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Abstract: With applications ranging from metabolomics to histopathology, quantitative phase
microscopy (QPM) is a powerful label-free imaging modality. Despite significant advances in
fast multiplexed imaging sensors and deep-learning-based inverse solvers, the throughput of
QPM is currently limited by the pixel-rate of the image sensors. Complementarily, to improve
throughput further, here we propose to acquire images in a compressed form so that more
information can be transferred beyond the existing hardware bottleneck of the image sensor. To
this end, we present a numerical simulation of a learnable optical compression-decompression
framework that learns content-specific features. The proposed differentiable quantitative phase
microscopy (∂-QPM) first uses learnable optical processors as image compressors. The intensity
representations produced by these optical processors are then captured by the imaging sensor.
Finally, a reconstruction network running on a computer decompresses the QPM images post
aquisition. In numerical experiments, the proposed system achieves compression of × 64 while
maintaining the SSIM of ∼0.90 and PSNR of ∼30 dB on cells. The results demonstrated by our
experiments open up a new pathway to QPM systems that may provide unprecedented throughput
improvements.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Among the label-free imaging modalities, quantitative phase microscopy (QPM) is a simple but
powerful approach, providing important biophysical information by quantifying optical phase
differences [1,2]. From the phase map, one can further yield quantitative information about
the morphology and dynamics of the examined specimens [3,4]. In addition to morphology,
the measured phase maps can be converted to dry mass of the cells with accuracy that is of the
order of femtograms per square microns [5,6]. QPM has found many important applications in
biomedicine [7] including pathogen screening [8], cancer cell classification [9], and label-free
analysis of histopathology specimens [10,11]. Moreover, recently quantitative phase imaging has
even been extended to image the structures of thick biological systems such as zebrafish larval
[12].

The first phase imaging mechanism was introduced by Zernike in his phase contrast microscopy
[13]. Here, the phase shifts due to the refractive indices and depth differences in the specimen
are converted into detectable intensity variations. Zernike’s original design consisted of a phase
filter which directly displays phase information by interfering scattered portion of light from an

#504954 https://doi.org/10.1364/BOE.504954
Journal © 2024 Received 6 Sep 2023; revised 15 Dec 2023; accepted 9 Feb 2024; published 22 Feb 2024

https://orcid.org/0000-0001-5372-1571
https://orcid.org/0000-0001-7841-6952
https://doi.org/10.1364/OA_License_v2#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.504954&amp;domain=pdf&amp;date_stamp=2024-02-22


Research Article Vol. 15, No. 3 / 1 Mar 2024 / Biomedical Optics Express 1799

image, with its unscattered portion. Even though the work improved with several extensions
[14,15], due to the non-linear dependency between phase and intensity, direct phase contrast
techniques are incapable of quantitative phase measurements. QPM techniques overcome this
problem by computational inverse reconstruction [7]. A typical quantitative phase microscope
consists of an optical system (forward model) and a computational phase retrieval algorithm
(inverse model) [16]. The forward optical system converts undetectable phase information into
detectable interferometric fringe patterns; from the fringe patterns, the inverse reconstruction
algorithm retrieves phase and intensity maps of the specimen. Recent developments in QPM have
mostly been focused on improving the inverse reconstruction using GPU acceleration [17–19],
deep-learning-based inverse solvers [20–25], and illumination patterns optimization [26,27].

These advancements have placed QPM in a unique position to measure large cell populations
for applications in cytometry, a field currently dominated by flow cytometers. Most commercial
flow cytometers can easily analyze hundreds of thousands of cells per second. But QPM-based
image cytometers are currently orders of magnitude slower. The main bottleneck of QPM is the
image acquisition speed, which is fundamentally governed by the pixel rate of image sensors.
Currently, the pixel rate of a state-of-the-art camera is around 1 × 1010 pixels/sec. However, the
pixel throughput of the front-end optics is virtually unlimited. An image passes through optics
at the speed of light and has been the rationale for developing optical signal processors [28].
Here we propose to exploit this property to optically compress an image in order to measure the
compressed form of the image using a high-speed light detector (such as a high-speed camera).
Thus the pixel throughput of the original image would be increased at a rate proportional to the
degree of compression.

Compressive imaging of biological specimens, using random sampling of the linearly projected
image space, has been demonstrated before [29]. Better compression, however, may be achieved
through learning dataset-specific features of images. To this end, here we propose to use
differentiable microscopy (∂µ) [30,31] to identify important image features for compression,
through machine learning. Our method consists of an optical processor, a camera sensor, and a
deep neural network. The optical processor encodes phase information of an input light field onto
the sensor. The sensor compressively measures the intensity of this output field. The measured
intensity map is then used by the neural network to reconstruct the phase map of the original
input light field. We use machine learning to co-design the optical processor and the decoding
neural network end-to-end. We call this measurement scheme differentiable quantitative phase
microscopy (∂-QPM). In numerical simulations, we show that our proposed approach can image
phase information of in-vitro cells at ×64 − ×256 compression, accelerating image acquisition
by the same amount. We thus demonstrate that orders of magnitude faster QPM is feasible
through ∂-QPM. Of note, this work only presents a simulation of the optical processor, leaving
the implementation to future work.

