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Abstract
Volatility in the supply chain of critical products, notably the vaccine shortage during the
pandemic, influences livelihoods and may lead to significant delays and long waiting times.
Considering the capital- and time-intensive nature of capacity expansion plans, strategic oper-
ational production decisions are required best to address the supply-demand mismatches
given the limited production resources. This research article investigates the production
scenarios where the demand of one agent must be completed within a specified due date,
hereinafter referred to as the deadline, while minimizing the maximum or total completion
time of another agent’s demand. For this purpose, the Two-Agent Proportionate Flowshop
Scheduling Problem with deadlines is introduced. Two polynomial-time optimization algo-
rithms are developed to solve these optimization problems. This study will serve as a basis
for further developing this practical yet understudied scheduling problem.

Keywords Short-term production planning · Multi-agent scheduling · Conflicting tasks ·
Polynomial-time optimization

List of symbols

nk The number of jobs associated with agent k.
m The number of available machines.
j Job index, j = 1, 2, ..., nk

k Agent index, which is k = A, B for dual-agent situations.
i Machine index, i = 1, 2, ..., m
g Possible job positions in a sequence, g = 1, ..., n.
gk Possible positions of the jobs associated with agent k, gk = 1, ..., nk .
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J k[ j] Job situated in position j of the sequence associated with agent k.

Fk Job cluster associated with agent k, Fk =
{
Jk1, J

k
2, . . . , Jk

nk

}
.

pk[ j] Processing time of j th job in the sequence associated with agent k.

d A[ j] Due date of j th job in the sequence associated with agent k.

C j,i Integer decision variable; completion time of job j on machine i.

CB
max The makespan of the jobs associated with Agent B.∑
CB

j The total completion time of the jobs associated with Agent B

1 Introduction

In flowshop scheduling, all jobs go through an identical sequence of machines/processes.
In certain application areas, such as the painting process in the automotive industry and
modern bio-medicine production processes, the processing time of the jobs on the machines
is about the same; this particular variant of flowshop scheduling is known as the Proportionate
flowshop schedulingproblem (PFSP).Choi et al. (2010) argued thatminimizing themaximum
completion time (makespan) in PFSP with machine-dependent processing times is NP-hard.
Other studies developed exact solution algorithms for solving PFSPs with other objective
functions, such as maximum earliness (Mor and Mosheiov 2015a), the number of early jobs
(Mor and Mosheiov 2015b), minsum, and minmax (Mor and Mosheiov 2016), total absolute
deviation of job completion times (Kovalev et al. 2019), and total completion time (Hertrich
et al. 2020).

Different extensions to the PFSPs have been investigated in the scheduling literature to
address practical production requirements. No-wait PFSP (Gerstl et al. 2015), permutation
PFSPs (Cheng et al. 2018), PFSP with job rejection (Agnetis et al. 2017), unequal machine
speeds (Panwalkar and Koulamas 2017), controllable processing times (Oron 2019), with
position-dependent weights (Jiang et al. 2019), due date constraints (Sun et al. 2020), due
window assignment (Qian and Han 2022); job rejection and common due date assignment
(Geng et al. 2023) are some seminal examples. For a detailed elaboration on the PFSPs
extensions, we refer interested readers to the systematic literature review by Panwalkar et al.
(2013). The multi-agent PFSP has attracted relatively limited attention despite its relevance
in addressing conflicting scheduling tasks in tight supply-demand situations.

