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Advancements in digital pathology and computing resources have made a significant impact in the field of computa-
tional pathology for breast cancer diagnosis and treatment. However, access to high-quality labeled histopathological
images of breast cancer is a big challenge that limits the development of accurate and robust deep learning models. In
this scoping review, we identified the publicly available datasets of breast H&E-stainedwhole-slide images (WSIs) that
can be used to develop deep learning algorithms. We systematically searched 9 scientific literature databases and 9
research data repositories and found 17 publicly available datasets containing 10 385 H&E WSIs of breast cancer.
Moreover, we reported image metadata and characteristics for each dataset to assist researchers in selecting proper
datasets for specific tasks in breast cancer computational pathology. In addition, we compiled 2 lists of breast H&E
patches and private datasets as supplementary resources for researchers. Notably, only 28% of the included articles
utilized multiple datasets, and only 14% used an external validation set, suggesting that the performance of other de-
veloped models may be susceptible to overestimation. The TCGA-BRCA was used in 52% of the selected studies. This
dataset has a considerable selection bias that can impact the robustness and generalizability of the trained algorithms.
There is also a lack of consistent metadata reporting of breast WSI datasets that can be an issue in developing accurate
deep learning models, indicating the necessity of establishing explicit guidelines for documenting breast WSI dataset
characteristics and metadata.
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Introduction

One important area of active research in pathology is the use of deep
learning for analyzing H&E histopathology whole-slide images (WSIs)-the
hi).
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gold-standard for the clinical diagnosis of cancer.1 Deep learning algo-
rithms can identify complex patterns in billion-pixel microscope images
that may not be readily apparent to human experts (an example is shown
in Fig. 1). For instance, deep learning models have been used to predict
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Fig. 1.An example of breast H&EWSI from TCGA-BRCA dataset: (A) Illustration of 3 tile images in 10×, 20×, and 40×magnifications in aWSI; (B) WSI’s multi-resolution
pyramid with the highest resolution in level-0.
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breast cancer recurrence2 and classify breast cancer subtypes3 by using
histopathological WSIs.

The lack of adequately labeled datasets is a significant limitation in
computational pathology for breast cancer, as the performance of deep
learning algorithms depends on the availability of sufficient high-quality
training and validation data. The use of large and diverse training datasets
allows algorithms to identify complex patterns and non-linear relationships
more accurately. In addition, using large and independent validation
datasets can increase the reliability of models and mitigate overfitting
risk, which in turn improves the generalizability of the models.4

With advances in technology to produce and utilize data, there is a
growing recognition of the benefits of data sharing, so greater openness
in scientific research is being advocated for by scientists. The FAIR
principles,5 developed in response to this push for open-access data, pro-
vide a framework for making research data more Findable, Accessible, In-
teroperable, and Reusable. Based on the FAIR principles, medical data
should be easily findable by both humans and machines by using a stan-
dardized andwell-documented approach formetadata and data description
and by making use of appropriate metadata standards, taxonomies, and
ontologies. Data should be made accessible to all researchers authorized
to access it per relevant ethical and legal frameworks. It should be feasible
to integrate the data with other datasets and software tools in a seamless
manner. Interoperability can be facilitated by using open data formats,
data models, and data dictionaries. In addition, data should be designed
with the intention of supporting data reuse, allowing other researchers to
build upon the data and reproduce the results. To support data reuse,
data should be accompanied by complete and accurate documentation,
licensing information, and data citation. This approach enriches access to
larger and more diverse datasets,6 enhances faster development of
deep learning models,7 and improves their accuracy and performance,8

which can consequently lead to better patient outcomes and improved
quality of care.9

Like other medical data, histopathology images are protected by ethical
and legal regulations related to privacy, security, and consent. To share
medical data, data owners should adhere to relevant regulatory require-
ments, such as the General Data Protection Regulation (GDPR) in the
European Union and the Health Insurance Portability and Accountability
Act (HIPAA) in the United States. After the EU GDPR revised the new regu-
lations in May 2018,10 medical data sharing has become more challenging
due to concerns overmaintaining the confidentiality of patient health infor-
mation, especially in light of high-profile data breaches and incidents of
data misuse. In addition to privacy and security concerns, intellectual prop-
erty and regulatory issues can pose significant barriers to sharing medical
data. Resource constraints can also limit the ability of researchers to share
2

medical data. The costs associated with collecting, storing, and curating
medical data can be substantial, and many researchers may lack the neces-
sary resources or expertise to manage and share their data effectively.

As the field of big data analysis continues to expand, having access to
summaries of existing data has becomemore advantageous for researchers.
Such overviews can assist in identifying relevant datasets without having to
begin a new data collection process. Additionally, having a comprehensive
and standardized set of public datasets can facilitate the reproducibility and
comparability of research findings across different studies. A systematic re-
view of available public datasets can help to identify gaps and limitations in
the existing datasets and opportunities for improving the quality and diver-
sity of available datasets. To address this, Hulsen11 has conducted a system-
atic review, providing an overview of publicly available patient-centered
datasets of prostate cancer presented in imaging, clinical, and genomics
categories. He identified 42 publicly available datasets that can efficiently
support prostate cancer researchers in selecting appropriate data resources.
He found thatmost datasets do not follow the FAIR principles, as some have
legacy issues and need decoding work that might increase the possibility of
human error. InWen et al,12 the authors have systematically reviewed char-
acteristics of publicly available datasets of skin cancer images, which can be
leveraged for the advancement ofmachine learning algorithms for skin can-
cer diagnosis. They have reported 21 open-access datasets and 17 open-
access atlases available for data extraction. They came to the conclusion
that there is inconsistency in reporting image metadata, and population
representations are limited in open-access datasets of skin cancer. Leung
et al13 have reviewed the datasets available for machine learning in geno-
mic medicine, including an overview of available omic datasets. They
suggested using multiple data sources to rectify problems arising from the
missing information from individual datasets.

This scoping review aims to identify and assess the characteristics of all
publicly available datasets of breast H&EWSIs to reduce the demand for set-
ting up new studies to collect data for the development of deep learning algo-
rithms. This overview helps to identify potential data sources, the suitability
of each dataset for specific tasks in computational pathology, and their qual-
ity and biases to ensure the generalizability of machine learning models. To
the best of our knowledge, there has not been any study specifically targeting
the available datasets of breast H&E WSIs. However, several studies14–18

have mentioned a small number of such datasets, suggesting the necessity
for a comprehensive overview of all available datasets in this field.

Methods

We conducted a scoping review based on the PRISMA-ScR guidelines19

to identify all publicly available breast H&E WSI datasets appropriate for
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deep learning (Supplement 1). Because this scoping review does not evalu-
ate direct health outcomes, it was not eligible to be registered with
PROSPERO.20

Our inclusion criteria were papers using, reviewing, or mentioning any
publicly available dataset of human breast H&E WSIs. These may be intro-
duced in machine learning challenges and contests or published for re-
search purposes. A search was conducted in July 2023 using the
following criteria: (“deep learning” OR “machine learning”) AND (“whole
slide images” OR WSI) AND (breast) AND (histology OR histopathology
OR pathology) AND (data OR dataset OR “data set”). In total, nine scientific
literature databases were queried: Pubmed, Medline, MDPI, Web of
Science, Science Direct, Semantic Scholar, IEEE-Explore, Association for
Computing Machinery (ACM) digital library, and the dbpl computer sci-
ence bibliography. The search for our queries were not limited to only titles
and abstracts but across all fields in the search engines, including full-text
content and other relevant data fields. To ensure a manageable scope for
this review, results were limited to full-text articles in English published
between the years 2015 and 2023, and the following exclusion criteria
were applied:

1. Not of human breast tissue, for instance, use of histology images of
canine or mouse.

2. Using other modalities like CT or MRI instead of histology images.
3. Images of other organs (like lung, skin, etc.) rather than breast.
4. Only patch or image tile datasets instead of WSIs.
Fig. 2. Data collection workflow. The dashed line box represents the m
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5. Non-image data like genomics or clinical data.
6. Tissues not stainedwithH&E, e.g. immunohistochemistry (IHC) images.
7. Not publicly available datasets.
8. Use of unoriginal or subset datasets derived entirely from public

datasets.

Fig. 2 summarizes the workflow diagram of the data collection. Of the
2152 articles from the search results and cross-referencing, 636 articles
were removed as duplicates. The remaining 1516 identified articles were
then screenedby title, abstract, and full-text, respectively, by two independent
reviewers (MT and (KMor LAB orNS)) by using theMendeley referenceman-
agement software. Subsequently, studies meeting the inclusion criteria were
meticulously chosen and annotations were added to indicate the datasets uti-
lized in each selected paper. In the event of disagreement on the inclusion, a
third co-author (KM or LB) checked the article to make the final decision on
whether it should be included or not. Out of 1516 articles, 756, 198, and
386 were excluded by their title, abstract, and full-text assessment, respec-
tively. This resulted in 176 articles that were included in this review.

In addition to the scientific literature databases, we searched nine on-
line databases and repositories known to contain public datasets. We used
search strings in the Supplement 2 to find breast histopathology datasets
in The Cancer Imaging Archive, US National Institutes of Health (NIH),
Google Data Research, Zenodo, Figshare, Github, Kaggle, Grand Challenge,
and the Papers with Code platforms. All the relevant search results that
featured breast histopathological images were reviewed by the first
anual search for publicly available datasets of breast H&E WSIs.



Table 1
Publicly available datasets of breast histological H&E WSIs.

Dataset AKA Source Pub.
year

WSIs Patients Annotation/Labels Clinical
data

Scanner Pixel size
(μm/pixel)

Size
(GB)

Image
format

ACROBAT – Sweden 2023 1153 1153 Landmark pairs for the WSIs in the
validation and test sets

– NanoZoomer X360
and XR

0.91 1164 TIFF

ANHIR – Spain 2019 5 – Coordinates of tumor area – Aperio AT2 0.25 0.2 JPG
BACH ICIAR

2018
Portugal 2018 30 – 10 WSIs have coordinates of ROIs,

labeled pixel-wise
– Leica SCN400 0.50 7 SVS,

TIFF
BCNB – China 2022 1058 1058 Coordinates of tumor regions ✓ Iscan Coreo – 33 JPG
BRACS – Italy 2020 547 189 Labels for 6 different subtypes – Aperio AT2 0.25 1100 SVS
Camelyon16 – Netherlands 2016 399 399 ROI polygons, pN-stage labels – Pannoramic 250,

NanoZoomer-XR
0.24 1160 TIFF

Camelyon17 – Netherlands 2017 1000 200 ROI polygons, pN-stage labels – Pannoramic 250,
NanoZoomer-XR,
Philips IntelliSite

0.24 2950 TIFF

CPTAC-BRCA CPTAC USA 2021 642 134 PAM50 molecular subtypes,
tumor stage, etc. from the clinical
data

✓ – 0.25, 0.50 113 SVS

DRYAD – USA 2018 584 – ROI polygons, binary masks of
invasive regions

– – – 4.6 PNG

GTEx-breast – USA – 894 894 – ✓ – 0.50 80 SVS
HER2 Warwick UK 2016 86 86 HER2 score, percentage of cells

with complete membrane staining
– NanoZoomer C9600 0.23 20 SVS

HEROHE – Portugal 2020 500 360 Binary labels of HER2+/- status – Pannoramic 1000 0.24 820 MRXS
IMPRESS – USA 2023 126 126 Histological subtypes, tumor size,

response to therapy, etc.
✓ Hamamatsu 0.50 27 SVS

Post-NAT-BRCA – Canada 2021 96 54 Cellularity and cell label, ER, PR,
and HER2 scores

✓ Aperio 0.50 43 SVS

SLN-Breast – USA 2021 130 78 Binary labels of metastasis status – Aperio 0.50 53 SVS
TCGA-BRCA TCGA USA – 3111 1098 Tumor histology and molecular

subtypes, given treatment, etc.
from the clinical data

✓ – 0.25 1640 SVS

TIGER – Netherlands 2022 370 370 ROI polygons, Lymphocyte and
Plasma cells indicators, TIL values

– – 0.50 169 TIFF
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reviewer (MT), and their associated metadata and documentation were
examined to find other public datasets of breast H&E WSIs that were not
included in the selected papers.

Results

The 176 included papers used or reviewed one or more of 14 public
datasets of breast H&E WSIs (Table 1). In addition, we manually identified
three datasets: the Post-Nat-BRCA dataset in the Cancer Imaging Archive
repository and the ACROBAT and BCNB datasets in the Grand Challenge
website, none of which were used in any of the selected articles. These 17
publicly available datasets comprise 10,385 breast H&E WSIs appropriate
for machine learning use. An additional 89 datasets of histological breast
imagery were identified but were not included as they did not fall within
the scope of this review. Of these, 32 datasets were tiles (Supplement
3) rather than WSIs, and 57 datasets were privately held or required data
use agreements rather than being publicly available (Supplement 4). The
corresponding clinical data have been published for only six datasets.
Interested readers can find detailed information on the available clinical
variables for each dataset in Supplement 5.

There are also three public datasets of breast histopathological WSIs
that have acquired all or part of the data from other publicly available
datasets: TUPAC16,21 DRYAD, and TIGER with 821, 195, and 151 WSIs
from the TCGA-BRCA, respectively (derived datasets of image tiles can be
found in Supplement 3). Therefore, there is a risk of obtaining an overly op-
timistic performance estimate for trained models if derived datasets are
used for the validation. This is because the model has already seen some
of the data during training, and using derived datasets for validation may
lead to an overestimation of themodel’s ability to generalize to new, unseen
data. However, such derived datasets may be publishedwith extra informa-
tion not provided in the original datasets. For example, TUPAC16 has 500
WSIs in the training set, all derived from the TCGA-BRCA,with correspond-
ing tumor proliferation and molecular proliferation scores as ground truth
4

which were not included in the original TCGA-BRCA dataset. Including
such extra information would be highly advantageous in developing
models in breast computational pathology. Table 2 shows details of the
derived datasets of breast histopathology WSIs.

Datasets description

ACROBAT dataset22: This dataset is part of the CHIME breast cancer
study in Sweden, published in the AutomatiC Registration Of Breast cAncer
Tissue (ACROBAT) challenge. ACROBAT entails 4212 WSIs from 1153
female primary breast cancer patients, where 1153 and 3059 images are
H&E and IHC stained, respectively. The slides are digitized using Hamama-
tsu NanoZoomer S360 and NanoZoomer XR scanners with 0.23 μm/pixel
resolution. However, the published images are in TIFF format with 10×
and lower resolutions (pixel size of 0.91 μm) to reduce the dataset size. In
addition to the WSIs, the dataset includes annotations of landmark pairs
between H&E and IHC images for the validation (n=200) and test
(n=606) sets.

