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A B S T R A C T   

Background: Machine learning (ML) prediction models in healthcare and pharmacy-related research face chal-
lenges with encoding high-dimensional Healthcare Coding Systems (HCSs) such as ICD, ATC, and DRG codes, 
given the trade-off between reducing model dimensionality and minimizing information loss. 
Objectives: To investigate using Network Analysis modularity as a method to group HCSs to improve encoding in 
ML models. 
Methods: The MIMIC-III dataset was utilized to create a multimorbidity network in which ICD-9 codes are the 
nodes and the edges are the number of patients sharing the same ICD-9 code pairs. A modularity detection al-
gorithm was applied using different resolution thresholds to generate 6 sets of modules. The impact of four 
grouping strategies on the performance of predicting 90-day Intensive Care Unit readmissions was assessed. The 
grouping strategies compared: 1) binary encoding of codes, 2) encoding codes grouped by network modules, 3) 
grouping codes to the highest level of ICD-9 hierarchy, and 4) grouping using the single-level Clinical Classifi-
cation Software (CCS). The same methodology was also applied to encode DRG codes but limiting the com-
parison to a single modularity threshold to binary encoding. 
The performance was assessed using Logistic Regression, Support Vector Machine with a non-linear kernel, and 
Gradient Boosting Machines algorithms. Accuracy, Precision, Recall, AUC, and F1-score with 95% confidence 
intervals were reported. 
Results: Models utilized modularity encoding outperformed ungrouped codes binary encoding models. The ac-
curacy improved across all algorithms ranging from 0.736 to 0.78 for the modularity encoding, to 0.727 to 0.779 
for binary encoding. AUC, recall, and precision also improved across almost all algorithms. In comparison with 
other grouping approaches, modularity encoding generally showed slightly higher performance in AUC, ranging 
from 0.813 to 0.837, and precision, ranging from 0.752 to 0.782. 
Conclusions: Modularity encoding enhances the performance of ML models in pharmacy research by effectively 
reducing dimensionality and retaining necessary information. Across the three algorithms used, models utilizing 
modularity encoding showed superior or comparable performance to other encoding approaches. Modularity 
encoding introduces other advantages such as it can be used for both hierarchical and non-hierarchical HCSs, the 
approach is clinically relevant, and can enhance ML models’ clinical interpretation. A Python package has been 
developed to facilitate the use of the approach for future research.   
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Introduction 

The pharmacy sector is undergoing a significant transformation in 
many aspects from drug discovery to drug dispensing. This is due to the 
integration of automation, Artificial Intelligence (AI), Machine Learning 
(ML), and big data analysis.1 Automation is now used in the process of 
drug dispensing, reducing human error and increasing efficiency.2 AI 
and ML algorithms can analyze large datasets to identify drug candi-
dates, predict clinical outcomes, and personalize treatments for indi-
vidual patients.3 Additionally, big data analysis provides insights to 
enhance decision-making and drive innovation in pharmaceutical 
research and development.4 

In the realm of healthcare and pharmacy-related quantitative 
research, the datasets employed typically incorporate one or more fea-
tures representing a high-dimensional Healthcare Coding System (HCS). 
These HCSs may have a hierarchical structure where broader categories 
are on the top and categories become more specific toward the bottom5 

e.g. the International Classification of Diseases (ICD),6 the Anatomical 
Therapeutic Classification Codes (ATC) for medications,7 and Diagnosis 
Related Group (DRG),8 and non-hierarchical ones in which the system 
does not follow a hierarchical structure such as the Current Procedural 
Terminology (CPT)9 and the Healthcare Common Procedure Coding 
System (HCPCS).10 

The increasing adoption of ML models in healthcare has addressed 
the need to effectively handle high-dimensional HCSs. HCSs are crucial 
to achieving accurate predictions because of the amount of clinical and 
administrative information they carry. However, handling (encoding) 
these high-dimensional data poses some challenges such as increased 
computational complexity, risk of overfitting, and difficulty in model 
interpretability.11 Efficiently handling these high-dimensional HCSs 
should compromise between reducing the computational burden and 
maintaining relevant information needed to enhance the performance of 
prediction models. 

