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A B S T R A C T

Converging evidence increasingly suggests that psychiatric disorders, such as major depressive disorder (MDD)
and autism spectrum disorder (ASD), are not unitary diseases, but rather heterogeneous syndromes that
involve diverse, co-occurring symptoms and divergent responses to treatment. This clinical heterogeneity has
hindered the progress of precision diagnosis and treatment effectiveness in psychiatric disorders. In this study,
we propose BPI-GNN, a new interpretable graph neural network (GNN) framework for analyzing functional
magnetic resonance images (fMRI), by leveraging the famed prototype learning. In addition, we introduce
a novel generation process of prototype subgraph to discover essential edges of distinct prototypes and
employ total correlation (TC) to ensure the independence of distinct prototype subgraph patterns. BPI-GNN
can effectively discriminate psychiatric patients and healthy controls (HC), and identify biological meaningful
subtypes of psychiatric disorders. We evaluate the performance of BPI-GNN against 11 popular brain network
classification methods on three psychiatric datasets and observe that our BPI-GNN always achieves the highest
diagnosis accuracy. More importantly, we examine differences in clinical symptom profiles and gene expression
profiles among identified subtypes and observe that our identified brain-based subtypes have the clinical
relevance. It also discovers the subtype biomarkers that align with current neuro-scientific knowledge.
1. Introduction

Psychiatric disorders are one of the leading causes of extensive so-
cial and economic burden for healthcare systems worldwide (Wittchen
et al., 2011) and severely compromise the well-being of those af-
fected (Hyman, 2008). Despite decades of research, unified or definitive
biomarkers still remain uncertain in psychiatry (Goodkind et al., 2015).
One possible cause is that current psychiatric diagnosis is mainly based
on clinical symptoms and signs rather than the underlying biological
mechanisms. For example, patients are diagnosed by major depres-
sive disorder (MDD) when they exhibit at least five of nine clinical
symptoms (such as depressed mood, anhedonia and cognitive impair-
ments, etc.) (Drysdale et al., 2017), which leads to the high clinical
heterogeneity among patients with the same diagnosis (Jacobi et al.,
2004). Due to such clinical heterogeneity, researchers fail to obtain
reliable biomarkers through traditional case-control studies (all patients
with a same diagnosis compared to healthy controls) (Hawco et al.,
2019). More importantly, it has hindered the progress of treatment
effectiveness and outcome in psychiatric disorders (Wu et al., 2020).

∗ Corresponding authors.
E-mail addresses: kzzheng@stu.xjtu.edu.cn (K. Zheng), yusj9011@gmail.com (S. Yu), liangjunchen@xjtu.edu.cn (L. Chen), danglj@xjtu.edu.cn (L. Dang),

chenbd@mail.xjtu.edu.cn (B. Chen).

To address this problem, the Research Domain Criteria (RDoC)
initiative has been released (Insel et al., 2010) and ‘‘precision medicine
for psychiatry’’ project has launched. The core idea of them is to
identify subtypes of psychiatric disorders based on the underlying
biological and cognitive measurements without relying solely on tra-
ditional symptom-based diagnosis (Insel and Cuthbert, 2015). So far,
several studies have begun leveraging resting-state functional magnetic
resonance imaging (fMRI) (a particularly useful modality) to investigate
the biologically meaningful subtypes of psychiatric disorders (Clementz
et al., 2016; Drysdale et al., 2017). fMRI is a noninvasive neuroimag-
ing technique (Matthews and Jezzard, 2004), which easily quantifies
functional connectivity (FC) computed by the pairwise correlations
of fMRI time series as features to investigate the neurobiology and
psychiatric subtypes in diverse patient populations. Most of the existing
neuroimaging studies investigating psychiatric subtypes use ensemble
hybrid frameworks that include feature selection (e.g., canonical cor-
relation analysis (CCA) Hardoon et al., 2004 and AutoEncoder Hinton
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and Salakhutdinov, 2006, etc.) and unsupervised approaches (e.g., hi-
erarchical clustering Nielsen and Nielsen, 2016 and k-means cluster-
ing Hartigan et al., 1979). Specifically, researchers firstly use feature
selection approaches to obtain low-dimensional representations or a
relatively small number of FCs and then adopt unsupervised learning
methods to these low-dimensional biological features to identify sub-
types of psychiatric disorders (Chang et al., 2021). However, current
existing two-stage subtype approaches for psychiatric disorder easily
cause suboptimal solutions because it is difficult to guarantee that the
feature selection and unsupervised learning methods used are optimal
and most suitable (Chang et al., 2021). Furthermore, due to the lack
of ground truth of downstream task, these frameworks could obtain
inconsistent results and unreliable or even inaccurate predictions such
as inconsistent numbers of subtypes (Feczko et al., 2019).

Recently, graph neural networks (GNNs) (Hamilton et al., 2017)
have gained increased attention in the domain of psychiatric diag-
nosis, due to their powerful ability of graph representation. In these
studies, researchers regard brain as a graph, with nodes defined as
brain regions of interest (ROIs) and edges defined as FC between
these ROIs. Despite a tremendous improvement in performance (Li
et al., 2021b; Cui et al., 2022), most of existing diagnostic models
are trained on a dataset from a homogeneous or single site with a
small sample sizes (less than 100), which could lead to over-fitting
and spurious performance. Moreover, recent advances in exploring
neurological biomarkers at both the group-level (Cui et al., 2022) and
individual-level (Li et al., 2021b) have shown promise for psychiatric
disorders. However, integrating these biomarkers into clinical practice
remains challenging due to the unpredictable onset and high clinical
heterogeneity in psychiatric disorders (Jacobi et al., 2004). Translating
these biomarkers into practical clinical tools requires innovative GNN
architectures capable of providing subtype-level explanations, which
can offer insights into the biological and clinical heterogeneity inherent
in psychiatric disorders.

Prototype learning is a type of case-based reasoning (Kolodner,
1992; Schmidt et al., 2001) and facilitates predictions for new instances
by comparing them to a set of learned exemplar cases. So far, the
concept of prototype learning has been integrated into image recog-
nition (Fig. 1) to enhance interpretability, enabling the provision of
subtype-level explanations. For example, ProtoPNet (Chen et al., 2019;
Rymarczyk et al., 2020) utilizes a fusion of prototype learning and con-
volutional neural networks (CNNs) to acquire prototypical parts within
a specific class and produce intuitive image explanations. Nevertheless,
there are currently no compelling precedents for the application of
prototype learning to graph classification task or the brain network
analysis.

To address above technical issues, we develop a novel GNN archi-
tecture (as shown in Fig. 2) for psychiatric diagnosis and subtyping
which is able to discriminate between psychiatric patients and healthy
controls, and obtain biologically meaningful subtypes of psychiatric
disorders. More importantly, to further validate the clinical relevance
of our identified brain-based subtypes, we investigate differences in
clinical symptom, brain pattern and gene expression profiles among
identified subtypes and associations between clinical profiles, gene
expression profiles, and dominant brain connections in each identified
subtype. We term our architecture the Brain Prototype Interpretable

raph Neural Network (BPI-GNN1) and evaluate it on three real-world,
arge-scale datasets of brain disease.

To summarize, our main contributions are fourfold:

• We first propose a new GNN architecture for both psychiatric di-
agnosis and subtyping. In other words, BPI-GNN not only demon-
strates the capability to distinguish between psychiatric patients
and healthy controls, but it also identifies biologically meaningful
subtypes of psychiatric disorders.

1 https://github.com/ZKZ-Brain/BPI-GNN.
2

• In terms of methodology, our BPI-GNN addresses above technical
issues:

1. Our framework design facilitates model interpretability by
incorporating prototype learning to graph classification
tasks and brain network analysis, which provides subtype-
level explanations.

2. We introduce a novel prototype subgraph generation pro-
cess tailored for brain network analysis, enabling the iden-
tification of informative edges for distinct prototypes. Un-
like many explainable brain network model, which often
prioritize node selection, such as BrainGNN (Li et al.,
2021b), our approach recognizes the paramount impor-
tance of edges (i.e., functional connectivities) in psychi-
atric diagnosis (Wang et al., 2021a).

3. We employ the total correlation (TC), a measure used to
assess redundancy or dependency among a set of multiple
random variables, to ensure the independence of distinct
prototype subgraph patterns.

• In terms of psychiatric diagnosis, we use BPI-GNN against 11
state-of-the-art (SOTA) baselines on three multi-site, large-scale
psychiatric datasets, i.e., SRPBS dataset, ABIDE and REST-meta-
MDD. Our model achieves the overwhelming classification per-
formance in all datasets.

• In terms of psychiatric subtyping, we obtain biologically mean-
ingful subtypes in patients with autism spectrum disorder (ASD),
major depressive disorder (MDD) and schizophrenia (SZ) which
are in part consistent with previous clinical and neuroimaging
findings. More importantly, we examine clinical symptom profiles
and gene expression profile differences among identified subtypes
and observe that our identified brain-based subtypes have the
clinical relevance.

