting factors are important as they help the agent learn from objective
measures and subjective human input. By using weight factors to control the influence
of each reward component, the learning process can be customized to suit specific goals
or developmental stages. This flexibility enables the agent to produce outputs that range
from strictly following the objective components to highly personalized based on human
feedback. In response to RQ5, users can experiment with different weight configurations to
explore the effects on the agent’s learning and the quality of the generated content. This
adaptability is particularly useful in music composition domains with diverse requirements,
where the desired balance between creativity, theory, and personal taste can vary greatly
depending on the context.

8.5. Interaction among Agents

Our framework is designed to maintain coherence without excessive central control
by providing autonomy to each agent. It features a collaborative environment where
perceiving and generative agents interact using a shared DQN replay buffer, resulting in
a more flexible and creative approach toward music generation. In relation to RQ7, the
replay buffer serves as a communication repository, which allows the perceiving agent to
access the generative agent’s experiences and provide feedback that informs future actions.
The replay buffer serves as an effective communication tool, facilitating knowledge transfer
and coordination between agents. It enables sharing of insights, learning from each other’s
actions, and collectively developing a more nuanced understanding of musical experiences.
This approach offers several advantages:

• It enables the collection of a comprehensive dataset that mirrors the user’s behavior
over time, allowing for the detection of subtle patterns and preferences.

• This rich data collection can be further utilized for pattern recognition, where perceiv-
ing agents analyze the data to identify trends that inform the generative agents about
the most effective ways to engage with the user.
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• This method of learning user preferences is non-invasive, as it does not require explicit
feedback from the user, thus enhancing the user experience by adapting to their needs
unobtrusively.

• Communication efficiency is another advantage, as the replay buffer provides a less
resource-intensive method for agents to share information compared to real-time
communication.

This collaborative and communicative approach within the multi-agent system is
key to the framework’s ability to generate innovative music that reflects user preferences.
Furthermore, it allows the perceiving agent to gather information about user preferences
indirectly and continuously throughout the generation process.

8.6. Framework Expansion

The MAS architecture allows for modularity and the use of various computational
methods. It promotes distributed problem solving, which involves breaking down complex
issues into smaller, more 9396 manageable sub-problems that can be solved by multiple
agents working together. The system’s capabilities can be expanded by introducing several
RL agents with diverse behaviors, each assigned to a specific task [5]. However, adding
more RL agents to the system can create challenges in effectively coordinating them as
system complexity increases. The hierarchical organization of agents can be used to simplify
the complexity of managing multiple agents and their interactions. In this architecture,
specialized agents work under a higher-level coordinating agent.

For instance, the perceiving agent may have specialized agents working on tasks
such as action evaluation, policy refinement, temporal analysis, contextual adaptation,
and anomaly detection. Each agent can analyze specific aspects of the generative agent’s
performance using the replay buffer.

• The action evaluation agent can examine the outcomes of actions taken within their
designated clusters. By identifying which actions yield higher rewards, this agent may
determine the effectiveness of various actions and signal which behaviors are most
beneficial for the framework.

• Once successful actions are identified, the policy refinement agent can adjust decision-
making policies to favor these actions. This may involve algorithmic modifications
that increase the selection probability of high-reward actions, thus optimizing the
generative agent’s behavior patterns.

• Similarly, the temporal analysis agent can focus on actions’ temporal aspects and
consequences. It can cluster experiences by the outcome and the sequence in which
events occur. This may allow for a deeper understanding of the long-term effects of
certain behaviors. Such insights can help to develop strategies that optimize rewards
over extended periods.

• The contextual adaptation agent can be proficient at recognizing the nuances of differ-
ent environmental states and adjusting their actions accordingly. It can identify which
clusters of actions are most successful in particular musical contexts and tailor their
policies to be context-sensitive.

• The anomaly detection agent determines and analyzes deviations from typical patterns.
This agent can prepare the framework for unexpected events and can propose policy
adjustments to handle rare but impactful situations better.

As we explore the possibility of adding specialized agents to the framework, it is
crucial to have an effective communication method in place. This is particularly relevant to
RQ7. The shared replay buffer, which was initially meant to serve as a memory tool for the
generative agent, is now being repurposed as a communication channel.

However, the framework’s interactions using replay buffer communication may face
scalability, conflict management, and agent negotiation limitations. To tackle this problem,
decentralized learning can be used. This approach involves agents learning from the actions
of other agents within their environment. By doing so, each agent can develop a range of
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experiences that enable them to operate effectively. However, while this method helps build
robustness and adaptability, it may not be sufficient in ensuring that agents can achieve high
levels of coordination and share knowledge effectively. Therefore, decentralized learning
can be integrated with a shared replay buffer to address this. The shared replay buffer
enhances coordination among agents by providing a joint knowledge base. Furthermore,
the agents can effectively align their decision-making processes with human preferences
and intentions.

9. Conclusions

In this study, we proposed a framework design that combines multi-agent systems
and reinforcement learning algorithms. This framework utilizes a user-centric approach to
address the structural and creative aspects of symbolic music generation. It aims to balance
the autonomy of individual agents and the overall coherence of the music generated. The
main goal of the musical agents within the framework is to develop their skills in creating
structured music by sequencing samples. Each agent is assigned a specific task in the
composition process. The perceiving agent serves as the music theorist responsible for
perceiving and understanding the musical elements, while the generative agent is the
composer responsible for generating new musical sequences.

One notable aspect of this framework is its user-centric approach. This means that
human users play an active role in the learning process of the agents. Users can guide the
agents to produce compositions specific to their tastes and requirements by specifying their
musical preferences. This approach increases the agents’ flexibility and ensures that the
generated music resonates with human listeners on a personal level. Indeed, the framework
aims to balance structured musical repetition and creative variations, capturing short and
long-term musical structures.

Another aspect is the perceiving agent’s ability to internalize musical knowledge by
analyzing loop samples using the growing hierarchical self-organizing map (GHSOM)
structure. Similarly, another aspect is the composer agent’s capacity to generate novel
sequences by learning the smooth transition between the loops. This indicates introducing
musical variations to maintain the audience’s interest and determining the ideal repetition
count to strengthen the musical narrative.

Future work will focus on the practical implementation of the framework and its
empirical evaluation. We plan to explore the framework’s potential as a music creation
tool and assess how it aids users’ creative process and influences their workflow and
output. Such a study also facilitates the improvement of the learning framework for
various musical contexts.
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