Encoding is the process of numerically representing the categorical 
values to be processible to algorithms that only process numerical 
values.12 Encoding highly dimensional HCSs usually poses a challenge in 
ML models and is often considered one of the shortcomings in prediction 
modeling.13 Handling these HCS with the classic encoding approaches 
such as one-hot or binary encoding approach will produce a binary 
vector equal to the length of the total number of health codes, hence will 
greatly increase model dimension, and memory requirements, demand 
more computational power, raise sparsity and complexity leading to 
decrease the model performance.14 

Besides binary encoding, many other encoding approaches of high- 
dimensional categorical variables have been suggested in the litera-
ture such as hash encoding,15 Word2Vec,14 target encoding,15 and 
similarity encoding.16 While these encoding approaches could achieve 
good performance in prediction models, the balance between dimension 
reduction, loss of information, and enhanced clinical interpretation of 
the model output is still a discussion. 

Other advanced approaches have also been suggested in the litera-
ture such as Deep Feature Synthesis (DFS), which automatically gener-
ates features from raw data to capture complex relationships.17 Entity 
embedding, which uses neural networks to learn dense representations 
of categorical variables,18 in other approaches.19 These methods have 
shown promising results but can be complex to implement and are 
demanding in terms of computation resources. 

Notably, there is no evidence framework for how to handle HCSs in 
predictive models.20 Many studies tended to simplify these features by 
using the total count of codes (e.g. diagnoses, medications) as a nu-
merical indicator,21 creating a binary variable for each code,22 or 
grouping codes to a higher hierarchical level23,24 in other methods.25 It 
has been shown that models using the lowest level of ICD-10 codes 
performed worse than higher-level codes in a prediction model.26 While 
this approach (grouping to a higher hierarchical level) preserves the 
hierarchical relationships among the codes, it is unsuitable if the 

classification system is non-hierarchical. In addition, while these ap-
proaches will reduce the number of dimensions (features), they will omit 
the detailed information contained in the complete codes which might 
be necessary for a robust and reliable model prediction.27 

Another approach is to group (aggregate) the levels of HCS according 
to specific schemes.28–31 This approach is more convenient but can be 
limited by the hierarchical design of the scheme itself and the need to 
develop or update the schemes to suit different versions of the HCS. 
Kansal et al. investigated the impact of the grouping method of HCS on 
the model performance demonstrating that the grouping methods affect 
the model performance and that some grouping methods yield better 
performance than others.20 

In this study, we introduce “Modularity Encoding” as a method to 
encode HCSs in ML models and demonstrate the use of the approach on 
two widely used HCSs in healthcare datasets, namely the ICD and the 
DRG codes. We compare the performance of ML models using modu-
larity encoding to other popular encoding approaches. We also intro-
duce a publicly available Python package that facilitates using the 
approach in future research. 

Material and methods 

Data sources 

We utilized the Medical Information Mart for Intensive Care (MIMIC- 
III) dataset. MIMIC-III comprises 58,976 Intensive Care Unit (ICU) en-
counters with 46,467 unique patients at Beth Israel Deaconess Medical 
Center between 2001 and 2012. The full description of MIMIC-III is 
available elsewhere.32 Variables with patients’ demographics, admis-
sions, and diagnoses were used in the prediction model. The variables’ 
description is attached to Appendix 1. The full description of the dataset 
variables along with univariate and bivariate Exploratory Data Analysis 
(EDA) is attached to Appendix 2. To enhance the quality of reporting, 
the IJMEDI checklist for medical AI33 was followed and reported in 
Appendix 3. 

Data preprocessing 

We excluded patients <18 years old, elective and newborn admis-
sions, patients who died in the hospital, and missing and error-registered 
ICD codes. Appendix 1, Fig. 1. Illustrates the flow of exclusions. After the 
exclusions, the dataset comprised 29,247 unique patients and 37,762 
unique admissions. The difference in days between admissions was 
calculated to determine the 90-day ICU readmissions as the models’ 
outcome. Each admission was treated as an individual patient for 
simplification. We generated some indicator variables such as length of 
stay of hospital admissions, number of Emergency Department (ED) 
admissions, and length of stay in each ED visit. Missing values were 
treated as a separate category except if were found in the ICD-9 variable 
then were dropped as the diagnosis variable is central for the analysis. 
The final model included 12 dependent variables and the outcome 
variable (Appendix 1, Table 3). The dataset was checked for duplicates 
and outliers, and no intervention was necessary. The full list of initial 
and final variables included in the models is attached to Appendix 1. 

