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Abstract
Microalgae are the main source of the omega-3 fatty acids eicosapentaenoic acid 
(EPA) and docosahexaenoic acid (DHA), essential for the healthy development of most 
marine and terrestrial fauna including humans. Inverse correlations of algal EPA and 
DHA proportions (% of total fatty acids) with temperature have led to suggestions 
of a warming-induced decline in the global production of these biomolecules and an 
enhanced importance of high latitude organisms for their provision. The cold Arctic 
Ocean is a potential hotspot of EPA and DHA production, but consequences of global 
warming are unknown. Here, we combine a full-seasonal EPA and DHA dataset from 
the Central Arctic Ocean (CAO), with results from 13 previous field studies and 32 
cultured algal strains to examine five potential climate change effects; ice algae loss, 
community shifts, increase in light, nutrients, and temperature. The algal EPA and 
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1  |  INTRODUC TION

Two vitamins, four minerals and two omega-3 fatty acids (FAs) are 
considered key when assessing the ‘nutrient richness’ of various food 
groups for human consumption (Golden et al., 2021). The two FAs are 
the long-chain polyunsaturated eicosapentaenoic acid [EPA, 20:5(n-3)] 
and docosahexaenoic acid [DHA, 22:6(n-3)], which benefit cell mem-
brane function, neurological development, cognition, visual acuity, car-
diovascular health, the immune system, and anti-inflammation among 
others (Calder, 2015; Rimm et al., 2018). Humans have a low efficiency 
for de novo synthesis of EPA and DHA from precursor FAs and rely 
on dietary uptake (Anderson & Ma, 2009). The same holds true for 
most heterotrophs, including zooplankton, fish and terrestrial con-
sumers, which require EPA and DHA to aid their growth, reproduction 
and survival, but lack efficient synthesis (Jónasdóttir et al., 1995; Kainz 
et al., 2004; Litzow et al., 2006; Parrish, 2009). Consequently, aquatic 
and terrestrial food webs depend on micro- and macroalgae as primary 
producers of these ‘essential’ molecules, on trophic transfer for ac-
quisition and on selective retention for long-term usage (Baird, 2022; 
Galloway et  al.,  2012; Gladyshev et  al.,  2009; Schmidt et  al.,  2012). 
However, a challenge for EPA and DHA provision to humans and other 
consumers comes from the highly variable FA composition of marine 
microalgae; internally set by their phylogeny and modified by external 
conditions (Galloway & Winder, 2015; Guschina & Harwood, 2009).

Temperature is considered a key driver of the EPA and DHA pro-
portions in microalgae and other organisms due to their homeoviscous 
adaptation (Sinensky,  1974). This adaptation allows cell membranes 
to maintain a desired level of fluidity, and therefore function, under 
environmental conditions that would otherwise enhance or reduce 
their rigidity. There are several pathways to adjust membrane fluidity 
including a shift in the ratio of ‘flexible’ (unsaturated) versus ‘inflex-
ible’ (saturated) FAs within the phospholipid bilayer (Parrish, 2013). 
Since EPA and DHA are more flexible than their saturated counter-
parts, their incorporation into membranes is reduced when tempera-
tures rise (Fuschino et al., 2011; Rousch et al., 2003). Indeed, a data 
synthesis of >300 FA profiles from cultured marine and freshwater 
diatoms showed that decreasing EPA proportions within the algae 

total fatty acid (TFA) pool coincides with higher temperatures (Hixson 
& Arts, 2016). The same study predicts that with a 2.5°C increase in 
water temperature, the global EPA and DHA production will drop by 
up to ~28%, with adverse effects for higher trophic levels (Hixson & 
Arts,  2016). While an algal strains' physiological response to rising 
temperatures might partly be mitigated through rapidly evolving ther-
mal reaction norms of FA compositions (O'Donnell et al., 2019), a co-
occurring increase in water column stratification and taxonomic shift 
from EPA- or DHA-producing eukaryotes to EPA- and DHA-deficient 
cyanobacteria might add to direct physiological effects of temperature 
rise (Schmidt et al., 2020).

Large compilations of FA profiles from epipelagic and deep-sea com-
munities, broadly separated into three zones (polar, temperate, tropical), 
indicate that polar organisms contain, on average, greater EPA and DHA 
proportions than their warmer ocean counterparts (Colombo et al., 2017; 
Parzanini et al., 2019). In microalgae from Arctic sea ice and under-ice 
blooms, EPA proportions can be as high as 25%–30% of TFA (Duerksen 
et al., 2014; Wang et al., 2014), that is, more than twice the global aver-
age for marine microalgae (12% EPA: Colombo et al., 2017). However, 
Arctic sea ice studies have also shown two- to three-fold regional and 
seasonal differences in the EPA and DHA proportions of microalgae, de-
spite a narrow temperature range (Budge et al., 2008; Leu et al., 2010; 
Wang et al., 2014). These differences have been attributed to the tax-
onomy of the bloom-forming microalgae, to a potential lack of nutrients, 
or detrimental effects of high irradiance (Leu et al., 2010, 2020; Wang 
et al., 2014).

All three of these factors may change with on-going loss of 
sea ice and faster Atlantic currents entering the Arctic (Ardyna & 
Arrigo, 2020).

In line with previous considerations (e.g., Jónasdóttir, 2019), we hy-
pothesize that microalgal EPA and DHA proportions will decrease in a 
future Arctic due to a suite of proposed mechanisms: (1) Loss of sea ice 
leading to regional absence of ice algae blooms, known for their high 
content of polyunsaturated fatty acids (PUFA), such as EPA and DHA 
(Søreide et al., 2010); (2) reduced snow cover and sea ice thickness 
leading to increased irradiance in sea ice, which can have negative ef-
fects on the PUFA content of ice algae (Leu et al., 2010); (3) increased 

DHA proportions were lower in the ice-covered CAO than in warmer peripheral shelf 
seas, which indicates that the paradigm of an inverse correlation of EPA and DHA 
proportions with temperature may not hold in the Arctic. We found no systematic dif-
ferences in the summed EPA and DHA proportions of sea ice versus pelagic algae, and 
in diatoms versus non-diatoms. Overall, the algal EPA and DHA proportions varied 
up to four-fold seasonally and 10-fold regionally, pointing to strong light and nutrient 
limitations in the CAO. Where these limitations ease in a warming Arctic, EPA and 
DHA proportions are likely to increase alongside increasing primary production, with 
nutritional benefits for a non-ice-associated food web.

K E Y W O R D S
Bering Sea, Central Arctic Ocean, DHA, EPA, ice algae, light, Melosira arctica, MOSAiC 
expedition, nutrients, temperature
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freshening of Arctic surface waters enhancing stratification and 
therefore reducing vertical mixing of nutrients essential for algal EPA 
and DHA production (Guschina & Harwood, 2009); (4) non-diatoms 
that are deficient in EPA (Dalsgaard et al., 2003) taking over from di-
atoms as key primary producers in the Arctic (Jónasdóttir, 2019; Li 
et al., 2009); (5) higher temperatures reducing the algae requirements 
for EPA and DHA in a homeoviscous adaptation (Hixson & Arts, 2016).

To investigate these proposed mechanisms, we used a three-
pronged approach that includes a new, full-seasonal dataset from the 
Central Arctic Ocean (CAO) acquired during the recent MOSAiC expe-
dition (October 2019–October 2020), a meta-analysis of 13 previous 
field studies in Arctic shelf regions and the CAO (Table 1), and newly 
conducted laboratory experiments with 32 cold-water algal strains. 
Point 1, above, is covered by eight field studies, in either spring or sum-
mer, where sea ice and pelagic particulate organic matter (POM) were 
sampled simultaneously for FA analysis. Points 2 and 3 were investi-
gated via the ‘natural field experiment’ of the Arctic, showing a strong 
seasonal cycle in photosynthetically active radiation (PAR) and strong 
regional differences in nutrient inventories (Castellani et  al.,  2022; 
Randelhoff et  al.,  2020) against a relatively constant temperature 
background of the ice-covered surface ocean. Further insights come 
from culture experiments with the keystone under-ice diatom species, 
Melosira arctica, explicitly addressing the effect of nutrient supply, light 
intensity or temperature on its EPA and DHA proportions. Point 4 was 
studied via 32 culture experiments including Arctic sea ice diatoms 
(e.g., Nitzschia frigida, Attheya spp.) as well as those non-diatom species 
that are becoming increasingly prominent in the Arctic, for example 
the coccolithophore Emiliania huxleyi (synonym Gephyrocapsa huxleyi) 
(Oziel et al., 2020), the prymnesiophyte Phaeocystis pouchetii (Assmy 
et  al.,  2017; Orkney et  al., 2020), the chlorophyte Micromonas spp. 
(Li et al., 2009) and the cyanobacterium Synechococcus spp. (Paulsen 
et al., 2016). To address Point 5, the culture experiments were run at 
two different temperature-light combinations imitating ‘colder’ and 
‘warmer’ summer conditions in the low-latitude Arctic.

