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Abstract

We state the relation between the variety of binary forms of given
rank and the dual of the multiple root loci. This is a new result for
the suprageneric rank that appears as a continuation of the cited work
by Buczyński, Han, Mella and Teitler. We describe the strata of these
varieties and explore their singular loci.

1 Introduction

Let V be a vector space of dimension m+ 1 over an algebraically closed field K
of characteristic zero. Let f ∈ SdV ∨ be a homogeneous form of degree d. The
rank of f , also called the Waring rank, is defined to be the smallest integer r
such that

f = ld1 + · · ·+ ldr ,

where li, i = 1, . . . , r are linear forms.
The general rank g of a form f , where the general rank means the rank that

a general f ∈ SdV ∨ has, is a well known result and it is given by

g =

⌈(m+d
d

)
m+ 1

⌉
,

with exception of a finite number of cases, see [1] and [2].
Let Sd,r = {f ∈ SdV

∨ | rank f = r} be the set of forms of rank r. Let
X ⊂ P(Sd) be the Veronese variety. Then the variety obtained from the Zariski
closure of Sd,r coincides with the r-secant variety of the Veronese variety,

σr(X) = Sd,r
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1 INTRODUCTION

for every r ≤ g. On the other hand, since σg(X) fulfills the ambient space,
Sd,r cannot be expressed as a secant variety if r > g. The subgeneric rank
has been vastly studied, however the suprageneric rank is still a challenge to
understand, even examples in higher dimensions are difficult to find, however
it has been an active area of research in past years. For instance [3] works on
the suprageneric rank loci for several examples, and [4] works on the question
of the maximal rank. More recently [12, Corollary 3.4] shows that the highest
orbit of cubic surfaces with infinitely many singularities consists of cubics of
suprageneric rank 6. Furthermore, [12, Theorem 3.3] shows the existence of
smaller orbits consisting of cubics of rank 7.

In this article, we look at the case of binary forms (i.e., m=1) of suprageneric
rank, in the light of the work developed in [6] on the strata of binary forms of
rank at most generic, where the following description is obtained.

Theorem (Comas-Seiguer). Let 0 ≤ k < dd+1
2 e be an integer, then

Sd,k+1 = (∪k+1
i=1 Sd,i)

⋃
(∪ki=0Sd,d−i+1),

where Sd,0 = Sd,d+1 = ∅. Furthermore, we have that

Sd,k+1 r Sd,k = Sd,k+1 ∪ Sd,d−k+1.

We prove a similar result for the suprageneric case, notice that the second
union has a shift on the indices.

Theorem 1. Let k be an integer and suppose that d ≥ d − k > d(d+1
2 )e, then

Sd,d−k is the union

Sd,d−k = (∪k+1
i=1 Sd,i)

⋃
(∪ki=0Sd,d−i).

In particular Sd,d−k r Sd,d−k+1 = Sd,k+1 ∪ Sd,d−k.

In order to prove these results, we show the relation between binary forms of
fixed rank and the variety of multiple root loci. For an integer 0 ≤ r ≤ dd+1

2 e,
it is known that Sd,r = ∆∨2r,1d−2r .

We find in [3, Proposition 4.3] a proof of the following nested inclusions of
irreducible varieties

Sd,k+1 ⊆ Sd,d−k = Sd,k + τ(X) ⊆ Sd,k+2 ⊆ · · · ,

where τ(X) = {ld−1g | l, g are linear forms} is the tangential variety of the
Veronese variety and in [3] the notation translates to Wk = Sd,d−k . Moreover,
each variety in the inclusion chain has codimension 1 in the next variety, thus
we deduce the dimension of Sd,d−k as dim(Sd,d−k) = dim(Sd,k+2)− 1 = (2(k +
2)−1)−1 = 2k+2. Using this we find that an analogous relation with the dual
of the multiple root loci also exists, and obtain the following proposition, where
∆∨λ is the dual variety of the multiple root locus ∆λ associated to a partition λ
as we define at the beginning of the following section.
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2 PRELIMINARIES

Proposition 2. Let k be an integer and suppose that d ≥ d− k > dd+1
2 e, then

Sd,d−k = ∆∨3,2k,1d−2k−3 .

