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Romsacin had a quick rise in luminescence in the four first dilutions (Fig. 10), 
corresponding to the dilutions used in the MIC assay for B. subtilis (data not shown). 
The rise in luminescence was followed by a drop, indicating cell death. There was a 
clear difference in luminescence when comparing romsacin with chlorhexidine, which 
is known for its membrane disruptive properties (25). Chlorhexidine seems to affect 
the membrane faster than romsacin, as the drop in luminescence after treatment with 
chlorhexidine is observed immediately. For romsacin, there is a slower diffusion of 
D-luciferin, and it does not kill all cells during the four initial minutes. However, after 

FIG 8 Scanning electron microcopy of (A) L. lactis IL1403, (B) S. aureus no. 1 (MRSA), (C) S. epidermidis no. 

6, (D) S. haemolyticus no. 1, and (E) B. subtilis 168. All cells were exposed to bacteriocin for 30 minutes. 

Treated L. lactis cells (70,000× magnification) had a striated appearance (white arrows). The untreated L. 

lactis control is shown with a 50,000× magnification, and the staphylococci and B. subtilis are shown with 

a 40,000× magnification.
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having completed all the 4-minute reads, we continued to monitor the luminescence 
for 10 hours to look at the long-term effect of romsacin (data not shown). At the 
start of the long-run experiment (within 1 hour after addition of romsacin), the relative 
luminescence units had dropped below 100 in the well with the most concentrated 
romsacin (1/20 dilution), indicating cell death.

DISCUSSION

We have identified a new bacteriocin, romsacin, produced by S. haemolyticus, with 
relatively broad antimicrobial activity. The activity was confirmed by heterologous 
expression of the bacteriocin gene cluster in a different host. Two-peptide lantibiotics 
have previously been described in staphylococci (26, 27), but we believe this is the 
first description of a two-peptide lantibiotic in S. haemolyticus. The bacteriocin romsacin 
is active against a broad range of Gram-positive bacteria, including the WHO priority 
pathogens MRSA and VRE. The pathogens on the WHO priority list have been reported 
as a global health threat where we urgently need new antimicrobial treatment options 
(6). Several reports describe bacteriocins effective against MRSA and VRE (7, 28–30). 
Romsacin belongs to the lanthipeptides. Some, but not all, bacteriocins within that 
group are effective against MRSA (7). As different clinical strains have different resistance 
profiles, it is important to map out several possible therapeutic alternatives.

CoNS is part of the microbiota of skin and mucous membranes of humans and 
animals, and production of bacteriocins by CoNS is well known. However, the biological 
role of bacteriocins in host colonizers is not known, but findings suggest that bacter­
iocins promote host colonization by eliminating competitors (31–33). Several staphylo­
coccal species produce bacteriocins, named staphylococcins, where the majority are 
classified as lantibiotics (34, 35). Six well-characterized bacteriocins have been described 
for S. epidermidis, and several staphylococcins have been shown to exert inhibitory 
activity against S. aureus and have a potential as treatment option to staphylococcal or 
other Gram-positive bacterial infections (34). Bacteriocin production by staphylococcal 
species inhabiting the human nose showed activity against several bacterial species 
in the nasal microbiota, such as Moraxella catarrhalis (36). A few publications describe 
bacteriocin production in S. haemolyticus from animal origin (7–9). One of the stud­
ies describes a S. haemolyticus bacteriocin with activity against a mastitis-related S. 
aureus strain (9). Romsacin is the first description of a bacteriocin from a commensal S. 
haemolyticus isolated from humans.

FIG 9 Growth curve 0–21 hours of S. aureus MRSA (no. 1) and S. haemolyticus (no. 1) untreated or treated with romsacin.
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Romsacin had no effect against E. coli, A. baumannii, or K. pneumoniae, as bacteriocins 
originating from Gram-positive bacteria are usually not effective against Gram-negative 
bacteria. However, some studies report that bacteriocins from Gram-positive bacteria can 
gain activity and act synergistically with other compounds known to inhibit growth or 
permeabilize the outer membrane of Gram-negative bacteria (37, 38). Nisin has been 
shown to be active against E. coli (39) and Pseudomonas aeruginosa when combined 
with outer membrane permeabilizer polymyxin B nonapeptide (PMBN) or metal ion 
chelator EDTA (40, 41). Similarly, the spectrum of activity of romsacin could potentially 
be expanded to include Gram-negative bacteria if used in combination with other 
compounds such as PMBN and EDTA. However, this remains to be investigated.

