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A B S T R A C T

Maritime training can improve safety by equipping seafarers with the knowledge and skills to manage
risk. However, designing a quality training program can be challenging and stress can negatively impact
performance and safety. To address this, the present study aims to investigate the relationship between stress
and training outcomes, with the goal of developing more effective stress-based training systems. Two stressful
scenarios were designed with varying safety factors involved during navigation tasks. The study examines
the impact of stress levels on training outcomes and performance based on safety factors and the correlation
between self-assessed stress levels and objective stress levels obtained from biosignal data. The study was
conducted in a simulated bridge environment in Tromsø, Norway, and analyzed using statistical tests and
machine learning models. The findings of this study indicate that training scenarios can be classified by stress
levels, which were found to be associated with reduced visibility, equipment failures, and severe weather
conditions. Additionally, the study revealed that stress levels can negatively impact performance in maritime
navigation and sailing route reliability. These findings provide insights into how to improve the quality and
effectiveness of maritime training programs and ultimately enhance safety at sea.
1. Introduction

The growth of advanced technology on board ships in the maritime
industry has led to an improvement in safety measures over the years.
Despite these efforts, however, the rate of accidents has not seen a
significant decrease. A plethora of studies have indicated that human
factors are a major contributing factor to this phenomenon, with es-
timates of contributing to 75%–96% of the accidents (Hanzu-Pazara
et al., 2008; Islam et al., 2017; Akyuz and Celik, 2016).

Traditionally, risk assessment in the maritime industry has been
hindered by a lack of standardized accident reporting systems (Fan
et al., 2020; Hetherington et al., 2006). However, with the advent
of alerting and reporting systems for maritime incidents (The CHIRP
Charitable Trust, 2022), analysis of accident trends through statistical
methods has become more prevalent. Additionally, the use of virtual
maritime simulators to study human factors has gained popularity,
as they provide a comprehensive means of collecting information on
board.

Studies have also revealed that incompetent officers are often a
significant contributor to shipping accidents. This highlights the impor-
tance of high-quality maritime training in order for seafarers to acquire
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the knowledge and skills necessary to effectively manage risk and
ensure safety at sea (Basak, 2017). Simulator-based maritime training
is a widely used method, due to its ability to provide a controlled
environment, adjustable task difficulty levels, cost-effectiveness, and a
risk-free practice environment. Furthermore, virtual maritime simula-
tors are useful in designing exercises that allow for the comparison of
student performance and learning outcomes.

However, developing and evaluating a quality maritime training
program is challenging, as it involves a variety of factors such as student
skill levels, exercise design, and assessment of learning outcomes, etc.
In particular, assessing learning outcomes can be difficult, as traditional
methods such as written and oral exams may not accurately reflect a
student’s capacity to process information during a sea voyage (Orlandi
et al., 2014; Ghosh et al., 2014). Additionally, performance assessment
is often evaluated subjectively by instructors, which can be unreliable,
invalid, and unfair (Demirel and Bayer, 2016). Furthermore, stud-
ies have indicated that psychophysiological states such as cognitive
workload and stress levels are key factors affecting performance (Liu
et al., 2020). Therefore, monitoring stress levels and workload during
assessments is crucial.
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Abbreivations

The next list describes several symbols that are used within the
body of the document:
AR Augmented Reality
BVP Blood volume pulse
CPA Closest point of approach
DWT Discrete wavelet transforms
ECG Electrocardiogram
EEG Electroencephalography
EOG Electrooculogram
HOC Higher-Order Crossings
HR Heart Rate
HRV Heart Rate Variability
IBI Inter-beat interval
IMO International Maritime Organization
KNN K-nearest neighbors
LDA Linear discriminant analysis
ML Machine learning
NASA-TXL NASA Task Load Index
NAVAID Navigational aid
NM Nautical miles
PPG Photoplethysmography
SA Situation awareness
STAI State-Trait Anxiety Inventory
STCW International Convention on Standards of

Training Certification and Watchkeeping for
Seafarers

SVM Support vector machine
VAS Psychometric evaluation of a visual ana-

logue scale
VHF Very High Frequency
VR Virtual reality

Furthermore, human behavior and physiology adapt to stress in
uch a way that performance remains stable within a certain range
f stress levels, this is called the ‘‘comfort zone’’ where the level of
earning and response is optimal (Hancock, 1989). In the maritime do-
ain, stress not only affects the health and well-being of seafarers but

lso negatively impacts maritime navigation safety by distracting atten-
ion, memory retrieval, and decision-making (LeBlanc, 2009). In other
ords, high safety-related stress can impair safety performance by allo-

ating limited cognitive resources to different aspects of performance,
uch as work requirements or emergency tasks, leading to compro-
ised compliance and participation in safety performance (Wang et al.,
018b).

The above description illustrates the critical nature of stress as it
ffects safety and training outcomes in the maritime industry. However,
tress-based training systems have not been thoroughly studied, and
esearch on objective stress analysis in the maritime field is limited,
articularly in the measurement of biosignal-based stress levels. There
s a need for further research in this area to effectively assess and
ddress the impact of stress on maritime training and safety. In light
f this, the current study aims to examine the relationship between
tress and training outcomes and establish a foundation of data for
tress-based training systems. The study is designed to accomplish this
y: (1) Creating two different scenarios involving stress with varying
umbers of stressful events in the same navigation tasks; (2) Measuring
he relationship between self-reported stress levels and objective stress
evels measured from biosignal data; (3) Determining whether stress
evels are associated with safety factors in navigation tasks such as
2

visibility, equipment failure, and traffic situations; (4) Assessing learn-
ing outcomes and performance to determine the impact of stress on
training programs. Overall, this study aims to contribute to a better
understanding of the relationship between stress and training outcomes
in the maritime industry in order to improve safety and optimize
training programs.

The research paper is organized in the following manner: Section 2,
the methodology for evaluating the workload and stress levels in mar-
itime navigation is presented. Section 3, the details of the study’s
experiment are outlined, including both self-assessment and biosignal-
based assessment of the stress level and workload during maritime
tasks. The process of applying machine learning algorithms for biosig-
nal data analysis is also illustrated in this section. Section 4, the results
of the data analysis are presented and discussed. Section 5, the findings
from the biosignal data and simulation data are discussed in terms of
stress levels and training performance. Finally, the conclusions of the
study are presented and suggestions for future work are provided in
Section 6.