In the following sections, we first introduce the proposed ∂-QPM (section 2.1). Second, we
assess the feasibility of using optical processors as image compressors, despite them being
linear operators (section 2.2). Third, we demonstrate ∂-QPM (in simulations) for in-vitro cells
at ×64 − ×256 compression. Last, we discuss multiple aspects of the proposed measurement
paradigm including potential avenues to implement the optical processors.

2. Results

2.1. Differentiable quantitative phase microscopy (∂-QPM)

Figure 1 shows the schematic of the proposed ∂-QPM scheme that consists of an optical processor,
a camera sensor, and a neural network. The optical processor maps an input light field (at the
image plane of the microscope), to an output light field. We design the optical processor such
that, the low-frequency intensity components of the output field, encode information about the
phase of the input field. The output field is then imaged at low resolution using a camera sensor.
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The sensor is smaller than what is required to measure the original input field at the Nyquist
sampling rate, thereby performing a "compressive measurement". The measured intensity map is
then "decompressed" and decoded using the neural network, to reconstruct the phase map of
the original input field. Notably, in ∂-QPM, each sensor pixel codes for multiple pixels of the
original input light field. We call this number the "compression". For any given camera, the
compression is directly proportional to the improvement of imaging speed. Below, we write the
mathematical model of the above process.
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Fig. 1. Overview of differentiable quantitative phase microscopy (𝜕-QPM): (A)
End-to-end pipleine of 𝜕-QPM. The input light field propagates through an optical
processor to produce the output light field. The output field is imaged using a smaller
camera sensor at low resolution. The intensity map, imaged by the camera, is fed to
the neural network to reconstruct a high-resolution phase map of the original input
light field. (B1) A potential design of the optical processor using a Fourier filter
with learnable transmission coefficients. All lenses ( 𝑓1, 𝑓2, and 𝑓3) are placed at 4f
configurations. (B2) Another potential design of the optical processor using a diffractive
neural network (PhaseD2NN). Here, 𝑓1, 𝑓2, and 𝑓3 are lenses; two 𝑂𝐵𝐽𝑅 elements are
objective lenses. The first 𝑂𝐵𝐽𝑅 forms a remote focus. The PhaseD2NN is placed with
respect to the remote focal plane. The output plane of the PhaseD2NN is imaged to
the camera sensor using the second 𝑂𝐵𝐽𝑅 and downstream lenses 𝑓1, 𝑓2, and 𝑓3. All
lenses are placed at 4f configurations.
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Here 𝐷 (.) represents the low-resolution detection of the output light field. 𝐼 represents the100
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Fig. 1. Overview of differentiable quantitative phase microscopy (∂-QPM): (A) End-
to-end pipeline of ∂-QPM. The input light field propagates through an optical processor to
produce the output light field. The output field is imaged using a smaller camera sensor at
low resolution. The intensity map, imaged by the camera, is fed to the neural network to
reconstruct a high-resolution phase map of the original input light field. (B1) A potential
design of the optical processor using a Fourier filter with learnable transmission coefficients.
All lenses (f1, f2, and f3) are placed at 4f configurations. (B2) Another potential design of
the optical processor using a diffractive neural network (PhaseD2NN). Here, f1, f2, and f3
are lenses; two OBJR elements are objective lenses. The first OBJR forms a remote focus.
The PhaseD2NN is placed with respect to the remote focal plane. The output plane of the
PhaseD2NN is imaged to the camera sensor using the second OBJR and downstream lenses
f1, f2, and f3. All lenses are placed at 4f configurations.

Consider the electric field xin = Ainejφin at the image plane of the microscope. xin propagates
through the optical processor HO(.) such that,

I = D(|HO(xin)|2) (1)

ϕ̂ = HE(I) (2)

Here D(.) represents the low-resolution detection of the output light field. I represents the
detected intensity map. HE(.) represents the neural network that reconstructs the phase map, ϕ̂,
of xin at its original resolution.

Parameters of both the optical processor and the neural network are optimized using machine
learning methods. Specifically, we first parameterize the entire end-to-end model in a differentiable
manner. The parameters are then optimized by reducing a loss function, that represents the
reconstruction quality (see section 5.3). Equation (3) shows the simplified representation of the
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overall problem.
H∗

O, H∗
E = arg min

HO,HE

L(ϕ̂, ϕin) (3)

Here L represents the composite loss function. Components of L are explained in the methods
section (section 5.3). Motivated by our previous work on all-optical phase retrieval [30], for
HO(.), we consider two types of optical processors, Learnable Fourier Filters (Fig. 1.B1) and
PhaseD2NNs (Fig. 1.B2). These models are discussed in detail in the methods section 5.2.

The main limitation of our previous work [30] was the lack of non-linearity of the optical
processor. Phase retrieval is a non-linear image translation problem, and our linear optical
processor could only find an approximation. In contrast, here we use the optical processor as
a feature extractor. The optical model only has to learn a faithful representation that contains
sufficient information to computationally reconstruct the original phase map. However, when
compressive measurements are used, the reconstruction problem is highly ill-posed. Therefore,
next, we investigate the capacity of our linear optical processor to encode phase information,
sufficient for inverse reconstruction.

