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ABSTRACT: We have revisited the gas-phase photoelectron spectra of quadruple-
bonded dimolybdenum(ILII) and ditungsten(ILII) paddlewheel complexes with
modern density functional theory methods and obtained valuable calibration of four
well-known exchange—correlation functionals, namely, BP86, OLYP, B3LYP*, and
B3LYP. All four functionals were found to perform comparably, with discrepancies
between calculated and experimental ionization potentials ranging from <0.1 to ~0.5
eV, with the lowest errors observed for the classic pure functional BP86. All four
functionals were found to reproduce differences in ionization potentials (IPs) between
analogous Mo, and W, complexes, as well as large, experimentally observed ligand field
effects on the IPs, with near-quantitative accuracy. The calculations help us interpret a
number of differences between analogous Mo, and W, complexes through the lens of
relativistic effects. Thus, relativity results in not only significantly lower IPs for the W,

complexes but also smaller HOMO—-LUMO gaps and different triplet states relative to

their Mo, counterparts.

B INTRODUCTION

Conceptualized by Cotton nearly 60 years ago,'~~ metal—metal
quadruple bonds are an icon of inorganic chemistry.* They vary
remarkably in terms of their electronic properties such as
ionization potentials (IPs), electron affinities, redox potentials,
the nature of the frontier orbitals, HOMO—LUMO gaps, and
singlet—triplet gaps.4_6 The critical gas-phase photoelectron
spectroscopy (PES) measurements,” ' however, were made
largely in the latter half of the last century and still remain
inadequately explored with modern density functional theory
(DFT) methods."*~"° We recently made an effort to close this
knowledge gap with a comgarative DFT study of quadruple-
bonded metalloporphyrin'® and metallocorrole'” dimers."®
Here, we have extended these studies to nonporphyrinoid
dimolybdenum(IL1I) and ditungsten(ILII) paddlewheel com-
plexes. We have examined three series of compounds—
M,(OFm),, M,(Me,Fa),, and M,(Hpp),—and compared the
results with those for M, (Por),, where OFm = formate, Me,Fa =
N,N’-dimethylformamidinate, Hpp = hexahydropyrimidinopyr-
imidine, Por = unsubstituted porphyrin dianion, and M = Mo
and W (Scheme 1). The results afford not only valuable
calibration of the performance of common exchange—
correlation functionals but also insights into periodic trends
and relativistic effects as they pertain to metal—metal quadruple
bonds. For transition metals, the two key scalar relativistic effects
(as distinguished from spin—orbit coupling effects) are a
stabilization of s orbitals and a destabilization of d orbitals.
For abroader introduction to the subject, the reader may consult
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Scheme 1. Quadruple-Bonded Compounds Studied in This
Work
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Table 1. Calculated and Experimental IPs (eV) for the Molecules Studied ™"

BP86-D3 OLYP-D3 B3LYP*-D3 B3LYP-D3 PES

1P, 1P, 1P, Ip, 1P, 1P, IP, 1P,
Mo,(OFm), (D,;,) 7.44 7.38 7.19 7.12 723 7.16 721 7.12 7.5°
W,(OFm), (D,;) 6.93 6.91 6.59 6.56 6.64 6.62 6.58 6.55
Mo, (Me,Fa), (D.;) 5.36 5.30 5.10 5.04 5.11 5.04 5.08 4.99 5.637
W, (Me,Fa), (D) 5.00 4.95 471 4.65 4.71 4.65 4.65 4.59 5237
Mo,(Hpp), (D,) 3.82 3.71 3.61 3.49 3.70 3.56 3.69 3.53 4.33 (4.01)°
W,(Hpp), (D,) 3.41 3.31 3.13 3.03 3.19 3.08 3.23 3.11 3.76 (3.51)°
{Mo[Por]}, (D, 5.72 5.67 5.39 5.38 5.39 5.33 523
{W[Por]}, (Dsy) 521 4.83 4.82 4.85 4.78

“The calculations were carried out with a scalar-relativistic ZORA (zeroth order regular approximation to the Dirac equation)** Hamiltonian, all-
electron ZORA STO-TZ2P basis sets, fine integration grids and @i%ht criteria for SCF and geometry optimization cycles, and appropriate point
group symmetry, all as implemented in the ADF program system.”> "The subscripts v and a indicate “vertical” and “adiabatic”, respectively. “Ref 7.