1.1. Related work

Research in the field of maritime safety and training has shown
that marine accidents are closely related to the untimely, negligent,
and incorrect decision-making of seafarers’ situation awareness (SA)
forecasting. Quality maritime training is essential in equipping seafar-
ers with the knowledge and skills to manage risks, solve problems,
and conduct operations safely and efficiently, thus ensuring the safety
of life at sea (Basak, 2017). With the advancement of technology,
maritime training has evolved from traditional simulator-based training
to training methods that incorporate the use of various advanced
technologies, such as augmented reality (AR) and virtual reality (VR)
technology, and multi-sensor frameworks as auxiliary equipment. These
technologies have been found to enhance the training of seafarers’ SA
and decision-making skills. For example, the use of VR glasses provides
a fully immersive virtual environment for training and makes the expe-
rience more engaging and enjoyable, like playing a game (Makransky
and Klingenberg, 2022). Due to their portability and ease of use, VR
technologies allow students to train at their convenience, increasing
opportunities for training and enhancing their SA and other skills.

Other training methods are used in conjunction with the simula-
tor, including the use of AR glasses in simulators, providing a semi-
immersive experience. Students can learn and practice related knowl-
edge by the application set up in the AR glasses, reducing the repetitive
work of the instructor (Jaeyong et al., 2016). Another pilot study in
maritime training employed a multi-sensor fusion framework, using the
training method of briefing/debriefing in the simulator, collecting au-
dio, video, eye-tracking data, etc., visualizing operational procedures,
thereby achieving the goal of improving the SA of seafarers (Sanfilippo,
2017).

In addition to training, the assessment of stress and workload states
is also a crucial indicator of maritime safety. Research has shown
that working at sea can be stressful and is a risk factor for maritime
safety. Assessing the stress and workload of seafarers and improving
the working environment at sea is vital for ensuring safety (Lazarus,
1990; Vlachos et al., 2022). In the past, research has predominantly
relied on subjective measurements, such as surveys and self-reported
measures, as stress is difficult to measure objectively (Jiang et al.,
2021). However, with the advancement of sensor and system tech-
nology, researchers have begun to use wearable sensors and biosignal
data to analyze stress levels in various fields. For example, the use of
the human voice to detect pilot stress and workload (Hagmüller et al.,
2006), and eye movements measured with an Electrooculogram (EOG)
to identify different emotional states (Wang et al., 2018a). The use of
an Electrocardiogram (ECG) to monitor stress while driving has been
found to prevent safety risks and traffic accidents caused by driving

fatigue (cheol Jeong et al., 2007).



Transportation Research Interdisciplinary Perspectives 24 (2024) 101047H. Xue et al.
Fig. 1. Conceptual model of a stress-based maritime training program.
In the field of maritime navigation, for the advantage of wearable
sensors that can continuously monitor the psychophysiological state
of the human body without interfering with the subject’s activities,
biosignal-based tools are increasingly being used. Pilot studies have
been conducted using Electroencephalography (EEG) data to identify
seafarers’ cognitive stress and workload during simulator exercises and
to recommend performance improvements (Liu et al., 2020). These
technologies, however, are complex, costly, and may not be practical
for use with large numbers of students. These shortcomings make
various training methods still in the pilot study stage and have not
been widely popularized. In light of these limitations, heart rate (HR)
and heart rate variability (HRV) have been identified as the most con-
venient, simple, and accurate indicators of stress emotion assessment
when compared to other methods. This is because the collection of
HRV and HR data only requires the subject to wear a device with
a photoplethysmography (PPG) sensor on the wrist, which is com-
monly available in smartwatches and wristbands. Additionally, it is
well established in the literature that stress is correlated with high
heart rate levels, hence HRV can be utilized to estimate stress levels
with a high level of accuracy. This has been demonstrated in various
studies that have focused on using HRV as the primary feature for stress
assessment (Taelman et al., 2009; Gevirtz, 2013; Munla et al., 2015;
Kim et al., 2018; Herbell and Zauszniewski, 2019).

Additionally, the use of machine learning (ML) algorithms in biosig-
nal data analysis have been found to significantly improve the accuracy
of stress level assessment. ML, which comprises a set of methods for
learning from data and uncovering patterns within it, can be used
to extract meaningful insights from physiological data (Xu and Saleh,
2021). However, it is essential to note that the accuracy of using
publicly available physiological datasets in maritime settings, which
are typically emotionally annotated in environments where users are
exposed to intense stressors, remains uncertain (Liapis et al., 2021).
This is due to the subjective nature of stress, which can vary greatly
across different settings. Therefore, the use of appropriate data and
proper methodology is crucial for ML-based stress assessment studies.
To the best of our knowledge, there have been few studies on the use
of biosignal data, specifically HR/HRV data, to assess stress levels and
evaluate performance in maritime training.

To establish a stress-related maritime training system, we aim to
investigate the following research hypotheses: (1) determine if biosig-
nal data is sufficient to be an objective tool to assess stress levels in
maritime training, (2) examine if the complexity of scenarios can be
classified based on biosignal data, and (3) evaluate how stress levels
affect training performance. The conceptual model illustrated in Fig. 1
demonstrates the relationship among safety factors and highlights the
connection between stress and maritime training programs. The results
of these analyses will be studied in the subsequent sections.
3

1.2. Objective and contributions

The objective of the study is to evaluate the effectiveness of using
biosignal data, specifically heart rate and heart rate variability, as an
objective tool for assessing stress levels in maritime training. The main
contributions of the study include the following:

1. Investigating the relationship between stress levels and perfor-
mance during maritime training through a systematic evaluation of
stress level analysis in simulator-based training.

2. Demonstrating the reliability of analyzing stress levels using
biosignals obtained from wearable sensors, providing a new tool for
assessing the reliability of maritime training, and laying the foundation
for a proposed stress-based training system.

3. Introducing a novel method for analyzing biosignal data, includ-
ing the use of preprocessing techniques and feature selection methods,
specifically the use of Higher-Order Crossings (HOC)-Based Features
extraction, which provides a good classification result on the biosignal
data.

4. Proposed a conceptual model that illustrates the relationship
among the safety factors and shows the connection between stress and
the maritime training program. This model can serve as a guide for
future research in the field of stress analysis and maritime training.

2. Methodology

2.1. Participants

A total of 23 nautical science students from UiT The Arctic Uni-
versity of Norway (UiT) voluntarily participated in the study. The
demographic characteristics of the participants include a mean age of
22.43 years (standard deviation = 2.35 years) and a gender distribution
of 7 females and 16 males. Prior to the study, all participants were
administered the Patient Health Questionnaire (PHQ-9) (Spitzer et al.,
1999; Manea et al., 2012; Löwe et al., 2004) for a screening of depres-
sion. The participants were randomly divided into three groups for the
sailing tasks, with 22 (mean age = 22.36 years, standard deviation =
2.38 years) valid data samples analyzed and included in the study. All
participants provided informed consent for their participation in the
trial.