2.2. Linear encoding does not degrade compressibility

With respect to the phase of the input field, our ∂-QPM scheme is similar to an autoencoder. The
optical processor acts as the encoder; the neural network acts as the decoder; the output field of
the optical processor acts as the bottleneck. Conventional autoencoders [32] have non-linear
encoders that can learn compressed representations at their bottleneck. But here our encoder, i.e.,
the optical processor, is a linear system. We therefore first established the feasibility of linear
compression in comparison to nonlinear compressor models.

Linear Encoding and Non-linear Decoding Allow Compression. First, we experimented
on an autoencoder (AE) network with a linear encoder followed by a non-linear decoder. The
reconstruction results obtained from this network were compared with a fully linear autoencoder
and a fully nonlinear autoencoder. The qualitative results for the MNIST dataset [33] in Fig. 2
show that the autoencoder network with a linear encoder and non-linear decoder performs on
par with the fully nonlinear autoencoder.
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Fig. 2. Compressibility of MNIST images using autoencoders (AE) with linear (L) and
nonlinear (NL) encoder (E)/ decoder (D). LE, LD, NLE, and NLD represent linear
encoder, linear decoder, non-linear encoder, and non-linear decoder respectively.
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Fig. 3. Phase to intensity conversion and compressibility on PhaseMNIST dataset
using linear (L) and nonlinear (NL) encoder (E)/ decoder (D). Both the encoders are
complex-valued hence denoted as CLE and CNLE.
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Fig. 2. Compressibility of MNIST images using autoencoders (AE) with linear (L) and
nonlinear (NL) encoder (E)/ decoder (D). LE, LD, NLE, and NLD represent linear encoder,
linear decoder, non-linear encoder, and non-linear decoder respectively.

Complex-valued Linear Encoding and Non-linear Decoding Allow Compression of Phase
Information. While we assessed the feasibility of a linear encoder followed by a non-linear
decoder, in QPM, another main hurdle is that information of interest is in the phase of the light
field. Therefore, we further assessed the ability of an autoencoder network (complex-valued linear
encoder + non-linear decoder, see section 5.1) to extract, compress, and reconstruct information
encoded in the phase. Similar to previous results, for the PhaseMNIST dataset (see section 5.4),
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Fig. 3 shows that a complex-valued linear encoder with a nonlinear decoder achieves similar
qualitative performance as the complex-valued nonlinear encoder and nonlinear decoder.
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Fig. 2. Compressibility of MNIST images using autoencoders (AE) with linear (L) and
nonlinear (NL) encoder (E)/ decoder (D). LE, LD, NLE, and NLD represent linear
encoder, linear decoder, non-linear encoder, and non-linear decoder respectively.
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using linear (L) and nonlinear (NL) encoder (E)/ decoder (D). Both the encoders are
complex-valued hence denoted as CLE and CNLE.
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Fig. 3. Phase to intensity conversion and compressibility on PhaseMNIST dataset using
linear (L) and nonlinear (NL) encoder (E)/ decoder (D). Both the encoders are complex-valued
hence denoted as CLE and CNLE.

These results suggest the feasibility of a linear optical processor (encoder) followed by a
nonlinear neural network (decoder) to compress and reconstruct information in the phase of the
light field.

2.3. Optical encoding and electronic decoding enable compressed QPM

Our results in section 2.2 show that an autoencoder with a linear encoder and a non-linear
decoder (AE:LE+NLD) can reconstruct images as well as a fully nonlinear model. In this
section, we numerically test our ∂-QPM scheme with two types of optical processors (HO(.) in
Eq. (3)) as encoders. For the decoder neural network (HE(.) in Eq. (3)), we use a state-of-the-art
super-resolution model, SwinIR [34]. We evaluate ∂-QPM on an experimentally collected HeLa
cell dataset (see section 5.4).

Learnable Fourier Filter (LFF) + SwinIR. Based on previous work [30], we first used a
Learnable Fourier Filter (an LFF) as the optical processor. The LFF contained an optical 4-f
system with a learnable circular Fourier filter. Similar to previous work [30], the transmission
coefficients of the circular Fourier filter were treated to be learnable. The input and output fields
were 256 × 256 squared aperture grids. The circular Fourier filter had a radius of 128 grid points.
The coefficients of the filter were randomly initialized. We used SwinIR [34], a state-of-the-art
super-resolution network, as the decoder neural network. We observed that directly training the
end-to-end model (optical processor and SwinIR) was not ideal as the gradient flow between the
the two models was weak. Therefore, we employed the 3-stage criteria for the optimization of the
end-to-end model (as discussed in section 5.3). We tested compression levels ×64 and ×256 for
the compressed optical output intensity field in our experiments.