ANHIR dataset23: This dataset is from the Automatic Non-rigid Histo-
logical Image Registration (ANHIR) challenge, which was part of the IEEE
International Symposium on Biomedical Imaging (ISBI) 2019. ANHIR
contains WSIs of different types of tissue, including breast. Breast WSIs
are stained with H&E and IHC and scanned with Leica Biosystems Aperio
AT2 with 40× magnitude and 0.253 Âμm/pixel resolution. Images are
marked manually with landmarks with standard ImageJ structure and
coordinate frame.

BACH24: The BreAst Cancer Histology images dataset is from the chal-
lenge held as part of the International Conference on Image Analysis and
Recognition (ICIAR 2018). The dataset includes H&E-stained WSIs and
patches. There are 400 patches with 2048 × 1536 resolution, image-wise
labeled in four different classes, along with annotations produced by two
medical experts. BACH consists of 30 WSIs, acquired by Leica SCN400
scanner in SVS format, out of which 10 WSIs have coordinates of benign,



Table 2
Derived datasets of breast H&E WSIs.

Dataset Year WSIs Source Added information Comments

TUPAC16 2016 821 TCGA Tumor and molecular proliferation
scores

Ground truth is provided for 500 WSIs

DRYAD 2018 195 TCGA Binary masks for annotated invasive
regions in down-sized WSIs

CINJ, CWRU, and HUP WSIs in full-size are not publicly
available

+40 CINJ
+110 CWRU
+239 HUP

TIGER- WSIROIS 2022 151 TCGA Region annotations on WSIs All 195 WSIs have ROI polygons of different tissue
regions and annotations of plasma and lymphocyte cells

+26 RUMC
+18 JB
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in situ carcinoma, and invasive carcinoma regions, labeled pixel-wise by
two pathologists.

BCNB25: The Early Breast Cancer Core-Needle BiopsyWSI Dataset is the
only publicly available dataset of breast histopathological WSIs from Asia.
This dataset has 1058 WSIs from 1058 breast cancer patients in China. Im-
ages are scanned using an Iscan Coreo pathological scanner, and tumor re-
gions of each image are annotated by two pathologists. Furthermore, the
clinical data, including the patient’s age, tumor size, histology and molecu-
lar subtypes, number of lymph node metastases, and their status of HER2,
ER, and PR, is made publicly available alongside the WSIs.

BRACS dataset26: BReAst Carcinoma Subtyping dataset is collected at
the Istituto Nazionale dei Tumori, Italy using an Aperio AT2 scanner at
0.25 μm/pixel for 40× resolution. BRACS contains 547 WSIs of 189
patients, labeled in 7 classes. Benign tumors are labeled normal, patholog-
ical benign, and usual ductal hyperplasia. Atypia tumors are labeled flat
epithelial atypia and atypical ductal hyperplasia, and malignant tumors
have ductal carcinoma in situ and invasive carcinoma labels. In addition,
4539 regions of interest acquired from 387 WSIs are labeled and provided
in .png files.

The Camelyon 16 and 17 datasets27,28: The CancerMetastases in Lymph
Nodes Challenge 2016 consists of 399 WSIs of H&E-stained lymph node
sections collected in two centers in the Netherlands. Images are annotated
with a binary label, and the ground truth for images containing metastases
is available in WSI binary masks and plain text files in .xml format, provid-
ing the contour vertices of the metastases area. The dataset has 269 images
in normal and metastasis classes for training and 130 WSIs for testing. The
Camelyon 17 is the extended version of Camelyon 16 comprising 1399
unique H&E-stained WSIs, with an additional 1000 images added to the
previous dataset. These 1000WSIs are collected equally atfivemedical cen-
ters in the Netherlands, each providing 200 images from 40 patients (five
slides per patient). In Camelyon 17, images of 100 patients are provided
for training, and images of 100 other patients for testing. This dataset has
detailed contours of metastasis boundaries on a lesion level for 50 WSIs
and pN-stage labels for the patients in training data.
Fig. 3. Comparative resolutions of four image tiles: (A) and (B) are two image tiles cropp
respectively. (C) shows an image tile from the ACROBAT dataset with a larger pixel widt
sized WSI in the DRYAD dataset with an unknown pixel width, where the image quality
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CPTAC-BRCAdataset29: The Clinical Proteomic Tumor Analysis Consor-
tium Breast Invasive Carcinoma Collection consists of 642 WSIs of 134
patients, scanned at 20× magnification. The published images have two
different resolutions: 0.25 and 0.5 μm/pixel, which can be important
when creating image tiles. (Fig. 3). In addition to the slides, clinical, prote-
omics, and genomic data are available for researchers.

DRYAD dataset30: This dataset consists of four different cohorts: The
Cancer Genome Atlas (TCGA), Cancer Institute of New Jersey (CINJ),
Case Western Reserve University (CWRU), and Hospital at the University
of Pennsylvania (HUP) each allotting 195, 40, 110, and 239 WSIs of breast
tissue from ER+patients. Slides are scanned byAperio and Ventanawhole-
slide scanners at 40× magnification with 0.246 and 0.23 μm pixel width,
respectively. Images in the published dataset are down-sized (32:1) WSIs
with binary masks for annotated invasive regions. In Cruz-Roa et al, Celik
et al, and Ektefaie et al,31–33 the authors did not mention any use of the
DRYAD dataset, but they used the CINJ and HUP datasets that are included
in DRYAD. Therefore, papers using these two datasets are included in our
study, supposing that they have used part of the DRYAD dataset; as to our
knowledge, the CINJ and HUP datasets are not separately available to the
public in any database.

GTEx-Breast dataset34: The Genotype-Tissue Expression (GTEx) project
hosts gene expression levels of 44 human tissues. This project has published
894 breast tissue histology images, consisting of 306 and 588 WSIs of
female and male breast tissues dissected from the central breast subareolar
region of the right breast. The images are collected from different centers in
the USA and have short pathology notes. Additionally, GTEx provides an
annotation file with detailed information about the samples.

HER2-Warwick dataset35: The data are part of the HER2 scoring contest
organized by the University of Warwick, the University of Nottingham, and
the Academic–Industrial Collaboration for Digital Pathology consortium.
The dataset comprises 86 H&E-stained WSIs of invasive breast carcinomas
acquired from 86 patients. IHC-stained images, the ground-truth data in the
form of HER2 scores, and the percentage of cells with complete membrane
staining are also provided in this dataset.
ed fromWSIs in the CPTAC-BRCA dataset with pixel widths of 0.25 μm and 0.5 μm,
h of 0.91 μm, resulting in reduced image resolution. (D) displays a tile from a down-
is insufficient for cell detection purposes.
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HEROHE dataset36: This dataset is presented in the HER2 on hematox-
ylin and eosin (HEROHE) challenge, aimed at predicting HER2 status in
breast cancer by using only H&E-stained WSIs. This dataset entails 360 in-
vasive breast cancer cases (144 HER2+ and 216 HER2-) for training and
150 cases (60 HER2+ and 90 HER2-) for testing. The WSIs in training
and test sets are from different patients to maintain the independence be-
tween the two datasets. WSIs are scanned by 3D Histech Pannoramic
1000 in .mrxs format. Only a binary classification indicating positive or
negative HER2 status is available for the HEROHE dataset, and the location
of the invasive carcinoma is not annotated.

IMPRESS dataset37: This dataset comprised 126 breast H&E WSIs from
62 female patientswithHER2-positive breast cancer and 64 female patients
diagnosed with triple-negative breast cancer. All participants underwent
neoadjuvant chemotherapy followed by surgical excision. In addition to
the H&E images, the dataset has IHC stained WSIs of the same slides and
their corresponding scores. All the slides are scanned using a Hamamatsu
scanner with 20× magnification. The IMPRESS dataset is published with
clinical data (cohort metadata) for both patient groups, including patients’
age and tumor size, as well as annotations for biomarkers such as PD-L1,
CD-8, and CD-163.

Post-NAT-BRCA38: The Post-neoadjuvant therapy (NAT) breast cancer
dataset is from a cohort with residual invasive breast cancer following NAT.
Thedataset is composed of 96WSIs from54patients. The slideswere scanned
by an Aperio scanner at 20×magnification at Sunnybrook Health Sciences
Centre inCanada. Clinical data, including patients’ age, ER, PR, andHER2 sta-
tus, is also available with tumor cellularity and cell label annotations.

SLN-Breast39: The Breast Metastases to Axillary Lymph Nodes dataset
consists of 130 H&E WSIs of axillary lymph nodes from 78 patients,
among them 36 WSIs have metastatic breast carcinoma. Slides were
scanned with a Lecia Aperio scanner at 20× magnification at Memorial
Sloan Cancer Center in the USA. Images are labeled in two classes, positive
or negative breast cancer metastases.

TCGA-BRCA40: The Cancer Genome Atlas (TCGA) Breast Cancer study
is an inclusive, experimental study of breast invasive carcinoma,
Fig. 4. Publicly available breast H&E WSI datasets usage across selected studies. (A) Us
ACROBAT, and BCNB datasets were not used or mentioned in any reviewed articles. Not
of breast histopathology datasets for different tasks. TheOther tasks category comprises n
feature engineering, investigation of bias in data, staining evaluation, histological grading
nucleoli, making image search and registration tools, and TIL assessment tools.
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coordinated and updated regularly by the US National Cancer Institute
for research purposes. This dataset entails 3111H&E-stainedWSIs of breast
cancer from 1086 female and 12 male patients and is the largest publicly
available dataset of breast histopathological WSIs. The TCGA-BRCA in-
cludes matched H&E WSIs, gene expression data, and clinical information.
We could not find any published region annotations for the WSIs, but there
are external sources like cBioPortal that host comprehensive well-
organized details of the patients in this dataset.

TIGER41: This dataset is released in three formats as the training set for
the Tumor InfiltratinG lymphocytes in breast cancER challenge. WSIROIS
dataset has 195WSIs from 195 patients with HER2+and TNBC breast can-
cer. Images are collected from three sources: 151 WSIs of TNBC cases from
the TCGA-BRCA, 26 WSIs from Radboud University Medical Center
(RUMC) with both HER2+ and TNBC cases, and 18 WSIs of HER2+ and
TNBCbreast cancer cases from Jules Bordet Institut in Belgium. All the pub-
lished images have 0.5 μm per pixel width and have annotated ROIs indi-
cating seven different tissue regions, as well as 8 × 8 μm2 bounding
boxes indicating lymphocytes and plasma cells. The second dataset, called
WSIBULK, consists of 93 WSIs from RUMC and JB with annotation of re-
gions containing invasive tumor cells, and the third dataset, WSITILS, has
only TIL values annotation of 82 WSIs without any manual region annota-
tions. Images within WSIROIS, WSIBULK, and WSITILS are unique within
each subset, with no duplications across the three subsets.

Datasets descriptive statistics

14914,31–33,42–186 out of the 176 included papers used public datasets of
breast H&E WSIs actively for different algorithm development purposes
such as segmentation, classification, prognostic predictions, and color
normalization of histology images. The remaining 27 articles15–18,187–209

have reviewed ormentioned these datasets. These review papers are not in-
cluded in the subsequent statistical analysis of datasets utilization in this ar-
ticle. Fig. 4A shows the frequency of active use of breast histopathologyWSI
datasets. Almost half of the studies (52%) have used the TCGA-BRCA
age frequency of breast public datasets in the included articles. The Post-Nat-BRCA,
e: In several included papers, multiple datasets are employed. (B) Share of active use
oise elimination, exploration of the tumor immunemicroenvironment, editingWSIs,
, gene expression localization, crowdsourcing, obtaining tumor puritymaps, scoring



Fig. 5. Distribution of images and patients in publicly available datasets of breast H&E WSIs. (A) Number of WSIs in each dataset and proportion of image sources. The
duplicate images in the DRYAD and TIGER datasets derived from the TCGA-BRCA are excluded. (B) Number of patients in each dataset. The number of duplicate patients
in the TIGER dataset derived from the TCGA-BRCA (n=151) is not counted, and datasets that do not report the number of breast cancer cases are excluded.
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actively that highlights the significance of this dataset in breast computa-
tional pathology and its value as a resource for future studies.

The TCGA-BRCA is the only dataset used for developing prediction
models using breast WSIs that might be explained by the fact that it has
one of the largest cohorts among the publicly available datasets of breast
WSIs, and it comes with clinical and genomics data. TCGA-BRCA has the
largest contribution in the classification and Other tasks categories and is
the second most utilized dataset for detection/segmentation tasks, follow-
ing closely behind the Camelyon dataset. Of note, the Camelyon dataset
stands out in the color normalization category as the sole dataset chosen
for this particular task (Fig. 4B).

The available ground truth is a limiting factor in using public datasets of
breast H&E WSIs for computational pathology, especially when employing
supervised algorithms for training the models. Only 43.3% ofWSIs have la-
bels for breast cancer subtypes, 33.5% of the images have annotations of re-
gions of interest as ground truth, 11.4% have binary labels of breast cancer
metastasis, 5.1% of images are provided by HER2 status labels or scores,
and 6.7% of the images do not have any annotations, which restrains the
use of these datasets for specific tasks like classification of breast cancer
subtypes. Nonetheless, the available WSIs can be utilized for training
self-supervised and semi-supervised models.

Camelyon 16 and 17, HEROHE, ICIAR 2018, HER2-Warwick, ANHIR,
ACROBAT, BCNB, and TIGER datasets are published in challenges and
Fig. 6. Report of public breast H&E WSI d
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contests and comprise 43% of the publicly available breast H&E WSIs.
The other eight datasets: TCGA-BRCA, SLN-Breast, Post-Nat-BRCA,
BRACS, DRYAD, GTEx-Breast, IMPRESS, and CPTAC-BRCA are collected
and made available for research purposes (Fig. 5A). One intriguing aspect
of the identified datasets is the number of patients included, which varies
considerably between studies and may have important implications for
the generalizability and reliability of trained models. The TCGA-BRCA is
the largest open-access dataset of breast H&E WSIs with 3311 images
from 1098 patients (Fig. 5B), that is extended regularly by adding new
slides to the dataset.