Network generation 

We used the patient ID and ICD-9 codes to generate a network in 
which the nodes represent the ICD-9 codes while the edges (connections) 
between these nodes represent the number of patients who shared the 
diagnoses pairs. We discussed the methodology for generating such 
types of networks in a previous study.34 The total number of nodes in the 
ICD-9 network was 6840 with 952,676 edges. This network represents 
the multimorbidity patterns that exist in the dataset population. 
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Modularity detection 

We then used the Louvain algorithm for community detection35 to 
identify the multimorbidity modules in the network using different 
resolution thresholds36 to produce 6 different sets of modules ranging 
from 8 to 1078 modules (see Table 1). Modularity resolution is a 
parameter in the Louvain community detection algorithm that affects 
the size of the recovered modules. Applying higher resolutions results in 
fewer but larger communities, while lower resolutions lead to more and 
smaller ones. The randomizing option was specified as false to ensure 
the reproducibility of the communities. Tables of ICD-9 codes with their 
corresponding module number were extracted to be used later to encode 
the ICD codes in the datasets. The same methodology was applied to the 
DRG codes, the DRG network comprised 1661 nodes and 41,274 edges. 

We compared the modularity grouping approach to two popular 
grouping approaches: the single-level Clinical Classification Software 
(CCS)37 and grouping ICD to the highest categories in the ICD-9 classi-
fication system.38 In total, we had 9 datasets to compare: 1) the raw 
dataset which includes all ICD codes, 2) six datasets of the different 
modularity resolutions, 3) the dataset in which ICD codes are grouped 
after the CCS scheme, and 4) a dataset in which ICD codes are grouped to 
the highest ICD-9 system hierarchy categories. 

For the DRG codes, we only compared two datasets, a dataset where 
we binary encoded all DRG codes, and a modularity-grouped dataset at a 
single resolution threshold. Table 1. describes the datasets used in the 
study experiments. 

Modeling 

To minimize the potential effect of class imbalance39 on the models’ 
performance, we balanced the data using Random Undersampling 
(RUS).40 We randomly matched each instance of the minority class (ICU 
readmissions) to a control instance of the majority class (non-read-
missions), thereby ensuring an equal representation of both classes and a 
fair performance comparison across all models 

Categorical variables were dummy encoded, and numerical ones 
were standardized. Standardizing was separately performed on the 
training set and applied on the testing set to avoid information leaks. We 
used a random split of data training and testing sets (70–30%). Three 
different ML algorithms were used; Logistic regression (LR), Support 
Vector Machine (SVM) with a non-linear kernel, and Gradient Boosting 
Machine (GBM) to retrospectively predict 90-day ICU readmissions. Five 
evaluation metrics were used to assess the performance of the models 
(accuracy, precision, recall, F1-score, and AUC). The definitions and 
formulas of these metrics along with models’ confusion matrices are 
attached to Appendix 1. 95% Confidence Intervals (CI) were calculated 
by performing 1000 non-parametric bootstrap replicates on the test set. 
The steps of conducting the modularity encoding approach are illus-
trated in Fig. 1. The code used in the study is publicly available here 

https://anonymous.4open.science/r/modularity_encod_article-1FCC/. 

Software 

Stata 17 was used for data preprocessing and network generation, 
Gephi 0.10 for community detection and network visualization, and 
Python 3.6.12 and scikit-learn 1.3.1 were used for ML model 
implementation. 

Package developing 

To facilitate the use of the approach, we developed a Python package 
called “modularity_encoding”, which is available on the Python Package 
Index (PyPI) and can be installed using the command “pip install 
modularity-encoding”. The documentation of this package along with a 
user guide and demonstration examples of use is attached to Appendix 4. 

Results 

This section is organized into 4 experiments, the first three focus on 
ICD codes, and the last on DRG codes. The first experiment compares the 
model’s performance using binary encoding of ungrouped ICD codes in 
the original dataset (Raw dataset) against grouping to the highest res-
olution modularity grouping on ICD codes (R1 dataset). The second one 
compares models’ performance on ICD codes grouped on modules 
detected at different modularity resolutions, aiming to investigate if 
there is a specific modularity threshold that shows better performance. 
The third one compares models’ performance using modularity 
grouping on the highest resolution to grouping to the highest ICD hi-
erarchy and CCS scheme. The last experiment replicates the second 
experiment but on DRG codes instead of ICD ones. 

Experiment 1. Binary encoding vs modularity encoding on ICD codes 

The results show better results for models trained on the R1 dataset 
in terms of most metrics using the 3 classifying algorithms (see Table 2, 
Fig. 2). 