2.2. Materials and apparatus

In order to investigate the relationship between the complexity of
maritime navigation training scenarios and the stress levels of par-
ticipants, two distinct levels of complexity were evaluated using a
simulated environment. The determination of specific event designs in
the comparative training scenarios and the selection of performance
metrics were informed by the teaching program in UiT, which is the
study plan based on the International Convention on Standards of
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Fig. 2. The planned sailing route Sandnessundet consists of five straight legs. Waypoint
5 is located at the midpoint of the Sandnessund Bridge. The map of the route includes
the placement of four navigational aids (NAVAIDs) which were distinguished by two
distinct colors.

Training, Certification and Watchkeeping for Seafarers (STCW Con-
vention) set by the International Maritime Organization (IMO) (IMO,
2018). The choice of a stressful scenario for maritime navigators was
made based on training expert recommendations within the teaching
program. The experiment was conducted on three different simulator
bridges, all of which were equipped with the K-sim Navigation software
from Kongsberg Digital and featured a 240◦ and 360◦ view. Each
simulator bridge was equipped with an independent instructor station,
enabling the simultaneous execution of three exercises. The vessel
model utilized in the study was the BULKC11 Hagland Saga, a small
bulk carrier with a length between perpendiculars of 85 m, and was
deemed appropriate for the tasks being evaluated. Additionally, all
participants were familiar with the vessel model as a result of their
prior navigational training.

The participants were randomly divided into three groups: a control
group (Group C), an experiment group 1 (Group E1), and an experiment
group 2 (Group E2). Group C performed the easy scenario twice, while
the experiment groups completed either an easy scenario followed by a
complex scenario (Group E1) or a complex scenario followed by an easy
scenario (Group E2), with a 10-minute break between the two sections.

Each participant wore a medical-grade wearable device, the Em-
patica E4 Wristband, to collect biosignal data. The E4 wristband is
equipped with a PPG sensor that measures blood volume pulse (BVP)
from which HR can be derived. Before the trial, participants were asked
to spend 10 min in a seated and relaxed position, and the resulting
biosignal data were collected as the baseline.

2.3. Scenario design

Sailing route. The experiment utilized the sailing route of Sandnessun-
det as the location for navigational training. Sandnessundet is a strait
located between Tromsøya and Kvaløya in the Tromsø municipality of
Troms in Norway, which spans approximately 14 km in length and
is traversed by the Sandnessund bridge, connecting the Kvaløysletta
district to the Tromsø city center, as described in Norgeskart (Norwe-
gian Mapping and Cadastre Authority, 2022). This route is commonly
used for navigational training for nautical students at UiT The Arctic
University of Norway. The route, as depicted in Fig. 2, starts in the
southern region of the strait and proceeds north, making a sharp turn
towards the northeast. It then passes under a tall, narrow bridge before
opening up until it reaches the end of Tromsøya. The participants will
encounter two fishing vessels and a tug during their navigation on this
route, as shown in Fig. 3.
4

Events in the sailing task. In this study, the maritime navigation training
scenarios were designed to have no current, tidal stream, or wind.
Two different levels of complexity were used, based on the number of
events that occurred during the sailing tasks. The control task scenario
was conducted under fair weather conditions with six events, while
the experimental task scenario was performed under snowy weather
conditions with an additional four events compared to the control
task scenario. Table 1 presents a comparison of the events in the two
different scenarios at the same time point. Other simulated variables,
such as location and traffic situation, were kept constant across the two
trials.

2.4. Learning objectives and performance criteria

The learning objectives of the control task and the experimental task
are identical, which include::

• Learning when and where to fix the position in the chart during
the sailing.

• Adhering to the planned route.
• Managing and maintaining a safe distance from other vessels

while navigating.
• Handling equipment malfunctions.

In order to evaluate the achievement of the learning objectives,
performance was evaluated using the following metrics:

• Number of position fixes in the chart.
• Deviation of the actual route from the planned route, with the

deviation score being calculated based on the distance from the
planned course using the assessment tool within the simulator.
Deviation also can be calculated mathematically as follow: The
distance between two points in geographic coordinates can be
calculated using a mathematical formula, Eq. (1) :

𝐷 = 𝑎𝑟𝑐𝑐𝑜𝑠[𝑠𝑖𝑛(𝐿𝑎𝑡𝐴) ∗ 𝑠𝑖𝑛(𝐿𝑎𝑡𝐵)

+ 𝑐𝑜𝑠(𝐿𝑎𝑡𝐴) ∗ 𝑐𝑜𝑠(𝐿𝑎𝑡𝐵) ∗ 𝑐𝑜𝑠(𝐿𝑜𝑛𝑔𝐴 − 𝐿𝑜𝑛𝑔𝐵)] ∗ 3440.1 ∗ 1852

(1)

where 𝐷 is the distance in meters, 𝐿𝑎𝑡𝐴 is the latitude of point A
expressed in radians, 𝐿𝑎𝑡𝐵 is the latitude of point B expressed in
radians, 𝐿𝑜𝑛𝑔𝐴 is the longitude of point A expressed in radians,
𝐿𝑜𝑛𝑔𝐵 is the longitude of point B expressed in radians, 3440.1 is
the radius of the earth in nautical miles (NM), and 1 NM is 1852
m.
The distance between the sailing point and the planned route
between two waypoints can be derived using Heron’s formula
(Nelsen, 2001).

• Score graded based on the closest point of approach (CPA). CPA
was calculated based on the speed and direction of the approach-
ing ship, as CPA is an essential factor of ship safety, particularly
in situations where the ship must avoid a collision. Sang et al.
(2016).

3. Experiment

In this study, a comprehensive analysis of both questionnaire data
related to stress and workload assessment, as well as biosignal data,
is conducted to investigate the classification of complexity of mar-
itime navigation training scenarios and the associated stress levels.
As illustrated in Fig. 4, the analysis includes data pre-processing and
the application of machine learning (ML) algorithms. To assess the
subjective stress levels of the participants, several validated question-
naires were utilized. The results of these questionnaires were analyzed
using statistical tests to determine the significance of the differences
in stress levels between the control and experimental scenarios. The
results indicate a significant difference in stress levels between the two
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Fig. 3. An illustration of the sailing route of one of the participants, highlighting the geographical locations of the traffic situations.
Fig. 4. Mixed-methods approach for stress level analysis in maritime training.
Table 1
Events design.