FIG 10 Membrane integrity assay with B. subtilis 168 carrying the pCSS962 plasmid. The bacteria were treated with either 

chlorhexidine or romsacin, and luminescence was measured for 4 minutes. Seven dilutions of the antimicrobial compound 

were used (1/20 to 1/1,280) in addition to water. Readings were made 0–4 minutes after addition of chlorhexidine or romsacin.
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Romsacin effectively eradicated the S. epidermidis, S. haemolyticus, MRSA, and 
VRE biofilms. Biofilm formation is a major virulence factor among staphylococci 
and enterococci, causing infections associated with foreign body surfaces, especially 
affecting patients with weakened immune systems (31, 32, 42–44). Microbial cells in 
biofilms are less susceptible to antibiotics than planktonic cells, caused by reduced 
metabolism and impaired diffusion/penetration of antibiotics (31, 43, 45, 46). Romsacin 
was shown to effectively disrupt both S. haemolyticus, S. epidermidis, MRSA, and VRE 
biofilms. However, fluorescent signals in treated samples of S. epidermidis, S. haemolyti­
cus, and E. faecium were low, indicating a loss of biofilm/bacteria following treatment. 
The loss of biofilm was not of the same extent in the romsacin-treated S. aureus sample, 
but the number of live cells was markedly reduced compared to the control. Bacteria 
that have formed biofilms often have 10 to 1,000 times higher tolerance to antibiotics 
compared to planktonic cells (39). The bacteriocin gallidermin produced by Staphylococ­
cus gallinarum, efficiently eradicated biofilms formed by S. epidermidis and S. aureus 
(47). Different bacteriocins have been shown to have various antibiofilm strategies, 
making them attractive candidates for biofilm eradication (48). As there are few effective 
treatment options against biofilms, new additions, such as romsacin, are needed.

Bacteriocins produced by staphylococci are commonly encoded on plasmids or other 
mobile genetic elements such as transposons but can also be chromosomally encoded 
(34). Lantibiotic gene clusters acquired by horizontal gene transfer have previously been 
described in S. haemolyticus strains originating from rice seeds (49). The prevalence of 
bacteriocin gene clusters on mobile genetic elements could suggest that they provide a 
benefit to their host. The romsacin gene cluster is located on a contig which has features 
indicating that it is part of a plasmid. Downstream of the romsacin gene cluster is a repA 
gene which initiates replication of plasmids. Also located in the same genomic region is a 
Tn552 DNA invertase gene and an IS6 family transposase, suggesting that the bacteriocin 
is likely part of a mobile genetic element.

The structure of romsacin was not determined experimentally with much certainty 
(by, e.g., MS/MS or crystal structure). However, lantibiotics that bind to lipid II contain 
a conserved lipid II binding motif GxxxTx(S/T)x(E/D)C (50). The (methyl)lanthionine 
ring structures form a defined binding pocket for lipid II and are, therefore, relatively 
predictable (51); the same motif is present in RomA1. This leaves few options for the 
remaining cysteines and serines/threonines (Ser/Thr). Although a varying number of 
Ser/Thr can remain unmodified in the final structure, the mass difference of 18 Da 
(corresponding to water) will correspond to the number of modified Ser/Thr. The 
β-peptide of two-peptide lantibiotics show much less homology to each other than 
the α-peptides, but many have a CPTxxCxxxC motif at the C-terminal end (52). Mutations 
introduced to alter the ring structures of the β-peptide of lacticin 3147 were inactive 
or not processed by the cognate LanM (53). This suggests that the ring structures of 
the β-peptides are also well conserved, despite much less being known about their 
role/function. By applying modifications consistent with lantibiotics to the two predicted 
lantibiotic precursors found in the genome, we obtained expected masses that almost 
exactly matched those obtained by MALDI-TOF MS. Taken together, we are confident the 
purified bacteriocin is derived from romA1 and romA2.