Because of the great decrease in dimension after encoding, the 
training time is also significantly decreased, especially for SVM which is 
often a time-demanding algorithm. The training time was reduced from 
83 min to train the model on the Raw ICD dataset to less than half a 
minute on the R1 ICD dataset) see Table 3. 

Experiment 2. Different modularity resolution thresholds 

The results mostly suggest that using higher resolution thresholds 
(fewer modules) often yields better results than applying lower thresh-
olds. Notably, recall, F1-score, and accuracy values fall dramatically in 
SVM the more modules introduced to the dataset, which may throw 

Fig. 1. The steps of conducting the Modularity Encoding approach. 1) A network is generated where the nodes are the HCS codes, and the edges are the co- 
occurrences of these codes in the patients’ population. 2) Modules of strongly connected codes in the network were identified. 3) Each code was assigned the 
module id it belongs to in the network. 4) The HCS is binary encoded according to their module number, reducing the number of generated dimensions to correspond 
to the number of the detected modules in the network. 5) These new dimensions are used in the ML prediction models. 
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some questions on the performance stability of the SVM algorithm in this 
experiment (see Table 4, Fig. 2). As of these results, we chose R1 reso-
lution to use in the third experiment. 

Experiment 3. Modularity encoding vs other grouping approaches 

Models using grouping by the three methods yield very close per-
formance. Specifically, models trained on R1 and the grouping to the 
highest level of the ICD hierarchy performed mostly better than models 
trained on CCS. Models trained ICD_Highest dataset generally performed 
slightly better than models trained on the R1 dataset, for example in 
terms of accuracy, recall, and F1-score (LR, SVM). While R1 performed 
best in terms of AUC (LR, GBM), precision (LR), and recall (GBM). Both 
ICD_Highest and R1 outperformed CCS in most metrics across the three 
algorithms. Notably, the performance of models trained by SVM falls in 
terms of accuracy, F1-score, and recall when trained on the CCS dataset 
(see Table 5, Fig. 2). Fig. 2 summarizes the results from these 3 
experiments. 

Experiment 4. Binary encoding vs modularity encoding on the DRG codes 

Similar to the comparison between Raw and R1 datasets in the ICD 
codes, the models trained on modularity-grouped DRG codes yielded 
better results in almost all metrics for all three algorithms, Table 6. 

Discussion 

In this study, we suggest Modularity Encoding as a method of 
grouping HCSs using Network Analysis modularity. The usability of the 
approach was demonstrated on two healthcare coding systems: the ICD 
and DRG code systems. The approach can, nevertheless, be used to group 
other HCSs such as ATC codes. 

Regardless of the approach used to encode HCSs, there will be always 
a trade-off between information loss and dimension reduction. Howev-
er, deciding the encoding method could be crucial to obtain reliable 
performance results. An inefficient encoding technique could limit pa-
tients’ characteristics and hence limit prediction performance.13 

Therefore, encoding such HCSs should follow a meaningful grouping 
scheme of aggregating the HCS codes in order to provide the model with 
the meaningful necessary information for better performance. Our 
purpose in this study was not to develop the best predictive model 
among state-of-the-art ML models but rather to compare the perfor-
mance of some commonly used ML algorithms on the same dataset using 
different grouping schemes on two commonly used HCSs in ML pre-
diction models. To enrich the comparison, we used three algorithms 
with three distinct algorithmic strategies, LR (linear algorithm), SVM 
with non-linear kernel, and GBM (tree-based boosting algorithm). The 
evaluation metrics were selected to cover both model performance 
(accuracy, AUC, F1-score) and clinical performance (precision, recall) as 
recommended here.41 

After we aggregated each pair of health codes on the patient level, a 
network that represents the multimorbidity patterns in the dataset 
population was created. Network analysis modularity was proposed by 
Newman26 and is defined as the measure of the structure of networks 
which is used to reveal the clusters (communities or modules) of the 
network. We used the Louvain modularity detection algorithm to group 
these health codes in the networks into modules. Louvain method is a 
popular community detection algorithm due to its simplicity, speed, and 
effectiveness in detecting network modules.42 Each module represents a 
group of health codes that have denser connections between each other 
than the rest of the network. In the ICD codes network, each module 
represents a cluster of diagnoses that co-occur in the dataset population 
(i.e., multimorbidity).43,44 If the nodes were the ATC codes instead, then 
the modules would represent the comedication pattern in the 
population.34 

As expected, modularity encoding outperformed binary encoding of 
the ungrouped codes of HCSs for both ICD and DRG code systems. This 
may be because of the considerable number of dimensions in the latter 
which makes it more complicated for the algorithm to find the pattern in 
the dataset, i.e. curse of dimensionality.45 Additionally, the more 

Table 1 
The number of modules and features (dimensions) in the created datasets after 
binary encoding.  