Event time Event in control task scenario Event in experiment task scenario

0.5 min None. Steering pump failure.

2 min Weather forecast VHF. Weather forecast VHF.

4 min None. Echo sounder failure.

After 6.5 min Meeting fishing vessel. Meeting fishing vessel.

9 min None. Gyro failure.

After 13 min Meeting fishing vessel. Meeting fishing vessel.

Add the snow intensive 100% at 16 min,
and then change the snow intensive back to 50%16 min to 18.5 min None.
at 18 min. Stop the snow after 18.5 min.

After 20 min Passing narrow bridge. Passing narrow bridge.

22 min GPS failure. GPS failure.

Reduce visibility (fog intensive 100%),After 22 min Meeting tug. and meeting tug.

Total: 6 10
5
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Fig. 5. Sample RR intervals with activity windows recorded from a participant during the sailing task are shown. Note that the gaps between windows represent the time between
activities.
scenarios. Based on these findings, it is hypothesized that the biosignal
data collected during the control and experimental scenarios can be
classified. To verify this hypothesis, features were extracted from the
biosignal data and analyzed using various ML algorithms.

3.1. Self-assessment of the stress level and workload

Psychometric evaluation of a visual analogue scale (VAS) for the assessment
of stress. VAS was administered to each participant following the
completion of each scenario. The VAS scale ranges from 0 to 10, with
10 indicating the highest level of stress. Participants were instructed
to mark their perceived stress level on the scale immediately after
completing each sailing scenario. The use of a VAS for the assessment of
stress has been previously validated in clinical research (Lesage et al.,
2012).

State-trait anxiety inventory (stai) form y-1 (Spielberger, 1983). STAI Y-
1 form is a widely used self-assessment tool for evaluating state and
trait anxiety in individuals. The questionnaire, which consists of 20
questions, is designed to measure the participant’s current feelings and
emotions (Fountoulakis et al., 2006). The scores obtained from the
STAI Y-1 form are commonly classified into three categories: ‘‘no or
low anxiety’’ (20–37), ‘‘moderate anxiety’’ (38–44), and ‘‘high anxiety’’
(45–80). These ranges are used as a benchmark to classify the level of
anxiety experienced by the participants.

NASA task load index (NASA-TLX). NASA-TLX is a widely recognized
assessment tool that is used to evaluate the perceived workload of
participants in a given task (Sharek, 2011; Hart and Staveland, 1988).
NASA-TLX consists of six categories that are rated by participants
following the completion of each sailing scenario. These categories
include Mental Demand, Physical Demand, Temporal Demand, Perfor-
mance, Effort, and Frustration Level. The ratings are then converted to
a ten-point scale score, with 0 representing low levels of workload and
10 representing high levels of workload (Xue et al., 2021).

3.2. Biosignal data pre-processing

In this study, data on the inter-beat interval (IBI) was extracted
from a photoplethysmogram (PPG) sensor embedded in an Empatica
E4 wristband. The IBI also referred to as the RR interval, is the time
interval between individual heartbeats. Data on incorrect peaks were
removed prior to analysis. A sample of RR intervals for a participant
is illustrated in Fig. 5. The instantaneous heart rate, measured in beats
per minute (bpm), was derived from the IBI values using the following
formula (Eq. (2)) :

𝐻𝑅[𝑏𝑝𝑚] = 60∕𝐼𝐵𝐼 (2)

In the analysis, HR data were analyzed from the collected IBI data.
The frequency of HR data is 1 Hz. The average HR during the relaxation
period was calculated for each group as the baseline. The cleaned HR
data of each participant were subtracted from the group’s baseline,
resulting in the HR difference (HRD) data. Additionally, two data
preparation methods were employed:

• Window mean data (𝐷𝑊 ): The mean of the window data was
calculated for each HRD data of each participant using a
window size of every 30 s and a step size of every 15 s.

• Event extracted data (𝐷𝐸): The HRD data were extracted after
one minute of every event.
6

3.3. Classification features extraction

Three types of features are extracted:

(1) Statistical-Based Features.
In this study, statistical-based features were created in two types
(Eq. (3)). The first one was the mean of the HRD of each partic-
ipant in each task. The second one was the standard deviation.

𝐹𝑆 = [𝜇𝑋𝑖
, 𝜎𝑋𝑖

], (𝑖 = 1, 2,… , 𝑙) (3)

where 𝐹𝑆 is the statistical-based feature vector, 𝜇𝑋𝑖
is the mean

of the data series, 𝜎𝑋𝑖
is the standard deviation of the data series,

𝑋𝑖 is the HRD of each participant in each task, 𝑙 is the length of
the 𝑋𝑖.

(2) Wavelet-Based Features.
In this study, wavelet-based features were extracted based on the
coefficients of the discrete wavelet transforms(DWT), specifically
the Daubechies wavelets (with a number of vanishing moments
of 4) (Daubechies, 1992; Akansu et al., 2001). The wavelet
coefficients were computed for specified scales (Mallat, 1999),
in this case, 2, 4, and 8, in order to obtain three levels of
scales. The resulting matrix of the wavelet coefficients had three
rows and columns equal to the length of the HRD data for each
participant in each task. Subsequently, wavelet-based features
were computed using two different methods, as outlined in
Eq. (4). The first method was the sum of the square of the
wavelet coefficients, while the second method was the sum of the
product of the square of the wavelet coefficient and the natural
logarithm of the square of the wavelet coefficient.

𝐹𝑊 = [𝐹𝑊1
, 𝐹𝑊2

]

𝐹𝑊1
= [

𝑙
∑

𝑖=1
𝑌 2
𝐿1
,

𝑙
∑

𝑖=1
𝑌 2
𝐿2
,

𝑙
∑

𝑖=1
𝑌 2
𝐿3
]

𝐹𝑊2
= [

𝑙
∑

𝑖=1
(𝑌 2

𝐿1
∗ 𝑙𝑛(𝑌 2

𝐿1
)),

𝑙
∑

𝑖=1
(𝑌 2

𝐿2
∗ 𝑙𝑛(𝑌 2

𝐿2
)),

𝑙
∑

𝑖=1
(𝑌 2

𝐿3
∗ 𝑙𝑛(𝑌 2

𝐿3
))]

(4)

where 𝐹𝑊 is the wavelet-based feature, 𝐹𝑊1
and 𝐹𝑊2

are the
two different ways of computing, 𝑌 is the Daubechies wavelet
coefficient in three levels 𝐿1, 𝐿2, and 𝐿3, and 𝑙 is the length of
the prepared data.

