
Citation: Sandsdalen, G.D.; Kumar,

A.; Hjerde, E. Exploring the Frozen

Armory: Antiphage Defense Systems

in Cold-Adapted Bacteria with a

Focus on CRISPR-Cas Systems.

Microorganisms 2024, 12, 1028.

https://doi.org/10.3390/

microorganisms12051028

Academic Editor: Maria Luisa Tutino

Received: 24 April 2024

Revised: 15 May 2024

Accepted: 15 May 2024

Published: 20 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

microorganisms

Article

Exploring the Frozen Armory: Antiphage Defense Systems in
Cold-Adapted Bacteria with a Focus on CRISPR-Cas Systems
Greta Daae Sandsdalen, Animesh Kumar and Erik Hjerde *

Department of Chemistry, UiT the Arctic University of Norway, 9019 Tromsø, Norway;
greta.sandsdalen@uit.no (G.D.S.); animesh.kumar@uit.no (A.K.)
* Correspondence: erik.hjerde@uit.no; Tel.: +47-77623372

Abstract: Our understanding of the antiphage defense system arsenal in bacteria is rapidly expanding,
but little is known about its occurrence in cold-adapted bacteria. In this study, we aim to shed light on
the prevalence and distribution of antiphage defense systems in cold-adapted bacteria, with a focus on
CRISPR-Cas systems. Using bioinformatics tools, Prokaryotic Antiviral Defense LOCator (PADLOC)
and CRISPRCasTyper, we mapped the presence and diversity of antiphage defense systems in 938
available genomes of cold-adapted bacteria from diverse habitats. We confirmed that CRISPR-Cas
systems are less frequent in cold-adapted bacteria, compared to mesophilic and thermophilic species.
In contrast, several antiphage defense systems, such as dXTPases and DRTs, appear to be more
frequently compared to temperate bacteria. Additionally, our study provides Cas endonuclease
candidates with a potential for further development into cold-active CRISPR-Cas genome editing
tools. These candidates could have broad applications in research on cold-adapted organisms. Our
study provides a first-time map of antiphage defense systems in cold-adapted bacteria and a detailed
overview of CRISPR-Cas diversity.

Keywords: antiphage defense systems; antiviral defense systems; cold-adapted bacteria; CRISPR-Cas;
dXTPases; psychrophiles; psychrotolerants

1. Introduction

Cold environments cover large proportions of Earth’s area, from polar regions to deep-
sea trenches. They harbor unique microbial communities that have adapted to survive
and thrive despite challenges such as extreme temperatures, low nutrient availability, and
high salinity [1]. Organisms that inhabit cold environments are commonly classified into
two overlapping groups: psychrophiles and psychrotolerants (or psychrotrophs). Psy-
chrophiles have an optimal growth temperature of around 15 ◦C and maximum growth
temperature of 20 ◦C, while psychrotolerants grow optimally around 20 ◦C and have a
maximum growth temperature of 30 ◦C [2,3]. Psychrophiles predominate in marine ecosys-
tems, whereas bacteria isolated from cold terrestrial environments are most often found to
be psychrotolerant [4]. Here, we employ the term ‘Cold-adapted bacteria’ referring to both
psychrophilic and psychrotolerant bacteria.

Cold-adapted bacteria have evolved unique mechanisms to overcome challenges such
as reduced enzyme activity, protein cold denaturation, decreased membrane fluidity, and
intracellular ice formation [5]. Bacterial communities in polar and marine ecosystems are
reported to have high levels of viral infection, where the phage threat is especially dominant
and responsible for killing approximately 20% of the marine microbial biomass daily [6–8].

Bacteria encode multiple lines of defense against phages. These include defense
systems with well-studied mechanisms, such as abortive infection (Abi) systems, restriction-
modification (RM) systems, and CRISPR-Cas systems, as well as many recently discovered
systems with lesser known or unknown modes of action [9–11]. Generally, bacteria are
known to resist phage infections by blocking phage adsorption and injection, targeting the
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phage nucleic acids via degradation or synthesis inhibition, or by death by suicide upon
phage infection [11–14]. The latter mode of protection, termed abortive infection (Abi)
induces cell death in infected cells, preventing the spread of the virus to other cells in the
population. The Abi system is abundant across bacterial genomes and includes diverse
mechanisms of action [13].