Taken together, our multiple approaches do not support the 
hypothesized reduction of EPA and DHA under warmer and more 
ice-free Arctic conditions, but instead point to current limitations 
due to low light and/or nutrient availability. These control mecha-
nisms imply the potential for EPA and DHA increases, rather than 
decreases, in those parts of the CAO where reductions in ice cover 
and enhanced atmospheric forcing lead to longer growing seasons 
and stronger vertical mixing of nutrients.

2  |  MATERIAL S AND METHODS

2.1  |  Microalgae cultures and experiments with  
M. arctica

2.1.1  | Microalgae cultures

In 2022, we conducted FA analysis on 32 cold-water strains that 
were isolated in the Arctic (25 strains), Southern Ocean (2 strains) 

or North Atlantic (5 strains), and included diatoms, chlorophytes, 
haptophytes, cryptophytes, chrysophytes, dinoflagellates and cy-
anobacteria (Table  S1). These strains were either obtained from 
commercial culture collections (Culture Collection of Algae and 
Protozoa, CCAP, Oban, Scotland, and Roscoff Culture Collection, 
RCC, Roscoff, France) or provided by the Alfred-Wegener-Institute—
Helmholtz-Centre for Polar and Marine Research, Bremerhaven, 
Germany (AWI). The cultures were inoculated in 50 mL Erlenmeyer 
conical flasks with 25 mL of F/2 medium and added 60 μmol L−1 sili-
cate for diatoms (Guillard & Ryther, 1962). The algae strains were 
grown for 4 weeks at low temperature (3–4°C), low light intensity 
(~10 μmol photons m−2 s−1) and a light: dark cycle of 12:12 h. The algae 
growth rates were not monitored, but with these culture conditions 
and time span, the strains usually reach late exponential-early sta-
tionary growth (C. Rad-Menéndez and I. Probert, personal com-
munication). From each strain, two 5 mL technical replicates were 
filtered via a vacuum pump (−20 kPA) onto pre-combusted (12 h, 
450°C) 25 mm Whatman GF/F filters, freeze dried and stored in alu-
minium foil at −20°C until FA analysis.

Note: Three of the strains from CCAP (CCAP-1023/3, CCAP-
1029/29, CCAP-1029/30) were obtained and analyzed as 
‘Fragilariopsis sp.’ but subsequently identified as ‘Grammonema sp.’

2.1.2  |  Experiments with M. arctica

The experiments with M. arctica were carried out at the AWI in 
2021 and 2022, using a strain that was isolated in the CAO in 2015 
(79.56° N, 4.84° W; strain PS93.1_030). The strain was grown as 
semi-continuous batch cultures under six different environmental 
conditions including the species' natural range of temperature, light 
and nutrient availability (Fernández-Méndez et  al.,  2014; Spilling 
& Markager,  2008). Therefore, low temperatures (0–1°C) were 
combined with high and low light intensity (10 and 100 μmol pho-
tons m−2 s−2), each with high and low nutrient supply (details below), 
and higher temperatures (3 and 6°C) with high light and nutrient 
availability (Figure  S1). Experiments were performed with four 
biological replicates in sterile 1-L Schott bottles in temperature-
controlled rooms, with bottles at 3 and 6°C being immersed in water-
filled aquaria for additional temperature stability. Day light lamps 
(Biolux T8, 6500K; Osram) provided continuous light and irradiance 
levels were adjusted with a black mesh fabric and measured using a 
4π spherical sensor (Li-Cor) and data logger (ULM-500; Walz). Cells 
were cultivated in 0.2-μm sterile-filtered Arctic seawater (salinity 
33.5), with or without added macronutrients, vitamins and trace 
metals according to F/2 or F/20 media (Guillard & Ryther,  1962). 
Initial nutrient concentrations in set-ups with F/20 media were 
10.4 ± 0.24 μmol L−1 nitrate-and-nitrite, 18.1 ± 1.36 μmol L−1 silicate 
and 1.2 ± 0.19 μmol L−1 phosphate. In set-ups without added medium, 
initial nutrient concentrations were 1.8 ± 0.07 μmol L−1 nitrate-and-
nitrite, 14.4 ± 2.3 μmol L−1 silicate and 0.4 ± 0.01 μmol L−1 phosphate. 
To minimize changes in carbonate chemistry and to remain close to 
natural population densities, cultures were diluted every 1–2 weeks 
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with Arctic seawater, with or without medium. Sufficient algal bi-
omass for subsequent lipid analysis was grown after 4 weeks for 
cultures that received media, and after 7 weeks for those without 
media. At the end of the experiment, two technical replicates were 
taken from each biological replicate, filtered onto pre-combusted 
(12 h, 450°C) 25 mm Whatman GF/F filters, freeze dried and stored 
in aluminum foil at −20°C until FA analysis. All dilutions and final 
sampling were conducted under sterile conditions, using a laminar 
flow hood.

2.2  |  The MOSAiC expedition

The MOSAiC (Multidisciplinary drifting Observatory for the Study 
of Arctic Climate) expedition represents the first year-round inter-
disciplinary study of the atmosphere, the sea ice, the ocean, the 
ecosystem, and biogeochemical processes during the transpolar 
drift across the CAO, with a unique opportunity for intensive field 
sampling (Nicolaus et al., 2022; Rabe et al., 2022; Shupe et al., 2022). 
The observational year was divided into five legs: Leg 1 started on 
October 4, 2019 with the set-up of the first Central Observatory 
(CO1) and installations on the research icebreaker RV Polarstern 
north of the Laptev Sea (Knust, 2017; Krumpen et  al.,  2020). The 
winter Leg 2 and spring Leg 3 continued the work on CO1, before 
RV Polarstern had to leave the floe, for logistical reasons, on May 16, 
2020. The vessel returned to the original ice floe on June 19, 2020, 
but at a different orientation some hundred meters away. Leg 4 con-
tinued the drift with the new CO2 over the summer until the disin-
tegration of the floe in the Fram Strait on July 31, 2020. During Leg 
5, RV Polarstern travelled back into the ice and started the set-up of 
CO3 on August 21, 2020, near the North Pole. The third drift ended 
on September 20, 2020, when the vessel started the return voyage.

2.2.1  | Water column sampling

Surface chlorophyll (chl a) samples were taken from 11 m water 
depth via the ship's underway system. Between 2 and 4 L of seawa-
ter were filtered in duplicate or triplicate onto GF/F filters and fro-
zen at −80°C until further analyses. Pelagic POM for FA analysis was 
collected at 2 m and/or the chl a fluorescence maximum (chl a max, 
based on CTD fluorescence sensor profiles) via 12 L Niskin bottles 
attached to the shipboard 24-bottle CTD-rosette (PS-CTD). In the 
period between mid-March and mid-May, all the water column sam-
ples were collected at Ocean City (OC), an in-ice hole 300 m from the 
ship (OC-CTD), due to the loss of the ice hole alongside the ship (see 
Rabe et al., 2022). Volumes of 7 to 10 L of seawater were filtered via 
a vacuum pump (−20 kPA) onto pre-combusted (3 h, 550°C) 47 mm 
Whatman GF/F filters and stored in aluminium foil at −80°C until 
further processing.