The early multi-agent scheduling studies investigated the problem in single-machine pro-
duction environments (see Ng et al. (2006)). Agnetis et al. (2004) were one of the first groups
to extend the problem to work in a more realistic production situation with multiple identical
machines, which was proven to be an NP-hard problem in a strong sense when considering
the makespan (Leung et al. 2010). Among the most relevant studies, Mor and Mosheiov
(2014) developed a polynomial-time solution algorithm to solve three variants of the Two-
Agent Proportionate Flowshop Scheduling Problems (TAPFSP) where a maximum cost is
considered for one agent while the total cost, completion time, and delay times of the other
agent are minimized, respectively. Gerstl et al. (2019) developed a pseudo-polynomial-time
dynamic programming algorithm to solve TAPFSP while considering total late work as the
optimization criterion for the second agent. Most recently, Chen and Li (2021) developed
a pseudo-polynomial-time algorithm to solve TAPFSP while minimizing the sum of the
weighted late works of one agent and the weighted number of late jobs of the other agent.
They also developed a polynomial-time optimization algorithm to solve TAPFSP.
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In reality, there are situations when the supply chain of certain critical products is under
pressure, and there is an urgency to satisfy new demands while ensuring that existing ones
are completed within a certain due date. Taking the COVID-19 vaccine shortage in the early
stages of the pandemic as an example, a pharmaceutical company may receive new orders
while they have an obligation to fulfill the orders placed in advancewith specific requirements.
In this case, the production planner is interested in minimizing the time required to fulfill the
new demands (makespan) or maximizing the utilization of the production resources (total
completion time) (Pourhejazy 2024) while keeping in mind that there is a due date for earlier
commitments. This practical setting has not been sufficiently investigated in the literature on
TAPFSPs. The present study contributes to this understudied scheduling topic by developing
two polynomial-time optimization algorithms to exactly solve the TAPFSP with deadlines,
considering the total completion time and makespan.

The TAPFSP with deadlines investigated in this study is hereafter denoted by
PFm | CA

j ≤ d A
j | ∑CB

j and PFm | CA
j ≤ d A

j | CB
max. PFm refers to the proportionate flow-

shop setting considering m machines. CA
j ≤ d A

j specifies that the completion time of job j

from Agent A should be before the specified due date. Finally, CB
max and

∑
CB

j denotes the

objective function, which are to minimize the maximum and total completion times of the
jobs associated with Agent B, respectively.

The remainder of this research article begins with a comprehensive review of the PFSP
literature in Section 2. The proposed polynomial-time optimization algorithms are presented
in Section 3. Finally, the concluding remarks in Section 4 summarize the major findings and
provide suggestions for future developments in the field.

2 Literature review

The PFSPwas first introduced by Chin and Tsai (1981). Later, Ow (1985) solved the problem
while considering the total delay time and found a near-optimum solution for the instances
with three machines using Branch-and-Bound. Adenso-Díaz (1992, 1996) addressed the
same problem by developing improved Tabu Search algorithms to obtain better competitive
solutions. Allahverdi (1996) introduced the longest processing time (LPT) sequencing rule
to minimize maximum lateness in a two-machine PFSP with breakdowns. Shakhlevich et al.
(1998) developed a polynomial-time solution algorithm to solve the basic PFSP consider-
ing the total weighted completion time. Edwin Cheng and Shakhlevich (1999) developed
a polynomial-time solution algorithm to address the bicriteria PFSP with controllable pro-
cessing times. Allahverdi and Savsar (2001) introduced the shortest processing time (SPT)
and LPT sequencing rules to minimize makespan in a two-machine PFSP with setup times
and stochastic operational parameters. Ageev (2007) developed an approximation algorithm
to deal with PFSPs with minimum delays and makespan criteria. Koulamas and Kyparisis
(2007) proposed the SPT dispatching rule to exactly solve the PFSP problem in single- and
two-machine factories, minimizing the total completion time. Shiau et al. (2008) proposed
the proportionate flexible flowshop scheduling problem and used a Genetic Algorithm to find
a near-optimal solution, considering the minimized total weighted completion time. Huang
and Shiau (2008) and Dong et al. (2015) developed column-generation and polynomial-time
approximation algorithms to solve the same problem.

More recent studies addressed more complex PFSPs with new constraints and decision
variables. Koulamas and Kyparisis (2009) introduced PFSPs with the bottleneck machine.
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Mosheiov and Oron (2012) developed a polynomial-time solution algorithm to minimize the
number of tardy jobs in PFSPswith position-dependent processing times, inwhich processing
times vary considering the number of previously processed jobs. Mor andMosheiov (2015b)
developed an iterative search algorithm and showed that the PFSP is polynomial-time solv-
able when the number of early jobs is considered as the optimization criterion. They showed
in later research that the problem is also polynomial-time solvable when considering max-
imum earliness (Mor and Mosheiov 2015a). Panwalkar and Koulamas (2015a) introduced
the PFSP with missing operations. The same authors developed a polynomial-time solution
algorithm to solve PFSPs with fixed job processing times, position-dependent job processing
times, controllable job processing times, as well as a variant with job rejection (Panwalkar
and Koulamas 2015b). Mor and Mosheiov (2016) introduced the PFSP with common flow
allowance; they considered min-sum and min-max criteria to solve the problem using a
polynomial-time solution algorithm. Shabtay and Oron (2016) developed exact and approx-
imation algorithms for solving the PFSP with machine-dependent processing times and job
rejection opportunities while considering various objective functions. Li et al. (2017) devel-
oped a pseudo-polynomial-time algorithm to solve the PFSP with job rejection, considering
maximum tardiness and total weighted completion time.

