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Abstract. Let f be a homogeneous polynomial of even degree d. We study the decompositions
f =

∑r
i=1 f

2
i where deg fi = d/2. The minimal number of summands r is called the 2-rank of f ,

so that the polynomials having 2-rank equal to 1 are exactly the squares. Such decompositions
are never unique and they are divided into O(r)-orbits, the problem becomes counting how
many different O(r)-orbits of decomposition exist. We say that f is O(r)-identifiable if there is
a unique O(r)-orbit. We give sufficient conditions for generic and specific O(r)-identifiability.
Moreover, we show the generic O(r)-identifiability of ternary forms.

1. Introduction

Let SdCn+1 = C[x0, . . . , xn]d be the vector space of homogeneous polynomials of degree d.
Suppose d is even, then for every f ∈ SdCn+1, there exists a minimal number r and polynomials
f1, . . . , fr ∈ Sd/2Cn+1 such that f =

∑r
i=1 f

2
i . This decomposition is named a decomposition

of f as sum of squares. The sum of squares decomposition has a huge interest in applications
since its real version is a certificate of nonnegativity for polynomials of even degree [GSZ10;
Ble12].

Definition 1.1. Denote Sqd,n = {g2 | g ∈ Sd/2Cn+1} the variety of squares, which consist of
all polynomials having 2-rank equal to one. In classic terms, Sqd,n can be understood as the
affine cone over SqPd,n = sq(PSd/2Cn+1), where sq is the square embedding

sq : PSd/2Cn+1 → PSdCn+1, [f ] 7→ [f 2].

The 2-rank of f , denoted rk2(f), is the smallest r such that

f ∈ σ◦
r(Sqd,n) : =

{
r∑

i=1

g2i | gi ∈ Sd/2Cn+1

}
.

In the above definition some gi are allowed to be zero, so that all sums with r′ ≤ r summands
belong to σ◦

r(Sqd,n). Moreover, notice that since the polynomials are defined over C, we do not
need to consider scalars λi multiplying g2i , since in

∑r
i=1 λig

2
i the λi can be absorbed into g2i .

The affine r-secant variety is by definition the following closure

σr(Sqd,n) : = σ◦
r(Sqd,n).

The generic 2-rank is the smallest number rg such that σrg(Sqd,n) = SdCn+1. An upper bound
for the generic 2-rank rg is 2n, and for fixed n this bound is optimal for all sufficiently large d
[FOS12, Theorem 4].
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Remark 1.2. Usually the r-secant variety is defined in the projective setting, however, due to
our interest in the decompositions, it is more natural to consider the affine cone over the r-secant
variety. Therefore, throughout the text σr(Sqd,n) will denote the affine cone over σr(SqPd,n), the
projective r-secant variety of SqPd,n.

In the case of Waring decompositions
∑
fd
i , where deg fi = 1, it is known that apart from

special cases the decomposition is generically identifiable (namely unique up to permutations
and scalar multiplications of fi by d-roots of unity) for polynomials of subgeneric rank [COV17].
The identifiability for decompositions

∑
fk
i , where deg fi = d/k and d is divisible by k, has

been studied recently in [BCMO23; CP24] for 3 ≤ k < d.

The case k = 2 we study in this paper is particular. The space of all minimal sums of squares
decompositions of f ∈ SdCn+1 was denoted as SOSr(f) = {(f1, . . . , fr) ∈

∏r
i=1 Sd/2Cn+1|f =∑r

i=1 f
2
i } in [FOST24], notice that each decomposition with r squares as summands create a

whole O(r)-orbit of decompositions, by the trivial identity

r∑
i=1

(
r∑

j=1

gijfj

)2

=
r∑

i=1

f 2
i (1.1)

for every (gij) ∈ O(r). Observe that both permutations and multiplications by the 2-roots
of unity ±1 make a subgroup of the orthogonal group. We choose to discuss the O(r)-orbits
of decompositions, as they arise from a natural and well-understood action of O(r), rather
than considering the quotient by this action. This choice is also consistent with the notation
utilized in [FOST24]. In other words we consider any decompositions f =

∑r
i=1 f

2
i as the

element (f1, . . . , fr) ∈
∏r

i=1 Sd/2Cn+1 and not as an element in the Hilbert scheme of r points
in PSd/2Cn+1.

Although the identifiability of the decomposition in sum of squares is not possible for r ≥ 2,
due to the O(r)-orbit, we may relax this notion. We set accordingly the following definition.

Definition 1.3. An element f with a minimal decomposition f =
∑r

i=1 f
2
i is called O(r)-

identifiable if there is a unique O(r)-orbit of decompositions of f , according to (1.1). We say
σr(Sqd,n) is generically O(r)-identifiable if the general element of σr(Sqd,n) is O(r)-identifiable.