(3) Higher-Order Crossings (HOC)-Based Features.
Higher-Order Crossings (HOC)-based features, also known as
zero-crossing-based features, are a set of features that are ex-
tracted from the analysis of the patterns of zero-crossings in
a signal. Zero-crossing, a commonly used concept in signal
processing, refers to the point at which the signal changes from
positive to negative or vice versa (Dickstein et al., 1991). In this
study, the HOC features were extracted in the following steps:

• Computing the difference between adjacent elements in
data series in different orders. The 𝑘th order difference is
(see Eq. (5) (Petrantonakis and Hadjileontiadis, 2009)):

• From ▿𝑘−1𝑍𝑡, a binary process 𝑋(𝑘)
𝑡 was defined in Eq. (6)

(Kedem, 1987; Petrantonakis and Hadjileontiadis, 2009;
Kedem and Yakowitz, 1994) :
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Fig. 6. Graphical comparison of HOC features from the same participant doing a
different level of the task.

• The count of the symbol changes from 𝑋(𝑘)
𝑡 , 𝐷𝑘, was

calculated in Eq. (7) (Petrantonakis and Hadjileontiadis,
2009; Kedem, 1987; Xue et al., 2021):

▿𝑘−1𝑍𝑡 =
𝑘
∑

𝑖=1
𝐶𝑘−1
𝑖−1 (−1)

𝑖−1𝑍𝑡+1−𝑖

𝑤𝑖𝑡ℎ 𝐶𝑘−1
𝑖−1 =

(𝑘 − 1)!
(𝑖 − 1)!(𝑘 − 𝑖)!

(5)

where 𝑘 = 1, 2,…, and ▿0 is the zero-mean data series we
computed before.

𝑋(𝑘)
𝑡 =

{

1, ▿𝑘−1𝑍𝑡 ≥ 0
0, ▿𝑘−1𝑍𝑡 < 0

(6)

where 𝑘 = 1, 2,….

𝐷𝑘 =
𝑁
∑

𝑡=2
[𝑋(𝑘)

𝑡 −𝑋(𝑘)
𝑡−1]

2 (7)

where 𝐷𝑘 is the count of symbol changes in 𝑘th order.
Above all, the extraction of HOC-based features from the biosig-
nal data was represented by a vector consisting of the number
of axis crossings in a zero-mean data series outlined in Eq. (8).
The resulting HOC-based features were found to be beneficial in
improving the performance of the machine learning (ML) models
used in the study, providing useful insights and better accuracy
in identifying and classifying biosignals. As illustrated in Fig. 6,
the number of crossing with the order of derivative varies for
the two HR signals from the same participant performing tasks
of different levels.

𝐹𝐻𝑂𝐶 = [𝐷1, 𝐷2,… , 𝐷𝐿], (1 < 𝐿 < 𝐽 ) (8)

where 𝐹𝐻𝑂𝐶 is the HOC features, 𝐽 denotes the maximum order
of the estimated HOC and 𝐿 is the HOC order used in this
study. 𝐷1 denotes the number of axis crossing in the zero-mean
data series, 𝐷2 denotes the number of axis crossing in the first
difference of the series, 𝐷3 denotes the number of axis crossing
in the second series, and so on.

3.4. Machine learning (ML) algorithms

Following ML algorithms are used to be compared in the study
(see Table 2). The classification models and their main parameters are
resented in the table.
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Table 2
A summary of classification models’ parameters.

Classification model Main parameters

SVM Kernel function: Linear.
KNN Using 6 nearest neighbor(s) for classification.
Naive Bayes Use a kernel estimator for numeric attributes.
LDA Multivariate Gaussian for each class, ridge 10−6.
Logistic Regression With ridge parameter of 10−8 coefficients.

3.5. K folds cross-validation and ML performance measure

In this study, in order to ensure that every sample is included in
both the training and testing sets, a commonly used machine learning
validation method, K-folds cross-validation, was employed. Ten folds
were selected as a standard utilization.

In the context of ML classification problems, precision and re-
call metrics were employed as performance measures in addition to
classification accuracy. This is because when the class of samples is
imbalanced, the large number of examples from the majority class can
overwhelm the number of examples in the minority class, resulting
in unskilled models achieving high accuracy scores. Precision and
recall metrics include precision, recall, and F-Score. Precision evaluates
the fraction of correctly classified instances among those classified as
positive (Fernández et al., 2018). Recall is typically used to measure
the coverage of the minority class (He and Ma, 2013). The F-Score
weights precision and recall equally (Fernández et al., 2018). The
following equations, (9), (10), and (11), provide the definitions for
these measures.

𝑃 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(9)

𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(10)

𝐹 -𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃 ∗ 𝑅
𝑃 + 𝑅

(11)

where P denotes precision, R to recall, TP to True Positives, FP to False
Positives, and FN to False Negatives. TP and FP belong to Positive
Prediction, and FN belongs to Negative Prediction.

4. Results

4.1. Self-assessment of the stress level results

The present study aimed to investigate the relationship between
self-assessment stress levels and training performance in the context
of maritime navigation. To do so, several questionnaires were used to
measure the stress levels and workload of participants during training
sessions in both control and experimental scenarios. Results were ana-
lyzed using a combination of statistical methods, including the Kruskal–
Wallis H test, Spearman rank correlation coefficient, and Welch Two
Sample t-test.

(1) Kruskal–Wallis H test.
The present study utilized the Kruskal–Wallis H test to determine
whether the medians of ratings from the three groups (C, E1,
and E2) were different. The Kruskal–Wallis H test (also as known
as ‘‘one-way ANOVA on ranks’’) is a rank-based non-parametric
statistical test that can be used to determine if there are statisti-
cally significant differences between two or more independent
groups on a continuous or ordinal dependent variable (Anon,
1953; Glen, 2022). This test was applied to the data obtained
from the three questionnaires that were used to assess the stress
levels and workload of the participants in each group.
The results of the Kruskal–Wallis H test were visualized in Fig. 7
and are presented in Table 3. The test statistic was calculated
using Eq. (12) (Hollander and Wolfe, 1973) and the degrees of
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Fig. 7. Visualization of the results of the questionnaires from each group.

freedom were determined using Eq. (13). The corresponding 𝑝-
value was calculated using the chi-square distribution with 2
degrees of freedom.
The results of the Kruskal–Wallis H test showed that there was a
statistically significant difference in stress levels and workload
between the three groups in the three questionnaires. These
findings indicate that the experimental scenarios had a relatively
strong effect on the stress levels and workload of the participants
and support the use of the Kruskal–Wallis H test as a tool
for analyzing the data obtained from the questionnaires in this
study.