RM systems are also a widely distributed bacterial defense mechanism, consisting of
two key components: restriction enzymes and modification enzymes. This dual system pro-
vides a two-pronged defense by recognizing and targeting foreign DNA while safeguarding
the host genome [15]. The CRISPR-Cas system also recognizes and targets foreign nucleic
acids but is distinguished by its ability to readily acquire new specificities. CRISPR-Cas
confers defense against invading genetic elements by integrating short fragments of foreign
DNA into the CRISPR array, termed spacers. This integration enables subsequent identifi-
cation and degradation of complementary nucleic acids (protospacers) [16]. Notably, the
system displays intriguing variations in distribution among taxa and environments [17–21].
Although bacterial antiphage defense systems have distinct features and mechanisms, they
coexist and complement each other in providing an efficient defense against foreign genetic
material in a synergic manner [22,23].

The CRISPR-Cas system has gained a lot of attention in the last decade due to its
conversion into a groundbreaking tool for genetic engineering and genome editing, owing
to its programmable RNA-guided endonuclease activity [24,25]. Classifications of CRISPR-
Cas systems are based on effector complexes, yielding two primary classes and six distinct
types: Class 1 (including types I, III, and IV) and Class 2 (including types II, V, and
VI). Furthermore, these types can be divided into at least 34 subtypes [19,20,26–28]. A
fundamental divergence between Class 1 and Class 2 lies in their utilization of multi-
Cas effector complexes and single effector nucleases, respectively, which renders Class 2
systems particularly suitable for genome editing and genome engineering applications [28].
For more detailed information on mechanisms and applications for the various CRISPR
systems in genome editing and engineering, see reviews by Nishiga and coworkers [29] and
Hillary and Ceasar [30]. In addition to CRISPR-Cas, other antiphage defense systems have
also been converted into genome editing tools, such as prokaryotic Argonautes (pAgos)
and bacterial retrons [31,32].

Antiphage defense systems, including CRISPR-Cas, are known to be widespread in
bacteria and the arsenal of unique systems is rapidly expanding [33–35]. However, little is
known about their occurrence and distribution in cold-adapted bacteria. Previous research
has shown that temperature range is a strong predictor of CRISPR-Cas incidence, with
increasing abundance observed with rising temperatures [36,37]. Yet, these studies have
been limited by a small sample size of cold-adapted bacteria and analyzes of CRISPRs
and Cas clusters individually. The prevalence and distribution of other antiphage defense
systems in cold-adapted bacteria remain unexplored.

In this study, we aimed to map the prevalence and distribution of antiphage defense
systems in cold-adapted bacteria from various cold environments. We constructed a dataset
of high quality, assembled bacterial genomes collected from different habitats, including
cold marine waters, sea ice, glaciers, and permafrost. Bioinformatic tools were applied to
predict antiphage defense systems in the genomes of these microorganisms. Our study
provides an overview of the mechanisms that cold-adapted bacteria have evolved to
defend themselves against viral infections in cold environments. Additionally, we provide
a detailed map of the diversity and distribution of CRISPR-Cas systems in cold-adapted
bacteria, which has not been previously established.

2. Materials and Methods

A dataset of cold-adapted bacterial genome sequences was generated based on
the five databases MarRef v.1.7, MarDB v.1.6, Ocean Microbiomics Database (OMD)
v.1.1, BacDive (https://bacdive.dsmz.de/ (accessed on 23 January 2023)), and TEMPURA
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(http://togodb.org/db/tempura (accessed on 4 April 2023)). These databases, combined,
hold a comprehensive collection of bacterial genomes from diverse cold environments.

Filtering from MarDB, MarRef, and OMD databases was primarily focused on isolation
location. To exclude mesophilic and thermophilic species, the entries were filtered based
on their geographical isolation data. Here, we selected genomes from bacteria only isolated
above 60◦ N and below 50◦ S, where ocean surface temperatures are <10 ◦C [38]. All genomes
from MarRef and MarDB bacteria classified as mesophilic, thermotolerant, and thermophilic
were excluded, as well as those bacteria isolated from homoiotherms and hydrothermal
vents. Genomes from BacDive and TEMPURA were filtered based on experimental tem-
perature data. Genomic data from BacDive were collected 23 January 2023 through their
advanced search functions using the following filters: Temperature range: psychrophilic; Test
result (temperature): positive; Genome seq. accession number: (contains) GCA; and Sample
type/isolated/NOT contains: marine. The results were further filtered manually. The criteria
for exclusion were optimum growth temperature > 25 ◦C, conflicting experimental data for
growth temperature, isolated from hot environments/locations, and missing sequencing
data. A total of 61.48% of hits were removed during manual filtration. Genomic data from
TEMPURA were collected on 4 April 2023. Inclusion criteria: optimum growth temperature
≤ 20 ◦C; maximum growth temperature < 30 ◦C; and registered accession number.