Dataset name Modularity 
resolution 
threshold 

Description No. of 
modules/ 
groups 

No. of all 
features 
after the 
binary 
encoding 

ICD codes 
Raw _ All ICD codes 

were dummy 
encoded into 
separate binary 
variables 

_ 4403 

R1 1 ICD codes are 
grouped into 8 
modules detected 
at a resolution 
threshold of 1 

8 modules 56 

R08 0.8 ICD codes are 
grouped into 16 
modules detected 
at a resolution 
threshold of 0.8 

16 
modules 

63 

R06 0.6 ICD codes are 
grouped into 32 
modules detected 
at a resolution 
threshold of 0.6 

32 
modules 

95 

R05 0.5 ICD codes are 
grouped into 47 
modules detected 
at a resolution 
threshold of 0.5 

47 
modules 

80 

R01 0.1 ICD codes are 
grouped into 314 
modules detected 
at a resolution 
threshold of 0.1 

314 
modules 

362 

R001 0.01 ICD codes are 
grouped into 
1078 modules 
detected at a 
resolution 
threshold of 0.01 

1078 
modules 

1123 

Clinical 
Classification 
Software 
(CCS) 

_ ICD codes are 
grouped into 285 
categories of 
Single-level 
Clinical 
Classification 
Software. 

285 
groups 

322 

Highest ICD 
hierarchy 
(ICD_Highest) 

_ The ICD codes are 
grouped to the 
highest level of 
the hierarchy. 

18 groups 66  

DRG codes 
Raw DRG _ The raw form of 

the dataset. All 
DRG codes were 
dummy encoded 
in separate binary 
variables 

_ 1482 

R1_M24 1 The DRG codes 
are grouped into 
24 modules by 
resolution 
threshold 1 

24 
modules 

64  
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sparsity of the dataset will worsen the algorithm discrimination per-
formance.46 The substantial dimension reduction obtained by grouping 
codes on modules significantly reduces the model training time main-
taining, or even improving, model performance in many cases. 

We also tested if the different thresholds of modularity resolutions 
would notably affect the results. Despite some worsening in model recall 
in some models (i.e., SVM), we saw no considerable differences in the 
overall model performance on datasets encoded after different resolu-
tion thresholds. However, in general, with the thresholds we experi-
mented with, we saw that the fewer modules will perform generally 
better suggesting that grouping codes into fewer, larger modules may 
capture more clinically relevant multimorbidity patterns. This also 
likely enhances the models’ ability to generalize from training data to 
unseen data. 

We further compared modularity grouping against two other 

commonly used approaches to group ICD codes, namely single-level CCS 
and grouping to the highest hierarchy of the ICD classification system. A 
previous study highlighted the impact of grouping methods of diagnosis 
codes on model performance. They compared raw codes, truncated 
codes, grouping using AHRQ-Elixhauser,47 and single-level CCS. They 
showed the difference in the performance of models using different 
schemes of groups and suggested using CCS grouping as a baseline for 
future models.20 They also showed that grouping using AHRQ-Elix-
hauser47 performed worse on MIMIC-III dataset compared to the highest 
hierarchy grouping and single-level CCS, hence we did not include it in 
our analysis. In experiment 3, the performance was generally similar 
between the three grouping methods (Table 5, Fig. 2). However, the 
results show slightly higher performance of the highest hierarchy 
grouping, followed by modularity grouping and then CCS respectively. 
The significant reduction in the number of dimensions and training time 

Table 2 
A comparison of different performance metrics comparing raw dataset binary encoding to modularity encoding. Bold font indicates the best performance in the 
comparison metric.  