This proposition also allows us to prove that forms of rank different from
d− k in Sd,d−k are singular points of this variety. More precisely

Theorem 3. Let d− k > dd+1
2 e, then the singular locus of Sd,d−k contains the

subvariety Sd,k+1 ∪ Sd,d−k+1.
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2 Preliminaries

2.1 The Multiple Root Loci of Binary Forms

We follow basically the notation in [10] . Given an integer d, we say that a
vector λ = (λ1, . . . , λn) is a partition of d with n parts if

λ1 ≥ · · · ≥ λn > 0

and |λ| := λ1 + · · · + λn = d. Apart from this notation, we may also write
a partition as a multiset λ = {1m1 , . . . , pmp}, where mi ≥ 0 is an integer for
i = 1, . . . , p, and represents that there are mi elements in the partition that are
equal to i.

The set of homogeneous binary forms of degree d corresponds to a variety on
Pd associating the points to the coefficient of each monomial in the polynomial
expansion. The multiple root locus ∆λ associated to a partition

λ = (λ1, . . . , λn)

of d is a subvariety of Pd associated to the polynomials that have n roots with
multiplicity λ1, . . . , λn. The dimension of this variety is dim(∆λ) = n and its
singular locus is a subset of the union⋃

λ properly refines µ

∆µ,
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2 PRELIMINARIES

as described in [9, Section 3], and in [5].
We are particularly interested in the dual varieties ∆∨λ . These are studied in

[11] and [10]. In particular, Hilbert found that the degree of ∆λ is deg(∆λ) =
n

m1!···mp!
λ1 · · ·λn and, when the dual ∆∨λ is a hypersurface (i.e., m1 = 0), [11,

Theorem 5.3] establishes that its degree is deg(∆∨λ) = (n+1)!
m2!···mp!

(λ1−1) · · · (λn−
1).

Notice that, given a partition λ as above, we have another definition for ∆λ,
it also is the image of

(P1)n // Pd, (l1, . . . , ln)
� // lλ1

1 . . . lλn
n .

It follows that the dimension of ∆λ is n and its smooth points are those in
which all the linear forms li are pairwise different.

From the discussion after [10, Lemma 2.2] the conormal variety of ∆λ is
given by the closure of the set

{(f, g) | f ∈ ∆λ is a smooth point and g ⊥ Tf∆λ}.

This leads to a parametrization of the conormal variety: it can be seen as the
set of points (f, g) of the form

f(x, y) =

n∏
i=1

(tix− siy)λi , g(u, v) =

n∑
i=1,λi 6=1

(siu+ tiv)d−λi+2gi(u, v),

where gi(u, v) are binary forms of degree λi − 2, and (si, ti) ∈ P1. The dual
variety ∆∨λ is the image of the projection of the conormal variety onto the second
factor. It is a irreducible variety, and its dimension, using [8, Corollary 7.3], is
given by

dim ∆∨λ = d−m1 − 1.

The inclusions between multiple root loci can be characterized in terms of
refinements of the partitions that define them. Hence we have that ∆λ ⊂ ∆µ if
and only if µ refines λ.

In addition, for a partition λ = {1m1 , . . . , pmp}, we denote its derived parti-
tion λ′ := (1m2 , . . . , (p−1)mp), and this is a partition of d−n, where n =

∑
mi

is the number of parts. The next proposition gives a result similar to the one in
the previous paragraph for inclusions between dual varieties. These inclusions
are also characterized via refinements of partitions although it is not as direct
as the previous one: the equivalent condition for the inclusion of duals involves
refinements of derived partitions. Expressing this new condition requires thus
the related partitions that we have just introduced.

Proposition 4. [10, Proposition 3.4] Given two partitions λ, µ of d, then
∆∨λ ⊂ ∆∨µ holds if and only if |λ′| ≤ |µ′| and, by adding to the parts, λ′ can be

transformed into a partition λ̃ that is refined by µ′.
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Relations between the ranks of binary forms and the multiple root loci have
already appeared in the literature. In particular, the reviewers made us aware
of the following result.

Theorem 5 ([13, Theorem 2.1]). If a binary form f of degree d has a root with
multiplicity m, then rank(f) ≥ m+ 1.

For suprageneric rank, i.e. m >
⌈
d+1
2

⌉
, this implies ∆m,1d−m ⊂ Sd,m+1.

2.2 Apolarity Lemma

In this section we introduce the apolar ideal, which will be fundamental to
associating the multiple root loci and varieties generated by forms of certain
fixed rank. The apolar ideal can be seen as the ideal formed by all the forms
perpendicular to f with respect to the scalar product by differentiation through
dual variables.

Definition 6. Let f be a form of degree d, the apolar ideal of f , denoted (f)⊥,
is the ideal of elements g ∈ SV ∨ such that g · f = 0, where · represents the
contraction (by differentiation) of f by g.

After this definition, we remember the next well-known result.