Discussion

The present study aimed to investigate the availability and suitability of
open-access histopathology datasets for the development of deep learning
algorithms in breast tissue analysis. In pursuit of this, we identified 17
publicly available datasets of breast H&EWSIs that may appear to be a sub-
stantial amount for developing deep learning algorithms. However, it is im-
portant to note that the publicly available datasets of breast H&E often lack
detailedmetadata descriptions (Fig. 6). For instance, the number of patients
is not reported in three datasets. Furthermore, the clinical data necessary
for the development of prognostic tools are only available for six datasets:
BCNB, Post-Nat-BRCA, TCGA-BRCA, GTEx-Breast, CPTAC-BRCA, and
atasets’ characteristics and metadata.



Fig. 7. Examples of artifacts and quality issues in breast histopathological WSIs. (A) AWSI from the TCGA-BRCAwith inconsistent staining. (B) Tissue folding in aWSI in the
CPTAC-BRCA. (C) Pathologist’s marker sign on a WSI from the TCGA-BRCA with several tissue foldings. (D) A slide from the CPTAC-BRCA exhibiting predominantly vacant
areas. (E) A blurredWSI withmarker signs from a private dataset. (F) Presence of air bubbles in aWSI of CPTAC-BRCA leading to focal image disruptions. (G) An image from
the TCGA-BRCA with Marker signs, air bubbles, and inconsistent colors in some regions. (H) A WSI from the HER2-Warwick dataset showing marker signs on the slide.
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IMPRESS, with the latter four being collected in the USA. TCGA-BRCA is the
sole dataset published before 2021, which could explain its exclusive utili-
zation for developing predictive models in the articles included in this
study. None of the included papers or web pages hosting the breast H&E
WSI datasets provided an explicit statement of adherence to the FAIR prin-
ciples, and the level of metadata and documentation provided by the
dataset publishers varied. This variability in metadata and documenta-
tion could potentially affect the findability and reusability of the
datasets, highlighting the need for improved adherence to the FAIR
principles to enhance their accessibility and usability. Furthermore, in-
consistencies in the data format and structure were found across the
available datasets, which could limit the interoperability of the
datasets.

The development of deep learning algorithms for breast computational
pathology could be confounded by the quality of available WSIs. Variations
Fig. 8. Distribution of age and ethnicity among patients in the TCGA dataset. (A) Distr
BNH=Black Non-Hispanic. APNH=Asian and Pacific Islander Non-Hispanic. AI
(B) Comparison of breast cancer cases in the TCGA-BRCA dataset, the US breast cancer
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in staining, tissue preparation, and image scanning processes can result in
artifacts WSIs, affecting the integrity of the data. Additionally, marker
signs or annotations on the slides may inadvertently introduce noise or
bias into the data. Therefore, accurate recognition and mitigation of such
artifacts are vital to maintaining image-based analyses’ fidelity. Figure 7
shows examples of such artifacts and marker signs on the images.

The WSIs of the TCGA-BRCA and the Camelyon datasets are widely
employed in breast computational pathology. This widespread usage has
implications for the generalizability of machine learning algorithms. As
the TCGA dataset is collected in the USA, it may not be representative of
the breast cancer population in other regions or countries. In addition,
TCGA-BRCA has a high proportion of white women compared to
American Indian and Hispanic patients (Fig. 8A) and a high proportion of
patients with infiltrating duct carcinoma (70%). Additionally, this dataset
includes a large percentage of samples from younger women, which may
ibution of breast cancer cases in different ethnicities. WNH=White Non-Hispanic.
NH=American Indian and Alaska Native Non-Hispanic. NR=Not Reported.
registry212 and the breast cancer registry of Norway.213
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not represent the entire breast cancer population as the disease is more
common in older women (Fig. 8B). The composition of patient demograph-
ics is not reported in the Camelyon dataset, which limits the ability to ana-
lyze the potential impact of demographic diversity on the developed
algorithms and findings.

The issue of biases is not exclusive to the TCGA-BRCAdataset; it has also
been observed in other studies. A study on the representativeness of the
TCGA bladder cancer cohort210 revealed biases in this dataset. The authors
found that patients captured in the TCGA-BCa cohort demonstrate a higher
risk disease profile compared to the reference cystectomy series, and conse-
quently, their rates of overall survival and disease-specific survival are
lower. Another study211 found that Black Americans are not adequately
represented in the majority of cancer cases within the TCGA datasets com-
pared to clinical and mortality datasets. They also stated that Asian
Americans are overrepresented in the TCGA dataset for most cancers.
These biases are significant factors that should be acknowledged during
the validation of computer-assisted tools, playing a vital role inmaintaining
the models’ robustness, applicability, and transferability across different
cohorts of breast cancer patients.

Deep learning models can benefit from external datasets to improve
their ability to generalize to new data and enhance their performance
on a specific task. Using external data to validate trained algorithms
can help ensure their generalizability, identifying overfitting, and
Table 3
Utilization of multiple breast H&E WSI datasets in the included articles.

Study Aim

33 BC Classification
42 Region detection and classification
44 Detection and overexpression of HER2
46 Metastasis detection
53 Treatment prediction
55 Segmentation and classification
62 Scoring nucleoli in invasive BC
64 Editing WSIs with GANs
67 Metastasis detection
73 Staining evaluation
77 Classification of invasive ductal carcinoma
78 Segmentation of WSIs
90 Detection of fiber orientation disorder
96 Detection and classification
104 Detection of estrogen receptor status
106 Detection of HER2 status
109 Making an image search tool
112 Color normalization and classification
121 Segmentation
126 Prediction of patient staging and node status
128 Detection of BC
130 Making a TILS assessment tool
131 Color normalization
132 Making a prognostic tool
135 Prediction of DNA repair deficiency
139 Metastasis detection
140 Histological grading
141 Prediction of molecular phenotypes
153 Color normalization
154 Segmentation
156 Segmentation
157 Metastasis detection
158 Color normalization
159 Spatial characterization of TILs
161 Prediction of response to NAC
163 Testing the generalizability of a model
167 Prediction of DNA-repair deficiency
168 Prediction of BC recurrence
169 Detection of HER2 status
175 BC classification
186 HER2 detection and response prediction

Studies utilizing non-breast datasets, TMAs, and image tiles along with the breast WSIs
Breast Cancer. PD=Private Data. Cam=Camelyon. NAC=Neoadjuvant Chemotherapy.
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assessing their performance across different datasets. Therefore, the
real measure of a model’s predictive ability lies in its performance on
an independent dataset that was not employed in its initial
development,214 as the performance of these models often diminishes
when applied to a new cohort beyond the original development
population.215 Typically, there is a lack of external validation in the algo-
rithms developed for breast computational pathology. Among the 149
non-review papers, only 41 incorporated multiple datasets; of those, 21
integrated private datasets alongside public ones for model
development or validation. Notably, only 21 studies used an external
validation/test set (Table 3) implying that the performance of other
developed models could be subject to overestimation.

The potential benefits of using private datasets can make it well worth
the effort to get access to such datasets. Incorporating private datasets in
both the training and validation processes can improve machine learning
models’ diversity, representativeness, and overall performance. Private
datasets can also contain unique or hard-to-obtain data that might not be
available through public sources. For example,WSIs acquired from patients
who have taken specific treatments like immunotherapy and the response
to this treatment does not exist in any publicly available datasets of
breast WSIs.

One potential limitation in this scoping review is the possibility of miss-
ing relevant datasets due to the search strategy or selection criteria used. To
Development dataset External
validation set

TCGA, PD DRYAD (HUP, CINJ)
ICIAR, DRYAD TCGA
HER2-W. TCGA
Cam17 PD
TCGA PD
TCGA, Cam16, Cam17, TUPAC, SLN -
TCGA PD
Cam16, Cam17 -
Cam16, Cam17 -
TCGA, ICIAR, TUPAC Cam17
PD TCGA
Cam16, Cam17 -
TCGA PD
TCGA, CPTAC, Cam16, Cam17 PD
TCGA, PD -
HER2 TCGA
TCGA, PD -
Cam17 Cam16
Cam16, ICIAR -
TCGA, TUPAC -
Cam16 and 17 -
PD TCGA
Cam16, TUPAC -
TCGA, PD -
TCGA PD
Cam16, Cam17 -
TCGA PD
TCGA PD
Cam16, Cam17 -
TCGA, ICIAR, DRYAD -
BRACS, PD -
TCGA, BRACS -
Cam16, Cam17 -
TCGA, PD -
TCGA IMPRESS
Cam16, Cam17, PD -
PD TCGA
PD TCGA
TCGA HER2-W., PD
ICIAR, Cam16 -
PD TCGA

for training, validation, or as an external test set are excluded from this table. BC=
TMAs=Tissue Microarrays.
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mitigate this limitation, a comprehensive and well-defined search strategy
was developed to ensure that all relevant datasetswere captured. Neverthe-
less, the Post-Nat-BRCA, ACROBAT, and BCNB datasets were not found in
any of the papers identified in our selected literature databases, and we
found them during the manual screening of research data repositories. An-
other limitation is the use of only English language search terms and inclu-
sion criteria. This approach may have resulted in the exclusion of relevant
datasets that were unavailable in English or primarily in other languages.
Future systematic or scoping reviews of publicly available datasets of breast
H&E WSIs could benefit from broader search strategies that include
searches in multiple languages. This would increase the likelihood of iden-
tifying relevant datasets that are not primarily in English and thus
reduce potential language-related bias. However, the feasibility of such an
approach will depend on the availability of resources, expertise in multiple
languages, and the research question being addressed. Additionally,
changes in the availability of datasets over timemay further restrict the rel-
evance and applicability of such reviews of publicly available datasets. The
review should be conducted within a well-defined time frame to address
this limitation, and the publication date of included studies should be
clearly reported. In summary, our study examined the availability and suit-
ability of publicly available datasets of H&E-stained histopathology WSIs
that can be used in breast computational pathology. This data overview
can save significant time and effort by providing a starting point without
the need for setting up a data collection study.

Despite the significant number of WSIs, we found limitations in
metadata descriptions, inadequate clinical data, and inconsistencies in
the format and structure of datasets. Additionally, the presence of biases
within widely used datasets, such as TCGA-BRCA, raises concerns
regarding the generalizability of models. Therefore, it is crucial to im-
prove adherence to FAIR principles, enhance metadata descriptions,
and address biases. Moreover, incorporating diverse datasets, including
private and external sources, promises to improve model performance
and generalizability.

Declaration of competing interest

All authors declare they have no conflicts of interest.

Acknowledgements

The publication charges for this article have been funded by a grant
from the publication fund of UiT The Arctic University of Norway.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.jpi.2024.100363.

References

1. Liu L, Feng W, Chen C, Liu M, Qu Y, Yang J. Classification of breast cancer histology
images using MSMV-PFENet. Scient Rep 2022;12(1):17447.

2. Yang J, Ju J, Guo L, et al. Prediction of her2-positive breast cancer recurrence and me-
tastasis risk from histopathological images and clinical information via multimodal
deep learning. Computat Struct Biotechnol J 2022;20:333–342.

3. SrikantamurthyMM, Rallabandi VP, Dudekula DB, Natarajan S, Park J. Classification of
benign and malignant subtypes of breast cancer histopathology imaging using hybrid
cnn-lstm based transfer learning. BMC Medical Imaging 2023;23(1):1-15.

4. Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR. Improving neu-
ral networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:
1207.0580; 2012.

5. Wilkinson MD, Dumontier M, Aalbersberg IJ, et al. The fair guiding principles for scien-
tific data management and stewardship. Sci Data 2016;3, 160018.

6. Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learn-
ing. Ophthalmology 2017;124(7):962–969.

7. Ching T, Himmelstein DS, Beaulieu-Jones BK, et al. Opportunities and obstacles for
deep learning in biology and medicine. . J R Soc Interface 2018;15(141). 20170387.

8. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. New Engl J Med
2019;380(14):1347–1358.
10
9. Shickel B, Tighe PJ, Bihorac A, Rashidi P. Deep EHR: a survey of recent advances in
deep learning techniques for electronic health record (EHR) analysis. IEEE J Biomed
Health Informatics 2017;22(5):1589–1604.

10. BA Simell, OM Törnwall, I Hämäläinen, H-E Wichmann, G Anton, P Brennan, L Bouvard,
N Slimani, AMoskal, M Gunter, et al. Transnational access to large prospective cohorts in
Europe: Current trends and unmet needs. New Biotechnol, 49:98–103, 2019.

11. Hulsen T. An overview of publicly available patient-centered prostate cancer datasets.
Translat Androl Urol 2019;8(suppl 1):S64.

12. Wen D, Khan SM, Xu AJ, et al. Characteristics of publicly available skin cancer image
datasets: a systematic review. Lancet Digital Health 2022;4(1):e64–e74.

13. Leung MKK, Delong A, Alipanahi B, Frey BJ. Machine learning in genomic medicine: a
reviewof computational problems and data sets. Proc IEEE 2015;104(1):176–197.

14. Brancati N, Anniciello AM, Pati P, et al. Bracs: a dataset for breast carcinoma subtyping
in H&E histology images. Database 2022;2022:baac093.

15. Zeiser FA, da Costa CA, Roehe AV, da Rosa Righi R, Marques NMC. Breast cancer intel-
ligent analysis of histopathological data: a systematic review. Appl Soft Comput
2021;113, 107886.

16. Duggento A, Conti A, Mauriello A, Guerrisi M, Toschi N. Deep computational pathology
in breast cancer. Seminars in Cancer Biology. Elsevier; 2021. p. 226–237.

17. Hamidinekoo A, Denton E, Rampun A, Honnor K, Zwiggelaar R. Deep learning in mam-
mography and breast histology, an overview and future trends. Med Image Anal
2018;47:45–67.

18. Liew XY, Hameed N, Clos J. A review of computer-aided expert systems for breast can-
cer diagnosis. Cancers 2021;13(11):2764.

19. Tricco AC, Lillie E, Zarin W, et al. PRISMA extension for scoping reviews (PRISMA-ScR):
checklist and explanation. Ann Intern Med 2018;169(7):467–473.

20. Booth A, Clarke M, Dooley G, et al. The nuts and bolts of prospero: an international pro-
spective register of systematic reviews. Syst Rev 2012;1(1):1–9.

21. Tumor Proliferation Assessment Challenge. Grand Challenge. https://tupac.grand-
challenge.org/ 2016. Accessed 07 Jul. 2023.