Experimental measurements were carried out on N,N’-diphenylformamidinato (Ph,Fa) complexes; ref 13. “The values within parentheses are the

observed onset potentials; ref 14.

a nontechnical review article by Pyykks'® and a popular science
account in American Scientist by one of us.” This study adds to
our growin% appreciation of relativistic effects in coordination
chemistry.”' ~>

B RESULTS AND DISCUSSION

Table 1 presents DFT-based IPs and electron affinities
calculated with the ASCF method using different exchange—
correlation functionals, namely, the classic pure functional
BP86;°“%’ the pure functional OLYP,*** which has often
yielded improved results; and the hybrid functionals B3LYP*"
and B3LYP**"** with 20 and 15% Hartree—Fock exchange,
respectively, all augmented with Grimme’s D3 dispersion
corrections.” Also listed in Table 1 are relevant experimental
IPs, derived largely from gas-phase PES. Figure 1 presents a
comparative MO energy level diagram for a selection of the
compounds studied, namely, the two Hpp complexes and, for
comparison, the two analogous porphyrin complexes.18 Figure 2
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Figure 1. Comparative OLYP-D3/ZORA-STO-TZ2P MO energy
level diagram (eV) for M, (Hpp), (D,) and M,(Por), (D), where M =
Mo and W. Also indicated are MO irreps for the point group in
question.
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depicts key metal-based OLYP-D3 frontier MOs for Mo, (Hpp),
(the analogous MOs for the W, complex are visually exceedingly
similar and, accordingly, not shown). The results lead to the
following conclusions.

The present scalar-relativistic calculations with large Slater-
type basis sets present some of the first quantitative insights
(relative to early theoretical studies'”'*~"") into the perform-
ance of DFT methods with respect to photoelectron spectra of
classic metal—metal quadruple-bonded systems. Although we
have long known that DFT methods do an impressive job of
reproducing gas-phase IPs and electron affinities of organic and
main-group systems (see selected studies from our labora-
39743 the performance of DFT vis-a-vis transition-metal
systems has been rather an open question. On the one hand,
DFT methods have long struggled with reproducing the spin-
state energetics of transition-metal complexes.”"™>* On the
other hand, DFT has an excellent track record of correctly
predicting the redox site in metalloporphyrin-type complexes,
such as nickel hydroporphyrins>” and a number of metal—metal
multiple-bonded metallocorrole dimers.”* To our satisfaction,
for Mo,(OFm),, all four exchange—correlation functionals
yielded vertical IPs in semiquantitative agreement with gas-
phase PES, with the best agreement observed for BP86-D3. On
the other hand, the calculated vertical IPs of the Hpp complexes
are lower than the corresponding experimental values by ~0.5
eV; interestingly, the errors relative to experimental “onset
potentials” are much lower, only about 0.1-0.2 eV. We view
these as rather modest errors that we can easily “live with”. More
importantly, the calculations reproduce differences in IPs within
pairs of analogous Mo, and W, complexes with near-quantitative
accuracy. Overall, the four functionals examined appear to
perform comparably, with the classic pure functional BP86
exhibiting the best agreement with gas-phase PES.

Experimentally, the first IPs span a > 4 eV range for
dimolybdenum(IL,II) paddlewheel complexes, from 4.33 eV for
Mo,(Hpp)414 to 8.76 eV for Mo,(CF;C0O0),.11 For the
analogous ditungsten(ILII) complexes, the IPs span a slightly
smaller range of 3.63 eV, from 3.76 eV for W,(Hpp),14 to 7.39
eV for W,(CF;C0O0),."" The calculations, regardless of the
functional, appear to do an excellent job of reproducing the large
ligand field effects on the experimentally observed IPs. The
reason underlying the large ligand field effects seems rather
obvious: in each case, the HOMO corresponds to the 6 bond
(see Figures 1 and 2), which is exclusively localized on the
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L+4, b (%), -0.27 eV

H, b1 (8), -2.14 eV H-4, a1 (o), -4.10 eV

L+14, e (z*), 0.44 eV

H-6, e (), -4.56 eV

H-6, e (r), -4.56 eV

Figure 2. Selected OLYP-D3/ZORA-STO-TZ2P frontier MOs for Mo,(Hpp),. H and L refer to HOMO and LUMO, respectively. Also shown are D,

irreps and Kohn—Sham orbital energies (eV).

bimetal unit and, accordingly, highly susceptible to the ligands’
electronic effects.