Table 1 shows the performances at ×64, ×256 compression levels for the tested HeLa dataset
(section 5.4). For each compression level, performances are reported with and without the
fine-tuning step. The corresponding qualitative results are shown in Figs. 4 and 5. All proposed
methods outperformed all-optical phase to intensity conversion baselines (B1, B2) [30] with a
significant margin in terms of SSIM (structural similarity index) and PSNR (peak signal-to-noise
ratio) [35]. Note that all-optical baselines use only the optical processor, and the output intensity
measured by the camera sensor is considered the final output phase map. Also, here, the output
is at the same resolution as the original input, thereby employing no compression. End-to-end
fine-tuning showed a considerable improvement in the performance for all the cases. Our best
method achieved PSNR= 29.76 dB, SSIM= 0.90 performance at ×64 compression, indicating
that the proposed method is suitable for high-throughput QPM. Even at ×256 compression, the
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proposed method outperformed all-optical baselines by a considerable margin with PSNR= 27.61
dB and SSIM= 0.83.
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Fig. 4. Qualitative performance comparison of the proposed end-to-end 𝜕-QPM
to all-optical methods: Amplitude of input field (A1), phase of the input field (A2)
(i.e. patch FoV) from the test set, all-optical results using LFF (B1), PhaseD2NN (B2),
Phase reconstructions from our approach 1: LFF + SwinIR with ×64 compression
without fine-tuning (C1), with fine-tuning (C2), LFF with ×256 compression without
fine-tuning (C3), with fine-tuning (C4), Phase reconstructions from our approach 2:
PhaseD2NN + SwinIR with ×64 compression without fine-tuning + 1 optical layer (C5),
without fine-tuning + 3 optical layers (C6), without fine-tuning + 5 optical layers (C7),
with fine-tuning + 5 optical layers (C8), Corresponding compressed output intensity
fields of optical feature extractor (D1-8). Phase values along the L1 and L2 lines show
the local and global resolving power of the proposed methods (E, F).
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Fig. 4. Qualitative performance comparison of the proposed end-to-end ∂-QPM to
all-optical methods: Amplitude of input field (A1), phase of the input field (A2) (i.e.
patch FoV) from the test set, all-optical results using LFF (B1), PhaseD2NN (B2), Phase
reconstructions from our approach 1: LFF + SwinIR with ×64 compression without fine-
tuning (C1), with fine-tuning (C2), LFF with ×256 compression without fine-tuning (C3),
with fine-tuning (C4), Phase reconstructions from our approach 2: PhaseD2NN + SwinIR
with ×64 compression without fine-tuning + 1 optical layer (C5), without fine-tuning + 3
optical layers (C6), without fine-tuning + 5 optical layers (C7), with fine-tuning + 5 optical
layers (C8), Corresponding compressed output intensity fields of optical feature extractor
(D1-8). Phase values along the L1 and L2 lines show the local and global resolving power of
the proposed methods (E, F).

We further tested our approach by including a noise model with Poisson noise and read noise
[31]. We fine-tuned the best model (C2) with noise. A read noise with a standard deviation of 6.0
and a detector maximum photon count of 10000 were used. The proposed method with detector
noise (E1) performed on par with the best model indicating that our LFF + SwinIR based ∂-QPM
is robust to real-world noise conditions. We further discuss the effect of the detector noise in the
discussion (see section 3.).

PhaseD2NN + SwinIR. Second, we tested a PhaseD2NN [30] as the optical processor in the
proposed end-to-end framework. Similar to the previous section, the SwinIR super-resolution
network was used for reconstruction. We selected the operating wavelength (λ = 632.8 nm) of
the PhaseD2NN in the visible wavelengths, and it was evaluated on the same HeLa cell dataset
(see section 5.4).

Since the pixel size matched the PhaseD2NN neuron size (316.4 nm× 316.4 nm), we could train
the end-to-end network directly on the patch FoVs from the dataset. We followed the optimization
criteria presented in section 5.3 for the end-to-end training. Notably, we observed that in step
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with a larger grid size (e.g., 256 × 256). To increase the stability and gradient flow of this190

optimization step, we used a sub-optimization-schedule (shown in Supplementary algorithm S1).191

Fig. 5. Performance comparison of best methods using side-by-side comparisons of
phase reconstructions (a), compressed intensity fields (b), and SSIM maps of recon-
structions (c). Subfigure (d) shows the resolving power of the phase reconstructions.
The compared segments: Groundtruth phase of the input field (A2) of a full FoV from the
test set, all-optical results using LFF (B1) and PhaseD2NN (B2); Phase reconstructions from
our approach 1 – LFF + SwinIR with ×64 compression with fine-tuning (C2), LFF with
×256 compression with fine-tuning (C4); and phase reconstructions from our approach 2 –
PhaseD2NN + SwinIR with ×64 compression with fine-tuning + 5 optical layers (C8).
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Table 1. Performance comparison: Best results for optical feature extraction networks
LFF, PhaseD2NN are highlighted. These best models are further fine-tuned end-to-end

with the detector noise simulation (noise specifications of the detector: read noise
standard deviation= 6.0, maximum photon count= 10000) to improve realisticity. We

calculate the patch and full FoV metrics on the test patch FoVs and full FoVs
respectively. We reconstruct the full FoVs by tiling the reconstructed patch FoVs.
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PSNR (dB) SSIM PSNR (dB) SSIM