Additional under-ice sampling took place during MOSAiC Leg 5 
from August 26 to September 15, 2020. An in situ automatic pump 
phytoplankton sampler (PPS; serial number 12697-01; McLane, USA) A
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was deployed at a depth of 11 m to collect suspended particles. At 
2–3 day intervals, 4–6 L seawater were filtered through combusted 
GF/F filters under different pre-set sample parameters of the PPS.

2.2.2  |  Sea ice sampling

During Leg 1, areas of first year ice (FYI) and second year ice (SYI) 
were identified that were safely accessible, relatively homogene-
ous, and large enough to accommodate repeat visits, potentially for 
the entire drift. The sites were located away from RV Polarstern to 
minimize human impacts (e.g., artificial lights, traffic, fumes, noise). 
Cores for biological properties (e.g., chl a, taxonomy, trophic mark-
ers) were collected using a 9-cm diameter KOVACS Mark II ice corer. 
Cores were usually sectioned and placed into sterile Whirlpak bags 
directly inside the ice coring tent under low and/or red-light con-
ditions to minimize artefacts. Small-scale horizontal variability was 
reduced by pooling 3–4 ice cores, creating a more homogeneous 
master sample from which related properties were derived. FA 
profiles of sea ice POM were derived from the two bottom 5 cm in-
tervals (0–5 cm, 5–10 cm) of the pooled ice cores (ECO Pool 1), along-
side with samples for pigment analysis (chl a, HPLC), POM (POC/
PON) and flow cytometry. All pooled samples were melted after 
the addition of filtered surface seawater (typically 50 mL per 1 cm 
of core section) to reduce the impact of osmotic stress and cell loss 
(Campbell et al., 2019; Garrison & Buck, 1986). Ice core sections in 
bags were melted in the dark at room temperature (18–22°C) and 
checked every 4–6 h. After complete melting, which took from 12 
to 40 h, bags were transferred into dark, temperature-controlled lab 
containers, and sub-sampled for biological properties under red light 
to minimize artificial light stimulation of biological activities. The 
subsamples were filtered via a vacuum pump (−20 kPA) onto pre-
combusted 47 mm Whatman GF/F filters and stored in aluminum foil 
at −80°C until further processing.

A single core was collected for inorganic nutrients and sections 
were directly melted in the dark. Nutrient samples were pre-filtered 
through a 0.45 μm membrane filter and either analysed directly on 
board, or frozen for analysis onshore.

2.2.3  | Measurements of PAR (400–700 nm)

The light field above and underneath the sea ice was measured using 
RAMSES-ACC hyper-spectral radiometers (320–950 nm; TriOS 
Mess- und Datentechnik GmbH, Rastede, Germany) mounted on the 
surface control unit and a M500 remotely operated vehicle (ROV, 
Ocean Modules, Åtvidaberg, Sweden; Katlein et al., 2017). The ROV 
was lowered into the water through an access hole in the ice and 
connected to a surface control unit through a tether cable of ~300 m 
length. The spectral resolution of the radiometer was 3.3 nm, which 
was interpolated to a common wavelength grid with 1 nm spacing 
(Nicolaus et al., 2010). The ROV was operated 1–3 times per week 
with a total of 83 dives (Nicolaus et  al.,  2022). Once sufficient 

sunlight returned in mid-March, comprehensive optical dives were 
carried out on grids under FYI, SYI, leads, and ridges (Nicolaus 
et  al.,  2022). Such transects of continuous measurements, rather 
than those from single locations, are considered representative of 
the average PAR experienced by microalgae drifting at a different 
rate and direction relative to the overlying sea ice (Ardyna, Mundy, 
Mayot, et al., 2020). For this study, we used the mean incoming PAR 
and the mean down welling PAR irradiance at water depths between 
1.5 and 2.5 m for each dive and present the monthly averages. Data 
collected in a 2.5 m radius around the ROV access hole were not 
considered.

2.2.4  |  Temperature, salinity, and inorganic 
nutrient analysis

Surface nutrient samples were usually collected at 5.5 m water 
depth (±1 m) and are presented alongside co-occurring temperature 
and salinity measurements from bottle CTDs (either PS-CTD or OC-
CTD, Tippenhauer et al., 2023a, 2023b). Samples were collected for 
the measurement of inorganic nutrients (nitrate and nitrite, nitrite, 
ammonium, silicic acid, phosphate), total dissolved nitrogen and 
total dissolved phosphorus. Samples were either analysed directly 
onboard (MOSAiC Leg 1–3) or stored frozen and analysed at the AWI 
Nutrient Facility (MOSAiC Leg 4–5; experiments with M. arctica). 
Nutrient analyses were carried out using an AA3 Seal Analytical 
segmented continuous flow auto-analyser following widely used 
colorimetric techniques (Aminot et al., 2009; Grasshoff et al., 2009; 
Kirkwood,  1996). The accuracy of analyses was evaluated using 
KANSO LTD Japan, certified reference materials, with data adjusted 
accordingly as deemed necessary.

2.2.5  |  Chlorophyll a analysis

Samples were extracted in 90% acetone over night at 4°C and sub-
sequently analyzed on a fluorometer (TD-700; Turner Designs, USA), 
including an acidification step (1 M HCl) to determine phaeopig-
ments following Knap et al. (1996). During Leg 3, one replicate per 
event was measured on board, while all other samples were analyzed 
at AWI after the campaign. No systematic differences between the 
replicates analyzed onboard and at AWI could be detected, indicat-
ing no significant degradation of chl a took place during storage and 
transport.

2.2.6  |  FA analysis

All filters from the MOSAiC expedition were freeze-dried for 24 h 
at the AWI and sent to the University of Plymouth, UK for the 
separation of highly branched isoprenoids (HBI), sterols and FAs. 
After addition of internal standards for each of the three compo-
nents (i.e., 23:0 for FA), the filters were saponified with 5% KOH 
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(70°C; 60 min). Thereafter, non-saponifiable lipids (HBI and ster-
ols) were extracted with hexane (3 × 2 mL) and purified by open 
column chromatography (SiO2). FAs were obtained by adding con-
centrated HCl (1 mL) to the saponified solution and re-extracted 
with hexane (2 × 2 mL). The samples were dried under N2 and 
stored at −20°C in a small amount of hexane until FA analysis. 
Further steps of the FA analysis were carried out at AWI. Here 
samples were converted into fatty acid methyl esters (FAME) by 
using a solution of 3% concentrated sulfuric acid in methanol and 
heating for 4 h at 80°C (Kattner & Fricke,  1986). Subsequently, 
FAME were quantified using an Agilent 6890N gas chromatograph 
(Agilent Technologies, USA) with a DB-FFAP capillary column 
(60 m, 0.25 mm I.D., 0.25 μm film thickness) supplied with a split-
less injector and a flame ionization detector using temperature 
programming. Helium was used as the carrier gas. FAME were 
quantified with an internal standard, tricosanoic acid methyl ester 
(23:0) (Supelco, Germany), that was added prior to lipid extrac-
tion. The detection limit based on the certified reference mate-
rial (Supelco 37 Component FAME mix; Supelco) was 10–20 ng 
per component. Clarity chromatography software system (version 
8.8.0; DataApex) was used for chromatogram data evaluation. FA 
are presented in shorthand notation, that is, A:B(n-x), where: A in-
dicates the number of carbon atoms in the straight FA chain, B 
represents the number of double bonds present, n represents the 
terminal methyl group and x denotes the position of the first dou-
ble bond from the terminal end. Proportions of FA are expressed 
as mass percentages of TFA content.