This orbit also impacts the expected dimension. We have a dominant map

ψ :
r∏

i=1

Sd/2Cn+1 → σr(Sqd,n), (f1, . . . , fr) 7→
r∑

i=1

f 2
i .

The fibre of a generic point f is ψ−1(f) = {(f1, . . . , fr) | f =
∑r

i=1 f
2
i }, it contains the O(r)-

orbit, so dim(ψ−1(f)) ≥
(
r
2

)
= dimO(r).

Definition 1.4. The expected dimension of σr(Sqd,n) is

edim(σr(Sqd,n)) = r

(
d/2 + n

n

)
−
(
r

2

)
. (1.2)

This notion coincides with the linear expected dimension defined in [BDP12, Definition 3.2].
Note Definition 1.4 differs from the standard expected dimension of a secant variety, where, in
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the subgeneric case, it is expected a unique decomposition and the term
(
r
2

)
does not appear.

Following (1.2) the expected generic 2-rank is

min

{
r | r

(
d/2 + n

n

)
−
(
r

2

)
≥
(
d+ n

n

)}
, (1.3)

in agreement with [LSV13, Conjecture 1] and [LORS19, Conjecture 1.2]. In all cases that we
have computed, the dimension of σr(Sqd,n) agrees with (1.2) and the generic 2-rank agrees with
(1.3), see Proposition 5.1 and Proposition 5.2.

Moreover both (1.2) and (1.3) are realized in the case d = 2, corresponding to the space
S2Cn+1 of symmetric matrices, that we identify as usual with quadratic forms, where the value
in (1.3) is n+ 1. This case is traditionally considered defective for Waring decompositions, see
[Lan12, Theorem 5.4.1.1], [BO07], but in our O(r)-setting it is no more defective, in the sense
that the dimension of σr(Sq2,n) coincides with its expected dimension in (1.2). Moreover, it
is easy to check, essentially by the definition of O(r), that every f ∈ σr(Sq2,n) \ σr−1(Sq2,n) is
O(r)-identifiable, in particular σr(Sq2,n) is generically O(r)-identifiable.

Indeed any f ∈ σr(Sq2,n)\σr−1(Sq2,n) is in the same GL(n+1)-orbit of
∑r−1

i=0 x
2
i , and it is fixed

by the subgroup O(n+ 1) ⊂ GL(n+ 1), where the O(n+ 1)-action on
∑r−1

i=0 x
2
i coincides with

the O(r)-action in (1.1) by the embedding O(r) ⊂ O(n + 1) given by diagonal block matrix
consisting of O(r) and the identity of size n + 1− r. For other coordinate systems we get the
same picture with a subgroup conjugate to the previous O(n+1). For d ≥ 4 the picture is more
complicated, indeed r may be bigger than n+ 1 and O(r) cannot be embedded in O(n+ 1).

In [FOST24, Corollary 1.7] it is shown that the dimension of σr(Sqd,n) is equal to the expected
dimension for r ≤ n. In particular, there exists a finite number of O(r)-orbits of decomposition
for a general polynomial of rank r ≤ n [FOST24, Theorem 1.5]. Moreover, for r = 2 the orbit
is unique [FOST24, Theorem 1.4]. In this work, we give sufficient conditions for the O(r)-
identifiability utilizing the tangential contact locus, by adapting a construction from [CC02],
which has been developed in [COV14] and elsewhere. In particular, we show that the finitely
many orbits of [FOST24, Theorem 1.5] consist actually of a single orbit.

Next, we summarize the main results attained. In Section 2 we study the case of binary forms.

In Section 3 we give sufficient conditions for generic O(r)-identifiability and we prove the
following.

Theorem 3.8. Let fi ∈ Sd/2Cn+1 be general. Let H1, . . . , Hm be a basis of the space of hyper-
planes vanishing on Id = f1Sd/2Cn+1 + . . . + frSd/2Cn+1. In other words ⟨H1, . . . , Hm⟩ = I⊥d
where I = (f1, . . . , fr).

Let ti be a basis of Sd/2Cn+1, N =
(
n+d/2

n

)
, and assume that the rank of the N ×mN stacked

Hessian matrix of scalars ∂H1

∂ti∂tj
| . . . | ∂Hm

∂ti∂tj
is equal to N − r. Then σr(Sqd,n) has dimension

rN −
(
r
2

)
and it is generically O(r)-identifiable.