B1 All-optical LFF 16.1565 0.5880 16.9761 0.6008

B2 All-optical PhaseD2NN 12.3730 0.3163 12.6631 0.3320

C1

✗ LFF

64
✗ - 23.8267 0.8225 25.7840 0.8278

C2 ✓ - 27.2579 0.8967 29.7608 0.9031
C3

256
✗ - 22.5457 0.7470 23.9536 0.7548

C4 ✓ - 26.0003 0.8223 27.6129 0.8302

C5

✗ Phase D2NN 64

1 22.6495 0.7808 23.8566 0.7889

C6 ✗ 3 24.7560 0.8224 26.0716 0.8313

C7 5 24.8015 0.8107 26.0551 0.8185

C8 ✓ 5 25.8617 0.8519 27.2449 0.8602
E1 ✓ LFF 64 ✓ - 27.3794 0.8935 29.8110 0.8998

E2 ✓ Phase D2NN 64 ✓ 5 25.7665 0.8477 27.0651 0.8558

1, PhaseD2NN training was not stable due to the large number of physical parameters with a
larger grid size (e.g., 256 × 256). To increase the stability and gradient flow of this optimization
step, we used a sub-optimization-schedule (shown in Supplement 1). We compressed the output
intensity from the optical processor ×64 to obtain a higher throughput.

Table 1 shows the performances for ×64 compression level. We report the performances
while selecting different layers of the PhaseD2NN as the output layer. The final model with
5 layers was fine-tuned according to the proposed optimization steps. Similar to section 2.3,
fine-tuning improved the performance. We explored different numbers of diffractive layers for
the PhaseD2NN without the fine-tuning step and the results are presented in Table 1.

We performed further experiments with the 5 layer PhaseD2NN (C8 and E2). Our method
achieved the best performance of PSNR= 27.24 dB, SSIM= 0.86 with ×64 compression which
was considerably higher than the all-optical baselines. Similar to the previous section, we tested
our model for detector noise with similar specifications (of a maximum photon count of 10000
and detector read noise standard deviation of 6.0). The resultant performance with the detector
noise (E2) was on par with the best model without the noise (C8). This indicates that our
PhaseD2NN + SwinIR based ∂-QPM is robust to real-world noise conditions.

3. Discussion

Overall Comparison. Fig. 5 presents the qualitative results for best-performing models.
Figure 5(d) shows that the proposed ∂-QPM systems have a higher resolving capability compared
to the all-optical baselines. Figure 5(c) SSIM maps show how our methods perform for different
regions of full field-of-view (FoV). Low SSIM in edges indicates that there is room to improve
the proposed QPM just by refining the edges of generated patches. We also observed that the

https://doi.org/10.6084/m9.figshare.25204643
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LFF-based method outperformed the PhaseD2NN-based one. Further studies are needed to
investigate the reason for this behavior.

Stability of PhaseD2NN Training. We observed that the optimization step 1, i.e., all-optical
reconstruction (see section 5.3), was unstable for the PhaseD2NN. We suspect that the reason for
this instability is the large FoV (of 256× 256) resulting in a large number of learnable parameters.
To overcome this, we used a sub-optimization-schedule for the PhaseD2NN training motivated
by progressive growing learning principles [36] (see algorithm S1 in the Supplement 1). Instead
of training the PhaseD2NN in an end-to-end fashion, here we optimize the PhaseD2NN layer by
layer progressively with the phase reconstruction loss. With this schedule, we could efficiently
train the optical processor. Even though one can argue that the proposed schedule leads to a
sub-optimal solution, we achieved a sufficient performance for QPM [25] with this schedule.
Nevertheless, an interesting future direction is to explore more efficient methods to train large
D2NNs.

Effect of Photodetector Noise. To further evaluate the behavior of the proposed method with
detector noise, we evaluated the method with maximum photon counts of 100 and 10000, and
read noise standard deviations of 4.0 and 6.0. Changing the photon counts changes the Poisson
noise in detection. Table 2 shows that ∂-QPM is robust to noise when the maximum photon
count is 10000 (for most QPM applications such high light conditions can be used). We saw
a significant reduction in performance when the maximum photon count was 100, i.e. at high
Poisson noise conditions. Interestingly, the effect on the D2NN-based model was more severe
than that of the LFF-based model. Thus an interesting future direction is to investigate better
noise-aware training strategies for optical processors. Last, we did not see a significant effect
from read noise.

Table 2. Performance of our method for different detector noise conditions: Our best models
(C2, C8 in Table 1) are further fine-tuned with the corresponding noise specifications.