Algorithm Dataset Accuracy 
(95%CI) 

Precision (95%CI) Recall 
(95%CI) 

F1-score 
(95%CI) 

AUC 
(95%CI) 

LR Raw 0.727 0.764 0.656 0.71 0.804 
(0.723–0.731) (0.759–0.77) (0.649–0.662) (0.701–0.711) (0.800–0.808) 

R1 0.736 0.782 0.654 0.71 0.813 
(0.727–0.746) (0.769–0.795) (0.640–0.668) (0.701–0.723) (0.805–0.823) 

SVM Raw 0.73 0.787 0.632 0.7 0.822 
(0.726–0.735) (0.781–0.793) (0.626–0.639) (0.696–0.707) (0.816–0.824) 

R1 0.778 0.765 0.802 0.78 0.837 
(0.769–0.787) (0.753–0.777) (0.790–0.815) (0.774–0.793) (0.828–0.845) 

GBM Raw 0.779 0.751 0.835 0.79 0.837 
(0.775–0.783) (0.746–0.757) (0.831–0.840) (0.787–0.795) (0.834–0.842) 

R1 0.78 0.752 0.836 0.79 0.836 
(0.772–0.789) (0.740–0.764) (0.826–0.847) (0.826–0.847) (0.828–0.845)  

Fig. 2. Represents the results from the first three experiments. LR, SVM, and GBM were used in all experiments. For all models, accuracy, precision, recall, F1-score, 
and AUC metrics with 95% confidence intervals were used to evaluate the models’ performances. Green markers indicate the highest value of the evaluation metric in 
the respective comparison. Experiment 1. (binary vs modularity encoding), to the left of each subfigure, shows generally better results of modularity grouping over 
dummy encoding of the raw ICD codes. In experiment 2. (different resolutions threshold encoding), the performance results of different resolutions are close. LR and 
GBM models suggest that R1 is the best resolution threshold, while SVM suggests that R08 is the best. In experiment 3. (comparison of modularity, highest hierarchy, 
and CCS encoding), grouping ICD codes to the highest level of system hierarchy yielded generally best results, followed by modularity grouping and CCS. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 3 
The training time of the models on the different ICD datasets.   

Raw R1 R08 R06 R05 R01 R001 CCS ICD_Highest 

LR 14 s 0.1 s 0.4 s 0.8 s 0.7 s 1.5 s 2.7 s 1.6 s 0.6 s 
SVM 83 m 0.5 m 1 m 24 s 2 m 29 s 3 m 5 s 8 m 25 m 7 m 17 s 2 m 9 s 
GBM 6 m 2 s 2 s 4 s 7 s 9 s 30 s 1 m 20 s 26 s 6 s  
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without worsening the model performance suggests that modularity 
encoding was efficient in summarizing but keeping sufficient clinical 
information for accurate predictions, which makes the approach a 
practical solution to encode large healthcare datasets. 

Besides model performance, modularity grouping has additional 
advantages over the other approaches. Unlike other systems that are 
designed for specific HCSs and may require updates to align with the 
code system changes such as CCS, modularity encoding relies on the 

Table 4 
A comparison of different performance metrics of models where ICD codes are encoded using different modularity resolutions. Bold font indicates the best performance 
in the comparison metric.  

Logistic Regression  

Accuracy Precision Recall F1-score AUC 

R1 0.736 (0.727–0.746) 0.782 (0.769–0.795) 0.654 (0.640–0.668) 0.71 (0.701–0.723) 0.813 (0.805–0.823) 
R08 0.734 (0.728–0.741) 0.773 (0.763–0.783) 0.663 (0.653–0.673) 0.71 (0.706–0.722) 0.81 (0.804–0.817) 
R06 0.73 (0.724–0.736) 0.772 (0.763–0.781) 0.651 (0.642–0.661) 0.71 (0.699–0.714) 0.812 (0.807–0.817) 
R05 0.733 (0.728–0.739) 0.777 (0.770–0.785) 0.653 (0.645–0.662) 0.71 (0.704–0.717) 0.811 (0.806–0.817) 
R01 0.724 (0.720–0.730) 0.762 (0.756–0.770) 0.652 (0.645–0.659) 0.7 (0.697–0.709) 0.803 (0.799–0.808) 
R001 0.728 (0.724–0.733) 0.763 (0.757–0.770) 0.661 (0.656–0.668) 0.71 (0.704–0.714) 0.804 (0.801–0.809)  