The above studies considered equal machine speeds, which impact the complexity of the
problem. Hou and Hoogeveen (2003) were the first to develop a polynomial-time solution
algorithm for a three-machine PFSPwith unequalmachine speeds,minimizing themakespan.
Later, Choi et al. (2006) and Panwalkar and Koulamas (2017) developed heuristic algorithms
to address two-machine PFSP, considering total weighted completion time, and makespan,
respectively, for unequal machine speeds.

In another special case of flowshop scheduling with implications for problem complexity,
Gerstl et al. (2015) developed a polynomial-time solution algorithm to exactly solve the no-
wait variant of PFSP forminimizing theweighted number of just-in-time jobs. Ben-Yehoshua
et al. (2015) adapted the LPT rule to address the no-wait PFSP with two operating machines.
They showed that the problem remains exactly solvable for up to nine jobs while considering
the total absolute deviation of job completion times. Kovalev et al. (2019) also developed
a pseudo-polynomial-time dynamic programming algorithm to solve the no-wait PFSPs in
a two-machine setting, aiming at minimizing the total absolute deviation of job completion
time.

Among the most recent studies, Cheng et al. (2018) developed a polynomial-time solution
algorithm to address the permutation variant of PFSP with variable maintenance works and
investigated several objective functions, including total completion time, maximum late-
ness, and maximum tardiness. Gerstl et al. (2019) developed a pseudo-polynomial-time
dynamic programming algorithm to minimize PFSPs while considering total late work. Mor
and Shapira (2019) developed a similar optimization approach to address PFSPs with job
rejection, considering the makespan criterion. Oron (2019) introduced the PFSP with batch
processing, which was solved using a polynomial-time solution algorithm considering the
makespan. Pseudo-polynomial-time dynamic programming algorithms were also used for
solving PFSP with job rejection byMor and Shapira (2020), where a constraint was included
to limit the total rejection cost. Koulamas (2020) developed the same approach for solving a
PFSP considering total tardiness.

The PFSP with a due date constraint was first introduced by Sun et al. (2020), who
developed a polynomial-time solution algorithm to solve the problem considering the total
weighted cost. PFSP with release dates and batch processing was solved exactly by Hertrich
et al. (2020). Most recently, Lv and Wang (2021) developed a polynomial-time solution
algorithm to solve the PFSP with due dates and position-dependent weights to minimize the
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makespan. Mor et al. (2021) developed a pseudo-polynomial-time dynamic programming
approach to solve the PFSP with job rejection, considering total tardiness and rejection costs.
All the above variants of PFSP are suitable for normal operating situations, where production
planning and scheduling are done for all jobs at hand. However, there are situations where the
maximum/total completion time of new demands should be minimized while ensuring that
the current demand is fulfilled within a certain due date. In this situation, the limited available
production resources, i.e., machines, need to be considered for fulfilling two different sets
of requirements. Such a practical situation can be addressed using two-agent scheduling.
Multi-agent PFSPs have been limited to a few studies. Estévez-Fernández et al. (2008) were
the first to develop a game model to address multi-agent PFSPs. Later, Mor and Mosheiov
(2014) developed a polynomial-time solution approach based on the Lawler algorithm to
solve the two-agent PFSP. In their study, the maximum cost of all the jobs, total completion
time, and the minimum number of tardy jobs were considered for the first agent, and an
upper bound on the maximum allowable cost was considered for the second agent. Li et al.
(2018) developed a pseudo-polynomial-time dynamic programming algorithm to solve the
multi-agent PFSP, where every agent attempts to maximize its total gains of just-in-time jobs.