2.3  |  Cross-regional comparison of FA data

For the cross-regional comparison, we included field studies that 
were carried out since 1999, derived from a region between 60 and 
90° N (based on the ‘polar region’ definition by Colombo et al., 2017), 
and were permanently or seasonally ice-covered at the time of sam-
pling (Table 1). The sampling protocols of the previous studies largely 
match those of the MOSAiC expedition, using the bottom section 
of ice cores for FA analysis of ice POM and the biomass-enriched 
layers of the water column for pelagic POM. Moreover, the selected 
studies all present the FA profiles as mass percentage of TFAs and 
include the following 16 key FA: 14:0, 15:0, 16:0, 16:1(n-7), 16:2(n-
4), 16:3(n-4), 16:4(n-1), 18:0, 18:1(n-9), 18:1(n-7), 18:2(n-6), 18:3(n-
3), 18:4(n-3), EPA, 22:5(n-3) and DHA (Leu et al., 2020). However, 
some studies identify far more than those 16 FA peaks (i.e., 58 FA, 
Marmillot et  al., 2020). To allow a cross-study comparison of pro-
portional FA, we re-adjusted each dataset to the 16 key FA, which 
in most cases comprise >85% of the total mass of analysed FAs 
(Table  1). The regional studies were compared either by sampling 
month or by sampling season with March–June representing ‘spring’ 
and July–September ‘summer’. MOSAiC is the only campaign that 
provided ‘winter’ data from November to February.

Each study was assigned to a region based on the latitudes 
and longitudes of the majority of sampling locations. The sampling 

location(s) may only be representative for a small part of overall re-
gion (e.g., ‘Barrow’ within the ‘Beaufort Sea’, the Barents Sea north-
ern shelf break in the ‘Barents Sea’) and only for the specific year of 
sampling. However, this compilation focusses on reoccurring differ-
ences between sea ice and pelagic samples and between shelf regions 
and deep basins (representing different latitudes), not on regional or 
temporal differences within individual studies. It would have been 
desirable to also carry out a cross-regional comparison of the FA 
concentrations (mg m−3) and FA yields (mg m−3 day−1), but the major-
ity of studies presented the FA data only on a proportional basis (%) 
(Table 1). Therefore, our study is in line with other data compilations 
from cultured algae or pelagic and benthic field sampling where FA 
proportion is the common unit (e.g., Colombo et al., 2017; Galloway 
& Winder, 2015; Hixson & Arts, 2016; Parzanini et al., 2019).

2.4  |  Statistics

To interpret the FA data, we used three different statistic ap-
proaches: principal components analysis (PCA), box plots with one-
way analysis of variance (ANOVA) and linear regression analysis. The 
PCAs were based on the percentage data of FA profiles, while the 
box plots present the proportions of EPA or DHA (% of TFA). The FA 
profiles comprised either 21 FA (cultured algae) or 16 key FA (see ex-
planation under Section 2.3). We used PCAs for four different data-
sets: the cultured algae, the MOSAiC data, compiled data sets from 
spring sea ice and pelagic POM, and compiled data sets from sum-
mer sea ice and pelagic POM. The PCA on cultured algae was used 
to illustrate phylogenetic differences within the full FA profiles and 
the importance of EPA and DHA in driving those variations. The PCA 
on the MOSAiC data set was used to illustrate monthly differences 
in the FA profiles and which FA are associated with those seasonal 
shifts. Finally, the PCAs of the compiled data sets were used to look 
for similarities and differences in FA profiles from sea ice and pe-
lagic POM derived from Arctic shelf regions versus deep basins. The 
box plots accompany those PCAs, showing the exact proportions of 
EPA and DHA. The ANOVA with associated Tukey tests were used 
for group comparisons, such as between taxonomical groups, sea-
sons, or regions, and results with p ≤ .05 were considered significant. 
Linear regression analysis was used to correlate EPA or DHA propor-
tions with temperature or absolute FA concentrations.

3  |  RESULTS

3.1  |  Cultured cold-water diatoms and flagellates 
have similar summed EPA and DHA proportions

The culture experiments included diatoms (20 strains), flagellates 
(11 strains) and cyanobacteria (1 strain). The ‘flagellates’ com-
prised haptophytes (4), chlorophytes (3), chrysophytes (1), cryp-
tophytes (2), and dinoflagellates (1). The experiments showed that 
microalgal EPA and DHA proportions are significantly different 

 13652486, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17090 by A

rctic U
niversity of N

orw
ay - U

IT
 T

rom
so, W

iley O
nline L

ibrary on [06/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 of 23  |     SCHMIDT et al.

between taxonomic groups (Figure 1a,b; ANOVA with Tukey tests, 
p < .01; df = 71, Table S2). When cultured under low temperatures 
(3–4°C), low light intensity (10 μmol photons m−2 s−1) and with 
nutrient-enriched F/2 culture medium, the EPA proportion of dia-
toms was at least 5% of TFA, reaching maximum values of 25%. 
Flagellates had significantly lower EPA proportions than diatoms 
overall, but the two cryptophytes were an exception comprising 
~20% EPA (Figure  1b; Table  S2). All tested flagellates contained 
at least 5% DHA, with maximum values of 26%. Overall, the DHA 
proportions in diatoms were significantly lower than in flagellates, 
but one diatom (Nitzschia frigida) contained 6% DHA (Figure  1b; 
Table S2). Despite some overlap between diatoms and flagellates 
in their EPA and DHA production, the two groups were clearly 
separated on PC1 due to their differences in palmitoleic acid 
[16:1(n-7)] which only occurred in high proportions in diatoms 
(≥20% TFA). The cyanobacterium Synechococcus spp. lacked both 
EPA and DHA but was enriched in 16:1(n-7) and separated from 
the diatoms and flagellates on PC2.

Pennate diatoms, centric diatoms and flagellates did not differ 
in their summed EPA and DHA proportions (Figure S2; ANOVA with 
Tukey tests, p = .344, df = 30).

In parallel to the cultures grown at low temperature and light 
intensity (3–4°C; 10 μmol photons m−2 s−1), 19 strains from CCAP 
were also grown at higher temperature and light intensity (8°C; 
20 μmol photons m−2 s−1). Most strains had equal EPA, DHA pro-
portions in both settings (e.g., Porosira spp.) or slightly higher 
proportions in either the lower (e.g., Grammonema spp.) or higher 
setting (e.g., Chaetoceros spp). Only two strains (Thalassiosira nor-
denskioeldii and Micromonas pusilla) showed clear differences be-
tween the two treatments. However, overall, the EPA and DHA 
proportions of the 19 strains did not differ significantly between 
the lower and higher temperature-light combinations (Figure S3; 
Table S2).

3.2  |  M. arctica EPA proportions decline with low 
nutrient and light availability

The diatom M. arctica showed an up to 3-fold difference in EPA pro-
portion depending on its culture conditions after allowing 4–7 weeks 
of acclimation, while the DHA proportions were consistently low 
(≤1% TFA). One of the six treatments represented the strain's long-
term maintenance conditions with low temperature (1°C), low light 
(10 μmol photons m−2 s−1) and nutrient-enriched culture medium 
(F/20 medium). In this setting, M. arctica had a moderate EPA propor-
tion of 9% (Figure 1c). The EPA proportion increased significantly to 
>11% when the light intensity was raised to 100 μmol photons m−2 s−1 
(Figure 1c; ANOVA with Tukey tests, p < .01, df = 22). If light inten-
sity and temperature were increased, the EPA proportion remained 
unchanged at 3°C (9% EPA) but was significantly reduced at the 
warmer 6°C treatment (7% EPA) (Figure  1c). Lowest EPA propor-
tions were recorded when M. arctica was kept for 7 weeks without 
nutrient-enriched culture medium. However, there was a significant 

difference in the EPA proportion depending on whether the nutrient 
starvation was combined with a high light intensity (100 μmol pho-
tons m−2 s−1; EPA 6%) or low light intensity (10 μmol photons m−2 s−1; 
EPA 3.5%).