Lemma 7 (Apolarity Lemma). Let f ∈ Sd. Then f = ld1 + · · · + lds , where
the summands li ∈ S1 are pairwise non-proportional linear forms, if and only
if (f)⊥ ⊇ I, where I is the ideal of the set X = {[l1], . . . , [ls]} ⊆ PS1V

∨ of s
different points formed by all the s pairwise non-proportional linear forms in the
previous expression of f as a sum of d-th powers of linear forms.

A final important remark concerns the good description of the apolar ideal
that we have in the case of a binary form.

Remark 8. If f is a binary form of degree d, then (f)⊥ = (g1, g2) with deg(g1)+
deg(g2) = d+ 2. In addition, if deg(g1) ≤ deg(g2), then rank(f) = deg(g1) if g1
is squarefree and rank(f) = deg(g2) otherwise.

3 Binary forms of suprageneric rank

3.1 The variety of rank k forms and the multiple root loci

The relation between the variety Sd,k was well know for degrees smaller than
6. So the first interesting example is the case where the degree is d = 6. We
explore this case for ranks bigger than the generic rank r = 4. In the particular
case of f ∈ S6,6, we have that the ideal (f)⊥ = (g1, g2) with d1 + d2 = 8, where
d1 and d2 are the respective degrees. Since the rank of f is 6, we must have
d1 = 2, d2 = 6, and g1 has a double root. Therefore the only possibility is that
g1 = l2, where l is a linear form. In such case, by an immediate application of
[10, Corollary 2.3], we know that f ∈ ∆∨3,13 . The other inclusion follows from
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3 BINARY FORMS OF SUPRAGENERIC RANK

dimensional count. We can use such idea to compute any Sd,r. For example,
proceeding similarly for the rank 5 we have that d1 = 3, d2 = 5 and therefore
we have that g1 has two possible cases: either l31 or l21l2. In such case, f ∈ ∆∨4,12
or f ∈ ∆∨3,2,1, respectively. We can see that the first is contained in the second,
and therefore f ∈ ∆∨3,2,1. The other side follows again by dimensional count.

In [3, Proposition 4.3] it was obtained that the dimension of Sd,r for r bigger
than the generic rank is given by

dimSd,r = 2(d− r + 1).

Using this fact together with the preceding idea developed in the example, we
obtain the following argument.

Proof of Proposition 2. Let f ∈ Sd,d−k be a homogeneous polynomial of degree
d and rank d− k. We know that the apolar ideal (f)⊥ is generated by (g1, g2),
such that d1+d2 = d+2, with d1 ≤ d2 the respective degrees, and rank(f) = d2,
if g1 is not squarefree, or rank(f) = d1 otherwise. So we may assume that
d2 = d − k, d1 = k + 2 and g1 has a double root. Thence g1 has the following
form l20l1 . . . lk and f ∈ ∆∨3,2k,1d−2k−3 . (Notice that all other possibilities for g1,
that is, with more than a single double root, lead to a different partition λ
but all of those are such that λ′ is refined by (2, 1k) and therefore we have
∆∨λ ⊂ ∆∨3,2k,1d−2k−3 in such case.) It follows that Sd,d−k ⊆ ∆∨3,2k,1d−2k−3 .

From the proof of [3, Proposition 4.3], we have that dimSd,d−k = dimSd,k+2−
1 = (2k+3)−1 = 2k+2, and dim ∆∨3,2k,1d−2k−3 = d−m1−1 = 2k+2, so they have

same dimension. We conclude Sd,d−k = ∆∨3,2k,1d−2k−3 , because ∆∨3,2k,1d−2k−3 is
irreducible.

Following [6, Theorem 2], we obtain a similar result for the varieties of rank
r bigger than the generic rank. Furthermore, we also give another description
for Sd,d−k.

Proof of Theorem 1. From [3, Proposition 4.3] we have Sd,d−k = τ(X) +Sd,k =
∆∨3,2k,1d−2k−3 . Notice that X ⊂ τ(X), thus Sd,k+1 ⊂ Sd,d−k, in particular

Sd,i ⊂ Sd,d−k for all 1 ≤ i ≤ k + 1. Also, for j ≤ k,

Sd,d−j = ∆∨3,2j ,1d−2j−3 ⊂ ∆∨3,2k,1d−2k−3 = Sd,d−k.

This shows Sd,d−k ⊇ (∪k+1
i=1 Sd,i)

⋃
(∪ki=0Sd,d−i).