Most recently, Chen and Li (2021) developed a pseudo-polynomial-time solution algo-
rithm to solve the two-agent variant of PFSP while considering machine-dependent
processing time. In their model, the scheduling of the first agent is done to minimize the
total weighted late work, while the total weighted number of late jobs for the second agent
is minimized. The following section develops two polynomial-time optimization algorithms
to solve the TAPFSP with deadlines, which is particularly practical for addressing the pro-
duction scheduling of critical products during times of shortage.

3 Proposedmethod

Let’s assume a production site with limited capacity equipped with M = {1, 2, ..., m}
machinery, which must process jobs from k agents, i.e., nk . Assume a dual-agent problem,
a total of n = nA + nB jobs are involved. Jobs follow the same routine, and the processing
time of each job is the same across all production processes (machines). It is assumed that
each machine i = 1, 2, ..., m can process only one job j = 1, 2, ..., nk from one of the
agents at any given time. Once the processing of a job on a machine is started, it cannot be
assigned to another machine. The processing times of jobs are sequence-independent and
uncorrelated. Additionally, the processing time and due date are assumed to be deterministic.
Finally, we assume that the machines’ downtime and defect rate are negligible, and scrap or
rework are not allowed. The following notations are defined to establish two polynomial-time
optimization algorithms.

The following sub-sections elaborate on the TAPFSP with deadlines, considering the total
completion time and the makespan criterion.

3.1 Maximum completion time (Makespan), PFm | CAj ≤ dAj | C
B
max

Lemma 1 In the case that the job sequence associated with Agent B is regarded as a group,
the arbitrary arrangement of the jobs does not impact the maximum completion time.

Proof See (Chin and Tsai 1981). Therefore, the jobs associated with one agent can be arbi-
trarily sorted without affecting their maximum completion time.
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Theorem1 Given that jobs associated with Agent B as one processing group, there is a set of
optimal solutions to the problem if the job sequence of Agent A is sorted according to EDD.

Proof

• Assume that the jobs associated with Agent B are treated as one group. In so doing, the ini-

tial sequence is π1=
(
. . . , J B

j , J B
j+1, J

A
j ′ , J

A
j ′+1, . . .

)
and it is assumed that CA

j ′+1 > d A
j ′+1.

Considering Figure 1 as an illustrative example, job J A
j ′+1 of sequence π1 is sorted as a

group and the jobs associated with Agent B are considered as non-group, denoted by π2,
with its sorted job sequence being shown by π ′

2. It can be observed that the makespan of
Agent B under both π2 and π ′

2 are equal, i.e., C
B
max(π2)=CB

max(π
′
2). In this situation, it can

be considered that using the job sequence of Agent B as a group minimizes the completion
time of Agent A under the condition that the makespan of Agent B remains unchanged

Fig. 1 An illustrative example for Theorem 1
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and the chance of Agent A exceeding the due date is also reduced. Therefore, it can be
proven that a better solution can be obtained by sorting the jobs associated with Agent B

as a group in the problem of
∣∣∣PFm

∣∣∣CA
j ≤ d A

j

∣∣∣CB
max

• Sort Agent A’s jobs according to EDD. As shown in Figure 2, assuming Agent
B’s job sequence as a group and that dAj ′ < d A

j ′+1, we compare the situations where

Agent A’s job is organized using non-EDD rule, i.e., π1=
(
J B
j , J B

j+1, J
A
j ′+1, J

A
j ′
)
,

and EDD, i.e., π ′
1=

(
JBj , J

B
j+1, J

A
j ′ , J

A
j ′+1

)
. In this situation, it can be observed that

CA
j ′ > d A

j ′ and CA
j ′+1 > d A

j ′+1. Then we move J A
j ′+1 of π1 of and J A

j ′ of π ′
1 to

the front to get π2 (Figure 2(c)) and π ′
2 (Figure 2(d)). It can be observed that

CB
max(π2) = CB

max(π
′
2) and CA

j ′(π2) > d A
j ′ . In this situation, the completion time of Agent

A, i.e., CA
j ′(π2),CA

j ′+1(π2),CA
j ′(π

′
2),C

A
j ′+1(π

′
2) is calculated as shown in Equation (1).