3.3  |  A strong seasonal cycle in the EPA and DHA 
proportions of sea ice and pelagic POM

During the year-long MOSAiC expedition (Figure  2a,b), incoming 
PAR changed by three orders of magnitude from complete dark-
ness in winter to maximum values of ~1000 μmol photons m−2 s−1 in 
July (Figure  2c). At the same time, the surface water temperature 
remained constant at −1.7 ± 0.1°C (Figure 2c,d). The macronutrients 
nitrate and silicate showed more complex cyclicity, partly due to 
the long-distance drift across water masses of different origin and 
nutrient inventories, which coincided with the seasonal build-up of 
algae biomass (Figure 2e–g). However, while the nitrate concentra-
tions in sea ice were consistently low (<1 μmol L−1), those in the upper 
water column included high as well as very low concentrations and 
an inverse relationship between nitrate and silicate (Figure  2e,f). 
Pelagic microalgae reached bloom concentrations of ≥1 μg chl a L−1 
only in June and July 2020 (Figure 2g). The TFA concentrations were 
an order of magnitude higher in bottom sea ice than in biomass-
enriched layers of the water column, with maximum values of 220 
and 28 mg m−3, respectively (Figure  2h). In water column samples, 
there was a strong positive relationship between the proportions 
of EPA or DHA and the TFA concentration (EPA: R2 = .44, DHA: 
R2 = .34), while in sea ice samples, the positive relationship was 
weaker for EPA (R2 = .19) and non-significant for DHA (Figure  2h; 
Figure S4). For the following cross-regional comparisons, only the 
FA proportions are considered, as this is the common FA unit in the 
previous Arctic studies (Table 1).

EPA and DHA proportions in sea ice and pelagic POM, sampled 
during MOSAiC, showed differences across the year (Figure 3a,b; 
ANOVA with Tukey tests, p < .01, sea ice POM df = 56, pelagic 
POM df = 59). Samples from summer versus winter/spring are 
separated on PC1, and those from early versus late summer on 
PC2 (Figure  3a). Winter/spring (November–May; MOSAiC Leg 
1–3) samples are associated with higher proportions of satu-
rated FA (e.g., 18:0, 16:0) while those from early summer (June/
July; MOSAiC Leg 4) are associated with diatom-marker FA [e.g., 
16:1(n-7), C16 PUFA, EPA] and those from late summer (August/
September; MOSAiC Leg 5) with flagellate-marker FA (e.g., C18 
PUFA, DHA). The seasonal peak of EPA proportions occurred in 
June/July in sea ice and in July in pelagic POM, while the DHA 
proportions showed little variation in sea ice and peaked in August 
in pelagic POM (Figure 3b).

As data from the MOSAiC drift will have been influenced by both 
seasonal and regional transitions, especially the pelagic POM (see 
Figure 2b for the drift trajectory), we also present a pelagic spring–
summer time-series from a single region, the Bering Sea, with pelagic 
POM sampled in 2009 and 2010 (Figure 3c; Table 1). In line with the 
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observations from MOSAiC, the Bering Sea dataset shows (1) strong 
seasonal differences in EPA and DHA proportions, (2) an earlier peak 
in EPA than DHA proportions, (3) lower EPA and DHA proportions 
in early spring (March), compared to the seasonal maximum in later 
spring or summer. However, during the MOSAiC drift, the timing of 
the seasonal peak was 1 month later for the DHA and 2–3 months 
later for the EPA proportions, compared to the low-latitude Bering 
Sea.

3.4  |  Sea ice and pelagic POM show no systematic 
differences in EPA and DHA proportions

Studies that have simultaneously sampled EPA and DHA propor-
tions in sea ice and pelagic POM are relatively rare and give dis-
parate results as a function of season (Figure 4a–d, ANOVA with 
Tukey tests, p < .01, spring df = 100, summer df = 113). Four spring 
studies (March–May) found higher EPA and DHA proportions in sea 

F I G U R E  1 Cultured cold-water microalgae: Phylogenetic and environmentally driven differences in the EPA and DHA proportions. 
(a) Principal component analysis of fatty acid percentage data. Score- (left) and loading plot (right) for diatoms (20 strains), flagellates (11 
strains) and cyanobacteria (1 strain, Synechoccocus spp.); showing that EPA is associated with diatoms and DHA with flagellates, while the 
cyanobacterium lacks EPA and DHA. (b) Box plots of EPA and DHA proportions (% of total fatty acid) in pennate (p) diatoms (n = 7), centric 
(c) diatoms (n = 13) and flagellates (n = 11) represent phylogenetic differences under standardized culturing conditions, while the box plots 
for Melosira arctica represent environmentally induced differences with one strain grown under different culturing conditions. Means that 
do not share the same letter (A, B, C) are significantly different, ANOVA with Tukey test (p < .01). (c) Box plot of EPA proportions in M. arctica 
cultured under six different combinations of temperature, light intensity and nutrient supply (n = 4). The red labelling indicates the long-
term maintenance conditions and the blue labelling the parameter(s) that was (were) changed in each modified set-up (Figure S1). ‘Pennate 
diatoms’ include the genera Nitzschia, Navicula, Pseudo-nitzschia, Synedropsis, Grammonema. ‘Centric diatoms’ include the genera Attheya, 
Chaetoceros, Melosira, Porosira, Thalassiosira, and ‘Flagellates’ include the genera Micromonas, Pyramimonas, Phaeocystis, Emiliania, Isochrysis, 
Polarella, Rhodomonas, Baffinella, Dinobryon (further details in Table S1). DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid.
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ice than in pelagic POM (Figure 4a,b), while four summer studies 
(May–September) found the reverse (Figure 4c,d). Samples collected 
during MOSAiC show significant differences in the DHA proportions 
in sea ice- and pelagic POM, while the EPA proportions were similar 
(Figure 4a,c).

For the spring scenario, sea ice and pelagic POM were sepa-
rated on PC1, with sea ice samples being associated with higher 
EPA and DHA proportions and pelagic samples with higher pro-
portions of saturated FA (18:0, 16:0, 15:0) (Figure  4b). At the 
same time, sea ice and pelagic samples from the Bering Sea were 
separated from those collected at Svalbard on PC2. The Svalbard 
samples were associated with high proportions of palmitoleic acid 
[16:1(n-7)], while the Bering Sea samples had high proportions of 
oleic acid [18:1(n-9)] and linoleic acid [18:2(n-6)] in both sea ice and 
pelagic POM.

In the late spring–summer scenario, sea ice and water samples 
were separated on PC2 (Figure 4d). This time, the pelagic samples 
were associated with higher EPA and DHA proportions, and the sea 
ice samples with higher proportions of saturated FA or 16:1(n-7). 
PC1 separated the four different study regions, with samples from 
MOSAiC being associated with high proportions of 18:1(n-9) and 
18:2(n-6), and those from the Beaufort Sea with high 16:1(n-7).

3.5  |  Regional comparisons reveal unexpectedly 
low EPA and DHA proportions during MOSAiC

For a regional comparison of EPA and DHA proportions, the MOSAiC 
dataset was assessed alongside ~470 POM profiles from 13 previ-
ously published studies. The data were divided into four categories: 
(1) sea ice-spring; (2) sea ice-summer; (3) pelagic-spring, (4) pelagic-
summer. FA profiles of sea ice-summer have only been sampled in 
four regions, with stations at the shelf break or in the Arctic basins, 
and EPA and DHA proportions being low and not significantly dif-
ferent between regions (Figure 5a,b; ANOVA with Tukey tests, EPA 
p = .519, DHA p = .432, df = 30). In the other categories, samples from 
MOSAiC were significantly lower in EPA proportions than those 
from most other regions (ANOVA with Tukey tests, p < .05, sea ice-
spring df = 113, pelagic-spring df = 202, pelagic-summer df = 194). In 
contrast, the inflow shelf or shelf break regions of the Bering Sea 
and Barents Sea had the highest EPA and DHA proportions in all 
categories, except for the DHA proportion in sea ice-spring that 
was highest in the Canadian Arctic Archipelago (CAA). While the 

pelagic-summer samples from MOSAiC, that derived from the Fram 
Strait and North Pole region, showed low EPA and DHA proportions, 
samples from the Nansen Basin collected during exceptionally low 
sea ice-extent in summer 2012 (Kohlbach et al., 2016) contained sig-
nificantly higher DHA proportions (Figure  5b, ANOVA with Tukey 
tests, p < .05).