Most lantibiotics have been shown to bind the cell wall synthesis precursor molecule 
lipid II. Among the single-peptide lantibiotics, two different but overlapping modes of 
action have been described (24). The type-A(I) lantibiotics such as nisin first interact 
with lipid II, thereby disrupting cell wall synthesis, but will subsequently insert into the 
membrane and aggregate into a pore complex (24). Nisin exposure causes leakage of 
intracellular contents (54). Lantibiotics of type-A(II) and type-B have not been shown to 
form pores but kill target cells by inhibition of cell wall synthesis and likely additional 
unknown factors (24). Two-peptide lantibiotics are believed to use the dual mode 
of action only, where the α-peptide forms a complex with lipid II which recruits the 
β-peptide to form a pore (23). The propidium iodide pore formation assay has been 
used previously to examine the mode of action of bacteriocins, including two-peptide 
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lantibiotics (55, 56). The mode of action of the bacteriocin vagococcin T, with sequence 
homology to romsacin (Fig. 4), is by forming pores in the bacterial cell membrane (55). 
However, we were not able to measure any pore formation in L. lactis using this assay. 
It could be that romsacin forms pores too small for the passage of PI and/or DNA but 
still permits the diffusion of essential ions such as H+, K+, and PO4

3−, which leads to loss 
of turgor pressure. SEM micrographs of L. lactis showed cells of normal morphology, 
except all cells showed striations (lines) on the surface perpendicular with the septum 
that were not present in the control. The underlying peptidoglycan architecture of L. 
lactis is parallel to the septal plane, opposite of the striations (57). The striated appear­
ance is likely a consequence of cell wall inhibition; however, we have not been able 
to explain its cause or structure. SEM micrographs of S. aureus, S. epidermidis, and S. 
haemolyticus also showed cells with normal morphology. Increased incubation time 
could have given other results and should be tested in the future. For B. subtilis, massive 
cell disruption was observed, which correlates well with the membrane integrity assay, 
where the romsacin-treated B. subtilis reporter strain showed rapid membrane leakage. 
Growth curves of romsacin-treated S. haemolyticus and S. aureus cells showed a rapid 
antimicrobial effect within 2 hours. This indicates that the bacteriocin has a bacteriolytic 
effect (58, 59). After 2 hours, the S. aureus cells regain growth, which displays single-cell 
resistance against romsacin, which can be explained by a heterogenous population (58). 
The confocal images of the S. aureus biofilms also showed that not all cells in the biofilm 
were eradicated to the same extent as it was observed for S. haemolyticus and E. faecium, 
supporting the single-cell resistance observed also in the growth curve. Combination 
treatment using romsacin and a second antimicrobial agent should, therefore, be tested 
in the future.

Conclusion

In this study, we describe a new bacteriocin, romsacin, found in a commensal S. 
haemolyticus isolate. The bacteriocin has broad antimicrobial activity, both against 
planktonic cells and bacterial biofilms. Romsacin is a promising contributor to combat 
antibiotic-resistant pathogens. Further work is needed to establish the therapeutic 
potential of romsacin, both alone and in combinations with other compounds, and to 
determine its structure and mechanism of action.

MATERIALS AND METHODS

Detecting bacteriocin-producing S. haemolyticus

We screened overnight cultures from 174 S. haemolyticus isolates for bacteriocin 
inhibitory activity against three indicators: Lactococcus lactis IL1403 (60), a clinical S. 
haemolyticus 51-21 isolate (11, 19), and Staphylococcus aureus ATCC 25923. Colonies were 
picked from each of the 174 S. haemolyticus isolates from blood agar plates (Thermo 
Fisher Scientific, USA), then transferred to tryptic soy broth (TSB) (BD, USA/ Merck, 
Germany) and incubated with shaking at 37°C overnight.

We prepared 0.5 McFarland solutions in 0.85% saline of colonies from each of the 
indicator strains.

The suspensions were inoculated on Mueller Hinton (MH) agar (Oxoid, England) with 
a cotton swab and a rotator. Five microliters of overnight cultures, cell-free supernatant, 
or treated supernatant (heat, pH, protease) were spotted on the plates. Inhibition of 
bacterial growth was assessed visually after 20–24 hours. Three technical replicates were 
made of each plate. The genomes of S. haemolyticus isolates were submitted to the 
BAGEL4 webserver for identification of bacteriocin genes (20).