𝐻 = 12
𝑁(𝑁 + 1)

𝑘
∑

𝑖=1
𝑛𝑖(𝑅𝑖 − 𝑅)2 (12)

where 𝐻 is the test statistic, 𝑁 = 44 is the total data sample size
(three groups and rated for two different level tasks) for each
questionnaire, 𝑘 = 3 is the number of groups we are comparing,
𝑛𝑖 is the sample size for group 𝑖 (𝑛𝐶 = 14, 𝑛𝐸1 = 14, 𝑛𝐸2 = 16), 𝑅𝑖
is the average of the ranks in a group 𝑖, 𝑅 is the average of all
the ranks among all samples.

𝑑𝑓 = 𝑘 − 1 = 2 (13)

where 𝑑𝑓 is degrees of freedom, and 𝑘 = 3 is the number of
groups we are comparing.

(2) Spearman rank correlation coefficient.
The relationship between the performance of participants and
their perceived workload was also of interest in this study.
The Spearman rank correlation coefficient (also known as the
Spearman rho) was employed to assess the association between
the two variables. The results indicated that there was a mod-
erate and statistically significant association between the work-
load rating given by the participants and their scores on the
performance assessment. Specifically, the Spearman correlation
coefficient (rho) was 𝜌 = −0.3171226, with a 𝑝-value of 0.03595.
This suggests that as the perceived workload of the participants
increased, their performance scores decreased, and vice versa.

(3) Welch Two Sample t-test.
A question of interest in this study was the self-evaluated stress
levels of participants during both the sailing control scenario and
the experimental scenario. The results of this investigation are
presented in Figs. 8 and 9. Fig. 8 illustrates the results from the
three questionnaires as grouped by participant groups (C, E1,
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and E2) respectively. The results, presented in Figs. 8, indicate
Table 3
Questionnaire statistical results, Kruskal–Wallis H test results.

Questionnaire H statistic p-value Effect size Conclusion

VAS 8.0353 0.01800 0.1869
(Relatively strong)

Statistically significant

STAI Form Y-1 8.0894 0.01752 0.1881
(Relatively strong)

Statistically significant

NASA-TLX 7.3748 0.02504 0.1715
(Relatively strong)

Statistically significant

that participants reported higher levels of stress as measured
by the Visual Analog Scale (VAS) and NASA-Task Load Index
(NASA-TLX) during the experimental scenario compared to the
control scenario. Scores on the State-Trait Anxiety Inventory
Form Y-1 (STAI-Y1) were found to be similar across both sce-
narios. Subsequently, the questionnaire results from participants
who sailed in both the control and experimental scenarios were
analyzed. Fig. 9 compares the results of the questionnaires,
as grouped by E1 and E2, respectively. The results, presented
in Fig. 9, indicate that participants in both groups E1 and
E2 reported higher levels of stress in the VAS and NASA-TLX
questionnaires during the experimental scenario compared to
the control scenario. However, the results for the STAI-Y1 ques-
tionnaire revealed a different pattern, with group E1 reporting
higher scores during the experimental scenario and group E2
reporting lower scores.
To further investigate these findings, a Welch Two Sample t-test
was conducted on the data, with a 95% confidence interval (CI)
for the mean difference. The Welch t-test is a parametric test that
assumes a normal distribution of data, and thus, a normality test
(Shapiro–Wilk) was performed to ensure that the assumptions
of the test were met. In this study, the transformation method
of the square root was used for moderate positive skew (see
Eq. (14)). The results of the t-test, presented in Table 4, indicate
that there was a statistically significant difference in stress levels
as measured by the VAS between the control and experimental
scenarios, with participants reporting higher levels of stress in
the experimental scenario. No significant differences were found
for STAI-Y1, and there was a statistically significant difference
in perceived workload as measured by NASA-TLX between the
control and experimental scenarios, with participants reporting
a higher workload in the experimental scenario. Cohen’s d was
also calculated to measure the effect size, and it was found to be
a large effect on VAS and NASA-TLX while small on STAI-Y1.

𝑆𝑛𝑜𝑟𝑚 =
√

𝑆 (14)

where 𝑆 is the data sample (scores of VAS of doing control task),
𝑆𝑛𝑜𝑟𝑚 is the normally distributed data sample.

4.2. Results of the objective assessment

In this study, the stress level of the participants was objectively
assessed by analyzing HR data obtained from IBI data collected via
wearable sensors. Fig. 10 illustrates that the range of HR values for
participants in the control scenario is generally smaller than that in the
experimental scenario. However, it is difficult to discern a significant
difference in the average HR between the two scenarios. To address
this, ML algorithms were employed to classify HR data from the two
different scenarios. Five different ML algorithms were selected and their
results were compared using three different methods of pre-processing
the HR data. The results, as shown in Fig. 11, indicated that when
using the event extraction method, all five ML algorithms achieved high
accuracy. Conversely, when using the window mean data or raw data
directly, the accuracy was found to be relatively low, as detailed in
Table 5.
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Fig. 8. Visualization of the results of the questionnaires from two different levels of scenarios.
Fig. 9. Comparison of the questionnaire results from two different levels of the scenario by groups E1 and E2 (E1 and E2 have different orders of sailing the control scenario and
experimental scenario).
Table 4
Welch t-test results of the questionnaires.

Questionnaires Shapiro test Welch Two Sample t-test Effect size

normality
(𝑝-value)

Mean SD df 𝑡-statistic p-value 95% CI Cohen’s ds

C.Scenario 0.4548* 1.9069 1.9840 15.13 −4.2886 0.00063 −4.4993 −1.5133 1.0179VAS E.Scenario 0.3376 4.1800 2.6622 (large)

C.Scenario 0.2674 46.3793 4.0037 38.101 1.3969 0.1705 −0.6493 3.5413 0.3968STAI Form Y-1 E.Scenario 0.5404 44.9333 2.7894 (small)

C.Scenario 0.4342 19.9862 8.5724 29.945 −3.5714 0.0012 −14.7398 −4.0144 1.1145NASA-TLX E.Scenario 0.5140 29.3633 8.0871 (large)

* The star means the value was calculated after transforming the data to normal distribution.
Table 5
Detailed accuracy by the recall, precision, and F-Score for biosignal data classification in different types of data pre-processing.