Optical Net

Noise
Specifications

full FoV
metrics

patch FoV
metrics

max. photon
count

σread PSNR (dB) SSIM PSNR (dB) SSIM

LFF

100
4 23.4928 0.7770 25.0266 0.7834

6 22.5004 0.7606 24.1487 0.7663

10000
4 27.4122 0.8935 29.8110 0.8997
6 27.3794 0.8935 29.8110 0.8998

Phase D2NN

100
4 17.8942 0.6441 18.7526 0.6502

6 16.8953 0.6094 17.7111 0.6158

10000
4 25.7193 0.8478 27.0456 0.8559
6 25.7665 0.8477 27.0651 0.8558

Compressibility limitations. Last, we tested our LFF-based approach on a QPM dataset
of tissue with much more complex features (see section 5.4). The goal of this experiment
was to investigate the limitations of our approach for complex features. We observed that our
method failed to reconstruct high-resolution features at both ×64 and ×256 (see Supplement 1).
There could be two potential reasons for the subpar performance. It could be the case that the
optical processor cannot efficiently convert phase information to the latent intensity field at the
detector. Alternatively, it could be the case that the reconstruction network is not capable of
reconstructing highly compressed information from images with complex features. To investigate
the latter we tested our reconstruction network on a simple resolution enhancement task on
the same tissue dataset. As shown in Supplement 1, here too the reconstruction network
failed. Thus we conclude that in our method, the compressibility is limited in the presence

https://doi.org/10.6084/m9.figshare.25204643
https://doi.org/10.6084/m9.figshare.25204643
https://doi.org/10.6084/m9.figshare.25204643
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of complex features. Further studies are required to establish the compressibility bounds for
data distributions of interest. Nevertheless, our successful demonstration on cell data opens
doors to a number of applications in cell biology and medicine such as: pathogen screening [8];
stain-free quantification of chromosomal dry mass in living cells [37]; quantification of different
growth phases of chondrocytes [38]; and identification of biophysical markers of sickle cell drug
responses [39].

Realization of the Optical Processors. In this work, we only consider numerical simulations
of optical processors. We now discuss the feasibility of their realization. The LFF setup can be
implemented as an optical 4-f system with a transmissive spatial light modulator (SLM) (as shown
in Fig. 1.B1), or with a reflective SLM (as experimentally demonstrated in our previous work
[30]). The PhaseD2NN simulated in this work consists of submicron-sized "optical neurons"
distributed in 3D in a micron-sized optical element. Fabricating such custom-designed 3D
optics to a desired specification is extremely challenging. Nevertheless, D2NNs have been
experimentally demonstrated at Terahertz wavelengths, and translating these models to visible
wavelengths is an active area of research. For instance, two-photon lithography [40,41] is a
promising avenue to fabricate D2NNs in 3D. Required fabrication precision may also be relaxed
by incorporating the details about the fabrication imperfections during the design stage itself [42].
We leave the robustness improvement, realization, and experimental validation of the optical
processors to future work.

4. Conclusion

Quantitative phase microscopy (QPM) is an emerging label-free imaging modality with a wide
range of biological and clinical applications. Recent advances in QPM are focused on developing
fast instruments through better detectors and fast deep-learning-based inverse solvers. However,
currently, the QPM throughput is fundamentally limited by the pixel throughput of the imaging
detectors. Orthogonal to current advances, to improve QPM throughput beyond the hardware
bottleneck, here we propose to use content-aware compressive data acquisition. Specifically,
we utilize learnable optical processors to extract compressed phase features. A state-of-the-art
transformer deep network then decodes the captured information to quantitatively reconstruct
the phase image. The proposed pipeline inherently improves the imaging speed while achieving
high-quality reconstructions. Moreover, the advances presented in this work can lead to similar
developments in a wide range of label-free coherent imaging modalities such as photothermal,
coherent anti-Stokes Raman scattering (CARS), and stimulated Raman scattering (SRS).

5. Methods

5.1. Networks for linear compression feasibility studies

To establish the feasibility of using a linear system to compress an image/ optical field, we
conducted the analysis presented in section 2.2. For the analysis, we implemented simple
autoencoder networks with linear/ nonlinear decoders and linear/ nonlinear/ complex linear/
complex nonlinear encoders. All the autoencoders we discussed have the following general
format.

h = Enc(y) (4)

ŷ = Dec(h) (5)

Here, y is the real/ complex input image (depending on the experiment), h is the latent code, ŷ
is the reconstructed image. Enc(.) and Dec(.) are the functions to encode the input and decode
the latent code.
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To train real-valued autoencoders, we considered the following objective function.

Enc∗, Dec∗ = arg min
Enc,Dec

E[L(ŷ, y)] (6)

Enc∗ and Dec∗ are the optimal encoders and decoders found through Adam optimization [43].
L shows the mean squared distance. E[.] denotes the expected value over the dataset.

Complex-valued autoencoders were trained with the following objective function.

Enc∗, Dec∗ = arg min
Enc,Dec

E[L(ŷ,∠y)] (7)

Notably, here we consider ∠y (input phase) as the ground truth. The goal is to extract
information from the input phase and reconstruct it in the output (refer to section 2.2, 5.4).

The compression factor shown in Fig. 2 and 3 is defined as the ratio between the total number of
pixels in y and h. We implemented the encoders using convolution layers, each having kernel size,
padding, and stride to obtain ×2 downscale. Decoders are implemented by cascading transpose
convolution, ReLU activations, and batch normalization layers. Complex-valued autoencoders
allow complex values in the inputs, y.