Non-Linear Support Vector Machine 
R1 0.778 (0.769–0.787) 0.765 (0.753–0.777) 0.802 (0.790–0.815) 0.78 (0.774–0.793) 0.837 (0.828–0.845) 
R08 0.786 (0.780–0.793) 0.767 (0.758–0.776) 0.822 (0.814–0.830) 0.79 (0.787–0.800) 0.841 (0.835–0.847) 
R06 0.786 (0.781–0.792) 0.775 (0.768–0.783) 0.806 (0.799–0.814) 0.79 (0.784–0.796) 0.847 (0.840–0.851) 
R05 0.782 (0.777–0.788) 0.779 (0.772–0.787) 0.788 (0.781–0.796) 0.78 (0.778–0.789) 0.845 (0.841–0.850) 
R01 0.752 (0.748–0.757) 0.769 (0.763–0.776) 0.72 (0.714–0.727) 0.74 (0.739–0.750) 0.83 (0.825–0.834) 
R001 0.741 (0.737–0.746) 0.779 (0.773–0.786) 0.674 (0.668–0.681) 0.72 (0.718–0.728) 0.828 (0.820–0.828)  

Gradient Boosting Machine 
R1 0.78 (0.772–0.789) 0.752 (0.740–0.764) 0.836 (0.826–0.847) 0.79 (0.826–0.847) 0.836 (0.828–0.845) 
R08 0.78 (0.774–0.786) 0.751 (0.743–0.760) 0.836 (0.829–0.844) 0.79 (0.785–0.798) 0.831 (0.825–0.837) 
R06 0.779 (0.774–0.785) 0.747 (0.740–0.755) 0.843 (0.836–0.850) 0.79 (0.786–0.798) 0.835 (0.830–0.841) 
R05 0.78 (0.775–0.786) 0.752 (0.746–0.761) 0.834 (0.827–0.842) 0.79 (0.786–0.797) 0.836 (0.831–0.841) 
R01 0.771 (0.766–0.776) 0.741 (0.735–0.747) 0.833 (0.828–0.839) 0.78 (0.780–0.789) 0.83 (0.826–0.834) 
R001 0.78 (0.776–0.785) 0.752 (0.746–0.758) 0.836 (0.830–0.841) 0.79 (0.788–0.796) 0.836 (0.832–0.840)  

Table 5 
A comparison of different performance metrics of different grouping strategies models. Bold font indicates the best performance in the comparison metric.  

Logistic Regression  

Accuracy Precision Recall F1-score AUC 

R1 0.736 (0.727–0.746) 0.782 (0.769–0.795) 0.654 (0.640–0.668) 0.71 (0.701–0.723) 0.813 (0.805–0.823) 
CCS 0.731 (0.727–0.736) 0.771 (0.764–0.778) 0.658 (0.652–0.666) 0.71 (0.705–0.716) 0.808 (0.804–0.813) 
ICD_Highest 0.737 (0.731–0.744) 0.779 (0.771–0.788) 0.661 (0.652–0.671) 0.72 (0.708–0.723) 0.812 (0.807–0.819)  

Non-Linear Support Vector Machine 
R1 0.778 (0.769–0.787) 0.765 (0.753–0.777) 0.802 (0.790–0.815) 0.78 (0.774–0.793) 0.837 (0.828–0.845) 
CCS 0.761 (0.757–0.766) 0.782 (0.776–0.789) 0.725 (0.719–0.732) 0.75 (0.748–0.758) 0.838 (0.833–0.841) 
ICD_Highest 0.789 (0.783–0.795) 0.779 (0.771–0.787) 0.806 (0.799–0.814) 0.79 (0.786–0.798) 0.847 (0.841–0.853)  

Gradient Boosting Machine 
R1 0.78 (0.772–0.789) 0.752 (0.740–0.764) 0.836 (0.826–0.847) 0.79 (0.826–0.847) 0.836 (0.828–0.845) 
CCS 0.78 (0.776–0.784) 0.752 (0.746–0.759) 0.835 (0.830–0.841) 0.79 (0.787–0.796) 0.836 (0.833–0.841) 
ICD_Highest 0.779 (0.774–0.786) 0.753 (0.746–0.761) 0.832 (0.825–0.839) 0.79 (0.785–0.797) 0.834 (0.828–0.839)  

Table 6 
The performance of prediction of models trained on raw binary encoded DRG codes dataset compared to modularity encoded DRG codes dataset.  