All except two S. haemolyticus isolates used in this study had been obtained and 
sequenced as part of previous studies (11, 19, 61). Of the isolates, 123 were of clinical 
origin, 46 were commensal isolates, and 4 were of veterinary origin. In addition, we 
tested a S. haemolyticus-type strain (CCUG 7323T) (62).
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Heterologous expression of bacteriocin gene cluster

The genes required for bacteriocin core peptide production and those for modification, 
transport, and maturation were cloned into plasmid pRMC2 (Addgene, #68940) (Fig. S1). 
This plasmid allows anhydrous tetracycline-inducible expression of cloned genes (22).

We amplified the genes Lan A1-M2 (excluding Lan E-F) using primer set 1 (Table 3), 
following a two-step PCR protocol due to the AT-rich nature of the bacteriocin gene 
cluster sequence (63). We amplified the pRMC2 plasmid by PCR using primer set 2 (see 
Table 3 below). Both PCRs used Q5 High-Fidelity 2× Master Mix [New England Biolabs 
(NEB), USA]. Amplicons from both PCRs were digested with DpnI (NEB) before being 
cleaned up using the E.Z.N.A. Cycle Pure Kit (Omega, USA). We assembled the amplicons 
using NEBuilder HiFi DNA Assembly Master Mix (NEB) to form plasmid pRMC2_Romsacin. 
The newly assembled plasmids were transformed into NEB 5-alpha Competent E. coli, 
which we spread out onto Luria-Bertani (LB) + 100 µg/mL ampicillin and incubated 
overnight at 37°C. Correct assembly of the bacteriocin cluster in the plasmid was 
confirmed by colony PCR using primer sets 3 and 4 and OneTaq 2× MasterMix (NEB). 
We isolated the plasmids from E. coli using the NucleoSpin Plasmid Kit (Macherey Nagel, 
Germany) and concentrated them using Pellet Paint (Merck, USA).

We selected S. aureus RN4220 as a host for heterologous gene expression due to the 
ease with which it can be transformed, compared with other staphylococci. To make 
competent RN4220, we grew an overnight culture in 5 mL of TSB (37°C, shaking at 
250 rpm) and diluted it with pre-warmed TSB to an optical density of 0.5 at 600 nm. 
The bacteria were returned to the incubator for 40 minutes before being harvested 
by centrifuging at 5,000 × g for 10 minutes. The pellet was washed in ice-cold sterile 
Milli-Q water before centrifuging at 5,000 × g. This step was repeated once. Following 
washing, we resuspended the cells in a 1:10 volume of ice-cold sterile 10% glycerol 
before centrifuging at 5,000 × g for 10 minutes. This step was repeated, but the volume 
of 10% glycerol was successively reduced each subsequent step to 1:25, 1:10, 1:100, and 
finally 1:200. Competent cells were aliquoted and frozen at −70°C until use.

Before electroporation, the competent cells were thawed on ice for 5 minutes and 
then on the bench for 5 minutes before being centrifuged at 5,000 × g for 1 minute. 
The supernatant was removed, and the cells were resuspended in sterile 10% glycerol 
with 0.5 M sucrose. We added 1 µg of plasmid to the cells and incubated them on the 
bench for 10 minutes. The cells were then transferred to a 1-mm electroporation cuvette 
(Biorad) and electroporated at 2.5 kV, 100 Ω, 25 µF (GenePulser Xcell, Biorad). We added 
950 µL of TSB + 0.5 M sucrose (filter sterilized) to the cells and transferred them to a clean 
Eppendorf tube before incubating them for 1 hour at 37°C with shaking at 250 rpm. After 
recovery, we plated out 100-µL aliquots onto TSB + 10 µg/mL chloramphenicol before 
overnight incubation at 37°C. Presence of the plasmid was confirmed by PCR.

To induce the expression of the gene cluster, we added anhydrous tetracycline 
(0–2 µg/mL) to the TSB growth media of overnight cultures of RN4220 carrying 
pRMC2_Romsacin. We spotted 5 µL of cell-free supernatant (treated at 100°C before 
use) on plates of L. lactis IL 1403 indicator strain, as described in the previous sec­
tion. As controls, we used wild-type RN4220 (no plasmid) and growth media with 

TABLE 3 Primer sets used for amplification of the bacteriocin cluster genes from S. haemolyticus 57-27 and plasmid pRMC2