. Background knowledge

.1. GNNs (graph neural networks) for psychiatric diagnosis

.1.1. Graph neural networks
Graph neural networks (GNNs) leverage the message-passing mech-

nism to efficiently propagate and aggregate information along the
dges of an input graph, enabling the acquisition of expressive node
epresentations (Hamilton et al., 2017; Welling and Kipf, 2016; Xu
t al., 2018). The GNN architecture consists of 𝐿 layers, each compris-
ng three fundamental steps. (1) First, at 𝑙th GNN layer, a message 𝑚𝑙

𝑖𝑗 =

essage
(

ℎ𝑙−1𝑖 , ℎ𝑙−1𝑗

)

is computed for each edge (𝑖, 𝑗), where ℎ𝑙−1𝑖 and
𝑙−1
𝑗 correspond to the representations of nodes 𝑖 and 𝑗 in the previous
ayer, respectively. (2) Second, for each node 𝑖, GNN aggregates the
eceived messages from its neighborhood  (𝑖), using an aggregation
unction 𝑚𝑙

𝑖 = Aggregation
({

𝑚𝑙
𝑖𝑗 |𝑗 ∈  (𝑖)

})

. (3) Finally, GNN updates
he vector representation of each node 𝑖 by applying the function ℎ𝑙𝑖 =
pdate

(

𝑚𝑙
𝑖 , ℎ

𝑙−1
𝑖

)

, which takes the aggregated message and the current
ode representation as inputs. The final node embedding, denoted as
𝑖 = ℎ𝐿𝑖 , is derived from the hidden representation obtained from
he last layer of GNN. After obtaining node embedding, GNN adopts
EADOUT function to learn the representation of the entire graph
𝐺 = READOUT

({

𝑧𝑖|𝑖 ∈ 𝐺
})

, where ℎ𝐺 is the representation of graph
.

In this study, we use sum-pooling (Xu et al., 2018) as READOUT
unction to learn graph embedding ℎ𝐺 = SUM

({

𝑧𝑖|𝑖 ∈ 𝐺
})

.

.1.2. GNN interpretability
Although GNNs have shown remarkable effectiveness, they are

lack-box models that lack interpretability, making it difficult to un-
erstand the underlying mechanisms behind their predictions. So far,
here has been a surge of interest in explaining the predictions of
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Fig. 1. Traditional prototype learning for image recognition. given an input image 𝐼 , framework extracts image representation 𝑍 = 𝑓 (𝐼) using convolutional neural networks
(CNNs) 𝑓 and learns 𝑛 prototype vectors 𝑃 =

{

𝑝𝑖
}𝑛
𝑖=1. Subsequently, framework calculates the distance between the 𝑗th prototype 𝑝𝑗 and all patches of 𝑍, which are then inverted

to obtain similarity scores 𝑠𝑖𝑚(𝑍, 𝑝𝑗 ) = max𝑧∈patches(𝑍) log
(

‖
𝑧−𝑝𝑗‖

2
2+1

‖
𝑧−𝑝𝑗‖

2
2+𝜖

)

, where 𝜖 is set to a small value e.g., 1e-4. Then these similarity scores are followed by global max pooling to

result in a single similarity score. Finally, 𝑛 similarity scores are sent to the fully connected layer to produce the output probabilities.
Fig. 2. Prototype learning for brain network analysis (e.g., BPI-GNN). The resting-state fMRI data undergo preprocessing and are subsequently partitioned into regions of interest
(ROIs) using an atlas. Functional connectivity (FC) matrices are then generated through Pearson correlation between ROIs. These FC matrices are utilized to construct brain
functional graphs (Gallo et al., 2023). Then the BPI-GNN generates a set of prototype subgraphs and learns 𝑛 prototype vectors 𝑃 =

{

𝑝𝑖
}𝑛
𝑖=1. Subsequently, BPI-GNN calculates the

similarity between the 𝑗th prototype 𝑝𝑗 and the 𝑗th prototype subgraphs. Finally, 𝑛 similarity scores are sent to the fully connected layer to produce the output probabilities.
GNNs (Yuan et al., 2020). The perturbation-based method (Ying et al.,
2019) is currently the most widely adopted approach, which employs
distinct mask generators to identify crucial subgraph structures and fea-
tures. Subsequently, these mask generators are evaluated and optimized
based on the performance of the subgraphs on a well-trained GNN.

However, most existing approaches are post-hoc, requiring the cre-
ation of a separate interpretive model to explain the well-trained
GNN (Zhang et al., 2022). In addition, such explanations are gen-
erally unreliable, inaccurate, and can potentially mislead the entire
model decision process (Rudin, 2018). To address these issues, re-
searchers have proposed built-in interpretable models that generate
explanations directly from the models themselves without the post-
training of an auxiliary network. For example, ProtGNN (Zhang et al.,
2022) combines with prototype learning and GNNs to provide inherent
interpretability. In this study, BrainProtGNN is also a built-in inter-
pretable GNN which could provide edge explanation across psychiatric
subtypes.

2.1.3. GNN interpretability for psychiatric diagnosis
Recently, GNNs have been applied in the field of psychiatric di-

agnosis. A recent study (Li et al., 2021b) introduces BrainGNN, in-
corporating ROI-aware graph convolutional layers to pinpoint pivotal
3

regions of interest (ROIs) in autism diagnosis. Additionally, researchers
propose IBGNN (Cui et al., 2022) to discriminate between individuals
with bipolar disorders (BD) and healthy controls, utilizing a global
explanation mask to accentuate disorder-specific biomarkers. In our
recent research, we introduce BrainIB (Zheng et al., 2022) where we
harness the renowned Information Bottleneck (IB) principle to pinpoint
the most informative edges in the context of psychiatric diagnosis.

However, current existing models only provide group-level and
individual-level biomarkers which cannot take into account clinical het-
erogeneity, making it challenging for them to have a meaningful impact
in real-world clinical applications. In this study, BPI-GNN could provide
subtype-level explanations which offer insights into the biological and
clinical heterogeneity inherent in psychiatric disorders.

2.2. Prototype learning

Prototype learning, a type of case-based reasoning (Kolodner, 1992;
Schmidt et al., 2001), facilitates predictions for new instances by
comparing them to a set of learned exemplar cases, known as proto-
types. Prior researches (Chen et al., 2019; Rymarczyk et al., 2020),
exemplified by ProtoPNet, utilizes a fusion of prototype learning and
convolutional neural networks (CNNs) to acquire prototypical parts
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within a specific class and produce intuitive image explanations. Pro-
toPNet consists of a regular CNN 𝑓 , prototype layer 𝑔𝑃 and the fully
connected layer. Specifically, given an input image 𝐼 , ProtoPNet ex-
tracts image representation 𝑍 = 𝑓 (𝐼) using 𝑓 and learn 𝑘 prototype
vectors 𝑃 =

{

𝑝𝑖
}𝑘
𝑖=1 for each class. Subsequently, the 𝑗th prototype unit

𝑔𝑝𝑗 in the prototype layer 𝑔𝑃 calculates the distances between the 𝑗th
prototype 𝑝𝑗 and all patches of 𝑍, which are then inverted to obtain
similarity scores using the following equation:

𝑔𝑝𝑗 (𝑧) = max
𝑧∈patches(𝑍)

log

⎛

⎜

⎜

⎜

⎝

‖

‖

‖

𝑧 − 𝑝𝑗
‖

‖

‖

2

2
+ 1

‖

‖

‖

𝑧 − 𝑝𝑗
‖

‖

‖

2

2
+ 𝜖

⎞

⎟

⎟

⎟

⎠

, (1)

here 𝜖 is set to a small value e.g., 1e-4.
Thus, an activation map is generated by each prototype unit 𝑔𝑝𝑗 ,

ontaining similarity scores that reflect the strength of a prototypical
art within the image. The activation map produced by each prototype
nit 𝑔𝑝𝑗 is subsequently subjected to global max pooling, resulting in
single similarity score. Finally, 𝑘 similarity scores produced by the

rototype layer 𝑔𝑃 are sent to the fully connected layer with softmax
unction to produce the output probabilities for each class.

However, so far prototype learning is not yet explored for explaining
NNs and brain network analysis. In this study, we leverage pro-

otype learning to identify prototypes (i.e., subtypes) of psychiatric
isorders, which facilitates understanding clinical heterogeneity within
sychiatric populations.

Note that, the general idea of Prototype Learning has recently
een extended to GNNs (Zhang et al., 2022). However, the ProtGNN
xhibits certain limitations, and our method distinguishes itself from it.
irst, our BPI-GNN enforces constraints on the independence of distinct
rototype subgraph patterns, ensuring strict adherence to theoretical
rinciples. This is an aspect absent in the ProtGNN, which could
otentially result in similar subgraph patterns between prototypes.
econd, our method utilizes a novel generation process of prototype
ubgraphs, eliminating the need for an auxiliary neural network and
hereby reducing uncertainty induced by such process. Finally, The
rototype subgraph generation process of ProtGNN suffers from an
xcessive number of training parameters and spatial allocation issues,
aking it applicable only for small-scale graph datasets with dozens

f nodes. In contrast, our approach can be applied to brain network
atasets comprising hundreds of nodes.