The genome sequence metadata were evaluated using standard quality control mea-
sures developed by the Genomic Standards Consortium (GSC) [39] prior to download and
analysis to ensure data quality and consistency.

All single amplified genomes (SAGs) were excluded from the dataset, due to con-
tamination challenges associated with whole genome amplification techniques [40]. All
remaining genomes, including the metagenome-assembled genomes (MAGs) from MarDB
and OMD databases, were quality assessed using CheckM (v1.2.2) [41]. Low-quality se-
quences with low completeness (<90%) or high contamination (>5%) were excluded from
the dataset. In addition, accession ID duplicates across the five databases were identified
and removed. All genomes in the dataset were taxonomically reclassified using the GTDB-
Tk (v2.3.0) workflow against the Genome Taxonomy Database (GTDB) r.214. Genomes
classified as archaea by GTDB were also excluded (N = 11).

The genomes of interest from MarRef (N = 86), MarDB (N = 225), OMD (N = 299),
BacDive (N = 305), and TEMPURA (N = 25) were downloaded from the respective databases
using their provided application programming interfaces (APIs) or download portals. A
total of 938 genomes were downloaded from the five databases.

All genomes in the dataset were annotated for CRISPR-Cas systems (gene clusters
and arrays) using CRISPRCasTyper (cctyper v1.8.0) [42] at the default parameter [subtype
probability above 0.754]. Only the CRISPRs part of an intact CRISPR-Cas loci were in-
cluded. Other prokaryotic antiphage defense systems were predicted using the Prokaryotic
Antiphage Defense LOCator: PADLOC (v1.1.4) [33] using parameter a E-value < 0.01
and coverage > 0.8, where it assigned a unique system number referring to each system
identified in a genome.

For downstream analysis, the presence of each defense system was counted based
on the system number in each genome. All PADLOC-predicted defense system subtypes
were collapsed to type level and their prevalence and phylogenetic distribution were
analyzed in R v3.6.2. Phylogenetic trees were plotted using the phyloseq v1.44.0 and
ggtree v3.8.2 R packages [43,44]. Principal component analysis (PCA) was performed to
examine possible correlations between the low prevalence of CRISPR-Cas systems against
the high prevalence of other systems, such as dXTPases. PCA analysis was performed
at the taxonomic rank “family” using the factoMineR v2.8 [45] and factoextra v1.0.7 [46]
packages in R.

http://togodb.org/db/tempura
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3. Results
3.1. Dataset of 938 Cold-Adapted Bacterial Genomes

To map antiphage defense systems in cold-adapted bacteria, we generated a dataset of
assembled genomes of bacteria that were considered cold-adapted either based on isolation
location (MarRef, MarDB, and OMD databases) or experimental temperature growth data
(BacDive and TEMPURA databases). The final dataset includes 938 bacterial genomes
collected from diverse habitats, including marine waters, sea ice, glaciers, and permafrost.
The table of genomes in the dataset is given in Supplementary File S2, Table S1. In the
downloaded dataset, we observed a predominance of the Pseudomonadota (or Proteobacteria),
Bacteriodota (or Bacteroidetes or FCB group bacteria), and Actinomycetota (or Actinobacteria)
phyla, with fewer representatives from the Bacillota (or Firmicutes), Planctomycetota (or
Planctobacteria), and Verrucomicrobiota phyla. The taxonomic distribution of our dataset is
shown in Supplementary File S1, Figure S1.

