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ABSTRACT: A recent reinvestigation of the gas-phase photoelectron spectra of Group 6
metal−metal quadruple-bonded complexes with scalar-relativistic DFT calculations showed
that common exchange-correlation functionals reproduce the lowest ionization potentials in a
semiquantitative manner. The finding encouraged us to undertake a DFT study of metal−
metal quintuple bonds in a set of bisamidinato complexes with the formula MI

2[HC(NR)2]2
(M = Cr, Mo, W; R = H, Ph, 2,6-iPr2C6H3) and idealized D2h symmetry. Scalar-relativistic
OLYP/STO-TZ2P calculations indicated significant shifts in valence orbital energies among
the three metals, which translate to lower first ionization potentials, higher electron affinities,
and lower HOMO−LUMO gaps for the W complexes relative to their Cr and Mo
counterparts. These differences are largely attributable to substantially larger relativistic effects
in the case of tungsten relative to those of its lighter congeners.
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Among the physical techniques used to study metal−metal
quadruple bonds,1 gas-phase photoelectron spectroscopy

(PES) was undoubtedly one of the most insightful. PES studies
of Group 6 complexes with a variety of supporting ligands
provided direct measures of the ionization potentials (IPs) of the
σ, π, and δ bonds constituting the quadruple bonds.2,3 A
fascinating finding to emerge from these studies is that the
tungsten complex W2(Hpp)4 (Hpp = hexahydropyrimidinopyr-
imidine) is easier to ionize than atomic cesium!4 We recently
revisited the PES data with scalar-relativistic density functional
theory (DFT) calculations and found that common exchange-
correlation functionals reproduce the lowest ionization
potentials of such quadruple-bonded systems with semi-
quantitative accuracy.5 Together, the PES and DFT data
provided a wealth of insights into periodic trends and relativistic
effects,6,7 significantly deepening our appreciation of relativistic
effects in coordination chemistry.8−12

During the first decade of the new millennium, Group 6
elements were also shown to sustain quintuple bonds in
complexes such as RMMR, with R being a univalent group such
as a sterically hindered aryl group.13,14 Curiously, the first such
compound to be reported, ArCrCrAr (Ar being a sterically
hindered terphenyl substituent), was found to exhibit a trans-
bent geometry.15 Quantum chemical studies showed that the
unexpected geometry corresponds to one of a number of local
minima and that the deviation from a linear geometry does not
significantly impact the integrity of the quintuple bond.16−18

Understandably, such structural ambiguities do not arise for
bridged Group 6 complexes such as M2[HC(NR)2]2 (Scheme
1).19−22 The high, idealizedD2h local symmetry of the quintuple

bonds in amidinate-bridged complexes allowed us to calculate
four of their lowest IPs with conventional DFT23−25 calculations
and simple group-theoretical manipulations (involving specifi-
cation of the expected numbers of electrons under different
irreducible representations). Throughout, we used a scalar-
relativistic ZORA (Zeroth Order Regular Approximation to the
Dirac equation)26 Hamiltonian, the well-tested OLYP27,28
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Scheme 1. Amidinate-Bridged, Quintuple-Bonded Group 6
Metal(I) Complexes Studied in This Work
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exchange-correlation functional, augmented with D329,30

dispersion corrections, all-electron ZORA-STO-TZ2P basis
sets, fine integration grids, and tight criteria for SCF and
geometry optimization cycles (which we carefully tested), as
implemented in the ADF program system.31

Figure 1 presents scalar-relativistic comparative energy level
diagrams of three of the compounds studied, with M = Cr, Mo,

W, and R = 2,6-iPr2C6H3, with key molecular orbitals (MOs)
visually depicted in Figure 2. Table 1 presents calculated
ionization potentials (IP1−IP4 for R = 2,6-iPr2C6H3), electron
affinities (EAs), and singlet−triplet gaps for two different excited
states of the quintuple bond, with all energies determined via a
ΔSCF procedure, i.e., as differences in electronic energy
between the two states of interest. In general, we found only
small differences between vertical and adiabatic energies; the
handful of cases where the energy difference exceeds 0.1 eV
reflect small differences in ligand character in the open-shell
orbital between the vertically and adiabatically ionized/excited
states. The results lead to a fascinating set of predictions on
periodic trends and relativistic effects, which may well justify an
experimental PES study of the complexes.
The Cr and Mo complexes exhibit very similar energy levels

(to within a couple of tenths of an eV) and HOMO−LUMO
gaps. The MO energy levels of the W complex, in contrast, are
significantly different (Figure 1). These differences are also
reflected in the IPs, EAs, and triplet energies listed in Tables 1
and 2. Based on a large body of earlier studies,8−12 the majority
of these difference may be ascribed to greater relativistic
destabilization of the W(5d)-based energy levels relative to
analogous Cr(3d)- and Mo(4d)-based energy levels. Indeed,
switching off relativity in our calculations (while maintaining the
same basis sets) resulted in very similar MO energy levels for all
three metals.