.3. Total correlation

Securing the trustworthiness and validity of the gleaned subtype-
evel interpretations presents a formidable challenge within the con-
ines of this model framework. Aligned with the overarching model
tructure of this study, this complexity is streamlined to assure the inde-
endence among prototype subgraph patterns. For information theory,
inimizing total correlation (TC) (Watanabe, 1960) among a set of
ultiple random variables is a common approach to ensure their inde-
endence, which can be easily computed without any auxiliary neural
etwork. Thus, we are inspired to consider using correlation (TC) to
nsure independence among prototype subgraph patterns. Specifically,
iven the 𝐿-dimensional components of the random variable 𝑍 =
𝑍1;𝑍2;… ;𝑍𝐿}, TC can be defined as the Kullback–Leibler diver-
ence from the joint distribution Pr

(

𝑍1, 𝑍2,… , 𝑍𝐿) to the independent
istribution of ∏𝐿

𝑖=1 Pr
(

𝑍 𝑖):

𝐶 (𝑍) = 𝐷𝐾𝐿

(

Pr
(

𝑍1, 𝑍2,… , 𝑍𝐿) ∥
𝐿
∏

𝑖=1
Pr

(

𝑍 𝑖)
)

,

=

[ 𝐿
∑

𝑖=1
𝐻

(

𝑍 𝑖)
]

−𝐻
(

𝑍1, 𝑍2,… , 𝑍𝐿) ,

(2)

here 𝐻
(

𝑍 𝑖) is the information entropy of variable 𝑍𝑖 and 𝐻
(

𝑍1, 𝑍2,
, 𝑍𝐿) denotes the joint entropy of the variable set

{

𝑍1;𝑍2;… ;𝑍𝐿}.
4

w

Table 1
Notations used in the paper.

Notations Description

𝑁 number of participants
𝑛 number of nodes
𝑘 number of prototypes
 node set
 edge set
 graph  = ( , )
𝐴 graph adjacency matrix representing the graph structure (𝐴 ∈ {0, 1}𝑛×𝑛)
𝑋 node feature matrix (𝑋 ∈ R𝑛×𝑛)
𝜌 Pearson’s correlation coefficient
𝜙 GNN Encoder of GraphVAE
𝜃1 Decoder of GraphVAE
𝜃2 Prototype subgraph sampling module
𝑓 Prototype layer
𝜑 Basic classifier
𝑍 Node embedding through 𝜙
𝑧{𝑖} Disentangled factor
𝑝 Learned prototype vectors
ℎ Prototype graph embedding
𝑇𝐶 Total correlation
𝐻 Entropy and joint entropy
𝐾 Gram matrix
𝐾̃ Normalized gram matrix
𝑒𝑖𝑗 Edge selection probability
𝑧𝑖 Node embedding of node 𝑖

3. Methods

3.1. Framework of BPI-GNN

3.1.1. Notations
Fig. 2 depicts the pipeline for constructing the brain functional

graph from rs-fMRI raw data. Initially, the resting-state fMRI data
are subjected to preprocessing procedures, followed by parcellation of
the brain into 𝑛 regions of interest (ROIs) based on the automated
anatomical labeling (AAL) atlas. Subsequently, the mean time series of
each ROI is computed from the preprocessed fMRI data, and functional
connectivity (FC) matrices are obtained by calculating the Pearson
correlation between the mean time series of the ROIs. Based on FC,
we define an undirected graph  = (𝐴,𝑋), where 𝐴 denotes the graph
djacency matrix representing the graph structure (𝐴 ∈ {0, 1}𝑛×𝑛)
nd 𝑋 denotes the node feature matrix. Specifically, 𝐴 is a binarized
C matrix, where only the top 20-percentile absolute values of the
orrelations are transformed into ones, while the rest are set to zeros.
or node feature 𝑋, 𝑋𝑟 for node 𝑟 is defined as 𝑋𝑟 =

[

𝜌𝑟1,… , 𝜌𝑟𝑛
]T,

here 𝜌𝑟𝑙 is the Pearson’s correlation coefficient for node 𝑟 and node 𝑙.
t is noteworthy that in this study, only functional connectivity values
re considered as node features, which is a common practice in brain
etwork analysis (Gallo et al., 2023). All the notations are listed in the
able 1.

.1.2. Overall workflow of BPI-GNN
The Fig. 3 depicts the workflow of BPI-GNN, which comprises

our critical components: a multi-head graph variational autoencoder
GraphVAE), a prototype subgraph generator, a prototype layer 𝑓 and
basic classifier 𝜑. We employ a two-step training strategy to jointly

ptimize generative performance and diagnostic accuracy.
In the stage I training, BPI-GNN is able to learn prototype subgraph

mbeddings. Specifically, given an input graph , the modified Graph-
AE is responsible for learning latent factors 𝑍 =

[

𝑧{1}, 𝑧{2},… , 𝑧{𝑘}
]

,
here 𝑘 represents a pre-determined number of prototypes. Using 𝑍,

he decoder is able to reconstruct graph feature matrix 𝑋 and graph
djacency matrix 𝐴 with separate heads. Afterward, another linear
ecoder generates the prototype subgraph 𝑘sub, which is fed into a
raph encoder 𝜙 to obtain the prototype subgraph embedding ℎ𝑘.

In the stage II training, BPI-GNN is able to learn prototype vectors
hich can be understood as the latent representation of different
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Fig. 3. The overall architecture of our proposed BPI-GNN. The model consists of four modules: multi-head GraphVAE, prototype subgraph generator, prototype layer and a basic
classifier 𝜑. The training procedures of BPI-GNN include two stages. In the stage I training, given an input graph  = {𝐴,𝑋}, multi-head GraphVAE learns (disentangled) latent
factors 𝑍 =

[

𝑧{1} , 𝑧{2} ,… , 𝑧{𝑘}
]

. Another linear decoder generates the prototype subgraph 𝑘
sub, which is fed to the graph encoder 𝜙 to obtain the prototype subgraph embedding ℎ𝑘.

In the stage II training, the prototype layer calculates the similarity scores between the prototype embeddings and according prototype vectors. These similarity scores are then
used by the basic classifier 𝜑 to compute the output probabilities, enabling graph classification.
subtypes within psychiatric populations. In the prototype layer, the net-
work learns 𝑘 prototype vectors 𝑃 =

{

𝑝𝑖
}𝑘
𝑖=1. For each prototype vector,

its shape is equal to the dimensions of prototype subgraph embedding
ℎ𝑘. Subsequently, the prototype layer computes the similarity scores
between the prototype subgraph embeddings and according prototype
vectors. For 𝑘th prototype subgraph embedding ℎ𝑘 and prototype vector
𝑝𝑘, the similarity score is defined as:

𝑠𝑖𝑚
(

𝑝𝑘, ℎ𝑘
)

= log

(

‖

‖

𝑝𝑘 − ℎ𝑘‖‖
2
2 + 1

‖

‖

𝑝𝑘 − ℎ𝑘‖‖
2
2 + 𝜖

)

, (3)

where 𝜖 is a small value (1e-4) added to prevent division by zero.
Finally, the basic classifier 𝜑 computes output probabilities using 𝑘
similarity scores.

3.1.3. Stage I: Learning prototype subgraph embedding
Given an input graph  = (𝐴,𝑋) with 𝑛 nodes, where 𝐴 ∈ R𝑛×𝑛 is the

adjacency matrix and 𝑋 ∈ R𝑛×𝑛 is the node feature matrix, we employ
GraphVAE (Simonovsky and Komodakis, 2018) like architecture to
learn 𝑘 disentangled factors 𝑍 =

[

𝑧{1}, 𝑧{2},… , 𝑧{𝑘}
]

, where 𝑧{𝑘} ∈ R𝑑×𝑛,
𝑑 = 𝑑(𝑙)∕𝑘 and 𝑑(𝑙) is the dimension of 𝑙th hidden layer. The graph
encoder of our modified GraphVAE is a basic GCN, where the output
𝑍 of the 𝑙th layer can be computed as:

𝑍𝑙 = 𝜎
(

𝐴̃𝑍𝑙−1𝑊 𝑙−1) , (4)

where 𝐴̃ is the normalized adjacency matrix, 𝐴̃ = 𝐴 + 𝐼 with 𝐼 being
the identity matrix, 𝐷 is a diagonal matrix of the degree of nodes, and
𝜎 is the sigmoid activation function.

In the decoder of our modified GraphVAE, we use separate heads: a
multi-layer perceptron (MLP) to reconstruct 𝑋, and a linear inner prod-
uct decoder to recover 𝐴. Specifically, we formulate the reconstruction
procedure as:

𝐴𝑐 = 𝜎
(

𝑍𝑍𝑇 ) , 𝑋𝑐 = MLP (𝑍) , (5)

where 𝐴𝑐 is reconstructed adjacency matrix, 𝑋𝑐 is reconstructed node
features and 𝑍 is the output of the last layer of the graph encoder.