Both calculated and experimental data reveal systematic
differences between the IPs of analogous Mo, and W,
complexes, with the vertical first IPs of the latter being lower
by a margin of ~0.5 eV (Table 1). Likewise, both Kohn—Sham
orbital energy spectra and experimental PES measurements
indicate that the same holds for metal—-metal 7-bonds."*~"*
Based on comparisons between scalar-relativistic and non-
relativistic calculations with the same basis sets (as described in
detail in earlier studies from our laboratory”' =), the differ-
ences in IPs between analogous Mo, and W, systems could be
largely attributed to differences in relativistic effects for the two
metals, with the W 5d orbitals significantly more destabilized by
relativity than the Mo 4d orbitals. An interesting point is that the
relativistic effects observed here are larger than, indeed almost
twice, what we have observed for other analogous pairs of 4d and
5d element complexes.”"**** A plausible explanation appears to
be that our earlier studies involved mononuclear complexes,
whereas here we are concerned with a bimetal unit with the MOs
in question derived from overlapping d orbitals from two metal
atoms.

In contrast to the above, Figure 1 shows that metal—metal ¢
and o* orbitals exhibit slightly lower orbital energies in W,
complexes than those in their Mo, counterparts. This
stabilization reflects the significant admixture of metal s
character in these orbitals and the fact that the W 6s orbital is
significantly more relativistically stabilized than the Mo Ss
orbital.'”*" The relativistic destabilization of the §* HOMO and
the stabilization of the ¢* LUMO/LUMO+1 in the W,
complexes relative to their Mo, counterparts translate to
significantly smaller HOMO—-LUMO gaps for the former
(Figure 1). Interestingly, as noted earlier,'® the LUMOs of the
porphyrin complexes consist of a degenerate pair of porphyrin-
based orbitals, which results in both exceedingly low HOMO—
LUMO gaps and large electron affinities relative to the
nonporphyrin complexes. In fact, according to our calculations,
a positive EA is not predicted for any of the nonporphyrin-

supporting ligands, except for small values < 0.5 eV for
carboxylate-supporting ligands.

The scalar-relativistic calculations presented here predict
different triplet states for Mo, and W, paddlewheel complexes.
Taking the Hpp complexes as our paradigm, B3LYP*-D3
calculations on Mo,(Hpp), predict a §'6*' triplet state at 1.09
eV and a §'c*! state at 1.49 eV above the ground singlet state
(both values refer to adiabatic energies). For W,(Hpp),, in
contrast, our calculations predict a lower-energy §'c*' triplet
state at 0.89 eV and a higher-energy 5'6*" triplet state at 1.45 eV,
an interesting example of a relativity-driven reversal of excited-
state energetics (see refs S and 6 for a general background).

B CONCLUSIONS

In summary, revisiting the gas-phase photoelectron spectra of
quadruple-bonded dimolybdenum(ILII) and ditungsten(ILII)
complexes with modern DFT methods has yielded a valuable
calibration of four popular exchange—correlation functionals. In
spite of a possible systematic error of a few tenths of an eV in the
absolute values of the IPs, the functionals examined reproduce
differences in IPs between analogous Mo, and W, complexes
and large ligand field effects with near-quantitative accuracy.
The calculations help us interpret a number of electronic
differences between analogous Mo, and W, complexes in terms
of differential relativistic effects. Thus, relativity results in not
only lower IPs for the W, complexes but also smaller HOMO—
LUMO gaps and different triplet states relative to their Mo,
counterparts.
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