22. AutomatiC Registration Of Breast cAncer Tissue (ACROBAT). Grand Challenge. https://
acrobat.grand-challenge.org/ 2023. Accessed 07 Jul. 2023.

23. Automatic Non-rigid Histological Image Registration (ANHIR). Grand Challenge.
https://anhir.grand-challenge.org/ 2019. Accessed 07 Jul. 2023.

24. ICIAR 2018 Grand Challenge on Breast Cancer Histology Images. Grand Challenge.
https://iciar2018-challenge.grand-challenge.org/ 2018. Accessed 07 Jul. 2023.

25. Early Breast Cancer Core-Needle Biopsy WSI (BCNB). Grand Challenge. https://bcnb.
grand-challenge.org/ 2022. Accessed 07 Jul. 2023.

26. BRACS: BReAst Carcinoma Subtyping. Institute of High-Performance Computing and
Networking. 2020 https://www.bracs.icar.cnr.it/. Accessed 07 Jul. 2023.

27. CAMELYON16. Grand Challenge. https://camelyon16.grand-challenge.org/ 2016.
Accessed 07 Jul. 2023.

28. CAMELYON17. Grand Challenge. https://camelyon17.grand-challenge.org/ 2017.
Accessed 07 Jul. 2023.

29. National Cancer Institute Clinical Proteomic Tumor Analysis Consortium. The
Clinical Proteomic Tumor Analysis Consortium Breast Invasive Carcinoma
Collection (CPTAC-BRCA). The Cancer Imaging Archive; 2020. https://wiki.
cancerimagingarchive.net/pages/viewpage.action?pageId=70227748 2020.
Accessed 07 Jul. 2023.

30. Cruz-Roa A, Gilmore H, Basavanhally A, et al. High-throughput adaptive sampling for .
whole-slide histopathology image analysis (hashi) via convolutional neural networks:
application to invasive breast cancer detection. PloS One 2018;13(5):e0196828.
https://doi.org/10.5061/dryad.1g2nt41. Accessed 07 Jul. 2023 via.

31. Cruz-Roa A, Basavanhally A, González F, et al. Automatic detection of invasive ductal
carcinoma in whole slide images with convolutional neural networks. Medical Imaging
2014: Digital Pathology. SPIE; 2014. p. 904103.

32. Celik Y, Talo M, Yildirim O, Karabatak M, Rajendra Acharya U. Automated invasive
ductal carcinoma detection based using deep transfer learning with whole-slide images.
Pattern Recognit Lett 2020;133:232–239.

33. Ektefaie Y, YuanW, Dillon DA, et al. Integrative multiomics-histopathology analysis for
breast cancer classification. NPJ Breast Cancer 2021;7(1):147.

34. The Genotype-Tissue Expression (GTEx). gtex portal. https://gtexportal.org/home/
histologyPage. Accessed 07 Jul. 2023.

35. Her2 Scoring Contest. Tissue Image Analytics (TIA) Centre. https://warwick.ac.uk/fac/
cross_fac/tia/data/her2contest/ 2016. Accessed 07 Jul. 2023.

36. HEROHE. Grand Challenge. https://ecdp2020.grand-challenge.org/ 2002. Accessed 07
Jul. 2023.

37. Huang Z, Shao W, Han Z, et al. Artificial intelligen .ce reveals features associated with
breast cancer neoadjuvant chemotherapy responses from multi-stain histopathologic
images. NPJ Precision Oncol 2023;7(1):14. Accessed 07 Jul. 2023 via: https://drive.
google.com/drive/folders/1fNf-F_aplm6ACJTWO1vGqbb-DdaP4K_r.

38. Martel AL, Nofech-Mozes S, Salama S, Akbar S, Peikari M. Assessment of Residual
Breast Cancer Cellularity after Neoadjuvant Chemotherapy using Digital Pathology
[Data set]. Cancer Imaging Arch 2019. https://doi.org/10.7937/TCIA.2019.
4YIBTJNO.

39. Campanella G, Hanna MG, Brogi E, Fuchs TJ. Breast metastases to axillary lymph nodes.
Cancer Imaging Archive; 2019.

40. The Cancer Genome Atlas (TCGA). Genomic Data Commons Data Portal (GDC). https://
portal.gdc.cancer.gov/projects/TCGA-BRCA. Accessed 07 Jul. 2023.

41. Tumor InfiltratinG lymphocytes in breast cancER. Grand Challenge. 2022. https://tiger.
grand-challenge.org/Home/. Accessed 07 Jul. 2023.

42. Ahmed S, Tariq M, Naveed H. Pmnet: a probability map based scaled network for breast
cancer diagnosis. Comput Med Imaging Graphics 2021;89, 101863.

43. Amgad M, Elfandy H, Hussein H, et al. Structured crowdsourcing enables convolutional
segmentation of histology images. Bioinformatics 2019;35(18):3461–3467.

https://doi.org/10.1016/j.jpi.2024.100363
https://doi.org/10.1016/j.jpi.2024.100363
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0005
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0005
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0010
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0010
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0010
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0015
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0015
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0015
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0020
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0020
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0020
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0025
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0025
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0030
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0030
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0035
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0035
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0040
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0040
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0045
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0045
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0045
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0050
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0050
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0055
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0055
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0060
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0060
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0065
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0065
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0070
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0070
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0070
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0075
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0075
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0080
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0080
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0080
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0085
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0085
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0090
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0090
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0095
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0095
https://tupac.grand-challenge.org/
https://tupac.grand-challenge.org/
https://acrobat.grand-challenge.org/
https://acrobat.grand-challenge.org/
https://anhir.grand-challenge.org/
https://iciar2018-challenge.grand-challenge.org/
https://bcnb.grand-challenge.org/
https://bcnb.grand-challenge.org/
https://www.bracs.icar.cnr.it/
https://camelyon16.grand-challenge.org/
https://camelyon17.grand-challenge.org/
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70227748
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70227748
https://doi.org/10.5061/dryad.1g2nt41
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0150
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0150
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0150
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0155
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0155
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0155
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0160
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0160
https://gtexportal.org/home/histologyPage
https://gtexportal.org/home/histologyPage
https://warwick.ac.uk/fac/cross_fac/tia/data/her2contest/
https://warwick.ac.uk/fac/cross_fac/tia/data/her2contest/
https://ecdp2020.grand-challenge.org/
https://drive.google.com/drive/folders/1fNf-F_aplm6ACJTWO1vGqbb-DdaP4K_r
https://drive.google.com/drive/folders/1fNf-F_aplm6ACJTWO1vGqbb-DdaP4K_r
https://doi.org/10.7937/TCIA.2019.4YIBTJNO
https://doi.org/10.7937/TCIA.2019.4YIBTJNO
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0190
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0190
https://portal.gdc.cancer.gov/projects/TCGA-BRCA
https://portal.gdc.cancer.gov/projects/TCGA-BRCA
https://tiger.grand-challenge.org/Home/
https://tiger.grand-challenge.org/Home/
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0200
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0200
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0205
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0205


M. Tafavvoghi et al. Journal of Pathology Informatics 15 (2024) 100363
44. Anand D, Kurian NC, Dhage S, et al. Deep learning to estimate human epidermal growth
factor receptor 2 status from hematoxylin and eosin-stained breast tissue images. J
Pathol Inform 2020;11(1):19.

45. Aresta G, Araújo T, Kwok S, et al. Bach: grand challenge on breast cancer histology im-
ages. Med Image Anal 2019;56:122–139.

46. Bandi P, Geessink O, Manson Q, et al. From detection of individual metastases to clas-
sification of lymph node status at the patient level: the camelyon17 challenge. IEEE
Trans Med Imaging 2018;38(2):550–560.

47. Bejnordi BE, Veta M, Van Diest PJ, et al. Diagnostic assessment of deep learning algo-
rithms for detection of lymph node metastases in women with breast cancer. Jama
2017;318(22):2199–2210.

48. Bokor P, Hudec L, Fabian O, Benesova W. Weighted multi-level deep learning analysis
and framework for processing breast cancer WSIs. arXiv preprint arXiv:2106.14708;
2021.

49. Campanella G, Hanna MG, Geneslaw L, et al. Clinical-grade computational pathology
using weakly supervised deep learning on whole slide images. Nat Med 2019;25(8):
1301–1309.

50. Çelik G, Talu MF. Resizing and cleaning of histopathological images using generative
adversarial networks. Phys AStat Mech Its Appl 2020;554, 122652.

51. Chaudhury S, Shelke N, Sau K, Prasanalakshmi B, Shabaz M. A novel approach to clas-
sifying breast cancer histopathology biopsy images using bilateral knowledge distilla-
tion and label smoothing regularization. Computat Math Methods Med 2021;2021:
1-11.

52. Chen J, Jiao J, He S, Han G, Qin J. Few-shot breast cancer metastases classification via
unsupervised cell ranking. IEEE/ACM Trans Computat Biol Bioinform 2019;18(5):
1914–1923.

53. Cho SY, Lee JH, Ryu JM, et al. Deep learning fromHE slides predicts the clinical benefit
from adjuvant chemotherapy in hormone receptor-positive breast cancer patients.
Scient Rep 2021;11(1):17363.

54. Ciga O, Martel AL. Learning to segment images with classification labels. Med Image
Anal 2021;68, 101912.

55. Ciga O, Xu T, Martel AL. Self supervised contrastive learning for digital histopathology.
Mach Learn Appl 2022;7, 100198.

56. Cruz-Roa A, Gilmore H, Basavanhally A, et al. High-throughput adaptive sampling for
whole-slide histopathology image analysis (HASHI) via convolutional neural networks:
application to invasive breast cancer detection. PLoS One 2018;13(5), e0196828.

57. Cruz-Roa A, Gilmore H, Basavanhally A, et al. Accurate and reproducible invasive
breast cancer detection in whole-slide images: a deep learning approach for quantifying
tumor extent. Scient Rep 2017;7(1):46450.

58. De Matos J, Ataky STM, de Souza Britto Jr A, de Oliveira LES, Koerich AL. Machine
learning methods for histopathological image analysis: a review. Electronics 2021;10
(5):562.

59. Dhillon A, Singh A. eBreCaP: extreme learning-based model for breast cancer survival
prediction. IET Syst Biol 2020;14(3):160–169.

60. Diao JA, Wang JK, Chui WF, et al. Human-interpretable image features derived from
densely mapped cancer pathology slides predict diverse molecular phenotypes. Nat
Commun 2021;12(1):1613.

61. Eddy JA, Thorsson V, Lamb AE, et al. Cri iatlas: an interactive portal for immuno-oncol-
ogy research. F1000Research 2020;9.

62. Elsharawy KA, Toss MS, Raafat S, et al. Prognostic significance of nucleolar assessment
in invasive breast cancer. Histopathology 2020;76(5):671–684.

63. Elsharawy KA, Gerds TA, Rakha EA, Dalton LW. Artificial intelligence grading of breast
cancer: a promising method to refine prognostic classification for management preci-
sion. Histopathology 2021;79(2):187–199.

64. Blanco RF, Rosado P, Vegas E, Reverter F. Medical image editing in the latent space of
generative adversarial networks. Intel-Based Med 2021;5, 100040.

65. Milagro Fernández-Carrobles M, Serrano I, Bueno G, Déniz O. Bagging tree classifier
and texture features for tumor identification in histological images. Proc Comput Sci
2016;90:99-106.

66. Fischer W, Moudgalya SS, Cohn JD, Nguyen NTT, Kenyon GT. Sparse coding of pathol-
ogy slides compared to transfer learning with deep neural networks. BMC Bioinform
2018;19:9-17.

67. Zanjani FG, Zinger S, Piepers B, Mahmoudpour S, Schelkens P, de With PHN. Impact of
jpeg 2000 compression on deep convolutional neural networks for metastatic cancer de-
tection in histopathological images. J Med Imaging 2019;6(2):027501.

68. Graham S, Vu QD, Raza SEA, et al. Hover-net: simultaneous segmentation and classifi-
cation of nuclei in multi-tissue histology images. Med Image Anal 2019;58, 101563.

69. Guo Z, Liu H, Ni H, et al. A fast and refined cancer regions segmentation framework in
whole-slide breast pathological images. Scient Rep 2019;9(1):882.

70. He B, Bergenstråhle L, Stenbeck L, et al. Integrating spatial gene expression and breast
tumour morphology via deep learning. Nat Biomed Eng 2020;4(8):827–834.

71. Hegde N, Hipp JD, Liu Y, et al. Similar image search for histopathology: Smily. NPJ
Digit Med 2019;2(1):56.

72. Howard FM, Dolezal J, Kochanny S, et al. The impact of site-specific digital histology
signatures on deep learning model accuracy and bias. Nat Commun 2021;12(1):4423.

73. Choudhary A, Wu H, Tong L, Wang MD. Learning to evaluate color similarity for histo-
pathology images using triplet networks. Proceedings of the 10th ACM International
Conference on Bioinformatics, Computational Biology and Health Informatics; 2019.
p. 466–474.

74. Jaber MI, Song B, Taylor C, et al. A deep learning image-based intrinsic molecular sub-
type classifier of breast tumors reveals tumor heterogeneity that may affect survival.
Breast Cancer Res 2020;22:1-10.

75. Jiao Y, Yuan J, Qiang Y, Fei S. Deep embeddings and logistic regression for rapid active
learning in histopathological images. Comput Methods Prog Biomed 2021;212,
106464.
11
76. Kalra S, Tizhoosh HR, Shah S, et al. Pan-cancer diagnostic consensus through searching
archival histopathology images using artificial intelligence.NPJDigitMed2020;3(1):31.

77. Kanavati F, Tsuneki M. Breast invasive ductal carcinoma classification on whole slide
images with weakly-supervised and transfer learning. Cancers 2021;13(21):5368.

78. Khened M, Kori A, Rajkumar H, Krishnamurthi G, Srinivasan B. A generalized deep
learning framework for whole-slide image segmentation and analysis. Scient Rep
2021;11(1):11579.

79. Kim Y-G, Kim S, Cho CE, et al. Effectiveness of transfer learning for enhancing tumor
classification with a convolutional neural network on frozen sections. Scient Rep
2020;10(1):21899.

80. Krithiga R, Geetha P. Deep learning based breast cancer detection and classification
using fuzzy merging techniques. Mach Vision Appl 2020;31:1-18.