Primer Set Sequence 5′−3′ Extension Product

pRMC2_A1_FW 1 gtaccgttaggaggggttatttatgagtaaattagaactacttaatgaa 65°C, 6:00 7,786 bp
pRMC2_A1_RV tgaattcgagctttatatgaataaactttctgagttggatgaaataag
pRMC2_A1_vec_FW 2 cccctcctaacgctaccatcatgcttattttaattatactctatcaatgatag 3:30 6,439 bp
pRMC2_A1_vec_RV tttattcatataaagctcgaattcactggc
M2_INS_RV 3 gatgagatggaaggagatattattaatggaagtatagg 1:00 785 bp
pRMC2_INS_FW gcctcttcgctattacgccag
M1_INS_FW 4 ccttcattatgactatcaccttggtttaattctatag 1:00 1,084 bp
pRMC2_A1_vec_RV ctgttaatcactttacttttatctaatctagacatcattaattc
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anhydrous tetracycline (no bacteria). We used the S. haemolyticus bacteriocin producer 
for comparison of the results.

Bacteriocin stability

We exposed aliquots of concentrated cell-free supernatants to various treatments prior 
to antimicrobial testing, performed as described above. The aliquots were exposed to 
4, 10, 20, 30, 40, 50, 80, 90, 100, or 121°C for 15 minutes. The pH was adjusted to 2.1, 
8.6, 9.3, 10.5, and 11.9 with sodium hydroxide (NaOH) or hydrochloric acid (HCl) and 
incubated at room temperature for 30 minutes. We used trypsin (200 µg/mL) to test 
protease sensitivity. Concentrated cell-free supernatant was treated with the enzyme for 
1.5 hour at 37°C.

Bacteriocin purification

Bacteriocin purification was performed similarly as described by Ovchinnikov et al. 
(56), with some modifications. One liter of BHI was inoculated with 2% (vol/vol) of an 
overnight culture of S. haemolyticus 57-27. The culture was incubated with vigorous 
shaking at 37°C for 24 hours, before cells were removed by centrifugation (10,000 × g, 
4°C, 35 minutes). Proteins were then precipitated by the addition of 373-g ammonium 
sulphate per liter supernatant and left at 4°C overnight. Precipitated proteins were 
collected by centrifugation (12,000 × g, 4°C, 45 minutes). The protein pellet was dissolved 
in 200-mL Milli-Q water (Invitrogen, USA) and filtered through a 0.2-µm filter (Millipore, 
USA). The crude concentrate was freeze dried until use.

Freeze-dried concentrate precipitated from 1-L culture was dissolved in 200-mL 
Milli-Q water. The pH was adjusted to 4.5 (±0.5) and then applied on a HiPrep 16/10 
SP-XL column (GE Healthcare, USA) equilibrated with Milli Q water (pH 4.5). The column 
was washed with 100 mL of 20 mM sodium phosphate buffer (pH 7) before elution of the 
bacteriocin with 100 mL of 0.5 M NaCl. The eluate was applied to a resource RPC column 
(1 mL) connected to an ÅKTA purifier system (GE Healthcare, USA). Water containing 0.1% 
trifluoroacetic acid (TFA) (Sigma-Aldrich, USA) was used as buffer A. We used a linear 
gradient of 2-propanol (Merck, USA) with 0.1% TFA (buffer B) for elution. The flow rate 
was 2–4 mL/min.

Antimicrobial activity in RPC purified fractions was determined quantitatively in 
96-well plates using L. lactis 1403 as indicator strain. Briefly, overnight culture of L. lactis 
1403 was diluted 50-fold in GM17 broth (Oxoid, England) in the wells of 96-well plates 
(Sarstedt, Germany) containing a serial dilution of the RPC fraction following incubation 
for 5–6 hours at 30°C. The growth was measured spectrophotometrically at 600 nm using 
SPECTROstarNano (BMG LABTECH, Germany). Purification was repeated so bacteriocin 
from 4 L of bacterial culture was purified all together. Fractions with bacteriocin activity 
were pooled.

MALDI-TOF mass spectrometry

MALDI-TOF MS was performed on an ultrafleXtreme mass spectrometer (Bruker 
Daltonics, Bremen, Germany) in reflectron mode. The instrument was calibrated with 
peptide calibration standard II (Bruker Daltonics), and positive ions in the range 1,000 to 
6,000 m/z were analyzed. The RPC purified fraction and matrix (HCCA; α-cyano-4-hydrox­
ycinnamic acid) were mixed in equal volumes and spotted on a Bruker MTP 384 steel 
target plate (Bruker Daltonics) for analysis.

