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ABSTRACT: A combined direct and inverse photoemission study of coinage metal
corroles suggests that the latter technique, in favorable cases, can provide some
additional information relative to electrochemical measurements. Thus, whereas
inverse photoemission spectroscopy (IPES) provides relative electron affinities for
electron addition to different unoccupied orbitals, electrochemical reduction
potentials shed light on the energetics of successive electron additions. While all
three coinage metal triphenylcorrole (TPC) complexes exhibit similar ionization
potentials, they exhibit dramatically different inverse photoemission spectra. For
Cu[TPC], the lowest-energy IPES feature (0.74 eV) is found to be exceedingly close
to the Fermi level; it is significantly higher for Ag[TPC] (1.65 eV) and much higher for Au[TPC] (2.40 eV). These differences
qualitatively mirror those observed for electrochemical reduction potentials and are related to a partially metal-centered LUMO in
the case of Cu- and Ag[TPC] and a fully corrole-based LUMO in the case of Au[TPC]; the latter orbital corresponds to the LUMO
+1 in the case of Ag[TPC].
KEYWORDS: photoemission, photoelectron, inverse photoemission, corrole, copper, silver, gold

The last quarter-century has seen corroles catapulted from
relative obscurity to the forefront of chemical and

materials sciences and wide-ranging medical and technological
applications.1,2 Redox-active metallocorroles, thus, are widely
used as catalysts, especially as electro- and photo catalysts.3−6

Redox-innocent metallocorroles, especially those involving 5d
transition elements, hold particular promise for medicine,
perhaps most notably as triplet photosensitizers for oxygen

sensing and photodynamic and related therapies.7−11 The new
applications have built directly on an ever-deepening under-
standing of metallocorroles’ electronic structure, at the center
of which, arguably, lies the phenomenon of ligand non-
innocence.12−14 Noninnocent ligands, it may be recalled, do
not allow a straightforward determination of the oxidation state
of a coordinated metal.15,16 A tricky concept, the phenomenon
can nonetheless be probed by a battery of physical and
quantum chemical methods; very recently, the phenomenon
has even been quantified.17,18 Presented herein is a first
exploration of the potential application of inverse photo-
emission spectroscopy (IPES) to corrole derivatives.

Inverse photoemission spectroscopy,19−22 the time-reversed
counterpart of direct photoemission spectroscopy23−26 (also
called photoelectron spectroscopy, PES), plays an important
role in study of the unoccupied states of materials. In a typical
experiment, a monochromatic electron beam impinges on a
surface, resulting in the emission of photons whose energies
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Scheme 1. Complexes Studied in This Work: M[TPC] (M =
Cu, Ag, Au)
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are analyzed. The incident electrons couple to unoccupied
states of the material and decay to lower states via both
radiative and nonradiative pathways and the energies of the
radiated photons provides a map of the unoccupied state
architecture. In a simpler implementation of the experiment,
the so-called isochromat mode, the energy of the incident
electrons (Ei) is varied, while photons are detected at a fixed
energy (hν), with a narrow bandpass on the order of a 100
meV. Regardless of the implementation, the energy of the final
state (Ef) is given by Ef = Ei - hν. Together, direct (UPS) and
inverse photoemission spectroscopy (IPES) provide a picture
of the band structure of a material.27