4  |  DISCUSSION

Polar regions, and in particular sea ice habitats, are often perceived 
as hotspots of long-chain omega-3 FAs production due to low tem-
peratures and the abundance of bloom-forming diatoms (Colombo 
et al., 2017; Jónasdóttir, 2019; Søreide et al., 2010). Our results from 
the Arctic indicate more diverse scenarios of highly variable algal 
EPA and DHA proportions in both sea ice and the water column. 
Contrary to our initial hypothesis, we predict algal EPA and DHA 
proportions to increase rather than decrease in large parts of the 
ice-free Arctic. Regarding the five mechanisms that are proposed to 
lead to lower microalgal EPA, DHA proportions in a future Arctic 
(see Section 1), our observations are as follows:

1.	 Loss of ice algae: Cultures of cold-water pennate and centric 
diatoms did not show systematic differences in their EPA pro-
portions. In line with seasonal changes in light and nutrient 
availability in the two habitats, EPA and DHA proportions first 
peaked in sea ice and then in pelagic POM, but the maximum 
values were similar.

2.	 Increased irradiance: The M. arctica culture showed lower EPA 
proportions at a light intensity of 10 compared to 100 μmol pho-
tons m−2 s−1. In the field, lowest EPA proportions in sea ice and 
pelagic POM occurred at the end of the dark winter season.

3.	 Reduced nutrient concentrations: Without the supply of culture 
medium, the EPA proportions in M. arctica dropped by 50% over a 
7-week period. In the CAO, EPA and DHA proportions of microal-
gae are currently low and have therefore the potential to increase 
where nutrient and light levels become more favourable.

4.	 Community shifts towards non-diatoms: In the culture experiments, 
diatoms contained highly variable proportions of EPA and were 
not per se a superior source of omega-3 FA over non-diatom 
species, including those that become increasingly present in the 
Arctic under climate change. Across multiple regions of the Arctic, 
open waters in summer (July–September) were characterized by 

F I G U R E  2 Arctic study regions and the MOSAiC expedition (October 2019–October 2020): Locations and environmental conditions. (a) 
Location of Arctic regions that were sampled for this data compilation. Boundaries of large marine ecosystems of the Arctic are depicted 
(PAME, 2014). (b) Trajectory of the MOSAiC expedition (white line). Coloured dots indicate sampling sites of sea ice- and pelagic POM 
for FA analysis. (c) Mean photosynthetically active radiation (PAR) measured ~1 m above sea level (=incoming PAR) and under sea ice 
(=transmitted PAR). (d) Temperature (black) and salinity (grey) from bottle CTD at nutrient sampling depths (5.5 ± 1 m depth). (e) Nitrate 
and silicate concentrations in bottom sea ice. (f) Nitrate and silicate concentrations in surface waters (5.5 ± 1 m depth). (g) Chlorophyll a 
concentration in surface waters collected from ship's sea water intake at 11 m water depth. (h) Relationship between the summed EPA, DHA 
proportions and the total FA concentrations in sea ice or pelagic POM (plots of individual FA in Figure S4). DHA, docosahexaenoic acid; EPA, 
eicosapentaenoic acid; FA, fatty acid; POM, particulate organic matter.
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F I G U R E  3 Seasonal cycle of EPA and DHA proportions in sea ice and pelagic POM. (a) MOSAiC: Principal component analysis of FA 
percentage data from sea ice and pelagic POM with the scores of different months (left panel) and FA loadings (right panel). (b) MOSAiC: 
Monthly average EPA and DHA proportions (% total fatty acid) in POM from sea ice and pelagic POM. Means that do not share the same 
letter (A, B, C) are significantly different, ANOVA with Tukey test (p < .01). (c) Bering Sea: Spring–summer transition in EPA and DHA 
proportions of pelagic POM (Data source info in Table 1). DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; FA, fatty acid; POM, 
particulate organic matter.
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high algal DHA proportions, indicating an increasing role of late 
flagellate blooms.

5.	 Rising temperatures: Across 19 cold-water strains tested in the 
laboratory, a 4°C increase in temperature combined with a 
10 μmol photons m−2 s−1 increase in light intensity did not cause a 
significant change in their EPA and DHA proportions. In the field, 
highly variable EPA and DHA proportions were observed against a 
constant background of near-freezing temperatures. In the Bering 
and Chukchi Sea, where summer temperatures in surface waters 
rise to over 10°C, DHA proportions in pelagic POM actually in-
creased, rather than decreased, with temperature (Figure S5). The 
low EPA and DHA proportions in microalgae and zooplankton 
from the coldest CAO indicate that components other than EPA 
and DHA may contribute to homeoviscous adaptation (DeLong & 
Yayanos, 1985; Guschina & Harwood, 2009; Sinensky, 1974) and 
that wax ester phase transition from liquid to gel forms can be 
tolerated (Sakinan et al., 2019).

How nutrients and light may limit EPA and DHA production in the ice-
covered CAO, and possibly in other global regions, is further examined 
below.

4.1  |  Lack of light and/or nutrients results in low 
EPA proportions in the CAO

In the CAO, sea ice and pelagic POM are characterized by low EPA 
proportions of ≤10% TFA compared to 20% or 30% EPA found in 
Arctic shelf regions further South, which may infer regional differ-
ences in the relative abundance of EPA-producing algae. With the 
lack of taxonomic information for the compiled dataset, we used 
the simultaneously analyzed biomarker FA, 16:1(n-7), which is 
prominent in diatoms (Figure 1a, Dalsgaard et al., 2003) and a pre-
dictor of diatom total abundance (Nielsen et al., 2023). About one-
quarter of all MOSAiC samples contained no or low proportions of 
this diatom biomarker (Figure 6). The low diatom abundance might 
be caused by a tight coupling of autotrophic and heterotrophic 
production in polar waters of the CAO (Flores et al., 2019), espe-
cially during the winter months when a large part of the MOSAiC 
sampling took place. However, the regional comparison also shows 
that for higher proportions of 16:1(n-7), the MOSAiC samples con-
tained less EPA than samples from the shelf regions (Figure  6). 
Some of this ‘additional’ EPA in Arctic shelf regions may derive 
from non-diatom sources, such as Chrysophyceae or certain mac-
roalgae (Graeve et  al.,  2002; Jónasdóttir, 2019), that are lacking 
in the CAO. However, the simultaneous increase of 16:1(n-7) and 
EPA over the first third of the dome-shaped relationship, suggests 
a common source of the two components, at least in the MOSAiC, 
Bering Sea and CAA samples (Figure  6). We therefore conclude 
that diatoms in the CAO have a lower potential of EPA production 
than their southern counterparts, due either to their specific taxo-
nomic composition or to the prevailing environmental conditions. 
The lower EPA proportions are also seen in the next trophic level 

(e.g., the copepod Calanus hyperboreus, Figure 6f), which implies 
that selective feeding and bioaccumulation cannot overcome the 
EPA deficiency in the CAO primary producers.

In our culture experiments, we found five-fold differences in EPA 
proportions between different diatom strains grown under the same 
environmental conditions and near four-fold differences for a single 
strain of M. arctica grown under a range of environmental conditions 
(Figure  1b,c; Figure  S3). There was no systematic difference in the 
EPA proportions of pennate and centric diatoms, and even strains of 
the same species or genus showed variability. The strong effect of 
the environmental setting, time since strain isolation and phase of 
their growth curve on EPA production (Hamilton et al., 2015; Pond & 
Harris, 1996), makes it difficult to establish taxonomic differences from 
cultured algae. Field studies, where FA profiles are analyzed on indi-
vidual algae strains, may clarify whether taxonomic differences in EPA 
production are contributing to systematically lower EPA proportions 
in the CAO. Without such evidence, we focus on the potential role of 
environmental differences between the CAO and Arctic shelf regions.

In the culture experiments with M. arctica, we tested the effect 
of temperature, light intensity and nutrient supply on EPA propor-
tions and found a response to all three factors. Lack of nutrients 
had the strongest effect on the EPA proportions, which dropped 
from over 11% to 3% EPA after several weeks of nutrient depriva-
tion. This decrease of EPA is in line with the principal response of 
most algae to nutrient limitation, where cell growth and membrane 
synthesis slows, and FA are mainly stored as saturated and mono-
unsaturated FA in triacylglycerols (Guschina & Harwood,  2009; 
Thompson, 1996). At the same time, the proportion of galactolipids, 
typical constitutes of thylakoid membranes and enriched in EPA and 
DHA, decreases (Alonso et al., 2000; Lynn et al., 2000).