CA
j ′(π2) =

(
pA[1] + pA[2] + ... + pA

j ′−1

)
+

(
pB[1] + pB[2] + ... + pBj−1

)
+ pA

j ′ + pA
j ′+1

+(m − 1)max(pA[1], ..., pA
j ′+1, p

B[1], ..., pBj−1)

(1)

CA
j ′+1(π2) =

(
pA[1] + pA[2] + ... + pA

j ′−1

)
+

(
pB[1] + pB[2] + ... + pBj−1

)
+ pA

j ′+1

+(m − 1)max(pA[1], ..., pA
j ′−1, p

A
j ′+1, p

B[1], ..., pBj−1)

CA
j ′(π

′
2) =

(
pA[1] + pA[2] + ... + pA

j ′−1

)
+

(
pB[1] + pB[2] + ... + pBj−1

)
+ pA

j ′

+(m − 1)max(pA[1], ..., pA
j ′ , p

B[1], ..., pBj−1)

CA
j ′+1(π

′
2) =

(
pA[1] + pA[2] + ... + pA

j ′−1

)
+

(
pB[1] + pB[2] + ... + pBj−1

)
+ pA

j ′ + pA
j ′+1

+(m − 1)max(pA[1], ..., pA
j ′+1, p

B[1], ..., pBj−1)

Considering that dAj ′ < d A
j ′+1,when the job sequence ofAgentA is sorted based on the non-

EDD rule, i.e., π2:CA
j ′(π2) < d A

j ′ andC
A
j ′+1(π2) < d A

j ′+1, which results in π ′
2:C

A
j (π ′

2) < d A
j ′

and CA
j+1(π

′
2) < d A

j ′ . On the other hand, following the EDD rule, π ′
2: C

A
j (π ′

2) < d A
j ′ and

CA
j+1(π

′
2) < d A

j ′ . In this situation, for the non-EDD sequence π2 , CA
j ′(π2) < d A

j ′ and

CA
j ′+1(π2) < d A

j ′+1 may not be true. Therefore, it can be shown that a better solution can

be obtained by arranging Agent A’s job sequence with EDD resulting in the optimal out-
comes.

Finally, the makespan of TAPFSPs can be calculated by

Cmax =
n∑
j=1

p j+(m − 1)max(p1, ..., pn) as suggested by (Chin and Tsai 1981).

MovingAgentA’s delayed jobs ahead ofAgentB’s job groupwill not affect the completion
times of Agent A’s other jobs that have not been moved. Therefore, based on Lemma 1 and
Theorem 1, we can obtain an optimal solution for the PFm | CA

j ≤ d A
j | CB

max problem using

the following polynomial-time optimization algorithm.
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Fig. 2 An illustrative example for sorting Agent A’s jobs according to EDD.
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Algorithm 1

(1) Initialization Phase: First, sequence all the jobs of Agent B in an arbitrary order, and
then arrange the jobs of Agent A after the last job of Agent B according to the EDD
rule. The resulting job sequence is optimal if all of Agent A’s jobs are completed before
their due dates.

(2) Improvement Phase: If some of Agent A’s jobs exceed their due dates, move Agent B’s
job group after the last delayed job of Agent A to generate the optimal solution. The
resulting job sequence is optimal if all of Agent A’s jobs are completed before their due
dates. Otherwise, there is no feasible solution.

Theorem 2 The computational complexity of Algorithm 1 for solving the
PFm | CA

j ≤ d A
j | CB

max problem is O(nA log nA)

Proof The initialization phase of Algorithm 1 is performed in O(nA log nA), finding the

last delayed job of Agent A requires O(nA), and moving the jobs of Agent B is done in
constant time. Thus, the entire running time of the computational procedure of Algorithm 1
is O(nA log nA).

IllustrativeExampleA inTable 1 is used to better elaborate on the computational procedure
of Algorithm 1.

I. Initialization Phase: In the illustrative example presented in Figure 3(a), three machines
are considered for scheduling, where the makespan of Agent B’s job should be mini-
mized while ensuring that all of Agent A’s jobs are completed before the specified due
date. Considering Lemma 1 and Theorem 1, the order of jobs in Agent B’s job group
does not influence the maximum completion time; hence, they can be sorted arbitrarily.
Subsequently, Agent A’s jobs are sorted using the EDD rule. The resulting job sequence
is (J B

1 , J B
2 , J B

3 , J A
3 , J A

1 , J A
2 ), where CA

3 > d A
3 , C

A
1 > d A

1 .