The objective of our multi-head GraphVAE is to minimize the re-
construction error and maximize the compression of the latent variable
𝑍. The objective is formulated as:

GraphVAE = E
[

‖

‖

𝑋 −𝑋𝑐
‖

‖𝐹
]

+ E
[

‖

‖

𝐴 − 𝐴𝑐
‖

‖𝐹
]

− E
[

𝐷𝐾𝐿 [𝑞 (𝑍|𝐴,𝑋) ∥ 𝑝 (𝑍)]
]

,
(6)

where ‖‖𝐹 is the Frobenius norm, 𝑞 (𝑍|𝐴,𝑋) is the graph encoder
model, and 𝑝 𝑍 is an isotropic Gaussian prior distribution for 𝑍.
5

( )
In addition, to ensure the independence among latent factors
{

𝑧{1}, 𝑧{2},… , 𝑧{𝑘}
}

, we resort to a total correlation (TC) term:

𝑇𝐶 (𝑍) = 𝐷𝐾𝐿

(

Pr
(

𝑧{1}, 𝑧{2},… , 𝑧{𝑘}
)

∥
𝑘
∏

𝑖=1
Pr

(

𝑧{𝑖}
)

)

,

=

[ 𝑘
∑

𝑖=1
𝐻

(

𝑧{𝑖}
)

]

−𝐻
(

𝑧{1}, 𝑧{2},… , 𝑧{𝑘}
)

,

(7)

where 𝐻 denotes entropy and joint entropy. If all latent vectors are
independent, TC will be zero.

Here, we employ a matrix-based R’enyi’s 𝛼-order entropy func-
tional (Giraldo et al., 2014; Yu et al., 2019) to estimate the various
entropy terms in Eq. (7). This newly proposed estimator can be com-
puted easily without requiring density estimation or any auxiliary
neural network, and it is differentiable, making it well-suited for deep
learning applications. More details refer to Appendix.

Next, we further leverage another linear inner product decoder
𝜃2 (Li et al., 2021a) and graph encoder 𝜙 to generate prototype sub-
graph embedding ℎ𝑘. Fig. 4 demonstrates the procedure of prototype
subgraph generator. Specifically, given 𝑧{𝑘} ∈ R𝑛×𝑑 , we employ another
linear inner product decoder 𝜃2 (Li et al., 2021a) to generate prototype
subgraph 𝑘𝑠𝑢𝑏:

𝑘𝑠𝑢𝑏 = 𝜎
(

𝑧{𝑘}𝑧{𝑘}𝑇
)

, (8)

where 𝜎 is the sigmoid function.
Then the trained prototype subgraph 𝑘𝑠𝑢𝑏 is fed into the graph

encoder 𝜙 to output the prototype subgraph embedding ℎ𝑘.
Furthermore, we further leverage one regularization term mask to

encourage the compactness of the explanation and the discreteness of
𝑠𝑢𝑏:

mask =
∑

𝑀 − (𝑀 log(𝑀) + (1 −𝑀) log(1 −𝑀)). (9)

Thus, the overall loss of stage I is defined as:

1 = GraphVAE + 𝜆1𝑇𝐶 + 𝜆2mask, (10)

where 𝜆1 and 𝜆2 are hyper-parameters.

3.1.4. Stage II: Learning prototype vectors and completing the classification
task

In the stage II training, BPI-GNN could learn prototype vectors
which can be understood as the latent representation of different
subtypes within psychiatric populations and provide a more compre-
hensive explanation of the reasoning process. Specifically, we com-
pute similarity scores between the corresponding prototype vector and
prototype subgraph embedding in the prototype layer. To determine
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Fig. 4. The procedure of prototype subgraph generator. Given 𝑧{𝑘} ∈ R𝑛×𝑑 , we employ another linear decoder 𝜃2 to generate Prototype Subgraph Attention mask. Then the trained
Prototype Subgraph Attention mask is fed into the graph encoder 𝜙 to output the prototype subgraph embedding ℎ𝑘.
which prototype subgraph is most similar with each prototype, the
optimization objective is defined as:

sim = max
sub

𝑘
∑

𝑖=1
𝑠𝑖𝑚

(

𝑝𝑘, 𝜙
(

sub
))

, (11)

where 𝑝𝑘 is the 𝑘th learned prototype vector with the same dimension
as the prototype subgraph embedding ℎ𝑘, sub is the selected prototype
subgraph and 𝑠𝑖𝑚(⋅) represents similarity scores.

Finally, 𝑘 similarity scores produced by the prototype layer 𝑓 are
sent to the basic classifier 𝜑 to produce the output probabilities for each
class, where 𝜑 is the fully connected layer with softmax function. In
summary, we define the optimization objective for stage II as follows:

2 =
1
𝑁

𝑁
∑

𝑖=1
𝐶𝐸 (𝜑◦𝑓◦𝜃2◦𝜙(𝑖), 𝑌𝑖) + 𝜆3sim, (12)

where 𝐶𝐸 represents cross entropy loss and 𝜆3 is hyper-parameter.

3.1.5. Training procedures
In summary, the training procedures of BPI-GNN is shown in Algo-

rithm 1. We first perform GraphVAE and prototype subgraph generator
to learn prototype subgraph embeddings by optimizing Eq. (10). After
convergence of the stage I training, indicated by a reconstruction
error below a predetermined threshold or exceeding a set number of
training epochs, we learn prototype vectors and obtain prediction for
classification. This is followed by the optimization of Eq. (12).

Algorithm 1: Training pipeline of BPI-GNN
Input: Training graphs 𝑡𝑟𝑎𝑖𝑛 =

{

𝑖, 𝑦𝑖
}

, Initialize
{

𝜙, 𝜃1, 𝑓 , 𝜑
}

,
Initialize prototype vectors 𝑃 =

{

𝑝𝑖
}𝑘
𝑖=1

Output: The trained
{

𝜙, 𝜃1, 𝑓 , 𝜑
}

, The trained prototype vectors
𝑃 , Prediction 𝑌

1 while not stop criteria or converge do
2 Perform 𝜙, 𝜃1 to generate

{

𝑧{1}, 𝑧{2}, ..., 𝑧{𝑘}
}

;
3 Compute total correlation (TC) in Eq. (7);
4 Perform linear decoder 𝜃2 to generate sub;
5 Learn prototype subgraph embedding set 𝐻 =

{

ℎ𝑖
}𝑘
𝑖=1;

6 Update 𝜙, 𝜃1 by minimizing Eq. (10).
7 end
8 while not stop criteria or converge do
9 Compute similarity scores between 𝑃 and 𝐻 via 𝑓 ;
0 Perform 𝜑 to generate prediction 𝑌 using similarity scores;
1 Update 𝑓 , 𝜑 and 𝑃 by minimizing Eq. (12).
2 end
3 return 𝑌 , sub, trained 𝑃 , trained

{

𝜙, 𝜃1, 𝑓 , 𝜑
}

3.2. Subtype analysis from BPI-GNN

In addition to performing psychiatric classification tasks, BPI-GNN
also identifies different subtypes i.e., prototypes. Initially, we determine
the number of prototypes by selecting the best performance setting,
6

with 𝑘 selected from the set {2, 3, 4}. Subsequently, the subtype of each
individual is determined based on the similarity score. Specifically, if
the similarity score between the prototype vector 𝑝𝑖 and the proto-
type subgraph embedding ℎ𝑖 of an individual is higher than all other
subtypes, we assign that individual to the 𝑖th subtype. To delineate
the characteristics of different subtypes, we utilize two-sample 𝑡 tests
to investigate the differences in clinical profiles across subtypes. We
consider statistical significance at 𝑝 < 0.05 with false discovery rate
(FDR) correction for multiple comparisons.

3.3. Interpretation from BPI-GNN

To assess the interpretability of BPI-GNN, we conducted additional
analyses to investigate the ability of prototype subgraphs to interpret
the neural mechanisms underlying different subtypes. BPI-GNN could
capture the important prototype subgraph structure in each subject. To
compare the differences between the subgraphs of different subtypes,
we calculate the average prototype subgraph and select the top 50
edges to generate the dominant prototype subgraph.

3.4. Association analysis between clinical profiles and brain connections

We further investigate the relationship between subtype-
differentiated clinical profiles and subtype-differentiated brain con-
nectivity using the non-parametric Spearman correlation method. Our
findings are reported with statistical significance at a threshold of
𝑝 < 0.05 with false discovery rate (FDR) correction for multiple
comparisons.

4. Experiments

4.1. Datasets and data preprocessing

In this study, three psychiatric datasets are used: the Autism Brain
Imaging Data Exchange I (ABIDE) (Di Martino et al., 2014), Rest-meta-
MDD (Yan et al., 2019) and Japanese strategic research program for
the promotion of brain science (SRPBS) (Tanaka et al., 2021). ABIDE
is a retrospective multicenter neuroimaging consortium for autism
spectrum disorders (ASD) and openly shares more than 1000 resting-
state fMRI data collected from 17 different international centers.2 In
this study, a total of 528 patients with ASD and 536 typically developed
(TD) individuals are used. Rest-meta-MDD is the largest resting-state
fMRI database for major depressive disorder (MDD) to date collected
from 25 cohorts in China.3 According to the exclusion criteria, 1604
subjects including 828 patients with MDD and 776 healthy controls are
used. SRPBS is a multi-disorder MRI dataset including 1410 participants
collected at 11 sites.4 In the current study, we use 184 participants
including 92 patients with schizophrenia and 92 healthy controls.
We demonstrate the demographic and clinical characteristics of three
psychiatric datasets in Table 2.