Classification model Recall Precision F-Score

D𝑅 D𝑊 D𝐸 D𝑅 D𝑊 D𝐸 D𝑅 D𝑊 D𝐸

SVM 0.705 0.705 1 0.796 0.796 1 0.619 0.619 1
KNN 0.614 0.636 1 0.424 0.429 1 0.501 0.513 1
Naive Bayes 0.636 0.682 0.977 0.576 0.677 0.979 0.572 0.603 0.977
LDA 0.545 0.636 1 0.588 0.662 1 0.557 0.644 1
Logistic Regression 0.591 0.591 1 0.591 0.578 1 0.591 0.583 1
9
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Table 6
The comparison of the scores from sailing in different scenarios based on the proposed criteria.

Criteria Positioning (3) Deviation (3) TC 1 (3) TC 2 (3) Scores in total (12)

Control scenario 0.86 2.71 2.50 1.79 7.86
Experimental scenario 0.25 2.43 2.03 2.03 6.75
Table 7
Summary of findings.

Hypothesis
number

Description Accepted/
Rejected

H1 The biosignal data is sufficient to be an objective
tool to assess stress levels in maritime training.

Accepted

H2 The complexity of the scenarios can be classified
based on the biosignal data.

Accepted

H2.1 The more events in the scenario, the more stress
the seafarers will get, especially an event on top of
another event at the same time.

Accepted

H2.2 Abysmal visibility and complex traffic situations
cause high-stress levels.

Accepted

H3 Stress levels affect training performance. Accepted

4.3. Results of the performance

In this study, the performance of the participants was evaluated
based on a set of established criteria. The criteria used to assess perfor-
mance included the number of times participants fixed their position
during the voyage, the deviation from the planned route, and the
participant’s ability to maintain safe clearance when encountering two
fishing vessels. Each criterion was scored on a scale from 0 to 3, with
higher scores indicating better performance. For example, a score of 3
was awarded for fixing a position more than 3 times, while a score of 0
was given for fixing a position less than 3 times. Similarly, a maximum
score of 3 was awarded for deviations from the planned route less than
180 m and a minimum score of 0 for deviations greater than 1000 m.
When encountering fishing vessels, a maximum score of 3 was given
for CPA greater than one nautical mile (nm), and a minimum score
of 0 for CPA less than 0.5 nm. The total maximum score was 12. The
results, presented in Table 6, indicate that participants tended to fix
their position more frequently in the control scenario and maintained
closer proximity to the planned route and better traffic clearance
when encountering fishing vessels. A Permutation Test was utilized to
examine the mean disparity in total scores between the control and
experimental scenarios. The observed mean difference was 1.11. Upon
conducting 1000 permutations, the calculated 𝑝-value was 0.07 at a
significance level of 0.1. This signifies a notable divergence in overall
performance across the scenarios, prompting the rejection of the null
hypothesis. These results suggest an evident performance advantage for
participants in the control scenario. Due to the small sample size in our
experiment, wider statistical tests may not be relevant or useful.

In addition to the performance criteria, an examination of the devi-
ation from the planned route was conducted. The result, as illustrated
in Fig. 12, indicates that while participants generally adhered to the
planned route in the initial stages, deviation increased as they ap-
proached the midpoint of the route. A two-sample t-test was performed
to compare the deviation in the control scenario and experimental
scenario. The results reveal a statistically significant difference in a
deviation between the control scenario (geometric mean M = 39.34, SD
= 60.76) and experimental scenario (geometric mean M = 43.21, SD =
70.25); t(41431) = 8.2681, p <.001. Furthermore, as shown in Fig. 13,
the majority of deviation in the control scenario remained within 300
meters from the planned route, with the majority of instances between
0 and 200 m away. Conversely, deviation in the experimental scenario
was primarily greater than 200 m. Additionally, the results suggest that
participants in the experimental scenario were able to return to the
planned route more swiftly, whereas participants in the control scenario
took more time to do so.
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Fig. 10. Maximum and minimum HR of participants in the control scenario and
experimental scenario. The dashed lines represent the mean HR.

5. Discussion

In this study, the impact of stress levels on simulator-based maritime
training was investigated through the analysis of biosignal data. The
performance of participants was measured objectively through the
number of position fixes made during the simulated voyage and data
collected from the simulator tools. Additionally, machine learning (ML)
algorithms were employed to identify the most effective methods for
pre-processing biosignal data, extracting relevant features, and classi-
fying stress levels. It was determined that the control and experimental
scenarios resulted in different levels of stress for participants, which
affected their performance. A summary of the findings is presented in
Table 7.

Results obtained from the proposed performance criteria (presented
in Table 6) revealed that overall scores between the two groups were
similar, but there were notable differences in each individual term. For
example, participants in the control scenario exhibited better position-
ing and maintained a greater distance from the first encountered vessel,
while those in the experimental scenario demonstrated better overall
deviation and a greater distance from the second encountered vessel.

This similarity in overall performance despite differing levels of
stress can be explained by the concept of maximal adaptability, which
states that human behavior has the ability to adapt within a certain
range of stress such that performance remains stable. However, this
approach is not sufficient in distinguishing specific differences in per-
formance if a more precise assessment is desired. For instance, when
participants were under a higher stress level, they may have found it
difficult to take multiple positionings, leading to uncertainty in their
location and a larger deviation from the planned route. Additionally,
when under high stress, participants may have been more focused on
the situation, resulting in a greater distance from encountered vessels.

In this study, the stress levels of participants were analyzed and
their impact on training performance was evaluated through the clas-
sification of biosignal data and examination of deviation from the
planned route. Results from the deviation measurements (shown in
Fig. 14) indicate that participants in the control scenario deviated
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Fig. 11. Comparison of the machine learning results from five different algorithms in a different way of pre-processing data.
Fig. 12. Deviation from the designed route for the control scenario (upper) and the
experimental scenario (lower). The black dashed lines represent the mean of the
deviation.

towards the port side (left) of the route after Waypoint 3. This deviation
may be attributed to the participants starting their turns too late or not
turning back towards the planned route quickly enough. Additionally,
the time taken for participants to return to the planned route after de-
viation was substantial, with some passing Waypoint 4 before returning
to or nearing the planned route. This deviation also coincided with
the point at which participants encountered the second fishing vessel,
which resulted in a closer passing distance. Furthermore, the analysis of
performance measures revealed that the participants were not intense.