3.2. Abundance and Distribution of Antiphage Defense Systems in Cold-Adapted Bacteria

The bioinformatics tools Prokaryotic Antiviral Defense LOCator (PADLOC) and
CRISPRCasTyper were applied to the dataset of cold-adapted bacterial genomes to pre-
dict antiphage defense systems. PADLOC analysis predicted the presence of antiphage
defense systems in 799 genomes, identifying 48 unique systems and a total of 145 system
subtypes—see Supplementary File S3. Additionally, CRISPRCasTyper, which utilizes
the machine learning approach, identified the presence of CRISPRs and Cas operons
(20 subtypes) in 166 genomes—see Supplementary File S4. Among the antiphage sys-
tems illustrated in Figure 1, RM systems were found to be the most dominant (~78%
genomes contained these systems) in cold-adapted bacteria. Surprisingly, dXTPases (dCTP
deaminases and dGTPases combined) had the second highest prevalence, found to be
present in 44% of the genomes, closely followed by the Abi systems (42%). Subsequently,
Defense-associated reverse transcriptase (DRT) was found in ~25% of the genomes in our
dataset and CBASS, Gabija, and CRISPR-Cas were found to be equally dominant (~17%) in
our dataset.
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A more detailed overview of prevalence linked to phylogenetic distribution of the
identified antiphage systems is presented in Figure 2. This analysis shows that some
antiphage systems are frequently found across the phylogenetic groups, such as RM and
Abi. On the other hand, dXTPases, CRISPR-Cas, and the anti-plasmid system Wadjet
show an unequal frequency across phylogenetic groups. Prevalence linked to phylogenetic
distribution at the family level is presented in Supplementary File S1, Figure S2.
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Figure 2. Distribution of antiphage defense systems across the prokaryotic phylum. Only phylo-
genetic groups with more than 5 genomes are represented. The number of genomes in the dataset
is represented under each phylum’s name. The heatmap illustrates the prevalence of fractional
occurrence of each antiphage defense system within each phylogenetic group (per row), with a color
legend on the right. The absolute number of genomes encoding a particular system is specified in
each cell.

3.3. CRISPR-Cas Systems in Cold-Adapted Bacteria

The CRISPR-Cas systems were found to be present in 17.7% of the genomes in the
dataset (Figure 3a), and the Class 1 systems were most abundant (Figure 3a,b). Based
on type level, Types I, III, and II were most abundant, whereas Types IV, V, VI were
almost absent in our dataset (Figure 3c). When analyzing the total number of CRISPR
systems predicted in the dataset genomes (Figure 3b), where several genomes had multiple
occurrences, we observed that subtype II-C (under Class 2, Type II) was most frequent. Of
the Class 1 systems, subtype I-F was most frequently predicted. Interestingly, Bacteroidota
were harboring more subtype II-C loci, while subtypes I-C, I-E and I-F were frequent in
Pseudomonadota (Figure 3c).
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the right. The absolute number of genomes encoding a particular CRISPR subtype is specified in
each cell.

3.4. Candidates for Cold-Active Genome Editing and Genome Engineering

To categorize enzymes with a potential for development into biotechnological tools, we
screened for antiphage defense systems harboring effector proteins Cas9, Cas12a, and Cas13
from CRISPR-Cas systems, pAgos, and reverse transcriptases (RTs) from retron systems.

The CRISPRCasTyper analysis predicted fifty-two subtype II-C systems within
48 bacterial genomes, two subtype II-A and one subtype II-B systems (Figure 3b), with
corresponding Cas9 effector endonucleases. We also identified two V-A systems (Cas12a
effector), two VI-A (Cas13a effector), and six VI-B1 systems (Cas13b effector). Through PAD-
LOC analysis, we identified 51 genes encoding pAgos within our dataset from 47 genomes.
The retron-mediated genome editing system (REGES) requires an RT and corresponding
non-coding RNA (ncRNA). From PADLOC analysis, we have identified 83 retron RTs from
81 bacterial genomes.

A list of the bacterial genomes encoding these enzymes, as well as their genomic
positions, is given in Supplementary File S5 (Tables S2–S4).

3.5. Patterns in Antiphage Defense System Occurrence

To further investigate the low abundancy of CRISPR-Cas systems in cold-adapted
bacteria, correlation analysis was performed to look for patterns in antiphage defense
system occurrence. Principal component analysis (PCA) was applied to the combined
output data from PADLOC and CRISPRCasTyper (Figure 4). PCA performed for antiphage
defense systems, classified at the taxonomic rank family, explained 22.3% of total variation
with dimension (dim) 1 and 2. Dim1 was positively associated with all selected systems
except dXTPases, while Dim2 was predominantly positively associated except Argonautes,
CRISPR-Cas, and Abi.
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4. Discussion

In this study we aimed to investigate the abundance and diversity of antiphage defense
systems in cold-adapted bacteria. In reviewing the current literature on antiphage defense
system abundance and distribution, we did not find any study categorizing the result based
in bacterial growth temperature. Therefore, we compared our results to studies based
on datasets of bacterial genomes in general. Our study shows that cold-adapted bacteria
possess a diverse range of antiphage defense systems, with RM, dXTPases, and Abi systems
being the most prevalent.