81. Kumar A, Prateek M. Localization of nuclei in breast cancer using whole slide imaging
system supported by morphological features and shape formulas. Cancer Manage Res
2020:4573–4583.

82. Kumar N, Verma R, Sharma S, Bhargava S, Vahadane A, Sethi A. A dataset and a tech-
nique for generalized nuclear segmentation for computational pathology. IEEE Trans
Med Imaging 2017;36(7):1550–1560.

83. La Barbera D, Polónia A, Roitero K, Conde-Sousa E, Mea VD. Detection of her2 from
haematoxylineosin slides through a cascade of deep learning classifiers via multi-in-
stance learning. J Imaging 2020;6(9):82.

84. Le H, Gupta R, Hou L, et al. Utilizing automated breast cancer detection to identify spa-
tial distributions of tumor-infiltrating lymphocytes in invasive breast cancer. Am J
Pathol 2020;190(7):1491–1504.

85. Lee S, Amgad M, Mobadersany P, et al. Interactive classification of whole-slide imaging
data for cancer researchers. Cancer Res 2021;81(4):1171–1177.

86. Lei G, Xia Y, Zhai D-H, et al. Neurocomputing 2020;406:267–273.
87. Levy-Jurgenson A, Tekpli X, Kristensen VN, Yakhini Z. Spatial transcriptomics inferred

from pathology whole-slide images links tumor heterogeneity to survival in breast and
lung cancer. Scient Rep 2020;10(1):18802.

88. Li C, Lu X. Computer-aided detection breast cancer in whole slide image. 2021 Interna-
tional Conference on Computer, Control and Robotics (ICCCR). IEEE; 2021. p. 193–198.

89. Li H, Qiu L, Wang M. Informed attentive predictors: a generalisable architecture for
prior knowledge-based assisted diagnosis of cancers. Sensors 2021;21(19):6484.

90. Li H, Bera K, Toro P, et al. Collagen fiber orientation disorder from h&e images is prog-
nostic for early stage breast cancer: clinical trial validation. NPJ Breast Cancer 2021;7
(1):104.

91. Lin H, Chen H, Graham S, Dou Q, Rajpoot N, Heng P-A. Fast scannet: fast and dense
analysis of multigigapixel whole-slide images for cancer metastasis detection. IEEE
Trans Med Imaging 2019;38(8):1948–1958.

92. Litjens G, Bandi P, Bejnordi BE, et al. 1399 H&E-stained sentinel lymph node sections .
of breast cancer patients: the CAMELYON dataset. GigaScience 05, 2018;7(6):giy065.
https://doi.org/10.1093/gigascience/giy065. ISSN 2047-217X.

93. Liu Y, Kohlberger T, Norouzi M, et al. Artificial intelligence–based breast cancer nodal
metast .asis detection: insights into the black box for pathologists. Arch Pathol Lab Med
10, 2018;143(7):859–868. https://doi.org/10.5858/arpa.2018-0147-OA. ISSN 0003-
9985.

94. López-Pérez M, Amgad M, Morales-Álvarez P, et al. Learning from crowds in digital pa-
thology using scalable variational gaussian processes. Scient Rep 06, 2021;11(1):
11612. https://doi.org/10.1038/s41598-021-90821-3. ISSN 2045-2322.

95. Lu MY, Chen RJ, Kong D, et al. Federated learning for computational pathology on
gigapixel whole slide images. Med Image Anal 2022;76:102298. https://doi.org/10.
1016/j.media.2021.102298. ISSN 1361-8415. URL: https://www.sciencedirect.com/
science/article/pii/S1361841521003431.

96. LuMY, Williamson DFK, Chen TY, Chen RJ, Barbieri M, Mahmood F. Data-efficient and
weakly supervis .ed computational pathology on whole-slide images. Nat Biomed Eng
06, 2021;5(6):555–570. https://doi.org/10.1038/s41551-020-00682-w. ISSN 2157-
846X.

97. Lu Z, Zhan X, Wu Y, et al. Brcaseg: a deep learning approach for tissue quantification
and genomic correlations of histopathological images. Genom Proteom Bioinform
2021;19(6):1032–1042. https://doi.org/10.1016/j.gpb.2020.06.026. ISSN 1672-
0229. URL: https://www.sciencedirect.com/science/article/pii/S1672022921001522.

98. Mi W, Li J, Guo Y, et al. Deep learning-based multi-class classification of breast digital
pathology images. Cancer Manage Res 2021;13:4605–4617. https://doi.org/10.2147/
CMAR.S312608. PMID: 34140807.

99. Monjo T, Koido M, Nagasawa S, Suzuki Y, Kamatani Y. Efficient prediction of a spatial
transcriptomics profile better characterizes breast cancer tissue sections without costly
experimentation. Scient Rep 03, 2022;12(1):4133. https://doi.org/10.1038/s41598-
022-07685-4. ISSN 2045-2322.

100. Mukundan R. Analysis of image feature characteristics for automated scoring of her2 in
histology slides. J Imaging 2019;5(3). https://doi.org/10.3390/jimaging5030035. ISSN
2313-433X. URL: https://www.mdpi.com/2313-433X/5/3/35.

101. Mukundan R. Image features based on characteristic curves and local binary patterns for
automated her2 scoring. J Imaging 2018;4(2). https://doi.org/10.3390/
jimaging4020035. ISSN 2313-433X. URL: https://www.mdpi.com/2313-433X/4/2/35.

102. Munien C, Viriri S, Rakhshan V. Classification of hematoxylin and eosin-stained breast
cancer histology microscopy images using transfer learning with efficientnets.
Computat Intel Neurosci 2021:5580914. https://doi.org/10.1155/2021/5580914.
ISSN 1687-5265.

103. Muñoz-Aguirre M, Ntasis VF, Rojas S, Guigó R. Pyhist: A histol:ogical image segmenta-
tion tool. PLoS Computat Biol 2020;16(10):e1008349. https://doi.org/10.1371/
journal.pcbi.1008349.

104. Naik N, Madani A, Esteva A, et al. Deep learning-enabled breast cancer hormonal recep-
tor status determination from base-level H&E stains. Nat Commun 11, 2020;11(1):
5727. https://doi.org/10.1038/s41467-020-19334-3. ISSN 2041-1723.

http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0210
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0210
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0210
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0215
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0215
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0220
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0220
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0220
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0225
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0225
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0225
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0230
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0230
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0230
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0235
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0235
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0235
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0240
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0240
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0245
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0245
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0245
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0245
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0250
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0250
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0250
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0255
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0255
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0255
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0260
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0260
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0265
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0265
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0270
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0270
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0270
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0275
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0275
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0275
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0280
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0280
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0280
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0285
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0285
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0290
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0290
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0290
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0295
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0295
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0300
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0300
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0305
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0305
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0305
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0310
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0310
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0315
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0315
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0315
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0320
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0320
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0320
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0325
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0325
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0325
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0330
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0330
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0335
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0335
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0340
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0340
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0345
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0345
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0350
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0350
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0355
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0355
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0355
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0355
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0360
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0360
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0360
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0365
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0365
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0365
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0370
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0370
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0375
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0375
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0380
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0380
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0380
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0385
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0385
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0385
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0390
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0390
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0395
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0395
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0395
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0400
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0400
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0400
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0405
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0405
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0405
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0410
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0410
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0410
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0415
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0415
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0420
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0425
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0425
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0425
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0430
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0430
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0435
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0435
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0440
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0440
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0440
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0445
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0445
http://refhub.elsevier.com/S2153-3539(24)00002-6/rf0445
https://doi.org/10.1093/gigascience/giy065
https://doi.org/10.5858/arpa.2018-0147-OA
https://doi.org/10.1038/s41598-021-90821-3
https://doi.org/10.1016/j.media.2021.102298
https://doi.org/10.1016/j.media.2021.102298
https://www.sciencedirect.com/science/article/pii/S1361841521003431
https://www.sciencedirect.com/science/article/pii/S1361841521003431
https://doi.org/10.1038/s41551-020-00682-w
https://doi.org/10.1016/j.gpb.2020.06.026
https://www.sciencedirect.com/science/article/pii/S1672022921001522
https://doi.org/10.2147/CMAR.S312608
https://doi.org/10.2147/CMAR.S312608
https://doi.org/10.1038/s41598-022-07685-4
https://doi.org/10.1038/s41598-022-07685-4
https://doi.org/10.3390/jimaging5030035
https://www.mdpi.com/2313-433X/5/3/35
https://doi.org/10.3390/jimaging4020035
https://doi.org/10.3390/jimaging4020035
https://www.mdpi.com/2313-433X/4/2/35
https://doi.org/10.1155/2021/5580914
https://doi.org/10.1371/journal.pcbi.1008349
https://doi.org/10.1371/journal.pcbi.1008349
https://doi.org/10.1038/s41467-020-19334-3


M. Tafavvoghi et al. Journal of Pathology Informatics 15 (2024) 100363
105. Noorbakhsh J, Farahmand S, pour AF, et al. Deep learning-based cross-classifications r .
eveal conserved spatial behaviors within tumor histological images. Nat Commun 12,
2020;11(1):6367. https://doi.org/10.1038/s41467-020-20030-5. ISSN 2041-1723.

106. Oliveira SP, Pinto JR, Gonçalves T, et al. Weakly-supervised classification of her2 ex-
pression in breast cancer haematoxylin and eosin stained slides. Appl Sci 2020;10
(14). https://doi.org/10.3390/app10144728. ISSN 2076-3417. URL: https://www.
mdpi.com/2076-3417/10/14/4728.

107. Oner MU, Chen J, Revkov E, et al. Obtaining spatially resolved tumor purity maps using
deep multiple instance learning in a pan-cancer study. Patterns (New York, NY) 12,
2021;3(2):100399. https://doi.org/10.1016/j.patter.2021.100399.

108. Öztürk Ş, Akdemir B. Hic-net: a deep convolutional neural network model for classifica-
tion of histopathological breast images. Comput Elect Eng 2019;76:299–310. https://
doi.org/10.1016/j.compeleceng.2019.04.012. ISSN 0045-7906. URL: https://www.
sciencedirect.com/science/article/pii/S0045790618320007.

109. Pantanowitz L, Michelow P, Hazelhurst S, et al. A digital pathology solution to resolve
the tissue floater conundrum. Arch Pathol Lab Med 07, 2020;145(3):359–364. https://
doi.org/10.5858/arpa.2020-0034-OA. ISSN 0003-9985.

110. Park J, Chung YR, Kong ST, et al. Aggregation of cohorts for histopathological diagnosis
with deep morphological analysis. Scient Rep 02, 2021;11(1):2876. https://doi.org/10.
1038/s41598-021-82642-1. ISSN 2045-2322.

111. Patil SM, Tong L, Wang MD. Generating region of interests for invasive breast cancer in
histopathological wholeslide-image. 2020 IEEE 44th Annual Computers, Software, and
Applications Conference (COMPSAC); 2020. p. 723–728. https://doi.org/10.1109/
COMPSAC48688.2020.0-174.

112. Pérez-Bueno F, Serra JG, Vega M, Mateos J, Molina R, Katsaggelos AK. Bayesian K-SVD
fo:r H and E blind color deconvolution. applications to stain normalizationdata augmen-
tation and cancer classification. Comput Med Imaging Graphics 2022;97:102048.
https://doi.org/10.1016/j.compmedimag.2022.102048. ISSN 0895-6111. URL:
https://www.sciencedirect.com/science/article/pii/S0895611122000210.

113. Pérez-Bueno F, Vega M, Sales MA, et al. Blind color deconvolution, normalization, and
classification of histological images using general super Gaussian priors and Bayesian
inference. Comput Meth Prog Biomedi 2021;211:106453. https://doi.org/10.1016/j.
cmpb.2021.106453. ISSN 0169-2607. URL: https://www.sciencedirect.com/science/
article/pii/S0169260721005277.

114. Phan NN, Huang C-C, Tseng L-M, Chuang EY. Predicting breast cancer gene expression
signature by applying deep convolutional neural networks from unannotated patholog-
ical images. Front Oncol 2021;11. https://doi.org/10.3389/fonc.2021.769447. ISSN
2234-943X.

115. Qu H, Zhou M, Yan Z, et al. Genetic mutation and biological pathway prediction based
on whole slide images in breast carcinoma using deep learning. npj Precis Oncol 09,
2021;5(1):87. https://doi.org/10.1038/s41698-021-00225-9. ISSN 2397-768X.

116. Riasatian A, Babaie M, Maleki D, et al. Fine-tuning and training of densenet for histopa-
thology image representation using tcga diagnostic slides. Med Image Anal 2021;70:
102032. https://doi.org/10.1016/j.media.2021.102032. ISSN 1361-8415. URL:
https://www.sciencedirect.com/science/article/pii/S1361841521000785.

117. Ruan J, Zhu Z, Wu C, Ye G, Zhou J, Yue J. A f:ast and effective detection framework for
whole-slide histopathology image analysis. PLoS ONE 2021;16(5):e0251521. https://
doi.org/10.1371/journal.pone.0251521.

118. Runz M, Rusche D, Schmidt S, Weihrauch MR, Hesser J, Weis C-A. Normalization of he-
stained histological images using cycle consistent generative adversarial networks.
Diagnos Pathol 08, 2021;16(1):71. https://doi.org/10.1186/s13000-021-01126-y.
ISSN 1746-1596.

119. J Saltz, R Gupta, L Hou, T Kurc, P Singh, V Nguyen, D Samaras, KR Shroyer, T Zhao, R
Batiste, J Van Arnam, Cancer Genome Atlas Research Network, I Shmulevich, AUK Rao,
AJ Lazar, A Sharma, and V Thorsson. Spatial organization and molecular correlation of
tumor-infiltrating lymphocytes using deep learning on pathology images. Cell Rep, 23
(1):181–193.e7, 04 2018. https://doi.org/10.1016/j.celrep.2018.03.086.

120. Schmauch B, Romagnoni A, Pronier E, et al. A deep learning model to predict rna-seq
expression of tumours from whole slide images. Nat Commun 08, 2020;11(1):3877.
https://doi.org/10.1038/s41467-020-17678-4.

121. Schmitz R, Madesta F, Nielsen M, et al. Multi-scale fully convolutional neural networks
for histopathology image segmentation: from nuclear aberrations to the global tissue ar-
chitecture. Med Image Anal 2021;70:101996. https://doi.org/10.1016/j.media.2021.
101996. ISSN 1361-8415. URL: https://www.sciencedirect.com/science/article/pii/
S1361841521000426.