2 http://fcon_1000.projects.nitrc.org/indi/abide/
3 http://rfmri.org/REST-meta-MDD/
4 https://bicr-resource.atr.jp/srpbsfc/

http://fcon_1000.projects.nitrc.org/indi/abide/
http://rfmri.org/REST-meta-MDD/
https://bicr-resource.atr.jp/srpbsfc/
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Table 2
Demographic and clinical characteristics.

Characteristic ABIDE Rest-meta-MDD SRPBS

ASD TD MDD HC Schizophrenia HC

Sample Size 528 536 828 776 92 92
Age 17.0 ± 8.4 17.2 ± 7.6 34.3 ± 11.5 34.4 ± 13.0 39.6 ± 10.4 38.0 ± 12.4
Sex (M/F) 464/64 471/65 301/527 318/458 47/45 60/32
d
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ABIDE, Rest-meta-MDD and SRPBS are followed by an uniform stan-
ard preprocessing pipeline using the Statistical Parametric Mapping
SPM),5 Data Processing Assistant for Resting-State fMRI (DPARSF)6

nd Graph Theoretical Network Analysis (GRETNA),7 respectively. The
tandard preprocessing pipeline comprises multiple steps. The initial 10
olumes are discarded, and slice timing and head motion are corrected.
he deformation parameters obtained from registering the fMRI images
o the Montreal Neurological Institute (MNI) template are utilized to
tandardize the resting-state fMRI data into a common space. Fur-
hermore, a Gaussian filter with a half maximum width of 6 mm is
mployed to smooth the functional images. Subsequently, a temporal
and-pass filter with a range of 0.01–0.08 Hz is applied to the resulting
MRI images. Finally, the effects of head motion, white matter, cere-
rospinal fluid signals, and linear trends are removed. Here, we adopt
he Friston 24-parameter model to regress out head motion effects.

After preprocessing, we extract mean time courses of cortical and
ubcortical regions from all datasets using the automated anatomical
abeling (AAL) atlas. The atlas defines 116 regions in total, including 90
erebrum regions and 26 cerebellum regions. Functional connectivity
Fisher’s r-to-z transformed Pearson’s correlation) between all brain
egions are estimated and the resulting 116 × 116 symmetric functional

connectivity matrix are used to generate brain functional graph.

4.2. Control of site differences and covariates

After generating the functional connectivity matrix, we utilize the
ComBat harmonization method (Johnson et al., 2007; Fortin et al.,
2018; Yu et al., 2018) to account for site differences and covariates
in functional connectivity. This approach allows us to retain biological
variability while eliminating the variation introduced by site. The fMRI
data dare assumed to come from 𝑚 completely different multi-sites,
with a total of 𝑛 participants. The Combat model for each functional
connectivity can be expressed as follows:

FC𝑖𝑗 = const +𝑋𝑇
𝑖𝑗𝛽 + 𝛾𝑖 + 𝛿𝑖𝜀𝑖𝑗 , (13)

where FC𝑖𝑗 is defined as the FC value for the participant 𝑗 at site 𝑖,
const is the average FC value across all subjects from all sites, 𝑋 is a
design matrix for the covariates of interest (𝑝 × 𝑛, 𝑝 is the number of
covariates), 𝛽 is the vector of coefficients associated with 𝑋, 𝛾𝑖 and 𝛿𝑖
are the additive and multiplicative site effects of site 𝑖 and we further
assume that the residual terms 𝜀𝑖𝑗 follows a normal distribution with
mean zero. Here, the covariates include sex, age and head motion in
the ABIDE and SRPBS datasets, while the covariates include sex, age,
education and head motion in the REST-meta-MDD dataset. For the sex
indicator, we set 0 to represent male and 1 to represent female.

Subsequently, the site effect parameters 𝛾𝑖 and 𝛿𝑖 are estimated using
the Empirical Bayes. Thus, the final ComBat-harmonized functional
connectivity is defined as:

FC𝐶𝑜𝑚𝐵𝑎𝑡
𝑖𝑗 =

FC𝑖𝑗 − ĉonst −𝑋𝑖𝑗𝛽 − 𝛾∗𝑖
𝛿∗𝑖

+ ĉonst +𝑋𝑖𝑗𝛽, (14)

in which ĉonst is the estimated average FC values, 𝛾∗𝑖 and 𝛿∗𝑖 represent
he estimated site effect parameters. More details are described in
revious studies (Johnson et al., 2007; Fortin et al., 2018; Yu et al.,
018).

5 https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
6 http://rfmri.org/DPARSF/
7

7

https://www.nitrc.org/projects/gretna
Table 3
Range of hyper-parameters and final specification for BPI-GNN.

Hyper-parameter Range examined Final specification

#GNN Layers [2,3,4,5] 2
#Hidden Dimensions [64,128,256,512] 128
Learning Rate [1e−2,1e−3,1e-4] 1e−3
Batch Size [32,64] 32
Weight Decay [1e−3,1e−4] 1e−4
𝜆1 [1e−4,5e−4,1e−3,5e−3,1e-2] 1e−3
𝜆2 [1e−4,5e−4,1e−3,5e−3,1e-2] 1e−4
𝜆3 [1e−4,5e−4,1e−3,5e−3,1e-2] 1e-3

4.3. Baselines

To demonstrate the effectiveness and superiority of BPI-GNN, we
evaluate its performance against 11 popular traditional machine learn-
ing (ML) and deep learning (DL) models on three psychiatric datasets:
ABIDE, REST-metaMDD, and SRPBS. The selected competitors include
four traditional psychiatric classifiers (i.e., SVM Jakkula, 2006 with lin-
ear and RBF kernel, random forest (RF) Rigatti, 2017, and LASSO Roth,
2004), three representative graph neural networks (GNNs; i.e., GCN
Welling and Kipf, 2016, GAT Veličković et al., 2017, and GIN Xu
et al., 2018), and two state-of-the-art (SOTA) built-in interpretable
GNNs (i.e., SIB Yu et al., 2021 and ProtGNN Zhang et al., 2022). We
also include two SOTA GNNs specifically designed for brain networks:
BrainGNN (Li et al., 2021b) and BrainIB (Zheng et al., 2022). Here, we
use random data splitting strategy (train/validation/test sets is 80%,
10% and 10% data) to assess performance of BPI-GNN and baselines.

4.4. Experimental setup

We trained and tested the BPI-GNN with PyTorch 1.12.1 (Paszke
et al., 2019) and PyTorch Geometric 2.1.0 (Fey and Lenssen, 2019).
During the training, the number of epoch is set to 350 and dropout
ratio is set to 0.5. Table 3 shows the range of hyper-parameters that
are examined and the final specification of all hyper-parameters are
used to obtain the final results. The hyper-parameters are set through
a grid search or based on the recommended settings of related work.

For the baselines, We train each model with 350 epochs. For tra-
itional psychiatric classifiers including SVM with linear and RBF
ernel, RF, and LASSO, we first perform two-sample 𝑡 tests between
atient group and HC group with FC network to obtain abnormal FC
onnections. Then these connections are concatenated as a long feature
ector, and are sent to classifiers. For GIN, GAT and GCN, we use the
ecommended hyperparameters of related work to train the models. For
IB and BrainIB, the weight 𝛽 of the mutual information term 𝐼

(

,𝑠𝑢𝑏
)

s selected from {0.0001, 0.1}. For ProtGNN, the hyperparameters 𝜆1,
2 and 𝜆3 are set to 0.10, 0.05, and 0.01, respectively, according to
ecommended setting.

.5. Hyperparameter discussion and ablation study

To investigate the impact of the number of prototypes 𝑘 on perfor-
ance, we conduct a hyperparameter tuning with 𝑘 ∈ {2, 3, 4} using the

rain and validation sets. Additionally, we perform an ablation study
o assess the potential contributions of various components within
PI-GNN. Specifically, we compare the classification accuracy of four
ariants of BPI-GNN, namely, the original model, BPI-GNN-NonVAE

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://rfmri.org/DPARSF/
https://www.nitrc.org/projects/gretna
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Fig. 5. Ablation study and the influence of prototypes number 𝑘 on performance on three psychiatric datasets including ABIDE, REST-meta-MDD and SRPBS.
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(BPI-GNN without modified GraphVAE), BPI-GNN-NonProt (BPI-GNN
without prototype subgraph sampling module and prototype layer),
and GNN (BPI-GNN without modified GraphVAE, prototype subgraph
sampling module and prototype layer). It is worth noting that BPI-GNN-
NonVAE omits the decoder of modified GraphVAE and the optimization
of Eq. (6). The results of the ablation study are illustrated in Fig. 5.

In accordance with Fig. 5, it is evident that the value of 𝑘 has
n impact on the performance of BPI-GNN. Based on the optimal
erformance, we set the value of 𝑘 to 2 for ABIDE dataset, 2 for REST-
eta-MDD dataset, and 2 for SRPBS dataset. For ablation study, we

bserve that BPI-GNN outperforms BPI-GNN-NonProt on all datasets,
ndicating that the ability to identify distinct prototypes contributes to
he improved performance. Moreover, the superior performance of BPI-
NN over BPI-GNN-NonVAE suggests that the GraphVAE is effective
nd crucial in the model.