We found dXTPases to be the second most prevalent antiphage defense system in our
dataset of cold-adapted bacterial genomes, which is somewhat surprising. In reviewing the
literature, Tal and coworkers [47] reported dCTP deaminases in 2.5% and dGTPases in about
6% of the analyzed genomes. A review of antiphage defense systems of bacteria, by Georjon
and Bernheim [34], reported the mean number of copies of the dGTPase system encoded
in one bacterial genome to be only 0.07. In contrast, we found that 44.2% of the genomes
assessed genes encoding dXTPases (including both dCTP deaminases and dGTPases). The
dXTPase defense proteins halts phage replication in the bacterial cell by depleting them
of specific deoxynucleotides (dCTP or dGTP) in the nucleotide pool, thus starving the
phage of essential DNA building blocks. This has shown to be a potent antiphage strategy
shared by both prokaryotes and eukaryotes [47]. Furthermore, the taxonomic distribution
of dXTPases revealed that dCTP deaminases and dGTPases are predominantly present
in the phyla Pseudomonadota, with additional occurrences in Actinomycetota and Bacillota.
dGTPases were also found to be occasionally present in Verrucomicrobiota [47]. Our findings
align with this distribution, and the high occurrence of dXTPases may, in part, be attributed
to the high count of Pseudomonadota in our dataset. The prevalence of dXTPases in our study
highlights the importance of these enzymes in the defense strategy of Pseudomonadota.

Defense-associated reverse transcriptase’s (DRTs) were found in 25.6% of the inves-
tigated genomes. These systems consist of reverse transcriptase’s (also known as RNA-
directed DNA Polymerases) from different unknown groups (Ugs) that act alone, together
with small membrane proteins or as two RTs from two different Ugs coupled with a
ncRNA [48,49]. DRTs have previously been reported to be of low abundancy in bacterial
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genomes. Georjon and Bernheim [34] reported the mean number of copies of the DRT
system encoded in one bacterial genome to be 0.05 and Tesson and co-workers [50] found
DRT systems in 4.6% of assessed bacterial genomes. DRTs have been shown to confer
resistance to phages, although through an unknown mechanism.

We confirmed that the presence of CRISPR-Cas systems is less frequent in cold-adapted
bacteria, compared to mesophilic and thermophilic bacteria where CRISPR systems are
found in 49% and 92% of analyzed genomes, respectively [36]. In our dataset, 17.7% of the
genomes contained CRISPR operons, which encompassed gene clusters and CRISPR arrays
in close vicinity. Additionally, we identified several orphan Cas gene clusters and orphan
CRISPR arrays; however, these were excluded from our reported findings since they do not
constitute functional defense systems.

As an adaptive immune system, CRISPR-Cas has obvious theoretical benefits. It
effectively targets and degrades repeat invaders with its ‘molecular memory’ (spacers)
stored within the CRISPR array. In practice they also have costs that negatively impact
the reproduction and survival of their bacterial hosts [21,51]. The CRISPR operon consists
of several Cas genes and a CRISPR array of direct repeats and incorporated spacers that
bears a metabolic burden in both cellular resources and general bioenergetic demands.
CRISPR-Cas systems target not only phages but also a variety of mobile genetic elements
(MGEs) including plasmids and integrative conjugative elements. This may affect bacterial
adaptation via horizontal gene transfer (HGT) [51]. Cold-adapted bacterial species have
been shown to rely on the acquisition of new genetic material through HGT for rapid
adaptation to changing environmental conditions [52–55]. Additionally, a high mutation
rate in the target phages, or in the host genome, will lead to a loss of the spacers’ comple-
mentary effectiveness [51]. Studies have shown that mutation rates depend on temperature,
increasing toward both temperature extremes [56]. With the costs in mind, it would seem
beneficial for cold-adapted bacteria to select against CRISPR-Cas systems.