Unlike PES, IPES has enjoyed relatively few applications in
molecular chemistry.28−34 Simpler tools such as electro-
chemistry and optical spectroscopy have typically afforded
the necessary insight into molecular excited states. That said,
IPES does provide unique insight. While electrochemical
reduction potentials afford information on the energetics of
successive reductions (i.e., electron additions), IPES probes the
energetics of individual unoccupied molecular orbitals (MOs).
To determine the potential usefulness of IPES in a
coordination chemistry context, we carried out a direct and
inverse photoemission study of coinage metal meso-triphenyl-
corrole complexes, M[TPC] (M = Cu, Ag, Au; Scheme 1).
The solution-phase reduction potentials of the three complexes
vary from −0.20 V for Cu[TPC] through −0.86 V for
Ag[TPC] to −1.38 V for Au[TPC] (all vs the saturated
calomel electrode), indicating dramatically rising energies of
the lowest unoccupied MO (LUMO) from Cu through Ag to
Au.35−37 The electronic structures of the complexes also vary
from a noninnocent CuII−Cor•2‑ description for Cu-
[TPC]38−44 to an essentially innocent MIII-Cor3− description
for Ag[TPC]37 and Au[TPC];45−53 these differences are
schematically summarized in Figure 1. We shall see that the
IPES-derived picture of unoccupied states is eminently
consistent with that derived from electrochemistry35−37,54

and other spectroscopic methods (such as X-ray absorption

spectroscopy55,56). Moreover, combining the UPS and IPES
data gives access to the solid-state band gap (Eg),

57 a value that
can be compared to the electrochemical HOMO−LUMO gap
(Eox‑red), which is the difference between solution-phase
oxidation and reduction potentials obtained from electro-
chemical measurements.58

Herein, all samples were prepared under ultrahigh vacuum
(UHV) conditions. The M[TPC] samples were sublimed from
an alumina crucible heated by a tungsten filament. For Cu- and
Au[TPC], a sublimation temperature of 250 °C was used,

Figure 1. Schematic energy level diagram for of Cu-, Ag-, and Au-
TPC complexes. Occupied and unoccupied MOs are indicated in
black and blue, respectively. Note that the HOMO energy levels are
similar. However, the LUMO energy levels vary across the three
complexes as a result of varying levels of interaction between the
corrole’s π-HOMO and the formally empty metal (dx2‑y2) orbital.
Reproduced from ref 13. Copyright 2017 American Chemical Society.

Figure 2. Experimental (upper curves) and calculated (lower curves)
density of states (DOS) for the three M-TPC. Experimental curves
are composed of UPS spectra (negative energies) measuring the
occupied DOS up to the Fermi level (zero energy) and IPES spectra
measuring the unoccupied DOS. For IPES, colored lines are the result
of the fitting procedure to the experimental data (markers). All
spectra are referenced to the Fermi level (EF). For each set of spectra,
the three colored Gaussian curves correspond to the lowest
unoccupied MO (LUMO), LUMO+1, and LUMO+2, resulting
from the least-squares fitting of the IPES spectra. Their energy
positions are highlighted by vertical bars. The experimental energy
gap (Eg) is indicated. Its value is determined as the energy difference
between the HOMO and LUMO leading-edges’ intersections with the
baseline (not shown).
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while a lower temperature of 200 °C was used for Ag[TPC].
UPS and IPES experiments were performed on two distinct
instruments. For IPES, the substrate was cut from a Si wafer
covered by an amorphous carbon thin film. For UPS, an
Au(111) film grown on a mica substrate was used. The
cleanliness of the substrate and the thickness of the sample film
were both probed by X-ray photoelectron spectroscopy and
Auger electron spectroscopy. The film thickness used was large
enough (several nm) so to avert problems arising from
interface interaction or band bending.

IPES experiments were carried out in UHV at ∼10−10 mbar
base pressure. The measurements were performed in the
isochromat mode, i.e., the incident electron kinetic energy was
varied and emitted photons of fixed energy (9.7 eV) were
collected by a band-pass photon analyzer consisting of a CaF2
entrance window and a Geiger-Müller detector.61 The incident
electronic current was about 2 μA and the photon yield about
30−50 counts/s. The photon counts were normalized to the
measured injected current. No significant sample degradation
was observed when comparing the first and the last scan for
each spectrum. The spectra were all referenced to the Fermi
level measured on a clean Ta foil. The spectra were least-
squares fitted with Gaussians with FWHM = 0.85 eV (in line
with the energy resolution of the apparatus) along with an
integral background.72 UPS measurements were performed
with He I (hν = 21.22 eV) radiation from a HIS 13 discharge
lamp from Scienta Omicron. The emitted photoelectrons were
counted using an R3000 analyzer equipped with a micro-
channel plate detector. The resolution of the UPS measure-
ments, determined from the width of the Fermi step on the
metallic substrate, was 0.15 eV.