. Results

.1. Evaluation on classification performance

Table 4 demonstrates the classification performances in terms of
ccuracy, F1-score and Matthew’s Correlation Coefficient (MCC) on

hree psychiatric datasets (i.e., ABIDE, REST-meta-MDD and SRPBS).
ach model is independently run five times, and the mean and standard
eviation of the metrics are reported.

Extensive experiments demonstrate that BPI-GNN outperforms all
aseline models in terms of all evaluation metrics on all datasets,
ndicating that BPI-GNN has substantial advantages for brain network
nalysis. Furthermore, the performance of BPI-GNN demonstrates a
emarkable superiority over the alternative methods (two sample 𝑡
ests, 𝑝 < 0.05) on the REST-meta-MDD dataset. The improvement in
erformance of BPI-GNN can be attributed to three factors. Firstly,
PI-GNN is a built-in interpretable deep learning model that elim-

nates the need for feature selection. Secondly, BPI-GNN leverages
he prototype mechanism to better understand the underlying charac-
eristics of psychiatric subtypes. Finally, as a graph neural network,
PI-GNN can effectively handle the topological and non-linear informa-
ion within complex brain network structures, which gives it an edge
ver traditional psychiatric classifiers.

.2. Interpretable analysis

.2.1. Interpretation in ABIDE
Table 5 demonstrate demographic and clinical data for each subtype

n ABIDE. Significantly attenuated ADOS_RRB in subtype1 compared
ith subtype2 is observed in patients with ASD.

Fig. 6 illustrates the dominant prototype subgraph 𝐺dsub comparison
etween healthy controls and patient groups in ABIDE. In this visu-
lization, the color of each node represents a distinct brain network,
hile the size of each edge reflects its weight in the dominant sub-
raph. The ROI nodes defined in each dataset are mapped onto nine
8

s

ommonly used brain networks, including the visual network (VN),
omatomotor network (SMN), dorsal attention network (DAN), ventral
ttention network (VAN), limbic network (LIN), frontoparietal network
FPN), default mode network (DMN), cerebellum (CBL), and subcortical
etwork (SBN).

Common (‘‘shared’’) brain connections within 𝐺dsub are observed in
oth ASD subtypes, including connectivity within SMN, SBN, LIN, CBL,
nd VN, as well as connectivity between DMN and FPN. Furthermore,
ubtype-specific patterns of 𝐺dsub are also observed. Specifically, sub-
ype1 of ASD exhibits tight interactions within FPN, involving the right
rbital frontal lobe and bilateral inferior parietal gyrus, whereas these
onnections are absent in subtype2. In addition, connections within and
etween DAN (bilateral supramarginal) in subtype1 are less than that
f subtype2.

.2.2. Interpretation in REST-meta-MDD
Table 6 demonstrate demographic and clinical data for each subtype

n REST-meta-MDD. Total scores for HAMD do not exhibit significant
ifferences between subtypes in patients with MDD, suggesting that the
ifferentiation is not based on the severity of illness.

Next, we conduct further analysis using two-sample 𝑡 tests to in-
estigate the differences in scores for each item of the HAMD between
ubtypes (see Fig. 7). Our results indicate significant differences in three
ymptom measures, namely suicide, retardation, and general somatic.

Fig. 8 illustrates the dominant prototype subgraph 𝐺dsub comparison
etween healthy controls and MDD groups in REST-meta-MDD dataset.
here are common (’shared’) brain connections within 𝐺dsub between
oth subtypes, which involves connections within VN, FPN SMN, CBL,
PN and etc. Patterns within SBN (connections between bilateral pal-
idum) of subtype1 are significantly more than that of subtype2, while
ubtype2 shows more connections with DAN (connections between
ilateral superior parietal gyrus).

.2.3. Interpretation in SRPBS
Table 7 demonstrate demographic and clinical data for each sub-

ype on SRPBS dataset. Total scores PANSS do not exhibit significant
ifferences between subtypes in patients with schizophrenia.

Furthermore, we use two-sample 𝑡 tests to investigate the differences
n scores for each item of the PANSS between subtypes (see Fig. 9).

e observe two significantly different gene profiles including somatic
oncern and guilt feeling.

Fig. 10 illustrates the dominant prototype subgraph 𝐺dsub com-
arison between healthy controls and schizophrenia groups in SRPBS
ataset. We observe significant differences in the brain connections
ithin 𝐺dsub for both subtypes, which could be attributed to the limited

ample size of this dataset. Specifically, subtype1 of schizophrenia
hows tight interactions within the limbic network, particularly in the
ight medial superior orbital frontal lobe. In contrast, subtype2 of

chizophrenia exhibits tight interactions within the left insula.
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Table 4
The classification performance and standard deviations of BPI-GNN and the baselines on three psychiatric datasets. The best and second best performances are in bold and
underlined, respectively.

Method ABIDE Rest-meta-MDD SRPBS

Accuracy F1 MCC Accuracy F1 MCC Accuracy F1 MCC

RBF-SVM 0.69 ± 0.01 0.69 ± 0.01 0.39 ± 0.02 0.66 ± 0.03 0.64 ± 0.03 0.32 ± 0.05 0.87 ± 0.02 0.89 ± 0.01 0.76 ± 0.04
Linear-SVM 0.67 ± 0.05 0.67 ± 0.05 0.34 ± 0.11 0.63 ± 0.02 0.61 ± 0.03 0.34 ± 0.14 0.87 ± 0.02 0.88 ± 0.02 0.75 ± 0.03
RF 0.64 ± 0.01 0.64 ± 0.01 0.29 ± 0.05 0.60 ± 0.02 0.56 ± 0.02 0.20 ± 0.03 0.84 ± 0.10 0.84 ± 0.09 0.67 ± 0.20
LASSO 0.65 ± 0.03 0.64 ± 0.01 0.29 ± 0.05 0.61 ± 0.02 0.59 ± 0.02 0.22 ± 0.04 0.79 ± 0.06 0.79 ± 0.07 0.58 ± 0.13

GAT 0.68 ± 0.03 0.69 ± 0.04 0.37 ± 0.07 0.63 ± 0.04 0.61 ± 0.07 0.24 ± 0.06 0.84 ± 0.11 0.84 ± 0.10 0.70 ± 0.19
GIN 0.67 ± 0.04 0.67 ± 0.04 0.37 ± 0.07 0.66 ± 0.03 0.67 ± 0.01 0.31 ± 0.06 0.82 ± 0.08 0.80 ± 0.09 0.65 ± 0.17
GCN 0.66 ± 0.06 0.65 ± 0.08 0.30 ± 0.01 0.63 ± 0.01 0.60 ± 0.05 0.26 ± 0.02 0.81 ± 0.08 0.81 ± 0.10 0.62 ± 0.17

SIB 0.65 ± 0.01 0.62 ± 0.01 0.29 ± 0.02 0.64 ± 0.04 0.65 ± 0.03 0.28 ± 0.09 0.70 ± 0.03 0.69 ± 0.04 0.43 ± 0.07
ProtGNN 0.65 ± 0.03 0.68 ± 0.02 0.29 ± 0.06 0.61 ± 0.02 0.59 ± 0.03 0.23 ± 0.04 0.74 ± 0.15 0.79 ± 0.09 0.55 ± 0.19
BrainGNN 0.67 ± 0.05 0.66 ± 0.05 0.33 ± 0.10 0.61 ± 0.03 0.59 ± 0.07 0.22 ± 0.06 0.88 ± 0.02 0.83 ± 0.07 0.73 ± 0.04
BrainIB 0.70 ± 0.01 0.71 ± 0.02 0.40 ± 0.03 0.67 ± 0.01 0.65 ± 0.02 0.35 ± 0.01 0.86 ± 0.06 0.84 ± 0.08 0.73 ± 0.13

BPI-GNN 0.71 ± 0.01 0.72 ± 0.01 0.41 ± 0.02 0.73 ± 0.01a 0.72 ± 0.01a 0.51 ± 0.02a 0.91 ± 0.03 0.92 ± 0.01 0.83 ± 0.06

a Denotes significantly outperforming (two sample 𝑡 tests, 𝑝 < 0.05) all the alternative methods.
Table 5
Demographic features of the two subtypes of patients with autism spectrum disorder.