In the above statement, the perpendicular ⊥ is considered, as usual, with respect to the apolar
product (see Section 4). This leads to a criterion for specific O(r)-identifiability, see The-
orem 3.9. Furthermore, we utilise Theorem 3.9 (2) to verify generic O(r)-identifiability in
Macaulay2 [GS] for several cases, these are collected in Proposition 5.1.
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Proposition 3.10. Assume n ≥ 2, d ≥ 2 + 4
n−1

, r ≤ n + 1. Then σr(Sqd,n) is generically
O(r)-identifiable.

This shows the uniqueness of the orbit in [FOST24, Theorem 1.5]. In particular, this allows us
to conclude the generic O(r)-identifiability of ternary forms of subgeneric rank (Corollary 3.12).
In Corollary 3.16 we prove a sufficient condition for non defectivity which uses the work by
Brambilla, Dumitrescu and Postinghel [BDP12]. In §4 we describe the dual variety to σr(Sqd,n).
In §5 we report some computational results obtained with Macaulay2 [GS].

Acknowledgement. We thank Elisa Postinghel who explained us how from [BDP12, Theorem
5.3] it follows Theorem 3.14. We thank Daniel Plaumann who found a mistake in the first
version of this paper and kindly pointed out the paper [Wal91] by Wall, where ternary quartics
of 2-rank equal to 4 are classified. The first author is member of GNSAGA of INDAM and was
partially supported by PRIN project "Multilinear Algebraic Geometry" of MUR. The second
author was partially supported by the project Pure Mathematics in Norway, funded by Trond
Mohn Foundation and Tromsø Research Foundation. We are grateful to the referee for a careful
reading and the useful suggestions.

2. Binary forms

We give a precise description of the O(2)-orbits of decompositions for generic binary forms of
any degree d.

Proposition 2.1. The number of O(2)-orbits of decompositions of a general binary form of
degree d as a sum of two squares is equal to

(
d−1
d/2

)
= 1

2

(
d

d/2

)
.

Proof. Let f =
∏d

i=1 li and A,B be complementary subsets of {1, . . . , d} of cardinality d/2,
then

f =

(
1

2

(∏
i∈A

li +
∏
j∈B

lj

))2

+

(
i

2

(∏
i∈A

li −
∏
j∈B

lj

))2

.

There are
(

d
d/2

)
choices for A,B, and we show that each choice leads to a different O(2)-orbit.

Up to scalar multiplication, we may assume f =
∏d

i=1(x + aiy), let A = {1, . . . , d/2}, B =

{d/2 + 1, . . . , d}. Let

C =

[
2

∑
ai

∑
i<j∈A aiaj +

∑
i<j∈B aiaj . . .

∏
i∈A ai +

∏
i∈B ai

0
∑

i∈A ai −
∑

i∈B ai
∑

i<j∈A aiaj −
∑

i<j∈B aiaj . . .
∏

i∈A ai −
∏

i∈B ai

]
be the matrix which has the coefficients of

∏
i∈A(x+ aiy) +

∏
i∈B(x+ aiy) in the first row and

the coefficients of
∏

i∈A(x + aiy) −
∏

i∈B(x + aiy) in the second row. Note that O(2) acts by
left multiplication on C, so that in each O(2)-orbit we may find such a decomposition when

the first column of C is

[
2

0

]
. Let σ ∈ Sd be a permutation, A′ = σA,B′ = σB, and let C ′ be

the matrix of coefficients of this new decomposition. If these two choices of A,B, A′, B′ are in

the same O(2)-orbit, there exists M =

[
α β

γ δ

]
∈ O(2) such that MC = C ′. Looking at the

first column, we get α = 1, and since α2 + β2 = 1, β = 0. Moreover γ = 0, this implies δ = ±1.
Note that δ = −1 corresponds to swapping A and B. □



GENERALIZED IDENTIFIABILITY OF SUMS OF SQUARES 5

Proposition 2.1 is essentially known from [FOS12, Theorem 5]. We just formulate it to make
the orbit structure of the decomposition explicit and show they are all distinct. Proposition 2.1
also gives examples of special forms of subgeneric 2-rank r that have more than one O(r)-orbit
of decompositions, it is enough to consider a binary form as a special ternary form.

3. Identifiability of sum of squares

The description of tangent spaces to secant varieties is a classical result by Terracini proved in
[Ter11]. We restate it in the affine setting.

Lemma 3.1 (Terracini’s Lemma). Let X be the affine cone over a nondegenerate and irreducible
projective variety. Consider generic points x1, . . . , xr ∈ X and x =

∑r
i=1 xi. Then

Txσr(X) = ⟨Tx1X, . . . , TxrX⟩.

Note the tangent space to Sqd,n at f 2 ∈ Sqd,n is Tf2Sqd,n =
{
fg | g ∈ Sd/2Cn+1

}
. The r-

tangential contact locus was used in [COV14] to give an identifiability criterion for tensor
decompositions. Here we use it to give a O(r)-identifiability criterion for sums of squares, in
Theorem 3.8 .