5.2. Optical processors

We consider two types of optical processors based on previous work [30]: Learnable Fourier
Filter and PhaseD2NN. This section gives a brief description of these optical processors and the
mathematical modeling of light propagation through them.

Learnable Fourier Filter. The LFF is an optical 4-f system with a filter placed in the Fourier
plane. The transmission coefficients of this filter are optimized during the optimization process.
The overall system is modeled using the following equation.

xout = F −1 {T ◦ F {xin}} (8)

In this, xin is the input light field coming to the LFF, xout is the output light field, and T is the
Fourier filter. F , and F −1 denote the Fourier transform and the inverse Fourier transform where
◦ denote the Hadamard product.

PhaseD2NN. PhaseD2NN is a diffractive deep neural network [44] with only the phase of the
transmission coefficients being optimized. The amplitude of the transmission coefficients is set
to 1 in each layer. We modeled light propagation through D2NN using the Rayleigh-Sommerfeld
diffraction theory [45, ch. 3.5]. After light propagates through a D2NN layer, the input field to
the next layer is given by

x(n)in = RS
(︂
x(n−1)

in ◦ T (n−1),∆z(n−1)
)︂

. (9)

Here, x(p)in denotes the input field to the pth layer, T (p) is the complex transmission coefficient
matrix of the pth layer, and ∆z(p) is the distance between the pth and the (p + 1)th layers. RS(.)
denotes the Rayleigh-Sommerfeld diffraction operator. The output field of the PhaseD2NN is
given by

xout = x(M+1)
out = RS

(︂
x(M)

in ◦ T (M),∆z(M)
)︂

, (10)

where M is the number of layers in the PhaseD2NN.
The PhaseD2NN simulated in this work consisted of 5 diffractive layers each having 256× 256

optical neural grid. The size of each neuron was λ
2 × λ

2 (316.4 nm ×316.4 nm). Therefore, the size
of the optical layer was 80.9984µm × 80.9984µm. Optical layers were separated with 3.373µm
distance between each other. The distance between the input plane and the first optical layer was
3.373µm while the distance between the last optical layer and the detector plane was 5.904µm.
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For both LFF and PhaseD2NN, the final intensity captured by the detector is given by

I = D
(︂
|xout |2

)︂
(11)

where D(.) denotes the low-resolution detection. We use the LFF and PhaseD2NN as all-optical
baselines for result comparison. In that, they are detected at the original resolution of the input
optical field following the Nyquist sampling theorem (i.e., without the D(.) operator). All-optical
baselines are optimized in such a way that |xout |2 gives an approximation of the input phase.

5.3. Optimization details

We follow a 3-stage optimization criteria for the improved stability of the end-to-end optimization;
1) optimize the optical processor; 2) optimize the decoder neural network; 3) end-to-end
fine-tuning.

Optimize the optical processor. Here the optical processor is optimized to reconstruct the
phase at its output intensity. For an input optical field xin = Ainejφin we train an optical model HO
through which the input field is propagated to produce the output field xout = Aoutejφout = HO(xin).
The phase reconstruction loss, Lφ introduced in previous work [30] is utilized here as,

Lφ = Exin∼PX

[︁
L1(|Aout |2, ϕin/(2π))

]︁
, (12)

where, PX and L1(.) respectively represent the probability distribution of phase objects and the
L1 loss.

Optimize the decoder neural network. At this stage, we consider the end-to-end network,
however, only the weights of the neural network are optimized. The pretrained optical processor
discussed in the previous step is utilized to encode the input phase. We demagnify the output
field of the optical processor to compress the intensity representation. The super-resolution
neural network reconstructs the input phase from the compressed intensity representation. The
reconstructed phase information is given by ϕ̂ = HE(D(|Aout |2)). Here HE(.) represents the
decoder neural network. D(.) is the optical demagnification layer, which is simulated through a
stack of 2 × 2 average pooling operations [46]. Similar to previous work [34], we consider Lswin,
a combination of loss functions for this optimization,

Lswin = Exin∼PX

[︁
L1(ϕ̂, ϕin/(2π)) + Lperceptual(ϕ̂, ϕin/(2π)) + Ladversarial(ϕ̂, ϕin/(2π))

]︁
, (13)

where, Lperceptual and Ladversarial represent the perceptual loss [34] and adversarial loss [34]
respectively.

End-to-end fine-tuning. As the final stage, we finetune the end-to-end ∂-QPM pipeline to
reconstruct the phase at the output of the network. To improve the reconstruction in terms of
capturing fine cell structures, we incorporate the negative structural similarity index measure
(SSIM) [47] as the loss function.