Subtype1 (𝑁 = 284) Subtype2 (𝑁 = 244) Statistics P-value

Age (years) 16.4 (8.0) 17.7 (8.8) 𝑡 = −1.810 0.071
Sex, male/female 249/35 215/29 𝜒2 = 0.024 0.878
FIQ 105.28 (16.58) (𝑁 = 265) 105.91 (17.24) (𝑁 = 230) 𝑡 = −0.410 0.682
VIQ 104.75 (14.82) (𝑁 = 235) 103.78 (19.24) (𝑁 = 208) 𝑡 = 0.565 0.573
PIQ 104.89 (17.36) (𝑁 = 235) 105.86 (16.81) (𝑁 = 208) 𝑡 = −0.592 0.554
ADI-R_Social 19.82 (5.04) (𝑁 = 120) 19.98 (5.75) (𝑁 = 96) 𝑡 = −0.220 0.826
ADI-R_Communication 15.88 (4.44) (𝑁 = 120) 16.10 (4.76) (𝑁 = 96) 𝑡 = −0.350 0.727
ADI-R_RRB 6.53 (4.45) (𝑁 = 120) 6.03 (2.60) (N = 96) 𝑡 = 1.448 0.149
ADOS_Social 7.80 (2.63) (𝑁 = 120) 8.03 (2.88) (𝑁 = 96) 𝑡 = −0.613 0.541
ADOS_Communication 3.72 (1.54) (𝑁 = 120) 3.56 (1.52) (𝑁 = 96) 𝑡 = 0.732 0.465
ADOS_RRB 1.98 (1.38) (𝑁 = 120) 2.50 (1.72) (𝑁 = 96) 𝑡 = −2.481 0.014

All data are shown as mean (s.d.) or ratios. FIQ, Full-scale Intelligence Quotient; VIQ, Verbal Intelligence Quotient; PIQ, Performance Intelligence
Quotient; ADI-R, Autism Diagnostic Interview-Revised; ADOS, Autism Diagnostic Observation Schedule; RRB, Restricted and Repetitive Behaviors.
Fig. 6. Subtype-specific brain network connections on ABIDE dataset. The colors of brain neural systems are described as: visual network (VN), somatomotor network(SMN), dorsal
attention network (DAN), ventral attention network (VAN), limbic network (LIN), frontoparietal network (FPN), default mode network (DMN), cerebellum (CBL) and subcortical
network (SBN), respectively.
5.2.4. Association between clinical profiles and brain network connections

We further investigate association between clinical profiles and
dominant prototype subgraph on three psychiatric datasets. However,
we only observe significant association in MDD subtype1 on REST-
meta-MDD, while no significant association are observed in ABIDE and
SRPBS datasets. Fig. 11 demonstrates significant association between
9

FC of dominant prototype subgraph and subtype-differentiated HAMD-
17 scores in MDD subtype1. As can be seen, retardation is positively
correlated with FC between bilateral putamen (𝑟 = 0.316, 𝑝 < 0.0001,
FDR correction), FC between bilateral pallidum (𝑟 = 0.407, 𝑝 < 0.0001,
FDR correction) and bilateral thalamus (𝑟 = 0.316, 𝑝 < 0.0001, FDR
correction).
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Fig. 7. Subtype-specific clinical profiles for depression symptoms (HAMD-17) that exhibit the significant variations across clusters (𝑃 < 0.05, two-sample 𝑡 tests, false discovery
rate corrected). The asterisk denotes a significant difference from the mean symptom severity rating between distinct subtypes (𝑃 < 0.05), and the error bars represent the standard
error of the mean. ∗𝑃 < 0.05.
Fig. 8. Subtype-specific brain network connections on REST-meta-MDD dataset. The colors of brain neural systems are described as: visual network (VN), somatomotor
network(SMN), dorsal attention network (DAN), ventral attention network (VAN), limbic network (LIN), frontoparietal network (FPN), default mode network (DMN), cerebellum
(CBL) and subcortical network (SBN), respectively.
Table 6
Demographic features of the two subtypes of patients with major depressive disorder.

Subtype1 (𝑁 = 456) Subtype2 (𝑁 = 373) Statistics P-value

Age (years) 34.50 (11.63) 34.13 (11.28) 𝑡 = 0.464 0.643
Sex, male/female 177/279 124/249 𝜒2 = 2.754 0.097
Education (years) 12.03 (3.41) 11.99 (3.37) 𝑡 = 0.161 0.872
Illness Duration (Months) 41.64 (64.03) (𝑁 = 335) 38.57 (61.48) (𝑁 = 271) 𝑡 = 0.597 0.551
HAMD 20.59 (7.23) (𝑁 = 335) 21.54 (6.12) (𝑁 = 271) 𝑡 = −1.718 0.086

All data are shown as mean (s.d.) or ratios. HAMD, Hamilton Depression Scale.
Table 7
Demographic features of the two subtypes of patients with schizophrenia.

Subtype1 (𝑁 = 59) Subtype2 (𝑁 = 33) Statistics P-value

Age (years) 40.32 (10.19) 38.33 (10.48) 𝑡 = 0.879 0.382
Sex, male/female 29/30 18/15 𝜒2 = 0.246 0.620
Illness Duration (years) 13.69 (9.08) 15.23 (9.84) (𝑁 = 31) 𝑡 = −0.730 0.468
PANSS_Total 58.02 (17.69) (𝑁 = 57) 59.87 (18.28) (𝑁 = 30) 𝑡 = −0.453 0.652

All data are shown as mean (s.d.) or ratios. PANSS, Positive and Negative Syndrome Scale.
10
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Fig. 9. Subtype-specific PANSS positive/negative symptom profiles and PANSS gene profiles that exhibit the significant variations across clusters (𝑃 < 0.05, two-sample 𝑡 tests,
false discovery rate corrected). The red circle denotes a significant difference (𝑃 < 0.05). PANSS, Positive and Negative Syndrome Scale.

Fig. 10. Subtype-specific brain network connections on SRPBS dataset. The colors of brain neural systems are described as: visual network (VN), somatomotor network(SMN), dorsal
attention network (DAN), ventral attention network (VAN), limbic network (LIN), frontoparietal network (FPN), default mode network (DMN), cerebellum (CBL) and subcortical
network (SBN), respectively.

Fig. 11. Significant association between FC of dominant prototype subgraph and subtype-differentiated HAMD-17 scores. ∗∗∗𝑃 < 0.0001.
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6. Discussion

6.1. The model

In this study, we develop a novel graph neural network architecture
(BPI-GNN) for psychiatric diagnosis and subtyping. BPI-GNN includes
(i) GraphVAE and Prototype layer that automatically identify prototype
representations to correspond to subtypes; (ii) novel prototype sub-
graph generator that obtains the most informative edges in the brain of
distinct subtypes; (iii) novel regularization terms (TC loss) that ensures
the independence among distinct prototypes. BPI-GNN outperforms
alternative machine learning methods such as SVM, LASSO, and GNN
in terms of classification performance on three psychiatric datasets
(i.e., ABIDE, REST-meta-MDD and SRPBS), suggesting the robustness
of BPI-GNN.

BPI-GNN has the potential to address the issues of poor repro-
ducibility and lack of interpretability in using GNN for the diagnosis of
mental disorders. The issue of poor reproducibility is mainly due to the
small sample sizes used and not accounting for clinical heterogeneity.
Specifically, most previous diagnostic classifiers only used small sample
sizes from a single center to train their models, resulting in over-fitting
and poor generalization capacity during deployment. For example,
despite the significant improvement in performance shown in Pitsik
et al. (2023), Andreev et al. (2023), the sample sizes were limited, with
only 49 healthy controls and 35 patients with MDD used in Pitsik et al.
(2023), and 35 MDD patients and 50 healthy controls used in Andreev
et al. (2023). Despite the use of large, multi-site sample sizes in a
recent study (Gallo et al., 2023), the presence of clinical heterogeneity
still results in an accuracy of only 62%. In this study, BPI-GNN uses
three large, multi-site psychiatric datasets and offers insights into the
biological and clinical heterogeneity inherent in psychiatric disorders.

For interpretability, although GNNs have demonstrated impressive
efficacy, they inherently lack interpretability as black-box models, thus
impeding their utility in disorder analysis. To address this concern,
significant endeavors have been directed toward enhancing the in-
terpretability of GNNs and their application in psychiatric diagnosis.
However, most existing approaches are post-hoc (Zhang et al., 2022),
requiring the creation of a separate interpretive model to explain the
well-trained GNN. In addition, most of classifiers only could identify
the important nodes for diagnostic diseases (Li et al., 2021b; Cui
et al., 2022). Our proposed model, BPI-GNN, is a built-in interpretable
GNN and could provide edge explanation. It is worth noting that
edges (i.e. functional connectivities) play a more significant role in
psychiatric diagnosis (Wang et al., 2021a).

Furthermore, this paper has the advantage of BPI-GNN being able
to automatically identify psychiatric subtypes based on its performance.
The importance of identifying psychiatric subtypes has been recognized
for a long time, but few attempts have been made to do so. Typically,
researchers use feature selection approaches to obtain low-dimensional
representations or a relatively small number of features, and then adopt
unsupervised learning methods on these features to identify subtypes
of psychiatric disorders. However, this method faces two challenges:
(1) how to ensure optimal feature selection, and (2) how to identify
the number of subtypes. Our approach using prototype learning may
provide a new pathway for addressing these problems.