Figure 2 reports combined UPS-IPES-DFT spectra for the
three M[TPC] thin films. On the filled-states side, essentially
identical UPS spectra were measured, with very similar
HOMO positions, consonant with similar electrochemical
oxidation potentials for the three compounds.35,62 The overall

line shape was well reproduced by DFT, as expected for weakly
interacting units in a molecular film.63 On the other hand,
IPES revealed major differences across the three molecules.
From Cu through Ag to Au, a progressive shift to higher
energies of the empty states was observed (Table 1),
qualitatively mirroring the reduction potentials of the three
complexes. Quantitatively, the solid-state band gap (Eg) as
measured by UPS-IPES can be related to the electrochemical
HOMO−LUMO gap (Eox‑red) with a normalization factor that
accounts for different screening mechanisms (polarization)
acting in the solid state vs in solution. As shown in Table 1,
good agreement between the two energies was found with a
normalization factor of 1.15.58 A least-squares fit procedure
revealed the presence of three low-energy states (see Gaussian
curves beneath the spectra in Figure 2) that could be
rationalized with the help of DFT results.

In the isolated molecules, the lowest-energy IPES feature can
be assigned with a high degree of confidence from DFT
calculations. Thus, the scalar-relativistic OLYP64,65-D366,67/
ZORA-STO-TZ2P method (which has been extensively tested
by one of us68−75) yields gas-phase electron affinities76−78 that
closely track the energies of the lowest-energy IPES feature
(Table 2). For Cu[TPC], the LUMO corresponds to an
antibonding combination of the corrole π-HOMO and the
formally empty Cu 3dx2‑y2 orbital, a consequence of the ligand
noninnocence-driven saddled geometry of copper corroles
(Figure 3). In the case of Ag[TPC], the saddling is much more
muted so the corrole π-HOMO does not interact as much with
the Ag 4dx2‑y2 orbital and the LUMO corresponds to essentially
the latter orbital (Figure 3; note the significantly smaller
amplitudes at the corrole meso positions relative to Cu[TPC]).
A very different scenario holds for Au[TPC]: relativistic
effects79−81 raise the energy of the Au 5dx2‑y2 to such a degree
that it corresponds to the LUMO+2, while the LUMO
corresponds to a pure corrole-based π-orbital (Figure 3).

Accordingly, in each panel of Figure 2, the three lowest
unoccupied Kohn−Sham states are color-coded: the green bar,
corresponding to the state carrying M(dx2‑y2) character, moves
to higher energy from Cu through Ag to Au. For Ag[TPC], the
energy of the second IPES feature is very close to that of the
first IPES feature of Au[TPC]. In light of the above discussion,
it seems reasonable to assign this feature to a corrole-based
LUMO. Indeed, the DFT-derived second electron affinities of
both Cu[TPC] and Ag[TPC] are very close to the first
electron affinity of Au[TPC] (Table 2). The assignment of the
second IPES feature of Cu[TPC], however, remains somewhat
uncertain. DFT calculations suggest that this feature should
arise from an essentially corrole-based LUMO, but the energy

Table 1. IPES Peak Positions Relative to the Fermi Level,
UPS- and IPES-Derived Band Gaps (Eg), and
Electrochemical HOMO−LUMO Gaps (Eox‑red)

a

Compound Peak a Peak b Peak c Eg Eg/1.15 Eox‑red
35

Cu[TPC] 0.74 1.66 2.39 1.0 0.85 0.96
Ag[TPC] 1.65 2.30 2.94 1.8 1.56 1.59
Au[TPC] 2.40 3.23 3.93 2.7 2.34 2.18

aAll values are in eV. The peak labels a−c are ordered simply
according to increasing energy relative to the Fermi level and do not
have any connotations relative to the nature of the unoccupied state
involved.