For the other inclusion, suppose that f ∈ ∆∨3,2k,1d−2k−3 , then f = ld−10 g +

ld1 + · · ·+ ldk for some linear forms l0, . . . , lk, g. We analyse two cases. If g = l0,
it is clear that rank(f) ≤ k+ 1. Otherwise, suppose that g 6= l0, then ld−10 g has
rank d. Since all the other summands are power of linear forms, each of them
can either increase or decrease the rank by 1, or leave the rank unchanged, in
any case we have that rank(f) ≥ d− k, hence we have the equality.
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Proof of Theorem 3. Let f = ld−10 g + ld1 + · · · + ldk be a point of Sd,d−k. We
compute the tangent cone at f , by considering li = aix+ biy and g = αx+ βy.
We can consider a curve

f(t) =

k∑
i=1

(ai(t)x+ bi(t)y)d + (a0(t)x+ b0(t)y)d−1(α(t)x+ β(t)y),

with f(0) = f , then taking the derivatives on the ai, bi, α, β we have that the
tangent cone is generated by

TCfSd,d−k = 〈yld−1i , xld−1i , xld−20 g, yld−20 g, xld−10 , yld−10 〉, i = 1, . . . , k.

The tangent cone at f has 2k+4 generators, but we notice that the last four
of them span a 3-dimensional space, so it has projective dimension 2k + 2 in a
general point, as expected. We consider two cases now, first if g is equal to l0,
in other words, the case that f is a general element of Sd,k+1. We notice that
instead of a 3-dimensional space, the last four elements on the span generate a
2-dimenensional space, this means that the projective dimension of TCfSd,d−k
is at most 2k + 1, therefore f is a singular point. Now instead, assume that
li = lj for some i, j 6= 0 and i 6= j, then f is a general element of Sd,d−k+1

and the dimension of TCfSd,d−k is less than 2k+ 2, again this gives that f is a
singular element of Sd,d−k.

3.2 The hypersurface S2k+1,k+2

Let f ∈ S2k+1,k+2, the maximal catalecticant matrix Cf associated to f has size
(k + 1) × (k + 2). In [10, Theorem 4.1] it is proven that this hypersurface has
degree 2k(k+ 1) and its equation is computed, namely, the defining polynomial
is the discriminant of

q(u, v) = det


uk+1 ukv . . . uvk vk+1

a0 a1 . . . ak ak+1

a1 a2 . . . ak+1 ak+2

...
...

. . .
...

...
ak ak+1 . . . a2k a2k+1

 .

With this description we can obtain the following result.

Theorem 9. S2k+1,k is an irreducible component of Sing(S2k+1,k+2).

Proof. Let (a0, . . . , ad) be the coefficients of polynomials in Sd. The equation of
S2k+1,k+2 has degree 2k in the (k+1)-minors bj (for j = 0, . . . , k) of the maximal
catalecticant matrix of size (k+1)×(k+2). Each bj is a homogeneous polynomial
of degree (k + 1) in the ai. Let bα0

0 . . . bαk

k be a monomial with |α| = 2k. The

derivative with respect to ai of such monomial is
∑
j αjb

α0
0 . . . b

αj−1
j . . . bαk

k
∂bj
∂ai

.

Evaluated at a point (a0, . . . , ad) where all bj vanishes (this is a point in S2k+1,k)
this monomial vanishes. This proves that S2k+1,k is contained in the singular
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locus of the hypersurface S2k+1,k+2. Finally, as S2k+1,k is irreducible and with
codimension 2, we get that it is in fact an irreducible component of this singular
locus, which concludes the proof.

The case k = 2 was studied before in [7] by Comon and Ottaviani, it is
known as the apple invariant, in such case the singular locus has two irreducible
components, one is S5,2, that comes from the minors of the catalecticant, and
the other comes from the pullback from the locus of cubics with a triple root
∆3,1,1, that is the dual of the tangent variety τ(S5,5) = S5,4. For k ≥ 3,
Sing(S2k+1,k+2) has at least three irreducible components, one is S2k+1,k, that
is obtained from the minors of the catalecticant, the other two components arrive
from the two irreducible components of the singular locus of the discriminant of∑k+1
i=0 ait

i, it comes as the pullback from the locus of degree k + 1 polynomials
with two double roots and with a triple root. For k = 3 the components can
be computed in Macaulay2, one is S7,3, that has codimension 2 and degree 10.
The other two components have codimension 2 and degree respectively 24 (8
generators of degree 7, it comes as pullback from locus of quartics with two
double roots) and 36 (55 generators of degree among 8 and 12, it comes as
pullback from locus of quartics with a triple root), this case was named as the
big apple invariant in [10].
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