122. Shao W, Wang T, Sun L, et al. Multi-task multimodal learning for joint diagnosis and
prognosis of human cancers. Med Image Anal 2020;65:101795. https://doi.org/10.
1016/j.media.2020.101795. ISSN 1361-8415. URL: https://www.sciencedirect.com/
science/article/pii/S1361841520301596.

123. Sheikh TS, Lee Y, Cho M. Histopathological classification of breast cancer images using
a multi-scale input and multi-feature network. Cancers 2020;12(8). https://doi.org/10.
3390/cancers12082031. ISSN 2072-6694. URL: https://www.mdpi.com/2072-6694/
12/8/2031.

124. Shi X, Su H, Xing F, Liang Y, Qu G, Yang L. Graph temporal ensembling based semi-su-
pervised convolutional neural network with noisy labels for histopathology image anal-
ysis. Med Image Anal 2020;60:101624. https://doi.org/10.1016/j.media.2019.101624.
ISSN 1361-8415. URL: https://www.sciencedirect.com/science/article/pii/
S1361841519301604.

125. Srinidhi CL, Kim SW, Chen F-D, Martel AL. Self-supervised driven consistency training
for annotation efficient histopathology image analysis. Med Image Anal 2022;75:
102256. https://doi.org/10.1016/j.media.2021.102256. ISSN 1361-8415. URL:
https://www.sciencedirect.com/science/article/pii/S1361841521003017.

126. Srivastava A, Kulkarni C, Huang K, Parwani A, Mallick P, Machiraju R. Imitating pathol-
ogist based assessment with interpretable and context based neural network modeling
of histology images. Biomed Inform Insights 2018;10:1178222618807481. https://
doi.org/10.1177/1178222618807481. PMID: 30450002.
12
127. Sui D, Guo M, Zhang Y, Zhang L. Pyramid deconvolution net: Breast cancer detection
using tissue and cell encoding information. Proceedings of the 4th International Confer-
ence on Big Data Research. ICBDR ’20. New York, NY, USA: Association for Computing
Machinery; 2021. p. 84–88. https://doi.org/10.1145/3445945.3445960. ISBN
9781450387750.

128. Zhao Q, Sui D, Liu W, et al. A pyramid architecturebased deep learning framework for
breast cancer detection. BioMed Res Int 10, 2021;2021:2567202. https://doi.org/10.
1155/2021/2567202. ISSN 2314-6133.

129. Sun D, Li A, Tang B, Wang M. Integrating genomic data and pathological images to ef-
fectively predict breast cancer clinical outcome. Comput Meth Prog Biomed 2018;161:
45–53. https://doi.org/10.1016/j.cmpb.2018.04.008. ISSN 0169-2607. URL: https://
www.sciencedirect.com/science/article/pii/S016926071830018X.

130. Sun P, He J, Chao X, et al. A computational tumor-infiltrating lymphocyte assess-
ment method comparable with visual reporting guidelines for triple-negative breast
cancer. EBioMedicine 08, 2021;70:103492. https://doi.org/10.1016/j.ebiom.2021.
103492.

131. Tellez D, Litjens G, Bándi P, et al. Quantifying the effects of data augmentation and stain
color normalization in convolutional neural networks for computational pathology.
Med Image Anal 2019;58:101544. https://doi.org/10.1016/j.media.2019.101544.
ISSN 1361-8415. URL: https://www.sciencedirect.com/science/article/pii/
S1361841519300799.

132. Thagaard J, Stovgaard ES, Vognsen LG, et al. Automated quantification of stil density
with H&E-based digital image analysis has prognostic potential in triple-negative breast
cancers. Cancers (Basel) 06, 2021;13(12):3050. https://doi.org/10.3390/
cancers13123050.

133. Uchida S, Kojima T, Sugino T. Clinicopathological features, tumor mutational burden,
and tumour-infiltrating lymphocyte interplay in erbb2-mutated breast cancer: in silico
analysis. Pathol Oncol Res 2021;27. https://doi.org/10.3389/pore.2021.633243. ISSN
1532-2807.

134. Vale-Silva LA, Rohr K. Long-term cancer survival prediction using multimodal deep
learning. Scient Rep 06, 2021;11(1):13505. https://doi.org/10.1038/s41598-021-
92799-4. ISSN 2045-2322.

135. Valieris R, Amaro L, de Toledo Osório CAB, et al. Deep learning predicts underlying fea-
tures on pathology images with therapeutic relevance for breast and gastric cancer. Can-
cers 2020;12(12). https://doi.org/10.3390/cancers12123687. ISSN 2072-6694. URL:
https://www.mdpi.com/2072-6694/12/12/3687.

136. ValkonenM, Kartasalo K, Liimatainen K, Nykter M, Latonen L, Ruusuvuori P. Metastasis
detection from whole slide images using local features and random forests. Cytometry
Part A 2017;91(6):555–565. https://doi.org/10.1002/cyto.a.23089.

137. Venet L, Pati S, Feldman MD, Nasrallah MP, Yushkevich P, Bakas S. Accurate and robust
alignment of differently stained histologic images based on greedy diffeomorphic regis-
tration. Appl Sci 2021;11(4). https://doi.org/10.3390/app11041892. ISSN 2076-3417.
URL: https://www.mdpi.com/2076-3417/11/4/1892.

138. Vizcarra J, Place R, Tong L, Gutman D,WangMD. Fusion in breast cancer histology clas-
sification. Proceedings of the 10th ACM International Conference on Bioinformatics,
Computational Biology and Health Informatics. BCB ’19. New York, NY, USA: Associa-
tion for Computing Machinery; 2019. p. 485–493. https://doi.org/10.1145/3307339.
3342166. ISBN 9781450366663.

139. Wang L, Sun L, Zhang M, et al. Exploring pathologist knowledge for automatic assess-
ment of breast cancer metastases in whole-slide image. . Proceedings of the 29th
ACM International Conference on Multimedia. MM ’21. New York, NY, USA: Associa-
tion for Computing Machinery; 2021. p. 255–263. https://doi.org/10.1145/3474085.
3475489. ISBN 9781450386517.

140. Wang Y, Acs B, Robertson S, et al. Improved breast cancer histological grading using
deep learning. Ann Oncol 2022;33(1):89–98. https://doi.org/10.1016/j.annonc.2021.
09.007. ISSN 0923-7534. URL: https://www.sciencedirect.com/science/article/pii/
S0923753421044860.

141. Wang Y, Kartasalo K, Weitz P, et al. Predicting molecular phenotypes from histopathol-
ogy images: a transcriptome-wide expression–morphology analysis in breast cancer.
Cancer Res 10, 2021;81(19):5115–5126. https://doi.org/10.1158/0008-5472.CAN-
21-0482. ISSN 0008-5472.

142. Wodzinski M, Skalski A. Multistep, automatic and nonrigid image registration method
for histology samples acquired using multiple stains. Phys Med Biol Jan, 2021;66(2),
025006. https://doi.org/10.1088/1361-6560/abcad7.

143. Thomas W, Eijkman CS, Rohr K. Adversarial domain adaptation to improve automatic
breast cancer grading in lymph nodes. 2018 IEEE 15th International Symposium on Bio-
medical Imaging (ISBI 2018); 2018. p. 582–585. URL: https://api.semanticscholar.org/
CorpusID:44160118.

144. Wu C, Ruan J, Ye G, et al. Identifying tumor inwhole-slide images of breast cancer using
transfer learning and adaptive sampling. 2019 Eleventh International Conference on
Advanced Computational Intelligence (ICACI); 2019. p. 167–172. https://doi.org/10.
1109/ICACI.2019.8778616.

145. Wulczyn E, Steiner DF, Xu Z, et al. Deep learning-based survival prediction for multiple
cancer types using histopathology images. PLoS ONE 2020;15(6), e0233678. https://
doi.org/10.1371/journal.pone. 0233678.

146. Xing F, Xie Y, Shi X, Chen P, Zhang Z, Yang L. Towards pixel-to-pixel deep nucleus de-
tection in microscopy images. BMC Bioinform 09, 2019;20(1):472. https://doi.org/10.
1186/s12859-019-3037-5. ISSN 1471-2105.

147. Xu S, Lu Z, ShaoW, et al. Integrative analysis of histopathological images and chromatin
accessibility data for estrogen receptor-positive breast cancer. BMC Med Genomics 12,
2020;13(11):195. https://doi.org/10.1186/s12920-020-00828-4. ISSN 1755-8794.

148. Xu Z, Verma A, Naveed U, Bakhoum SF, Khosravi P, Elemento O. Deep learning predicts
chromosomal instability from histopathology images. iScience 04, 2021;24(5):102394.
https://doi.org/10.1016/j.isci.2021.102394. ISSN 2589-0042.

149. Yang J, Ju J, Guo L, et al. Prediction of her2-positive breast cancer recurrence and me-
tastasis risk from histopathological images and clinical information via multimodal

https://doi.org/10.1038/s41467-020-20030-5
https://doi.org/10.3390/app10144728
https://www.mdpi.com/2076-3417/10/14/4728
https://www.mdpi.com/2076-3417/10/14/4728
https://doi.org/10.1016/j.patter.2021.100399
https://doi.org/10.1016/j.compeleceng.2019.04.012
https://doi.org/10.1016/j.compeleceng.2019.04.012
https://www.sciencedirect.com/science/article/pii/S0045790618320007
https://www.sciencedirect.com/science/article/pii/S0045790618320007
https://doi.org/10.5858/arpa.2020-0034-OA
https://doi.org/10.5858/arpa.2020-0034-OA
https://doi.org/10.1038/s41598-021-82642-1
https://doi.org/10.1038/s41598-021-82642-1
https://doi.org/10.1109/COMPSAC48688.2020.0-174
https://doi.org/10.1109/COMPSAC48688.2020.0-174
https://doi.org/10.1016/j.compmedimag.2022.102048
https://www.sciencedirect.com/science/article/pii/S0895611122000210
https://doi.org/10.1016/j.cmpb.2021.106453
https://doi.org/10.1016/j.cmpb.2021.106453
https://www.sciencedirect.com/science/article/pii/S0169260721005277
https://www.sciencedirect.com/science/article/pii/S0169260721005277
https://doi.org/10.3389/fonc.2021.769447
https://doi.org/10.1038/s41698-021-00225-9
https://doi.org/10.1016/j.media.2021.102032
https://www.sciencedirect.com/science/article/pii/S1361841521000785
https://doi.org/10.1371/journal.pone.0251521
https://doi.org/10.1371/journal.pone.0251521
https://doi.org/10.1186/s13000-021-01126-y
https://doi.org/10.1016/j.celrep.2018.03.086
https://doi.org/10.1038/s41467-020-17678-4
https://doi.org/10.1016/j.media.2021.101996
https://doi.org/10.1016/j.media.2021.101996
https://www.sciencedirect.com/science/article/pii/S1361841521000426
https://www.sciencedirect.com/science/article/pii/S1361841521000426
https://doi.org/10.1016/j.media.2020.101795
https://doi.org/10.1016/j.media.2020.101795
https://www.sciencedirect.com/science/article/pii/S1361841520301596
https://www.sciencedirect.com/science/article/pii/S1361841520301596
https://doi.org/10.3390/cancers12082031
https://doi.org/10.3390/cancers12082031
https://www.mdpi.com/2072-6694/12/8/2031
https://www.mdpi.com/2072-6694/12/8/2031
https://doi.org/10.1016/j.media.2019.101624
https://www.sciencedirect.com/science/article/pii/S1361841519301604
https://www.sciencedirect.com/science/article/pii/S1361841519301604
https://doi.org/10.1016/j.media.2021.102256
https://www.sciencedirect.com/science/article/pii/S1361841521003017
https://doi.org/10.1177/1178222618807481
https://doi.org/10.1177/1178222618807481
https://doi.org/10.1145/3445945.3445960
https://doi.org/10.1155/2021/2567202
https://doi.org/10.1155/2021/2567202
https://doi.org/10.1016/j.cmpb.2018.04.008
https://www.sciencedirect.com/science/article/pii/S016926071830018X
https://www.sciencedirect.com/science/article/pii/S016926071830018X
https://doi.org/10.1016/j.ebiom.2021.103492
https://doi.org/10.1016/j.ebiom.2021.103492
https://doi.org/10.1016/j.media.2019.101544
https://www.sciencedirect.com/science/article/pii/S1361841519300799
https://www.sciencedirect.com/science/article/pii/S1361841519300799
https://doi.org/10.3390/cancers13123050
https://doi.org/10.3390/cancers13123050
https://doi.org/10.3389/pore.2021.633243
https://doi.org/10.1038/s41598-021-92799-4
https://doi.org/10.1038/s41598-021-92799-4
https://doi.org/10.3390/cancers12123687
https://www.mdpi.com/2072-6694/12/12/3687
https://doi.org/10.1002/cyto.a.23089
https://doi.org/10.3390/app11041892
https://www.mdpi.com/2076-3417/11/4/1892
https://doi.org/10.1145/3307339.3342166
https://doi.org/10.1145/3307339.3342166
https://doi.org/10.1145/3474085.3475489
https://doi.org/10.1145/3474085.3475489
https://doi.org/10.1016/j.annonc.2021.09.007
https://doi.org/10.1016/j.annonc.2021.09.007
https://www.sciencedirect.com/science/article/pii/S0923753421044860
https://www.sciencedirect.com/science/article/pii/S0923753421044860
https://doi.org/10.1158/0008-5472.CAN-21-0482
https://doi.org/10.1158/0008-5472.CAN-21-0482
https://doi.org/10.1088/1361-6560/abcad7
https://api.semanticscholar.org/CorpusID:44160118
https://api.semanticscholar.org/CorpusID:44160118
https://doi.org/10.1109/ICACI.2019.8778616
https://doi.org/10.1109/ICACI.2019.8778616
https://doi.org/10.1371/journal.pone. 0233678
https://doi.org/10.1371/journal.pone. 0233678
https://doi.org/10.1186/s12859-019-3037-5
https://doi.org/10.1186/s12859-019-3037-5
https://doi.org/10.1186/s12920-020-00828-4
https://doi.org/10.1016/j.isci.2021.102394


M. Tafavvoghi et al. Journal of Pathology Informatics 15 (2024) 100363
deep learning. Computat Struct Biotechnol J 2022;20:333–342. https://doi.org/10.
1016/j.csbj.2021.12.028. ISSN 2001-0370. URL: https://www.sciencedirect.com/
science/article/pii/S2001037021005377.