Logistic Regression  

Accuracy Precision Recall F1-score AUC 

Raw_DRG 0.68 (0.675–0.688) 0.694 (0.684–0.705) 0.644 (0.635–0.654) 0.67 (0.661–0.677) 0.749 (0.742–0.756) 
R1_M24 0.701 (0.691–0.712) 0.734 (0.719–0.750) 0.629 (0.615–0.645) 0.68 (0.665–0.691) 0.771 (0.761–0.782)  

Non-Linear Support Vector Machine 
Raw_DRG 0.682 (0.676–0.689) 0.688 (0.679–0.698) 0.667 (0.658–0.676) 0.68 (0.670–0.685) 0.756 (0.751–0.762) 
R1_M24 0.721 (0.711–0.731) 0.72 (0.707–0.734) 0.723 (0.709–0.738) 0.72 (0.710–0.733) 0.794 (0.785–0.805)  

Gradient Boosting Machine 
Raw_DRG 0.715 (0.709–0.722) 0.688 (0.680–0.698) 0.786 (0.778–0.794) 0.73 (0.727–0.741) 0.787 (0.781–0.794) 
R1_M24 0.73 (0.720–0.741) 0.701 (0.689–0.716) 0.8 (0.788–0.814) 0.75 (0.737–0.759) 0.798 (0.788–0.809)  
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patterns found in the dataset and dynamically reflects these patterns in 
the HCSs codes grouping. 

Modularity grouping is a data-driven method that does not rely on 
the outcome variable. This means that it will draw the pattern of 
grouping from the studied dataset itself and does not need to be updated 
for different versions of the health code system. 

Unlike approaches that used grouping to a higher level of hierarchy 
as a grouping method, modularity encoding does not assume the system 
hierarchy which makes it usable for both hierarchical and non- 
hierarchical systems as it derives its grouping from the occurrences in 
the dataset. Grouping using hierarchy inherently assumes that hierar-
chical similarity is a factor that could enhance model predictions. While 
this could be true sometimes, it is not always the case as it does not 
always reflect the actual clinical realities. For example, in grouping to 
the highest level of ICD, grouping codes will correspond to their hier-
archical similarities (ex. infectious diseases, neoplasms (tumors), and 
mental disorders will be grouped together) which could be useful but 
neglects that multimorbidity patterns do not necessarily occur between 
similar conditions and diseases but rather between different ones, which 
gives the modularity grouping an advantage from the clinical point of 
view. 

By exploring the HCS codes in each detected module in the network, 
modularity encoding can additionally enhance the model’s clinical 
interpretation. Many studies have investigated the clinical patterns of 
diseases using the Network Analysis approach43,44,48–50 revealing 
meaningful clinical patterns in each module. Table 7 represents a 
comparison between some popular approaches of grouping and the 
modularity one. 

The study findings have many practical implications for healthcare 
and pharmacy research. The approach can be used in a wide variety of 
settings including studies of drug use and co-medication. It could be 
widely adopted to enhance predictive modeling in clinical settings. It 
could also be utilized to enhance clinical interpretations of models’ 
predictions. Furthermore, reduction of computational resources and 
training time makes the approach a practical solution for encoding large 
healthcare datasets, which can be a challenge to handle with traditional 
encoding approaches. 

Our study has some limitations. We used MIMIC-III dataset which 
contains data from a single institution limiting the generalizability of 
our results to other populations. Additionally, some methodological 
choices were made during the study such as handling each instance in 
the dataset as a separate patient which could have ignored the corre-
lation between related patient’s information and affected the prediction 
accuracy. We also balanced the outcome classes to minimize the impact 
of class imbalance on the comparison results, this will affect the models’ 
performance in real-world scenarios where the datasets are naturally 
imbalanced. While these choices will potentially affect the performance 
results of the study models, their impact is expected to be equal across all 
models, hence unlikely to bias the comparisons. 

Modularity encoding as an approach has also some limitations. The 
approach demands the presence of a type of relationship between the 
HCSs codes in the dataset (e.g. a multimorbidity or comedication 
pattern) and the researcher must decide how to represent these relations 
in the network (i.e. defining the network edges). The approach is also a 
multistep one and could be quite complex to implement. It adds extra 
steps to the data preparation steps which represent more data pre-
processing burden. Additionally, building big networks and performing 
modularity detection could demand high computational power. To ease 
implementing modularity encoding, we developed a Python package 
that performs the encoding using a simple syntax. 

Conclusion 

This study demonstrated modularity encoding as a method to encode 
HCSs in ML models. The approach enhances the performance and 
interpretability of prediction models while capturing clinically relevant 

patterns, reducing model dimensions, training time, and computational 
resources. Future research should focus on applying modularity encod-
ing to various HCSs, diverse populations, advanced machine learning 
techniques, and other clinical outcomes prediction. 
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