A notable twist is found for the highest occupied metal−metal
σ-bonding MO, which is lower in energy for the W complex.
Visually, the MO appears to originate from sideways overlap of
twometal dz2 orbitals (theM−Mvector being identified as the x-
axis and the mean molecular plane as the xy plane). An
examination of the atomic orbital composition of this MO,
however, shows that it includes about 30−40%metal s character,
consistent with the fully symmetric nature (ag) of the MO.
Relativistic stabilization of the W(6s) orbital then provides a
straightforward explanation of the low energy of this MO in the
tungsten case.
A similar effect is also observed for the LUMOs, with the W

complex exhibiting a lower energy LUMO (which translates to a
higher electron affinity) relative to the corresponding Cr andMo
complexes. For all three metals, the LUMO, at first glance,
appears to involve an antibonding dz2−dz2 combination but
actually also involves substantial metal s character. In the case of
tungsten, the LUMO has approximately 53% s character and
relativistic stabilization of the W(6s) orbital wins out over
relativistic destabilization of the W(4d) orbitals.
Thus, there is substantial reordering of quintuple bond

orbitals between Mo and W (as depicted in Figure 1), which
translates to significant variations in the calculated valence
ionization potentials among the compounds (Tables 1 and 2).
Relativistic stabilization and destabilization of key orbitals also
explain why the W complexes should exhibit both the highest
electron affinity and the lowest singlet−triplet gaps for the three
metals considered.
A technical point worth addressing is the accuracy of the data

presented in Tables 1 and 2. In our laboratory, we have long
known that DFT-basedΔSCF calculations do an excellent job of
reproducing the lower IPs of organic compounds;32−35 there is
less information available, however, for transition metal
complexes.36,37 A comparison of calculated IPs with gas-phase
PES data for Group 6 quadruple-bonded complexes suggests
that the present values are likely to be slight underestimates
relative to experimental values, by a margin of a few tenths of an
eV (<0.5 eV).5 On the other hand, dif ferences in calculated IPs
among the different compounds studied should be almost
quantitatively accurate, i.e., agree to within ∼0.1 eV with
experimental values.38,39 We have less experience with DFT
calculations of EAs,40−42 but given the large basis sets employed
here, we may a priori expect a similar level of accuracy for EAs as
well.
A final observation concerns the influence of the N-aryl

groups on the formamidinate nitrogens. Without the aryl
groups, the first adiabatic IPs are about a half an eV higher, while
the EAs are about half an eV lower (see Tables 1 and 2). Such
ligand substituent effects are expected and have been
documented for Group 6 quadruple-bonded complexes2−5 as
well as, in our own laboratory, for porphyrins and related
macrocycles.38,39

In summary, scalar-relativistic DFT calculations predict
substantial differences in the valence energy levels of
quintuple-bonded Group 6 metal complexes, with significant
relativity-driven orbital reordering between Mo and W. We
remain intrigued by the possibility of experimental verification of
the above results by means of gas-phase photoelectron
spectroscopy.

Figure 1. Comparative scalar-relativistic OLYP-D3/ZORA-STO-
TZ2P MO energy level diagram for M2[HC(NR)2] (R = 2,6-
iPr2C6H3).
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Figure 2. Visual depictions of key Kohn−Sham MOs included in Figure 1. The irrep, bonding character, and orbital energy (eV) of each MO are
indicated; L = ligand.

Table 1. OLYP/ZORA-STO-TZ2P Ionization Potentials (IP1-IP4), Electron Affinities (EA), and Triplet Energies (T1 and T2)
for M2 Complexes with the Experimentally Used HC(N-2,6-iPr2C6H3)2 Liganda

M IP1 IP2 IP3 IP4 T1 T2 EA

Cr2[HC(N-2,6-iPr2C6H3)2]2 5.47/5.41 (ag) 5.67/5.54 (b2g) 6.78/6.71 (b1g) 6.84/6.78 (b3g) 1.17 (σσ*)a 1.29 (δσ*) 0.01/0.09 (b2u)
Mo2[HC(N-2,6-iPr2C6H3)2]2 5.43/5.40 (ag) 5.67/5.58 (b2g) 6.78/6.70 (b3u) 6.86/6.81 (b3g) 1.07 (σσ*) 1.37 (δσ*)a 0.29/0.39 (b2u)
W2[HC(N-2,6-iPr2C6H3)2]2 5.17/5.11 (b2g) 5.79/5.71 (ag) 6.56/6.30 (b3u) 6.84/6.78 (b1u) 0.80 (δσ*) 0.86 (σσ*) 0.58/0.68 (b2u)

aAll values are in eV and were obtained via a ΔSCF procedure. Vertical and adiabatic values are indicated in italics and normal script, respectively.
The irreps refer to the D2h point group and a given irrep refers to the MO from which an electron has been removed or to which an electron has
been added.

Table 2. Selected OLYP/ZORA-STO-TZ2P Ionization
Potentials, Electron Affinities (EA), and Triplet Energies
(T1, σσ*) for the Molecules Studied with Simplified
Amidinato Ligandsa

R M IP1 T1 EA

Ph Cr 5.63/5.63 1.18 0.09
Mo 5.56/5.53 1.12 0.22
W 5.18/5.13 0.78 0.46

H Cr 5.95/5.96 1.17 −0.68
Mo 5.86/5.85 1.09 −0.18
W 5.43/5.40 0.65 0.08

aThe comments in footnote a of Table 1 also apply here.
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