Assessing nutrient limitation of algae in  situ is challenging due 
to interdependent nutrient stoichiometry and co-effects of light 
or temperature. During MOSAiC, the ice floe drifted from the 
Amundsen to the Nansen Basin and Fram Strait; regions that are 
influenced by different water masses, with different nutrient inven-
tories and ratios (Flores et al., 2019; Laukert et al., 2022; Tuerena 
et al., 2021). Therefore, the accumulation of microalgal biomass in 
spring (Figure 2g) coincided with an increase rather than decrease 
in nitrate concentrations from March to June as the ice floe reached 
the nitrate-replenished Atlantic-influenced water masses with higher 
salinity (Figure 2b,d,f). However, two observations point to potential 
nutrient limitation during MOSAiC and could therefore explain the 
unexpectedly low EPA proportions in POM: firstly, in the Atlantic-
influenced water masses, the silicate concentrations reached a min-
imum of ~2 μmol L−1 in surface waters and 0.2 μmol L−1 in bottom sea 
ice, with nitrate-to-silicate molar ratios of up to 2 in surface waters 
and 5 in sea ice. Such depleted silicate concentrations and nitrate-
to-silicate ratios >1 can drastically reduce silicate uptake by diatoms, 
limit their growth and shift the microalgae assemblage towards flag-
ellates (Ardyna, Mundy, Mills, et al., 2020; Krause et al., 2019; Oziel 
et al., 2017). Secondly, the Arctic surface waters near the North Pole 
had low nitrate concentrations of ~0.9 μmol L−1 in winter (MOSAiC, 
Leg 2) and <0.2 μmol L−1 the following summer (MOSAiC, Leg 5), with 
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F I G U R E  4 Comparison of EPA and DHA proportions in simultaneously sampled sea ice and pelagic POM. Sampling events, where sea 
ice (a, b) or pelagic POM (c, d) had higher proportions of EPA or DHA (% of total fatty acid). (a, c) EPA and DHA box plots. Means that do 
not share the same letter (A, B, C) are significantly different, ANOVA with Tukey test (p < .01). (b, d) Principal component analysis of FA 
percentage data with the scores of sea ice and pelagic POM samples (left) and fatty acid loadings (right). DHA, docosahexaenoic acid; EPA, 
eicosapentaenoic acid; FA, fatty acid; J, June; MM, March to May; NB-AB, Nansen Basin-Amundsen Basin; POM, particulate organic matter.
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sea ice containing low concentrations (≤0.2 μmol L−1) during both 
seasons. We therefore suggest that the low EPA proportions per 
diatom biomarker 16:1(n-7), observed during MOSAiC, are at least 
partly caused by either low silicate or low nitrate concentrations and 
high nitrate-to-silicate ratios, especially in sea ice.

In the culture experiments with M. arctica, an increase in light 
intensity from 10 to 100 μmol photons m−2 s−1 led to a moderate in-
crease in EPA proportion from 9% to over 11% (Figure 1c). Previous 
studies have described two opposite responses of microalgae to low 
light intensity: either EPA proportions rise to enhance membrane 
fluidity, thylakoid stacking and the velocity of the electron flow 
(Mock & Kroon, 2002) or EPA proportions sink to reduce membrane 
fluidity, and therefore proton leakage and metabolic costs (Raven 
et  al.,  2000). Which of these responses is used, seems to depend 
on species-specific light acclimation strategies and differences in 
light optima (Clegg et al., 2003; Falkowski & Owens, 1980; Wacker 

et  al.,  2015, 2016 and references therein). However, during low 
light conditions in Arctic spring, EPA proportions are higher in the 
more-illuminated sea ice POM compared to the less-illuminated pe-
lagic POM (Figure 4a), which suggests that algae respond here to 
light limitation with an EPA reduction, in line with our findings in 
the culture experiments. During MOSAiC ROV dives, average PAR 
of ≥10 μmol photons m−2 s−1 below the sea ice (≥1.5 m thick) was en-
countered from April to September, while PAR of ≥100 μmol pho-
tons m−2 s−1 occurred only in June and July. Using the M. arctica 
response in culture experiments as a benchmark, light intensities 
below 10 μmol photons m−2 s−1 may have limited pelagic EPA produc-
tion in the CAO during large parts of the year.

Melosira arctica's EPA proportions also showed a negative re-
sponse to a 2 or 5°C temperature rise after 4-weeks of acclimation. 
This is in line with previous findings that diatom EPA proportions are 
reduced at higher temperatures (Guschina & Harwood, 2009; Hixson 

F I G U R E  5 Regional differences in 
EPA and DHA proportions in sea ice 
and pelagic POM. (a) EPA (% of TFA); (b) 
DHA (% of TFA). Arctic shelf and shelf-
break regions include Bering Sea (BeS, 
red), Barents Sea (BaS), Canadian Arctic 
Archipelago (CAA), Beaufort Sea (BfS), 
Svalbard (Sv), North Bering-/Chukchi Sea 
(ChS), and West Greenland shelf (WGS). 
Deep Arctic basins include Nansen Basin 
(NB), Amundsen Basin (AB) and MOSAiC 
(blue). The data are grouped into four 
categories: (1) spring-sea ice, (2) spring-
pelagic, (3) summer-sea ice, (4) summer-
pelagic. Spring: March–June; Summer: 
July–September. For each season, the 
regions are sorted in descending order of 
the median EPA or DHA proportion. For 
cross-regional comparison, original FA 
datasets were normalized to a core set of 
16 fatty acids as described in Section 2. 
Means that do not share the same letter 
(A, B, C) are significantly different, 
ANOVA with Tukey test (p < .01). 
DHA, docosahexaenoic acid; EPA, 
eicosapentaenoic acid; POM, particulate 
organic matter; TFA, total fatty acid.
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F I G U R E  6 Regional differences in the co-occurrence of EPA and 16:1(n-7) in sea ice and pelagic POM, or EPA and total lipid content in 
zooplankton. (a) Bering Sea (red dots). (b) Canadian Arctic Archipelago (orange dots). (c) North Bering-, Chukchi- and Beaufort Sea (pink 
dots). (d) Svalbard and Barents Sea (green dots). (e) Nansen- and Amundsen Basin (yellow dots). (f) The copepod Calanus hyperboreus from 
the Barents Sea (green) and Nansen Basin (yellow). The MOSAiC data are plotted as blue dots in all panels. The interpretation of Panel (a–e) 
is supported by the culture experiments with the diatom Melosira arctica (Figure S6). EPA, eicosapentaenoic acid; POM, particulate organic 
matter.
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& Arts, 2016). However, for our field data compilation, temperatures 
were uniformly low for all sea ice samples, and for all pelagic sam-
ples from the MOSAiC and Arctic shelf regions in spring (Figure 2d; 
Table  1). For studies that encountered higher temperatures in 
summer (e.g., 11.3°C in the North Bering-Chukchi Sea in August/
September 2019), the relationships between EPA proportion and 
in situ temperature did not reveal any significant trend (Figure S5). 
We therefore conclude that the higher EPA proportions in Arctic 
shelf regions compared to the CAO were caused by higher nutrient 
and light availability rather than higher summer temperatures.

4.2  |  Microalgae EPA and DHA proportions in an 
increasingly ice-free Arctic

Arctic primary productivity shows a number of re-occurring patterns, 
such as low to no primary production in winter, the seasonal peak rising 
and ceasing first in ice algae and then in pelagic algae (Arrigo, 2017), 
later microalgal blooms in higher compared to lower latitudes (Ardyna, 
Mundy, Mayot, et al., 2020), potential secondary microalgae blooms in 
regions with long open water seasons (Ardyna et al., 2014), and lower 
primary productivity in the Arctic Basins compared to shelf regions 
(Matrai et al., 2013). The EPA and DHA proportions in POM largely 
resembled these patterns including the seasonal cycle (Figure 3), the 
different phenology in sea ice versus water column (Figure 4), and the 
differences between eutrophic and oligotrophic regions (Figure  5). 
These analogues might reflect the fact that during the highly produc-
tive season, a larger POM fraction is composed of living algae en-
riched in EPA and DHA than during the less-productive season, when 
EPA and DHA pools are not replenished and reach the lowest propor-
tions by the end of winter, due to grazing, sedimentation, decay and 
turnover. We therefore suggest that environmental conditions that 
support high primary productivity in a changing Arctic also lead to 
high EPA and DHA proportions in POM.