II. Improvement Phase: The job group associated with Agent B is inserted after the last
delayed job of Agent A, i.e., J A

1 ,, as shown in Figure 3(b). Since all of Agent A’s jobs are

completed before their due dates, the resulting job sequence ( j A3 , j A1 , j B1 , j B2 , j B3 , j A2 )

is optimal.

Table 1 Parameters of the
illustrative Example A Agent Job Processing time Due date

A J A1
2 19

J A2
3 25

J A3
4 17

B J B1
3 –

J B2
2 –

J B3
1 –
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Fig. 3 An illustrative example of the computational procedure of Algorithm 1

3.2 Total completion time, PFm | CAj ≤ dAj |
∑

CBj

Theorem 3 There is a set of optimal solutions for PFm | CA
j ≤ d A

j | ∑CB
j when the jobs

associated with Agent B are sorted using the SPT rule.

Proof We know from the literature (Baker and Smith 2003) that SPT is the optimal approach
for sorting jobs when solving the single-machine scheduling problem and the PFSP to
minimize the total completion time. The PFSP with due dates and conflicting agents is
comparatively more complex. Since our solution objective function is to minimize the total
completion time of Agent B, we consider two approaches; first, we reduce the job sequence
of Agent B considering the SPT rule, i.e., π = (..., J B

j , J A
j ′+1, J

B
j+1, J

A
j ′ , ...), and non-SPT,

i.e., π ′ = (..., J B
j+1, J

A
j ′ , J

B
j , J A

j ′+1, ...); these are shown in Figure 4.

In this example, the total completion time of Agent B, considering
π = (J B

j , J A
j ′+1, J

B
j+1, J

A
j ′ ) and π ′ = (J B

j+1, J
A
j ′ , J

B
j , J A

j ′+1) sequences are calculated

in Equations (2) and (3), respectively.

∑
CB
j (π)

= CB[1] + CB[2] + ... + CB
j + CB

j+1

= CB[1] + CB[2] + ... + CB
j−1+[(

pB[1] + pB[2] + ... + pBj

)
+

(
pA[1] + pA[2] + ... + pA

j ′−1

)
+ (m − 1)max

(
pB[1], pB[2], ..., pBj , pA[1], pA[2], ..., pAj ′−1

)]
+

[(
pB[1] + pB[2] + ... + pBj+1

)
+

(
pA[1] + pA[2] + ... + pA

j ′
)

+ (m − 1)max
(
pB[1], pB[2], ..., pBj+1, p

A[1], pA[2], ..., pAj ′
)]

(2)
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Fig. 4 An illustrative example of theorem 3

∑
CB

j (π
′)

= CB[1] + CB[2] + ... + CB
j + CB

j+1

= CB[1] + CB[2] + ... + CB
j−1+[(

pB[1] + pB[2] + ... + pBj+1

)
+

(
pA[1] + pA[2] + ... + pAj ′

)

+(m − 1)max
(
pB[1], pB[2], ..., pBj+1, p

A[1], pA[2], ..., pAj ′
)]

+
[(

pB[1] + pB[2] + ... + pBj−1 + pBj+1

)
+

(
pA[1] + pA[2] + ... + pAj ′−1

)

+(m − 1)max
(
pB[1], pB[2], ..., pBj−1, p

B
j+1, p

A[1], pA[2], ..., pAj ′−1

)]

(3)

Given pBj <pBj+1, we can conclude that
∑

CB
j (π) <

∑
CB

j (π
′), hence, a better solution

is obtained for Agent B using the SPT approach.
In an optimal solution of the PFm | CA

j ≤ d A
j | ∑CB

j problem, Agent B’s jobs must be

sorted according to the SPT rule, andAgentA’s jobsmust be sorted according to theEDD rule.
Inserting Agent B’s jobs before Agent A’s delayed jobs does not alter the completion times
of Agent A’s delayed jobs. However, inserting one of Agent B’s job immediately after the last
delayed job of Agent A may decrease the completion time of Agent A’s delayed jobs while
minimally increasing the completion time of the inserted job of Agent B. Therefore, based on
Theorems 1 and 3, we can quickly obtain an optimal solution for the PFm | CA

j ≤ d A
j | ∑CB

j

problem using the following polynomial-time optimization algorithm.
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Algorithm 2

(1) Initialization Phase: First, sequence all the jobs of Agent B according to the SPT rule,
and then arrange the jobs of Agent A after the last job of Agent B according to the EDD
rule. The resulting job sequence is optimal if all of Agent A’s jobs are completed before
their due dates.