On the other hand, in the experimental scenario, deviation from
the planned route was larger in comparison to the control scenario.
The time and distance taken to return to the planned route after the
turn at Waypoint 3 were shorter than in the control scenario, which
may be an indication that participants had more difficulty following
the planned route due to uncertainties such as lower visibility in heavy
fog or snow, and therefore practiced safer sailing. Overall, this study
highlights the importance of analyzing deviation from planned routes in
order to understand the impact of stress levels on training performance.

Results from the experimental scenario revealed that eight out of the
fifteen participants deviated to the port side before making a significant
course change (Waypoint 3) to starboard. This deviation may have been
caused by heading loss (the event created in the experiment scenario),
or the switching off of the autopilot to manual steering mode while
the rudder was set at an angle. Hence, the switch happened to make
the rudder turn the vessel to the wrong side. However, the proximity
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of this deviation to the loss of the gyro (also an event added in the
experiment scenario) suggests that the participants may have made this
decision based on the planned route. All the participants who turned
to port first managed to get back to the planned route as fast or faster
as those who did not take the wrong turn to port before turning to
starboard. In the experimental scenario, there is more phenomenon to
consider. Before the turn to starboard, the gyroscope error is induced
and the participants experience the alarm. In the distance, the fog is
also visible and may give uncertainty at the time. This may be a factor
that focuses the participants’ attention on following the planned route
better in order to handle something unexpected later.

The experimental scenario was designed to be more intense cog-
nitively than the control scenario. This is in line with real-world
incidents, where most ship traffic accidents occur under fair weather
conditions with good visibility (Weng and Li, 2019) and fewer hap-
pened during night-time periods (Weng and Yang, 2015). The present
study’s results suggest that under these conditions, seafarers may be-
come more relaxed and less focused on their tasks, thus increasing the
risk of accidents. In contrast, the experimental scenario in this study
appears to have increased the participants’ level of focus and attention
to the task at hand.

The current study has contributed to the understanding of the rela-
tionship between stress levels and training performance in the maritime
industry. Through the analysis of biosignal data and examination of
deviation from planned routes, a correlation was observed between
sailors’ stress levels and route complexity. It was found that in many
cases, deviation from the planned route exceeded 100 m, which is not
considered an unsafe level in a narrow water sailing task.

Given these findings, interventions can be made to improve the
maritime training system by considering the impact of stress on per-
formance. Instructors should be aware that low-stress levels may lead
to overconfidence and delayed decision-making among students. Con-
versely, increasing stress levels may lead to heightened alertness and
improved adherence to the planned route. However, it is important to
note that under high stress, students may prioritize tasks differently and
may be more prone to human errors as a wrong decision, erroneous
action, missing action, or lack of action (Rothblum et al., 2002) might
be a factor in the threat to maritime safety. Therefore, it is crucial for
instructors to pay attention to the safety behaviors of students under
different stress levels, rather than solely focusing on overall deviation
from the planned route. It is always helpful for the instructors to
have good control of the students’ stress levels before and during the
training, because the students who have less sea experience and are at
the beginning of their education, may find it difficult to understand the
situation and make the correct decision.

Additionally, it is essential to note that individuals may have vary-
ing perceptions of stress levels under the same training scenario. Thus,
a flexible and adjustable training program, guided by objective stress
level data, such as biosignal data, may be beneficial in achieving con-
sistent learning outcomes while accounting for individual differences.
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Fig. 13. Deviation from the planned route for the experimental scenario (orange) and the control scenario (blue) in the comparison graph (experts suggest that the deviation of
shorter than 100 meters is negligible). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Participants sailed routes from the control scenario (left) and the experimental scenario (right). The magenta lines represent the planned route. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 15. A conception of a reliable and safe maritime training system.
In safety-critical domains, instructors often face the dilemma of
balancing the need to train students to handle stressful situations,
helping them cope with stress while avoiding overwhelming novices
who are already grappling with complex simulator scenarios. Simula-
tion training holds immense significance within the maritime training
program, as it closely mirrors the challenges they will encounter in their
future roles. During the simulator training tasks, instructors should be
able to adjust the level of difficulty of the task for each student to
get the best learning outcome. For instance, if a student’s stress level
becomes exceedingly high and they struggle to navigate the ongoing
simulation scenario, the instructor can intervene to provide assistance
or pause the training to modify the scenario accordingly. Therefore,
it will be helpful to involve a reliable and safe maritime training
system that utilizes biosignal data to measure trainee stress levels and
provide real-time feedback, as shown in Fig. 15. This system will help to
improve the performance and safety of maritime training by providing
a more objective measure of stress levels. This will enable instructors
to customize the training program to better suit the individual needs of
each trainee, ultimately enhancing the effectiveness of the training by
tailoring it to their unique capabilities and requirements. Furthermore,
by providing real-time feedback, this system might help trainees to
develop better stress management strategies and improve their overall
performance, ultimately enhancing safety at sea. Additionally, it would
be valuable to use the application to evaluate the assessment of SA and
the training of decision-making in maritime contexts.

6. Conclusion and future work

Biosignal data-based training systems represent a novel approach to
enhancing the performance and safety of maritime training by utilizing
biosignals to measure trainees’ stress levels during training sessions.
These signals are then used to provide real-time feedback to trainees
and instructors, enabling them to adjust the training program according
to the trainee’s stress level. One of the key benefits of biosignal data-
based training systems is that they offer a more objective measure
of stress levels compared to traditional self-report methods, thereby
allowing for a more precise assessment of stress levels and enabling
instructors to adapt the training program to better suit the needs of
each trainee.

The present study analyzed questionnaire data using statistical
methods and biosignal data using ML methods to investigate the impact
of stress on training and performance in maritime navigation. The
results of the study suggest that the stress levels of trainees are different
under various training scenarios and that the complexity of the train-
ing scenarios can be classified based on the students’ biosignal data.
Additionally, different stress levels have specific effects on trainees’
training performance, particularly in terms of safety behaviors. These
findings provide a deeper understanding of the impact of stress on
maritime training and performance, which can be used to improve the
quality and effectiveness of maritime training programs and ultimately
enhance safety at sea.

For future work, the implementation process of the maritime train-
ing system remains a subject of further research. This includes the
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development of a real-time stress level-detecting application and con-
ducting field tests across a range of scenarios with a sufficient amount
of biosignal data. While the potential to attain real-time stress feedback
based on our findings is evident, it is worth noting that achieving a
comprehensive strategy for effectively managing trainees’ stress is a
goal that may require additional developments beyond the scope of this
study.
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