LSSIM = Exin∼PX − 1
M

M∑︂
j=1

(2µXj µYj + C1)(2σXj Yj + C2)(︂
µ2

Xj
+ µ2

Yj
+ C1

)︂ (︂
σ2

Xj
+ σ2

Yj
+ C2

)︂ . (14)

Here, Xj and Yj represent equal-sized windows from a normalized input phase image (ϕin/2π)
and the corresponding reconstructed phase output (ϕ̂) respectively, with M number of windows for
an image. PX represents the probability distribution of input phase objects. µXj , µYj ,σXj ,σYj ,σXjYj

are the means, variances, and the covariance of the Xj and Yj windows respectively. C1 = (k1×L)2
and C2 = (k2 × L)2 are regularization parameters with L = 1.0, k1 = 0.01 and k2 = 0.03.
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5.4. Datasets

In our numerical experiments, we used three datasets.
PhaseMNIST Dataset. We developed PhaseMNIST, complex valued dataset for the eval-

uations in section 2.2. Each complex image of the dataset was obtained according to the
Eq. (15).

I = 1.ejπψ (15)

Here, I is the complex image, ψ is the images from the original MNIST dataset [33] scaled
into [0, 1].

HeLa Cell Dataset. We used a HeLa cell dataset [30] as the primary dataset for our
experiments. We followed the sample preparation procedure explained in previous work [30].
Briefly, the data were acquired using a low spatially coherent quantitative phase microscopy
system. The details of the experimental setup can be found in [48]. First, multiple phase shifted
interferograms are recorded of both HeLa cells and tissue samples. The phase recovery is then
performed by employing advanced iterative algorithm (AIA), which can retrieve phase maps
using random phase-shifted interferograms. The details of the algorithm can be found in [49].
The initial dataset contained 501 complex-valued images (i.e. detected FoVs). Each detected FoV
was obtained by a camera with a 2304×2304 pixel grid where the pixel size was 6.5 µm×6.5 µm.
The light field from the specimen was magnified ×60 before imaging onto the detector.

To pre-process the dataset, we first calculated the side length of the light fields before the
magnification

(︂
=

2304 pixels×6.5µm/pixel
60 = 249.6 µm

)︂
. Second, we calculated the number of 316.4

nm ×316.4 nm sized pixels in these light fields
(︂
= round

(︂
249.6µm

316.4 nm/pixel

)︂
= 789 pixels

)︂
. Finally,

we resized the detected FoVs (i.e. 2304 × 2304 pixel grids) into 789 × 789 pixel grids. This
resulted in the light field before the magnification with a pixel size of 316.4 nm ×316.4 nm. We
refer to these FoVs as full FoVs. We obtained train and test sets by dividing the full FoV dataset
into 401 and 100 sets. For the training of the proposed networks, we used 256 × 256 cropped
patches (i.e. patch FoVs) from the full FoVs. Phase values of the dataset were clipped into
[0, 2π).

Tissue Dataset. We also acquired a tissue dataset to investigate the limitations of our method
further. We utilized a 4-micron thick tissue sample which was prepared on a reflecting substrate
(si-wafer in our case). The sample was illuminated from above by a light beam, traverses through
it, and is subsequently reflected off the Si substrate. We followed acquisition and preprocessing
procedures similar to HeLa cells, with a magnification of ×20. There were 470 detected FoVs.
Camera had 2304 × 2304 pixel grid where the pixel size was 6.5 µm × 6.5 µm. The side length
of the light fields before the magnification was 2304 pixels×6.5µm/pixel

20 = 748.8 µm. Number of
316.4 nm ×316.4 nm sized pixels in these light field was round

(︂
748.8µm

316.4nm/pixel

)︂
= 2367pixels. We

resized the detected FoVs (i.e. 2304 × 2304 pixel grids) into 2367 × 2367 pixel grids to match
the pixel sizes of the light fields and the algorithm (full FoVs). The full FoV dataset was divided
into 470 train FoVs and 117 test FoVs. Phase values of the dataset were clipped into [0, 2π).

5.5. Simulation details

We numerically simulated and trained the proposed ∂-QPM pipeline using Python version 3.6.13.
The simulation was done according to Eq. (8), (9), and (10). We used auto differentiation in
PyTorch [50] framework (version 1.8.0) for the joint optimization/ training of the proposed
pipeline. All experiments were conducted on a server with 12 Intel Xeon Platinum 8358 (2.60
GHz) CPU Cores and an NVIDIA A100 Graphics Processing Unit with 40 GB memory running
on the CentOS operating system.

We used a batch size of 32, and learning rates of 0.1, 0.001 respectively for LFF and PhaseD2NN
in the optimization stage 1. LFF was trained for 1500 epochs with multi-step learning rate
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scheduler [50] (milestones : [50, 400, 650, 1000, 1400], γ = 0.1). PhaseD2NN was trained
for 1500 epochs after each optimizer initialization step in algorithm S1. For joint multi-layer
optimizations in algorithm S1, a learning rate of 0.00005 was used for better stability. For
optimization stage 2, we followed the same training configurations used in SwinIR section 4.1,
4.3 real-world image SR, with channel size of 1 and pixel-shuffle upsampling [34]. Lastly, for
the final optimization stage (i.e. end-to-end fine-tuning), we fine-tuned the LFF + SwinIR and
PhaseD2NN + SwinIR for 24000 and 3000 epochs respectively with a learning rate of 5 × 10−6.
We used Adam [43] as the optimizer for all optimizations.
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