150. Ye J, Luo Y, Zhu C, Liu F, Zhang Y. Breast cancer image classification on WSI with spa-
tial correlations. . ICASSP 2019 - 2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP); 2019. p. 1219–1223. URL: https://api.
semanticscholar.org/CorpusID:145921037.

151. Zhang H, Liu J, Yu Z, Wang P. Masg-gan: a multi-view attention superpixel-guided gen-
erative adversarial network for efficient and simultaneous histopathology image seg-
mentation and classification. Neurocomputing 2021;463:275–291. https://doi.org/10.
1016/j.neucom.2021.08.039. ISSN 0925-2312. URL: https://www.sciencedirect.com/
science/article/pii/S0925231221012236.

152. Zhang W, Zhu C, Liu J, Wang Y, Jin M. Cancer metastasis detection through multiple
spatial context network. Proceedings of the 2019 8th International Conference on Com-
puting and Pattern Recognition. ICCPR ’19. New York, NY, USA: Association for Com-
puting Machinery; 2020. p. 221–225. https://doi.org/10.1145/3373509.3373567.
ISBN 9781450376570.

153. Zheng Y, Jiang Z, Zhang H, Xie F, Shi J, Xue C. Adaptive color deconvolution for histo-
logical wsi normalization. Comput Meth Prog Biomed 2019;170:107–120. https://doi.
org/10.1016/j.cmpb.2019.01.008. ISSN 0169-2607. URL: https://www.sciencedirect.
com/science/article/pii/S0169260718312161.

154. Zeiser FA, da Costa CA, de Oliveira Ramos G, Bohn HC, Santos I, Roehe AV. Deepbatch:
a hybrid deep learning model for interpretable diagnosis of breast cancer in whole-slide
images. Exp Syst Appl 2021;185:115586. https://doi.org/10.1016/j.eswa.2021.
115586. ISSN 0957-4174. URL: https://www.sciencedirect.com/science/article/pii/
S095741742100988X.

155. Bagchi A, Pramanik P, Sarkar R. A multi-stage approach to breast cancer classification
using histopathology images. Diagnostics (Basel) Dec 2022;13(1):126. https://doi.
org/10.3390/diagnostics13010126.

156. Chen Y, Zhou Y, Chen G, et al. Segmentation of breast tubules in H&E images based on a
dks-doubleu-net model. Biomed Res Int Sep 2022;2022:2961610. https://doi.org/10.
1155/2022/2961610.

157. Chen S, Xiang J, Wang X, et al. Deep learning-based pathology signature could reveal
lymph node status and act as a novel prognostic marker across multiple cancer types.
Brit J Cancer Jul 2023;129(1):46–53. https://doi.org/10.1038/s41416-023-02262-6.
ISSN 1532-1827.

158. Cong C, Liu S, Di Ieva A, Pagnucco M, Berkovsky S, Song Y. Colour adaptive generative
networks for stain normalisation of histopathology images. Med Image Anal Nov
2022;82:102580. https://doi.org/10.1016/j.media.2022.102580. ISSN 1361-8415.

159. Fassler DJ, Torre-Healy LA, Gupta R, et al. Spatial characterization of tumor-infiltrating
lymphocytes and breast cancer progression. Cancers (Basel) Apr 2022;14(9):2148.
https://doi.org/10.3390/cancers14092148. ISSN 2072-6694.

160. Pour AF, White BS, Park J, Sheridan TB, Chuang JH. Deep learning features encode in-
terpretable morphologies within histological images. Sci Rep Jun 2022;12(1):9428.
https://doi.org/10.1038/s41598-022-13541-2. ISSN 2045-2322.

161. Huang Z, Shao W, Han Z, et al. Artificial intelligence reveals features associated with
breast cancer neoadjuvant chemotherapy responses from multi-stain histopathologic
images. npj Precis Oncol Jan 2023;7(1):14. https://doi.org/10.1038/s41698-023-
00352-5. ISSN 2397-768X.

162. Huang J, Mei L, Long M, et al. Bm-net: Cnn-based mobilenet-v3 and bilinear structure
for breast cancer detection in whole slide images. Bioengineering (Basel) Jun 2022;9
(6):261. https://doi.org/10.3390/bioengineering9060261. ISSN 2306-5354.

163. Jarkman S, Karlberg M, Pocevičiūtė M, et al. Generalization of deep learning in digital
pathology: experience in breast cancer metastasis detection. Cancers (Basel) Nov
2022;14(21):5424. https://doi.org/10.3390/cancers14215424. ISSN 2072-6694.

164. Jia F, Tan L, Wang G, Jia C, Chen Z. Asuper-resolution network using channel attention
retention for pathology images. PeerJ Comput Sci 2023;9:e1196. https://doi.org/10.
7717/peerj-cs.1196.

165. Jiang S, Suriawinata AA, Hassanpour S. Mhattnsurv: multi-head attention for survival
prediction using whole-slide pathology images. Comput Biol Med 2023;158:106883.
https://doi.org/10.1016/j.compbiomed.2023.106883. ISSN 0010-4825. URL: https://
www.sciencedirect.com/science/article/pii/S0010482523003487.

166. Jin X, Huang T, Wen K, Chi M, An H. Histossl: self-supervised representation learning for
classifying histopathology images. Mathematics 2023;11(1). https://doi.org/10.3390/
math11010110. ISSN 2227-7390. URL: https://www.mdpi.com/2227-7390/11/1/110.

167. Lazard T, Bataillon G, Naylor P, et al. Deep learning identifies morphological patterns of
homologous recombination deficiency in luminal breast cancers from whole slide im-
ages. Cell Rep Med 2022;3(12):100872. https://doi.org/10.1016/j.xcrm.2022.100872.

168. Liu X, Yuan P, Li R, et al. Predicting breast cancer recurrence and metastasis risk by in-
tegrating color and texture features of histopathological images and machine learning
technologies. Comput Biol Med 2022;146:105569. https://doi.org/10.1016/j.
compbiomed.2022.105569. ISSN 0010-4825. URL: https://www.sciencedirect.com/
science/article/pii/S0010482522003614.

169. Lu W, Toss M, Dawood M, Rakha E, Rajpoot N, Minhas F. Slidegraph(+): Whole slide
image level graphs to predict her2 status in breast cancer. Med Image Anal August
2022;80:102486. https://doi.org/10.1016/j.media.2022.102486. ISSN 1361-8423.

170. Mondol RK, Millar EKA, Graham PH, Browne L, Sowmya A, Meijering E. hist2rna: an
efficient deep learning architecture to predict gene expression from breast cancer histo-
pathology images. Cancers (Basel) April 2023;15(9):2569. https://doi.org/10.3390/
cancers15092569. ISSN 2072-6694.

171. Mou T, Liang J, Vu TN, Tian M, Gao Y. A comprehensive landscape of imaging feature-
associated RNA expression profiles in human breast tissue. Sensors (Basel) January
2023;23(3):1432. https://doi.org/10.3390/s23031432. ISSN 1424-8220.

172. Sandarenu P, Millar EKA, Song Y, et al. Survival prediction in triple negative breast can-
cer using multiple instance learning of histopathological images. Scient Rep August
2022;12(1):14527. https://doi.org/10.1038/s41598-022-18647-1. ISSN 2045-2322.
13
173. Sheikh TS, Kim J-Y, Shim J, Cho M. Unsupervised learning based on multiple descrip-
tors for wsis diagnosis. Diagnostics June 2022;12(6):1480. https://doi.org/10.3390/
diagnostics12061480. ISSN 2075-4418.

174. Sun K, Chen Y, Bai B, Gao Y, Xiao J, Yu G. Automatic classification of histopathology im-
ages acrossmultiple cancers based onheterogeneous transfer learning. DiagnosticsMarch
2023;13(7):1277. https://doi.org/10.3390/diagnostics13071277. ISSN 2075-4418.

175. Tian J, Wang Y, Chen Z, Luo X, Xu X. Diagnose like doctors: weakly supervised fine-
grained classification of breast cancer. ACM Trans Intell Syst Technol Feb 2023;14(2).
https://doi.org/10.1145/3572033. ISSN 2157-6904.

176. Wang Z, Saoud C, Wangsiricharoen S, James AW, Popel AS, Sulam J. Label cleaning
multiple instance learning: Refining coarse annotations on single whole-slide images.
IEEE Trans Med Imaging December 2022;41(12):3952–3968. https://doi.org/10.
1109/TMI.2022.3202759. ISSN 1558-254X.

177. Wang R, Gu Y, Yang J. Cancer metastasis fast location based on coarse-to-fine network.
2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML);
2022. p. 223–227. https://doi.org/10.1109/CACML55074.2022.00044.

178. Wu F, Liu P, Fu B, Ye F. Deepgcnmil: Multi-head attention guided multi-instance
learning approach for whole-slide images survival analysis using graph
convolutional networks. 2022 14th International Conference on Machine Learning
and Computing (ICMLC). ICMLC 2022. New York, NY, USA: Association for Com-
puting Machinery; 2022. p. 67–73. https://doi.org/10.1145/3529836.3529942.
ISBN 9781450395700.

179. Wu X, Shi Y, Liu H, Li A, Wang M. Learning comprehensive multimodal representation
for cancer survival prediction. Proceedings of the 2022 5th International Conference on
Machine Learning and Natural Language Processing. MLNLP ’22. New York, NY, USA:
Association for Computing Machinery; 2023. p. 332–336. https://doi.org/10.1145/
3578741.3578806. ISBN 9781450399067.

180. Zheng H, Zhou Y, Huang X. Spatiality sensitive learning for cancer metastasis detection
in whole-slide images. Mathematics 2022;10(15). https://doi.org/10.3390/
math10152657. ISSN 2227-7390.

181. Zheng H, Zhou Y, Huang X. Improving cancer metastasis detection via effective contras-
tive learning. Mathematics 2022;10(14). https://doi.org/10.3390/math10142404.
ISSN 2227-7390.

182. Schirris Y, Gavves E, Nederlof I, Horlings HM, Teuwen J. Deepsmile: contrastive self-su-
pervised pre-training benefits MSI and HRD classification directly from H&E whole-
slide images in colorectal and breast cancer. Med Image Anal 2022;79:102464.
https://doi.org/10.1016/j.media.2022.102464. ISSN 1361-8415. URL: https://www.
sciencedirect.com/science/article/pii/S1361841522001116.

183. Shen Y, Shen D, Ke J. Identify representative samples by conditional random field of
cancer histology images. IEEE Trans Med Imaging 2022;41(12):3835–3848. https://
doi.org/10.1109/TMI.2022.3198526.

184. Verdicchio M, Brancato V, Cavaliere C, Isgrò F, Salvatore M, Aiello M. A pathomic ap-
proach for tumor-infiltrating lymphocytes classification on breast cancer digital pathol-
ogy images. Heliyon March 2023;9(3):e14371. https://doi.org/10.1016/j.heliyon.
2023.e14371. ISSN 2405-8440.

185. Dehkharghanian T, Bidgoli AA, Riasatian A, et al. Biased data, biased AI: deep networks
predict the acquisition site of tcga images. Diag Pathol May 2023;18(1):67. https://doi.
org/10.1186/s13000-023-01355-3. ISSN 1746-1596.

186. Farahmand S, Fernandez AI, Ahmed FS, et al. Deep learning trained on hematoxylin and
eosin tumor region of interest predicts HER2 status and trastuzumab treatment response
in HER2+ breast cancer. Mod Pathol Jan 2022;35(1):44–51. https://doi.org/10.1038/
s41379-021-00911-w. ISSN 1530-0285.

187. Cooper LAD, Demicco EG, Saltz JH, Powell RT, Rao A, Lazar AJ. Pancancer insights
from the cancer genome atlas: the pathologist’s perspective. J Pathol 2018;244(5):
512–524. https://doi.org/10.1002/path.5028.

188. Dai B, Wu K, Wu T, et al. Faster-ppn: towards real-time semantic segmentation with
dual mutual learning for ultra-high resolution images. . Proceedings of the 29th ACM
International Conference on Multimedia. MM ’21. NewYork, NY, USA: Association for
Computing Machinery; 2021. p. 1957–1965. https://doi.org/10.1145/3474085.
3475352. ISBN 9781450386517.

189. Gu H, Huang J, Hung L, “Anthony” Chen X. Lessons learned from designing an ai-en-
abled diagnosis tool for pathologists. Proc ACM Hum Comput Interact Apr 2021;5
(CSCW1). https://doi.org/10.1145/3449084.

190. Hägele Miriam, Seegerer Philipp, Lapuschkin Sebastian, Bockmayr Michael, Samek
Wojciech, Klauschen Frederick, Müller Klaus-Robert, Binder Alexander. Resolving chal-
lenges in deep learning-based analyses of histopathological images using explanation
methods. Sci Rep 2020;10(1):6423. https://doi.org/10.1038/s41598-020-62724-2.
ISSN2045-2322. URL https://doi.org/10.1038/ s41598-020-62724-2.

191. Jansen C, Annuscheit J, Schilling B, et al. Curious containers: a framework for compu-
tational reproducibility in life sciences with support for deep learning applications. Fu-
ture Gen Comput Syst 2020;112:209–227. https://doi.org/10.1016/j.future.2020.05.
007. ISSN 0167-739X. URL: https://www.sciencedirect.com/science/article/pii/
S0167739X19318096.

192. Lee K, Lockhart JH, Xie M, et al. Deep learning of histopathology images at the single
cell level. Front Artif Intel 2021;4:754641. https://doi.org/10.3389/frai.2021.754641.

193. Li X, Li C, Rahaman MM, et al. A comprehensive review of computer-aided whole-slide
image analysis: from datasets to feature extraction, segmentation, classification and de-
tection approaches. Artif Intel Rev 2022;55(6):4809–4878. https://doi.org/10.1007/
s10462-021-10121-0. ISSN 1573-7462.

194. Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image anal-
ysis. Med Image Anal 2017;42:60–88. https://doi.org/10.1016/j.media.2017.07.005.
ISSN 1361-8415. URL: https://www.sciencedirect.com/science/article/pii/
S1361841517301135.