(2) Improvement Phase: If some of Agent A’s jobs exceed their due dates, move the last job
of Agent B to the first position after the last delayed job of Agent A. If there are still
delayed jobs of Agent A, move the next-to-last job of Agent B to the first position after
the last delayed job of Agent A. Continue this process until all of Agent A’s jobs are
completed before their due dates or until all of Agent B’s jobs have been moved. The
resulting job sequence is optimal if all of Agent A’s jobs are completed before their due
dates. Otherwise, there is no feasible solution.

Theorem 4 The computational complexity of Algorithm 2 for solving the
PFm | CA

j ≤ d A
j | ∑CB

j problem is O(nAnB).

Proof The initialization phase of Algorithm 2 is performed in O(nB log nB + nA log nA),

finding the last delayed job of Agent A requires O(nA). There are at most nB iterations to
move the jobs of Agent B, in which each is performed in constant time. Thus, the entire
running time of the computational procedure of Algorithm 2 is O(nAnB).

Illustrative ExampleB inTable 2 is used to better elaborate on the computational procedure
of Algorithm 2.

I. Initialization Phase: In the illustrative example presented in Figure 5(a), two machines
are considered for scheduling, where the total completion time of Agent B should be
minimized while ensuring that every job of Agent A is completed before the specified
due date. First, sequence all the jobs of Agent B according to the SPT rule, and then
arrange the jobs of Agent A after the last job of Agent B according to the EDD rule. The
resulting job sequence is (J B

1 , J B
2 , J A

1 , J A
2 ), where CA

1 > d A
1 , C

A
2 > d A

2 .

II. Improvement Phase: As shown in Figure 5(b), move the last job of Agent B, i.e., J B
2 , to

the first position after the last delayed job of Agent A, i.e., J A
2 . The resulting job sequence

is (J B
1 , J A

1 , J A
2 , J B

2 ), where CA
1 > d A

1 . Since there is still one delayed job of Agent A,

move the next-to-last job of Agent B, i.e., J B
1 , to the first position after the delayed job

J A
1 , as shown in Figure 5(c). Since all of Agent A’s jobs are completed before their due

dates, the resulting job sequence (J A
1 , J B

1 , J A
2 , J B

2 ) is optimal.

Table 2 Parameters of the
illustrative Example B Agent Job Processing time Due date

A J A1
4 10

J A2
2 16

B J B1
4 –

J B2
10 –
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Fig. 5 An illustrative example of the computational procedure of Algorithm 2

4 Concluding remarks

Considering the limited available resources on a production site, companies often face the
problem of satisfying new demands while ensuring the timely fulfillment of the existing ones.
In this situation, proportionate scheduling helps maximize the outcomes while maintaining
an acceptable level of responsiveness. This study investigated the TAPFSP with deadlines
by developing two polynomial-time optimization algorithms to solve the problem with the
objectives of minimizing the makespan and total completion time, respectively. Our findings
can be considered a basis for further developments in the literature on proportionate flowshop
scheduling.

This study is limited in that only two conflicting objectives are considered, while the
real-world situation may require a more diverse set of demands. Future studies may build on
our findings to address this limitation; for example, by applying our method to a multi-agent
problem to check whether it can yield the optimal solution. The following suggestions may
provide further insights into the future development of this relatively understudied scheduling
extension. First, proportionate scheduling requires development in other scheduling environ-
ments, such as job-shop, open-shop, and parallel machines. The algorithms and lemmas
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developed in this study may be tested in the aforementioned scheduling situations. The sec-
ond suggestion comes from integrating other practical features, such as no-idle and blocking
constraints, to extend the real-world reach of the problem. Finally, revenue management-
related decision variables can be included in the base model to better reflect the real-world
situation. In so doing, one can include the possibility of rejecting orders or partially accepting
them while considering the expected profit.
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