Bacteriocin inhibition

The activity of the purified fractions was tested against WHO priority pathogens and a 
broad range of Gram-positive indicators with agar spot-on-lawn assay and planktonic 
growth inhibition (Table S1; Table 2).
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We used a similar method as described by Holo (64) for the spot-on-lawn assy. Briefly, 
we made a 50-fold dilution of overnight culture of indicator strains in 5-mL BHI soft agar 
and plated out as a lawn on BHI agar plates (BD, USA). Afterwards, we spotted 3 µL of 
the bacteriocin on the lawn and incubated at 30°C for 24 hours. Inhibition of bacterial 
growth appeared as clear zones.

We performed planktonic growth inhibition by following the colony suspension (3A) 
and broth microdilution for antimicrobial peptides (4E) methods in the Wiegand protocol 
(65). The starting concentration of the bacteriocin in the MIC assay was a 1/10 or 1/5 
dilution of the purified bacteriocin in water. We used 96-well plates (Falcon, USA) and 
MH broth (BD, USA) for the dilution series and performed three technical replicates. We 
report the dilution factor resulting in 50% inhibition of the indicator strain.

Biofilm confocal microscopy

We assessed the bacteriocin effect on biofilm-associated S. haemolyticus (nos. 1 and 6), 
S. epidermidis (nos. 4 and 6), MRSA (no. 1), and VRE (no. 2) cells by confocal microscopy. 
Biofilms were established in four-well cover glass slides (Thermo Fisher Scientific, USA). 
Overnight cultures were diluted 1:10 in TSB with 1% glucose, and 500 µL was transferred 
to each well in the glass slides. Staphylococcal biofilms grew 24 hours and E. faecium for 
48 hours at 37°C before the wells were washed twice with PBS (Sigma-Aldrich, USA). We 
dissolved and diluted the purified bacteriocin 1/2 in TSB with 1% glucose before addition 
to the biofilm. Five hundred microliters of bacteriocin or control (TSB with 1% glucose) 
were added to the wells and incubated for 24 hours at 37°C. Wells were carefully washed 
twice with PBS and stained for 20 minutes with LIVE/DEAD BacLight Bacterial Viability Kit 
(Thermo Fisher Scientific, US) (1-µL dye per milliliter PBS). Dye was removed, and 500-µL 
PBS was added to each well.

For confocal microscopy, we used a Zeiss LSM780 equipped with a 10×/0.45 M27 
Plan Apochromat objective with digital zoom and ZEN v.2.3 software (ZEISS, Germany). 
We used the SmartSetup function in ZEN to adjust the channels. Pictures are 212.55 × 
212.55 µm, with a pixel size of 255 nm. We took pictures from representative areas in the 
chamber wells. All photos are taken using the same settings.

Bacteriocin units

The appropriate BU concentrations for the propidium iodide pore formation assay and 
scanning electron microscopy were determined by a microtiter plate assay. Briefly, 
twofold dilutions of purified romsacin, micrococcin P1, and nisin A in M17 medium 
supplemented with 0.5% glucose (GM17) were prepared in the wells of a microtiter plate 
to a volume of 100 µL per well. Each well was inoculated with 100 µL of a 25-fold diluted 
overnight culture of L. lactis IL1403 (50-fold final dilution). A bacteriocin unit was defined 
as the amount of bacteriocin that inhibited the indicator strain by at least 50% in 200-µL 
culture compared to the turbidity of a positive control with no added antimicrobial. 
Turbidity was measured spectrophotometrically at 600  nm using a SPECTROStar Nano 
microplate reader (BMG LABTECH, Germany).

Propidium iodide pore formation assay

An overnight culture of the indicator strain L. lactis IL1403 was washed twice in PBS 
(5,000 × g, 5 minutes), and resuspended to an OD600 of 3. We used a black microtiter 
plate to dilute romsacin, nisin A, and micrococcin P1 to 50 BU/mL in 100 µL of PBS 
containing 40 µM propidium iodide (see section above for bacteriocin units; BU). We 
added 100 µL of indicator to a final OD of 1.5 to each well containing diluted antimicro­
bial substance. Fluorescence was kinetically measured every 10 minutes for 3 hours with 
excitation at 535/20 nm (515–555 nm) and emission at 630/40 nm (590–670 nm) using a 
Hidex Sense microplate reader (Hidex, Finland).
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