195. de Maturana EL, Pineda S, Brand A, Van Steen K, Malats N. Toward the integration of
omics data in epidemiological studies: still a “long and winding road”. Genet Epidemiol
2016;40(7):558–569. https://doi.org/10.1002/gepi.21992.

mailto:masoud.tafavvoghi@uit.no
mailto:masoud.tafavvoghi@uit.no
https://www.sciencedirect.com/science/article/pii/S2001037021005377
https://www.sciencedirect.com/science/article/pii/S2001037021005377
https://api.semanticscholar.org/CorpusID:145921037
https://api.semanticscholar.org/CorpusID:145921037
https://doi.org/10.1016/j.neucom.2021.08.039
https://doi.org/10.1016/j.neucom.2021.08.039
https://www.sciencedirect.com/science/article/pii/S0925231221012236
https://www.sciencedirect.com/science/article/pii/S0925231221012236
https://doi.org/10.1145/3373509.3373567
https://doi.org/10.1016/j.cmpb.2019.01.008
https://doi.org/10.1016/j.cmpb.2019.01.008
https://www.sciencedirect.com/science/article/pii/S0169260718312161
https://www.sciencedirect.com/science/article/pii/S0169260718312161
https://doi.org/10.1016/j.eswa.2021.115586
https://doi.org/10.1016/j.eswa.2021.115586
https://www.sciencedirect.com/science/article/pii/S095741742100988X
https://www.sciencedirect.com/science/article/pii/S095741742100988X
https://doi.org/10.3390/diagnostics13010126
https://doi.org/10.3390/diagnostics13010126
https://doi.org/10.1155/2022/2961610
https://doi.org/10.1155/2022/2961610
https://doi.org/10.1038/s41416-023-02262-6
https://doi.org/10.1016/j.media.2022.102580
https://doi.org/10.3390/cancers14092148
https://doi.org/10.1038/s41598-022-13541-2
https://doi.org/10.1038/s41698-023-00352-5
https://doi.org/10.1038/s41698-023-00352-5
https://doi.org/10.3390/bioengineering9060261
https://doi.org/10.3390/cancers14215424
https://doi.org/10.7717/peerj-cs.1196
https://doi.org/10.7717/peerj-cs.1196
https://doi.org/10.1016/j.compbiomed.2023.106883
https://www.sciencedirect.com/science/article/pii/S0010482523003487
https://www.sciencedirect.com/science/article/pii/S0010482523003487
https://doi.org/10.3390/math11010110
https://doi.org/10.3390/math11010110
https://www.mdpi.com/2227-7390/11/1/110
https://doi.org/10.1016/j.xcrm.2022.100872
https://doi.org/10.1016/j.compbiomed.2022.105569
https://doi.org/10.1016/j.compbiomed.2022.105569
https://www.sciencedirect.com/science/article/pii/S0010482522003614
https://www.sciencedirect.com/science/article/pii/S0010482522003614
https://doi.org/10.1016/j.media.2022.102486
https://doi.org/10.3390/cancers15092569
https://doi.org/10.3390/cancers15092569
https://doi.org/10.3390/s23031432
https://doi.org/10.1038/s41598-022-18647-1
https://doi.org/10.3390/diagnostics12061480
https://doi.org/10.3390/diagnostics12061480
https://doi.org/10.3390/diagnostics130712�77
https://doi.org/10.1145/3572033
https://doi.org/10.1109/TMI.2022.3202759
https://doi.org/10.1109/TMI.2022.3202759
https://doi.org/10.1109/CACML55074.2022.00044
https://doi.org/10.1145/3529836.3529942
https://doi.org/10.1145/3578741.3578806
https://doi.org/10.1145/3578741.3578806
https://doi.org/10.3390/math10152657
https://doi.org/10.3390/math10152657
https://doi.org/10.3390/math10142404
https://doi.org/10.1016/j.media.2022.102464
https://www.sciencedirect.com/science/article/pii/S1361841522001116
https://www.sciencedirect.com/science/article/pii/S1361841522001116
https://doi.org/10.1109/TMI.2022.3198526
https://doi.org/10.1109/TMI.2022.3198526
https://doi.org/10.1016/j.heliyon.2023.e14371
https://doi.org/10.1016/j.heliyon.2023.e14371
https://doi.org/10.1186/s13000-023-01355-3
https://doi.org/10.1186/s13000-023-01355-3
https://doi.org/10.1038/s41379-021-00911-w
https://doi.org/10.1038/s41379-021-00911-w
https://doi.org/10.1002/path.5028
https://doi.org/10.1145/3474085.3475352
https://doi.org/10.1145/3474085.3475352
https://doi.org/10.1145/3449084
https://doi.org/10.1038/s41598-020-62724-2
https://doi.org/10.1016/j.future.2020.05.007
https://doi.org/10.1016/j.future.2020.05.007
https://www.sciencedirect.com/science/article/pii/S0167739X19318096
https://www.sciencedirect.com/science/article/pii/S0167739X19318096
https://doi.org/10.3389/frai.2021.754641
https://doi.org/10.1007/s10462-021-10121-0
https://doi.org/10.1007/s10462-021-10121-0
https://doi.org/10.1016/j.media.2017.07.005
https://www.sciencedirect.com/science/article/pii/S1361841517301135
https://www.sciencedirect.com/science/article/pii/S1361841517301135
https://doi.org/10.1002/gepi.21992


M. Tafavvoghi et al. Journal of Pathology Informatics 15 (2024) 100363
196. Graziani M, Andrearczyk V, Marchand-Maillet S, Müller H. Concept attribution:
Explaining cnn decisions to physicians. Comput Biol Med 2020;123:103865. https://
doi.org/10.1016/j.compbiomed.2020.103865. ISSN 0010-4825. URL: https://www.
sciencedirect.com/science/article/pii/S0010482520302225.

197. Qaiser T, Mukherjee A, Chaitanya Reddy PB, et al. HER2 challenge contest: a de-
tailed assessment of automated HER2 scoring algorithms in whole slide images of
breast cancer tissues. Histopathology 2018;72(2):227–238. https://doi.org/10.
1111/his.13333.

198. Salvi M, Acharya UR, Molinari F, Meiburger KM. The impact of pre- and post-image pro-
cessing techniques on deep learning frameworks: a comprehensive review for digital pa-
thology image analysis. Comput Biol Med January 2021;128:104129. https://doi.org/
10.1016/j.compbiomed.2020.104129. ISSN 0010-4825.

199. Schneider L, Laiouar-Pedari S, Kuntz S, et al. Integration of deep learning-based image
analysis and genomic data in cancer pathology: a systematic review. Eur J Cancer
2022;160:80–91. https://doi.org/10.1016/j.ejca.2021.10.007. ISSN 0959-8049. URL:
https://www.sciencedirect.com/science/article/pii/S0959804921011606.

200. Shahid AH, Singh MP. Computational intelligence techniques for medical diagnosis and
prognosis: problems and current developments. Biocybernet Biomed Eng 2019;39(3):
638–672. https://doi.org/10.1016/j.bbe.2019.05.010. ISSN 0208-5216. URL: https://
www.sciencedirect.com/science/article/pii/S0208521619300452.

201. Sobhani F, Robinson R, Hamidinekoo A, Roxanis I, Somaiah N, Yuan Y. Artificial intel-
ligence and digital pathology: opportunities and implications for immuno-oncology.
Biochim Biophys Acta (BBA) Rev Cancer 2021;1875(2):188520. https://doi.org/10.
1016/j.bbcan.2021.188520. ISSN 0304-419X. URL: https://www.sciencedirect.com/
science/article/pii/S0304419X21000196.

202. Srinidhi CL, Ciga O, Martel AL. Deep neural network models for computational histopa-
thology: a survey. Med Image Anal 2021;67:101813. https://doi.org/10.1016/j.media.
2020.101813. ISSN 1361-8415. URL: https://www.sciencedirect.com/science/article/
pii/S1361841520301778.

203. Steiner DF, Chen P-HC, Mermel CH. Closing the translation gap: Ai applications in dig-
ital pathology. Biochim Biophys Acta (BBA) Rev Cancer 2021;1875(1):188452. https://
doi.org/10.1016/j.bbcan.2020.188452. ISSN 0304-419X. URL: https://www.
sciencedirect.com/science/article/pii/S0304419X20301712.

204. Tripathi S, Singh SK, Lee HK. An end-to-end breast tumour classification model using
context-based patch modelling – a bilstm approach for image classification. Comput
Med Imaging Graphics 2021;87:101838. https://doi.org/10.1016/j.compmedimag.
2020.101838. ISSN 0895-6111. URL: https://www.sciencedirect.com/science/article/
pii/S0895611120301336.
14
205. Caldonazzi N, Rizzo PC, Eccher A, et al. Value of artificial intelligence in evaluating
lymph node metastases. Cancers (Basel) Apr 2023;15(9):2491. https://doi.org/10.
3390/cancers15092491.

206. Couture HD. Deep learning-based prediction of molecular tumor biomarkers from H&E:
a practical review. J Personal Med Dec 2022;12(12):2022. https://doi.org/10.3390/
jpm12122022. ISSN 2075-4426.

207. Kim I, Kang K, Song Y, Kim T-J. Application of artificial intelligence in pathology:
Trends and challenges. Diagnostics (Basel) 2022;12(11):2794. https://doi.org/10.
3390/diagnostics12112794.

208. Wu Y, Cheng M, Huang S, et al. Recent advances of deep learning for computational his-
topathology: Principles and applications. Cancers February 2022;14(5):1199. https://
doi.org/10.3390/cancers14051199. ISSN 2072-6694.

209. Zhao Y, Zhang J, Hu D, Qu H, Tian Y, Cui X. Application of deep learning in histopathol-
ogy images of breast cancer: a review. Micromachines December 2022;13(12):2197.
https://doi.org/10.3390/mi13122197. ISSN 2072-666X.

210. Seiler R, Black PC, Thalmann G, Stenzl A, Todenhöfer T. Is the cancer genome atlas
(TCGA) bladder cancer cohort representative of invasive bladder cancer? Urol Oncol
Semin Orig Investig 2017;35(7):458.e1–458.e7. https://doi.org/10.1016/j.urolonc.
2017.01.024. ISSN 1078-1439. URL: https://www.sciencedirect.com/science/article/
pii/S1078143917300595.

211. Kim Jr I, Sarkar I. Racial representation disparity of population-level genomic sequenc-
ing efforts. Studies in Health Technology and Informatics, 264. ; 08, 2019. p. 974–978.
https://doi.org/10.3233/SHTI190369.

212. U.S. Cancer Statistics Breast Cancer Stat Bite. United States Cancer Statistics (USCS).
2020. URL: https://www.cdc.gov/cancer/uscs/about/stat-bites/stat-bite-breast.htm.
Accessed 25 July 2023. [Internet].

213. Cancer Registry of Norway. The Registries: Cancer Statistics. URL: https://www.
kreftregisteret.no/en/The-Registries/Cancer-Statistics/ 2020. Accessed 25 July 2023.
[Internet].

214. Ivanescu AE, Li P, George B, et al. The importance of prediction model validation and
assessment in obesity and nutrition research. Int J Obesity 2016;40(6):887–894.
https://doi.org/10.1038/ijo.2015.214. ISSN 1476-5497.

215. Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a
multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the
TRIPOD statement. BMJ 2015;350:g7594. https://doi.org/10.1136/bmj.g7594. ISSN
0959-8146.

https://doi.org/10.1016/j.compbiomed.2020.103865
https://doi.org/10.1016/j.compbiomed.2020.103865
https://www.sciencedirect.com/science/article/pii/S0010482520302225
https://www.sciencedirect.com/science/article/pii/S0010482520302225
https://doi.org/10.1111/his.13333
https://doi.org/10.1111/his.13333
https://doi.org/10.1016/j.compbiomed.2020.104129
https://doi.org/10.1016/j.compbiomed.2020.104129
https://doi.org/10.1016/j.ejca.2021.10.007
https://www.sciencedirect.com/science/article/pii/S0959804921011606
https://doi.org/10.1016/j.bbe.2019.05.010
https://www.sciencedirect.com/science/article/pii/S0208521619300452
https://www.sciencedirect.com/science/article/pii/S0208521619300452
https://doi.org/10.1016/j.bbcan.2021.188520
https://doi.org/10.1016/j.bbcan.2021.188520
https://www.sciencedirect.com/science/article/pii/S0304419X21000196
https://www.sciencedirect.com/science/article/pii/S0304419X21000196
https://doi.org/10.1016/j.media.2020.101813
https://doi.org/10.1016/j.media.2020.101813
https://www.sciencedirect.com/science/article/pii/S1361841520301778
https://www.sciencedirect.com/science/article/pii/S1361841520301778
https://doi.org/10.1016/j.bbcan.2020.188452
https://doi.org/10.1016/j.bbcan.2020.188452
https://www.sciencedirect.com/science/article/pii/S0304419X20301712
https://www.sciencedirect.com/science/article/pii/S0304419X20301712
https://doi.org/10.1016/j.compmedimag.2020.101838
https://doi.org/10.1016/j.compmedimag.2020.101838
https://www.sciencedirect.com/science/article/pii/S0895611120301336
https://www.sciencedirect.com/science/article/pii/S0895611120301336
https://doi.org/10.3390/cancers15092491
https://doi.org/10.3390/cancers15092491
https://doi.org/10.3390/jpm12122022
https://doi.org/10.3390/jpm12122022
https://doi.org/10.3390/diagnostics12112794
https://doi.org/10.3390/diagnostics12112794
https://doi.org/10.3390/cancers14051199
https://doi.org/10.3390/cancers14051199
https://doi.org/10.3390/mi13122197
https://doi.org/10.1016/j.urolonc.2017.01.024
https://doi.org/10.1016/j.urolonc.2017.01.024
https://www.sciencedirect.com/science/article/pii/S1078143917300595
https://www.sciencedirect.com/science/article/pii/S1078143917300595
https://doi.org/10.3233/SHTI190369
https://www.cdc.gov/cancer/uscs/about/stat-bites/stat-bite-breast.htm
https://www.kreftregisteret.no/en/The-Registries/Cancer-Statistics/
https://www.kreftregisteret.no/en/The-Registries/Cancer-Statistics/
https://doi.org/10.1038/ijo.2015.214
https://doi.org/10.1136/bmj.g7594

	Publicly available datasets of breast histopathology H&E whole-�slide images: A scoping review
	Introduction
	Methods
	Results
	Datasets description
	Datasets descriptive statistics

	Discussion
	Declaration of competing interest
	Acknowledgements
	Appendix A. Supplementary data
	References