Table 2. Selected All-Electron OLYP-D3/ZORA-STO-TZ2P Energetics (eV)a

IP1 IP2 EA1 EA2

Compound vertical vertical vertical adiabatic vertical adiabatic ΔEHOMO−LUMO

Cu[TPC] 6.01 (2B) 6.18 (2A) 2.01 (2B) 2.18 (2B) 1.17 (2A) 1.24 (2A) 0.82
Ag[TPC] 5.96 (2B) 6.28 (2A) 1.38 (2B) 1.61 (2B) 1.28 (2A) 1.35 (2A) 1.19
Au[TPC] 6.01 (2B) 6.35 (2A) 1.14 (2A) 1.22 (2A) 0.77 (2B) 1.14 (2B) 1.75

aThe calculations were carried out with a scalar-relativistic ZORA (Zeroth Order Regular Approximation to the Dirac equation)59 Hamiltonian, all-
electron ZORA STO-TZ2P basis sets, fine integration grids and tight criteria for SCF and geometry optimization cycles, and C2 point group
symmetry, all as implemented in the ADF program system.60 All IP and EA values were obtained via a ΔSCF procedure, i.e., as energy differences
between initial and final states, with careful specification of electron occupancies in each irrep, where warranted. Note that a more positive electron
affinity corresponds to a lower-energy LUMO. The HOMO-LUMO gaps (ΔEHOMO−LUMO) were obtained from Kohn-Sham orbital energies (see
Figure 3).
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(1.66 eV) seems unduly lower than that of an analogous
feature for Ag- and Au[TPC].

In summary, an IPES study of coinage metal triphenylcor-
roles has uncovered major differences in the energetics of the
unoccupied states for the three metals. While the results nicely
mirror those obtained from electrochemistry and DFT
calculations, they also afford additional insight. Thus, in the
case of Ag[TPC], IPES appears to have yielded unique
experimental data on the energetics of the LUMO and LUMO

+1-derived anion states.3−6 Overall, the IPES results are
consistent with the electroactive nature of copper corroles,
such as in dioxygen reduction and evolution processes, relative
to gold corroles. The latter are of great interest as triplet
photosensitizers, especially in photomedicine, in applications
such as oxygen sensing and photodynamic therapy.82−85 With
continuing improvements in experimental methodology,22 the
day may not be far when IPES enjoys a significantly wider
range of applications to metalloporphyrinoids and other

Figure 3. OLYP-D3/ZORA-STO-TZ2P frontier MOs of M[TPC], along with their C2 irreps and Kohn−Sham orbital energies.
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transition metal complexes, including catalysts and metal-
lodrugs, and particularly inorganic polymers and other systems
that are not readily studied with solution-phase techniques
such as electrochemistry and optical spectroscopy.
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metal corroles exhibit similar HOMO energies (and oxidation
potentials and UPS-derived first IPs), while the LUMO energies
(and reduction potentials) are strongly metal-dependent. Unlike
planar, innocent gold corroles,45−52 copper corroles are inherently
saddled,38−44 which allows for part of the electron density of the
corrole HOMO to flow into the empty dx2‑y2 orbital of the formal
Cu(III) center. This orbital interaction has mutually opposing effects
that largely cancel each other out for the HOMO of Cu[TPC]: while
saddling might be expected to mildly destabilize corrole π-MOs, the
Cu(dx2‑y2)-corrole(π) bonding interaction might be expected to be
mildly stabilizing. That said, this orbital interaction is still rather weak
so that the corresponding antibonding orbital, the LUMO of
Cu[TPC], is only slightly above the HOMO in terms of orbital
energy, which explains the low electron affinity, reduction potential,
and HOMO−LUMO gap for the complex.
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