6.2. Interpretation of our findings

In ABIDE dataset, BPI-GNN successfully identifies 2 subtypes. Sub-
type1 of ASD (53.8% of ASD sample) have significantly lower RRB
scores of ADOS compared with that of subtype2 (46.2% of ASD sample).
RRB is usually used to predict the prognosis of ASD (Troyb et al.,
2016) and refers to a range of behaviors and activities that are char-
acterized by repetition, inflexibility, invariance, inappropriateness, and
lack of specific purpose (Langen et al., 2011). Our study advances the
12

current clinical conceptualizations in autism research by establishing V
a linkage between functional brain features and the long-recognized
heterogeneity of RRB features. Biological differences between subtypes
including FPN involved in cognitive control (D’Souza et al., 2021) and
DAN involved in attention to salient events (Ptak and Schnider, 2010)
are associated with RRB. These results are consistent with a previous
study (Guo et al., 2022), where the dynamic functional connectivity
of ASD subtype2 could predict the ADOS stereotypic behavior score
and ASD subtype2 exhibited higher weights for DAN. Furthermore, BPI-
GNN could successfully identify two subtypes in the REST-meta-MDD
dataset. Subtype1 of MDD (55% of MDD sample) have significantly
different suicide, retardation, general somatic scores of HAMD com-
pared with that of subtype2 (45% of MDD sample), which are related
to depressive degree, cognitive deficits, and physiological symptoms.
In addition, MDD subtype1 is characterized by patterns of SBN, while
MDD subtype1 is characterized by patterns of DAN. This results is inline
with a recent study (Wang et al., 2021b), in which MDD subtype1 was
characterized by hyperconnectivity within the attention network, while
MDD subtype2 was characterized by hypoconnectivity within the SBN.
For SRPBS dataset, subtype1 shows tight interactions of orbital frontal
lobe involve in affective processing (Kazama and Bachevalier, 2009),
while subtype2 exhibits tight interactions of left insula. Note that,
altered insula-related functions have been observed in schizophrenia,
including the processing of visual and auditory emotional information,
pain, and neuronal representations of the self (Wylie and Tregellas,
2010).

6.3. Limitations

Our study has some limitations that should be taken into account.
First, while we discuss some variations of hyperparameters in Sec-
tion 4.4, there are still many other hyperparameters that should be
explored, such as the values of 𝜆1, the number of GNN layers, and
different readout operations. Further research on these variations could
enhance the effectiveness and robustness of our method. Second, we
only consider FC to construct functional graph, even though it involves
dynamic alternations in neural activity over time. Finally, incomplete
clinical information can potentially affect the results. For instance, in
ASD patients, there are 284 patients in subtype1, but only 120 of them
have available ADI-R data.

7. Conclusions

In this study, we present BPI-GNN, a novel GNN framework based
on prototype learning for psychiatric diagnosis and subtyping. To our
knowledge, this is the first work to utilize prototype learning for psychi-
atric diagnosis and subtyping. BPI-GNN outperforms other state-of-the-
art methods on three challenging psychiatric datasets and effectively
identifies biologically meaningful subtypes and subtype-specific brain
network connections. Furthermore, we also validate the rationality of
our discovered subtypes with clinical and genetic profiles analysis.
Results highlight the potential for this approach to contribute to the
development of biologically informed diagnostic classifications and
treatment guidelines for specific psychiatric cohorts.
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Appendix. Additional details of total correlation

According to the matrix-based Rényi’s 𝛼-order entropy functional,
e have:

efinition 1. Let 𝜅 ∶ 𝜒 × 𝜒 ↦ R be a real valued positive definite
ernel that is also infinitely divisible (Bhatia, 2006). Given {𝐱𝑖}𝑛𝑖=1 ∈ 𝜒 ,

each 𝐱𝑖 can be a real-valued scalar or vector, and the Gram matrix
𝐾 ∈ R𝑛×𝑛 computed as 𝐾𝑖𝑗 = 𝜅(𝐱𝑖, 𝐱𝑗 ), a matrix-based analogue to
Rényi’s 𝛼-entropy can be given by the following functional:

𝐻𝛼(𝐾̃) = 1
1 − 𝛼

log2
(

tr(𝐾̃𝛼)
)

= 1
1 − 𝛼

log2

( 𝑛
∑

𝑖=1
𝜆𝑖(𝐾̃)𝛼

)

,
(A.1)

where 𝛼 ∈ (0, 1) ∪ (1,∞). 𝐾̃ is the normalized 𝐾, i.e., 𝐾̃ = 𝐾∕ tr(𝐾).
𝜆𝑖(𝐾̃) denotes the 𝑖th eigenvalue of 𝐾̃.

Definition 2. Given a collection of 𝑛 samples {𝑠𝑖 =
(

𝑥𝑖1, 𝑥
𝑖
2,… , 𝑥𝑖𝑚

)

}𝑛𝑖=1,
each sample contains 𝑚 (𝑚 ≥ 2) measurements 𝑥1 ∈ 𝜒1, 𝑥2 ∈ 𝜒2, . . . ,
𝑥𝑚 ∈ 𝜒𝑚 obtained from the same realization. Given positive definite
kernels 𝜅1 ∶ 𝜒1 × 𝜒1 ↦ R, 𝜅2 ∶ 𝜒2 × 𝜒2 ↦ R, . . . , 𝜅𝑚 ∶ 𝜒𝑚 × 𝜒𝑚 ↦

R, a matrix-based analogue to Rényi’s 𝛼-order joint-entropy among 𝑚
variables can be defined as:

𝐻𝛼(𝐾1, 𝐾2,… , 𝐾𝑚) = 𝐻𝛼

(

𝐾1◦𝐾2◦… ◦𝐾𝑚
tr(𝐾1◦𝐾2◦… ◦𝐾𝑚)

)

, (A.2)

where (𝐾1)𝑖𝑗 = 𝜅1(𝑥𝑖1, 𝑥
𝑗
1), (𝐾2)𝑖𝑗 = 𝜅2(𝑥𝑖2, 𝑥

𝑗
2), … , (𝐾𝑚)𝑖𝑗 = 𝜅𝑚(𝑥𝑖𝑚, 𝑥

𝑗
𝑚),

and ◦ denotes the Hadamard product.

Now, in the training of BPI-GNN, suppose we obtain
{

𝑧{1}𝑖 , 𝑧{2}𝑖 ,… , 𝑧{𝑘}𝑖

}𝐵

𝑖=1
in a mini-batch of 𝐵 samples, we first need to

evaluate three Gram matrices 𝐾𝑧{1} = 𝜅(𝑧{1}𝑖 , 𝑧{1}𝑗 ) ∈ R𝐵×𝐵 , 𝐾𝑧{2} =
𝜅(𝑧{2}𝑖 , 𝑧{2}𝑗 ) ∈ R𝐵×𝐵 , . . . , 𝐾𝑧{𝑘} = 𝜅(𝑧{𝑘}𝑖 , 𝑧{𝑘}𝑗 ) ∈ R𝐵×𝐵 associated with
𝑧{1}, 𝑧{2}, . . . , 𝑧{𝑘} respectively. Here, 𝜅 is a Gaussian kernel with kernel
width 𝜎, e.g., 𝜅(𝛼𝑖, 𝛼𝑗 ) = exp(− ‖𝛼𝑖−𝛼𝑗‖2

2𝜎2 ). For value of 𝜎, we evaluate the
10 nearest distances of each sample and take the mean. We choose 𝜎
as the average of mean values for all samples.

Then, we normalize 𝐾𝑧{1} , 𝐾𝑧{2} , . . . , 𝐾𝑧{𝑘} by their trace to obtain
𝐾̃𝑧{1} , 𝐾̃𝑧{2} , . . . , 𝐾̃𝑧{𝑘} , i.e.,

̃
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𝑧{𝑘} = 𝐾𝑧{𝑘}∕ tr(𝐾𝑧{𝑘} ). (A.3)
According to Definition 1, the entropy of variables 𝑝𝑘 can be evalu-
ated as (𝛼 is a hyperparameter which is set to 1.01):

𝐻𝛼(𝑧{𝑘}) =
1

1 − 𝛼
log2

(

tr(𝐾̃𝛼
𝑧{𝑘}

)
)

. (A.4)

Meanwhile, according to Definition 2, the joint entropy term
𝐻

(

𝑧{1}, 𝑧{2},… , 𝑧{𝑘}
)

can be evaluated as:

𝐻𝛼(𝑧{1}, 𝑧{2},… , 𝑧{𝑘}) = 𝐻𝛼

( 𝐾𝑧{1}◦𝐾𝑧{2}◦… ◦𝐾𝑧{𝑘}

tr(𝐾𝑧{1}◦𝐾𝑧{2}◦… ◦𝐾𝑧{𝑘} )

)

. (A.5)

Given latent vectors 𝑍 =
[

𝑧{1}, 𝑧{2},… , 𝑧{𝑘}
]

, we resort to a total
correlation (TC) term:

𝑇𝐶 (𝑍) = 𝐷𝐾𝐿

(

Pr
(

𝑧{1}, 𝑧{2},… , 𝑧{𝑘}
)

∥
𝑘
∏

𝑖=1
Pr

(

𝑧{𝑖}
)

)

,

=

[ 𝑘
∑

𝑖=1
𝐻

(

𝑧{𝑖}
)

]

−𝐻
(

𝑧{1}, 𝑧{2},… , 𝑧{𝑘}
)

.

(A.6)

By plugging Eqs. (A.1)–(A.5) into Eq. (A.6), we obtain:

𝑇𝐶𝛼
(

𝑧{1}, 𝑧{2},… , 𝑧{𝑘}
)

=

[ 𝑘
∑

𝑖=1
𝐻𝛼

(

𝑧{𝑖}
)

]

−𝐻𝛼
(

𝑧{1}, 𝑧{2},… , 𝑧{𝑘}
)

.

(A.7)
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