The observed decline in CRISPR-Cas system prevalence with decreasing environmen-
tal temperatures has been attributed to the predominance of cellular predation, rather than
viral infection, as the primary cause of bacterial mortality in these conditions [37]. Here, we
propose an alternate explanation for the low CRISPR-Cas abundance, although we recog-
nize that predator grazing might also influence this trend. Our correlation analysis reveals
that dXTPases often occur in the genomes of cold-adapted bacteria where CRISPR-Cas
systems are absent, indicating that these are not complimentary defense systems and, in
contrast, appear to be mutually exclusive. Hence, it could conceivably be hypothesized
that cold-adapted bacteria select against the energy-costly and HGT-hostile CRISPR-Cas
systems in favor of the less complex antiphage defense systems, such as dXTPases. Both
systems target phage nucleic acids, although through different strategies.

When comparing our findings to those of previous studies on more temperate bacterial
species, it must be pointed out that phylogenetic distributions vary amongst psychrophilic,
mesophilic, and thermophilic bacterial species. The phylogenetic distribution in our dataset
is biased towards the phylum’s Pseudomonadota and Bacteroidota, contributing 551 genomes
of the total 938. This was expected since bacteria from these phylum’s are the most
commonly reported microorganisms in deep-sea and polar regions [38]. Bacillota and
Deinococcota are also frequently found in Antarctic and alpine environments. It should also
be noted that the findings in this study are somewhat limited by the size of the dataset;
therefore, the results might not be representative of all cold-adapted bacteria.

In 2012, CRISPR-Cas was reconstructed into a genome editing tool and, thus, revo-
lutionized the field of biotechnology [24]. The CRISPR technology gained popularity for
its simplicity, affordability, and specificity. The CRISPR tools, at present, are mostly from
mesophilic species, making genome editing in cold-living organisms, such as poikilotherms,
challenging. Cold-active Cas enzymes could solve these issues, providing an optimal tem-
perature activity aligned with the growth temperature of the targeted cells or organism. The
heat-labile nature of cold-active enzymes could also provide an advantage in tightly con-
trolling genome editing with temperature. However, it is not directly implied that genes
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from cold-adapted bacteria encode cold-active proteins [57]. To determine the optimal en-
zymatic temperature the proteins must be recombinantly expressed and tested. Here, we
have identified fifty-five Cas9 genes from fifty-one bacterial genomes and two Cas12a genes
with potential as cold-active genome editing tools. Additionally, we identified two Cas13a
and six Cas13b genes that have the potential to be cold-active RNA editors and/or RNA
screening tools.

Further interesting findings are the prokaryotic argonautes (pAgos) and retrons from
cold-adapted bacteria, which also have potential as cold-active genome editing tools.
Like Cas endonucleases, pAgos are easily programmed to cleave DNA and/or RNA
targets. Most pAgos have short, single-stranded DNA guides, which are more stable
than RNA guides, and they also present other advantages over Cas such as no sequence
restrictions and compact size [32]. To date, only one psychrotolerant pAgo (MbpAgo) has
been experimentally validated [32,58]. Here, we have identified 51 candidates from both
psychrophilic and psychrotolerant bacterial hosts. In contrast to CRISPR-Cas and pAgos,
bacterial retrons confer defense against phages via abortive infection with the defensive
unit composed of ncRNA, RT, and an effector protein [59]. Recently, retron ncRNA and
RT have been utilized in the versatile retron-mediated genome editing system (REGES),
providing promising results for efficient genome editing in prokaryotes [31]. Here, we have
identified 83 retron RTs with potentially cold-active properties.

5. Conclusions

Our study provides a comprehensive overview of the prevalence and distribution of
antiphage defense systems in cold-adapted bacteria from various cold environments. RM
and Abi systems are widely distributed among cold-adapted bacteria, as for bacteria in
general. We have also confirmed that CRISPR-Cas systems are less prevalent in bacterial
species located in cold environments. Interestingly, we found high prevalence of DRT
and dXTPases systems, suggesting that cold-adapted bacteria select against CRISPR-Cas
systems in favor of other antiphage defense systems. The findings from this study also offer
potential applications in biotechnology by identifying candidates of Cas endonucleases,
pAgo endonucleases, and retron RTs, which can be further characterized and developed as
cold-active genome editing and/or engineering tools.
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