A key factor driving primary production is the availability of nu-
trients. Arctic sub-regions range greatly in trophic status from eu-
trophic to oligotrophic, with climate change further amplifying such 
differences (Frey et  al., 2022). Over shallow inflow shelves (east-
ern Bering Sea, Barents Sea, Chukchi Sea), the nutrient supply has 
generally increased, first, due to enhanced advective nutrient input 
from lower latitudes and second, due to strong nutrient replenish-
ment during winter when reduced sea ice cover allows convective 
and storm-driven mixing (Juranek, 2022). In contrast, in the Central 
Arctic, enhanced melt water input further strengthens the vertical 
stratification and therefore weakens the replenishment of nutrients 
via storm events (Juranek, 2022). The EPA and DHA proportions in 
POM reflect these regional differences in nutrient availability with 
high EPA and DHA proportions in the eutrophic shelf regions and low 
proportions in the oligotrophic CAO (Figures 5 and 6). However, over 
longer timescales, when the sea ice cap has completely melted during 
summer, a uniform surface mixed layer may develop with enhanced 
wind-driven nutrient supply from deeper waters and lateral fluxes of 
shelf-derived material (Ardyna et al., 2017; Kipp et al., 2018). Under 

such conditions, the surface CAO may evolve into a more productive 
region, with higher algal EPA and DHA proportions.

A further factor that is likely to affect the EPA and DHA propor-
tions in a future Arctic is the taxonomical composition of the primary 
producer community, with diatoms being key EPA and flagellates 
DHA producers (Figure 1a, Dalsgaard et al., 2003). For the 32 cold-
water algae strains we tested in culture experiments, there was no 
systematic difference in the combined EPA and DHA proportions of 
flagellates versus diatoms, which underlines that flagellates can be of 
equally high nutritional value as diatoms (Galloway & Winder, 2015; 
Jónasdóttir, 2019; Peltomaa et al., 2017; Pond & Harris, 1996). In line 
with these results from culture experiments, the field data reveal high 
DHA proportions in pelagic POM across Arctic regions in late sum-
mer (on average 10%–15%, Figure 5). With the spatial and temporal 
reduction in ice cover and enhanced atmospheric forcing resupply-
ing nutrients, late summer blooms become increasingly prominent in 
the Arctic (Ardyna et al., 2014; Juranek, 2022). Our results, showing 
positive correlations between DHA proportions and temperature 
(Figure S5), suggest that flagellates can benefit from warmer, more 
stratified, surface waters. Such late summer pulses of DHA-rich food 
can benefit zooplankton recruitment by lengthening their growing 
and reproductive season and by providing a depot of nutrition for 
the winter-active part of the populations (Flores et al., 2023; Hobbs 
et al., 2020; Tremblay et al., 2011). Without doubt, the spring diatom 
bloom will remain the major annual primary production event in the 
Arctic (Ardyna et al., 2013) and this study shows that EPA and DHA 
proportions are high, irrespective of their production in sea ice or 
the upper water column, as long as the nutrient supply is sufficient.

Overall, we conclude that relatively low algal EPA and DHA 
proportions, that might be typical for the permanently ice-covered 
Arctic, are likely to increase under climate change, where primary 
production is also increasing.

4.3  |  Implications for the Arctic food web and 
predictions of global EPA and DHA productions

In large parts of the Arctic, warming and sea ice loss coincide with in-
creased light and nutrient availability and therefore overall increased 
primary production (Ardyna & Arrigo,  2020; Lewis et  al.,  2020; 
Terhaar et  al., 2021). The EPA and DHA proportions in those pri-
mary producers are either already high (e.g., Bering Sea) or likely to 
increase (e.g., CAO), which will benefit secondary production in the 
Arctic. The polar regions are the only global regions where both phy-
toplankton and zooplankton stocks are predicted to increase over 
this century (Tittensor et al., 2021). On the downside, this ‘greener’ 
Arctic is inevitably linked to the loss of one of Earth's unique habi-
tats—Arctic sea ice, to the loss of biodiversity and human traditions, 
and to massive implications for our climate.

For the rest of the global ocean, reductions in phytoplankton 
biomass, and amplified reductions in zooplankton are projected, es-
pecially in the north Atlantic (Tittensor et al., 2021). With an expand-
ing human population and its reliance on dietary uptake of essential 
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nutritional components such as EPA and DHA (Golden et al., 2021), 
the ability of the ocean to support this demand under climate change 
creates a major concern (Colombo et al., 2020). Based on predicted 
direct temperature effects, Colombo et  al.  (2020) concluded that, 
by 2100, the globally available amount of DHA may be reduced by 
10%–58% depending on the climate scenario and location.

However, these calculations do not consider ongoing changes 
within the phytoplankton community structure and its implications 
for microalgal EPA and DHA content. ‘Taxonomic group’ has been 
identified as the major factor accounting for most of the variations 
in microalgal FA profiles beyond environmental conditions (Galloway 
& Winder,  2015), with cyanobacteria lacking EPA and DHA alto-
gether (Galloway & Winder, 2015; Jónasdóttir, 2019, this study). It 
is exactly those cyanobacteria that expand their spatial distribution 
and dominance under climate change (Flombaum et al., 2013; Paerl 
& Paul, 2012). The relevance becomes clear in the European shelf re-
gions where rising temperatures and summer droughts enhance ther-
mal stratification and nutrient shortage, which gives a competitive 
advantage to the picocyanobacterium Synechococcus spp. and contrib-
uted to a ~50% reduction in summer copepod abundance over the last 
60 years (Schmidt et al., 2020). Such changes in the primary producer 
community can cause a restructuring of intermediate trophic levels 
and lead to reduced nutritional quality for fish (Heneghan et al., 2023).

In addition to potential roles of temperature and microalgal tax-
onomy, our Arctic study highlights the importance of nutrient and 
light availability for marine EPA and DHA inventories. In sea ice of 
the eutrophic Bering Sea, EPA proportions were four-fold higher for 
a given presence of EPA-producing diatoms than in sea ice of the oli-
gotrophic CAO. In cultured algae, both taxonomy and changes in the 
nutrient-light regime caused 3 to 4-fold differences in EPA propor-
tions, despite constant temperatures. These results are in line with 
previous observations of light-  and nutrient-dependent EPA pro-
portions in Arctic field studies (Leu et al., 2010; Nielsen et al., 2023) 
and experiments with cultured algae (Galloway & Winder,  2015; 
Guschina & Harwood, 2009; Wacker et al., 2016).

To advance the predictions of marine EPA, DHA production, we 
suggest, first, to compile available datasets of algal EPA and DHA 
proportions across large marine ecosystems such as the Arctic to 
produce a ‘present-day reference’, and, second, to examine those 
datasets for the main drivers of EPA and DHA variations in space and 
time. It is fundamental to separate the two pathways that climate 
change can affect EPA and DHA proportions of primary producers 
at ecosystem level: either via taxonomical shifts in the community 
structure or via increased/decreased proportions within individual 
species. Direct effects of temperature rise, including the potential to 
acclimate and adapt (Bishop et al., 2022; O'Donnell et al., 2019) need 
to be differentiated from indirect effects that modulate light and nu-
trient regimes via stratification. Future field studies should sample 
not only for FA proportions, but also estimate their absolute amounts 
and production, which will further refine our understanding of tro-
phic transfer (Peltomaa et al., 2017). A mechanistic understanding of 
the key drivers of algal EPA and DHA will improve our projections of 
the future availability of these highly important biomolecules.
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