Definition 3.2. Let x1, . . . , xr ∈ X and M = ⟨Tx1X, . . . , TxrX⟩. We define the r-tangential
contact locus Cr(x1, . . . , xr) on X by

Cr(x1, . . . , xr) = {x ∈ X | TxX ⊂M}.

Proposition 3.3. Let f 2
1 , . . . , f

2
r ∈ Sqd,n.

(1) The r-tangential locus Cr(f 2
1 , . . . , f

2
r ) of Sqd,n is a linear space in PSd/2Cn+1 ≃ Sqd,n.

(2) Let N =
(
n+d/2

n

)
, I = (f1, . . . , fr), Id = f1Sd/2Cn+1 + . . .+ frSd/2Cn+1, ⟨H1, . . . , Hm⟩ =

I⊥d a basis of hyperplanes vanishing on Id. The dimension of Cr(f 2
1 , . . . , f

2
r ) is given by

N minus the rank of the N × mN stacked Hessian matrix of scalars ∂H1

∂ti∂tj
| . . . | ∂Hm

∂ti∂tj
,

where ti is a basis of Sd/2Cn+1.
(3) Let {f1, . . . , fr, sr+1, . . . , sN} be a basis of Sd/2Cn+1. The dimension of Cr(f 2

1 , . . . , f
2
r ) is

given by N minus the rank of the (N − r)×m(N − r) stacked Hessian matrix of scalars
∂H1

∂si∂sj
| . . . | ∂Hm

∂si∂sj
.

Proof. We have that g ∈ PSd/2Cn+1 belongs to Cr(f 2
1 , . . . , f

2
r ) if and only if gSd/2Cn+1 is con-

tained in f1Sd/2Cn+1 + . . . + frSd/2Cn+1. Given Hp and ti as in (2), this amounts to say that
∂Hp

∂ti
(g) = 0 ∀p = 1, . . .m, ∀ti, which gives a linear system for the unknown g. The matrix

of this linear system with the N coefficients of g as unknowns is the stacked Hessian matrix
appearing in (2). This proves (1), and considering the rank of the linear system proves also (2).
Item (3) is proved since each Hessian matrix ∂Hp

∂ti∂tj
in (2) , when computed with respect to the

basis of item (3), is a symmetric matrix with the first r rows vanishing, since Hp vanishes on
fiSd/2Cn+1. □

Lemma 3.4. Let fi ∈ Sd/2Cn+1 for i = 1, . . . , r and let f = f 2
1 + . . . + f 2

r be a minimal
decomposition of f . Then fi are linearly independent.
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Proof. Assume fr is a linear combination of f1, . . . , fr−1. Then f is a quadratic form in the
variables f1, . . . , fr−1 and can be written as a sum of at most r − 1 squares of linear forms in
these variables. □

Proposition 3.5. Let N =
(
d/2+n

n

)
. Assume the tangent spaces at f 2

1 , . . . , f
2
r have span of max-

imal possible affine dimension rN −
(
r
2

)
. Then fifj for 1 ≤ i ≤ j ≤ r are linearly independent.

In particular if
∑r

i=1 f
2
i =

∑r
i=1(
∑r

j=1mijfj)
2, then (mij) is an orthogonal matrix.

Proof. Let Sd/2Cn+1 = ⟨f1, . . . , fr, sr+1, . . . , sN⟩. Denote S = ⟨sr+1 . . . , sN⟩. We have Tf2
1
Sqd,n+

. . .+ Tf2
r
Sqd,n = ⟨fifj⟩+ f1S + . . .+ frS, so that

rN −
(
r

2

)
≤ dim⟨fifj⟩+ r (N − r)

hence dim⟨fifj⟩ ≥
(
r+1
2

)
. The second claim is now straightforward. □

The following Lemma is well known and we omit its straightforward proof.

Lemma 3.6. Let i ∈ {1, . . . r}. The set {
∑r

j=1mijfj | (mij) ∈ O(r)} is equal to {
∑r

ℓ=1 λℓfℓ |∑r
ℓ=1 λ

2
ℓ = 1} and its projectivization is dense in P⟨f1, . . . , fr⟩.

We now establish the connection between identifiability and the tangential contact locus.

Proposition 3.7. Suppose σr(Sqd,n) is not generically O(r)-identifiable, f 2
1 , . . . , f

2
r ∈ Sqd,n are

generic and ⟨Tf2
1
Sqd,n, . . . , Tf2

r
Sqd,n⟩ has dimension r

(
n+d/2
d/2

)
−
(
r
2

)
, then the tangential contact

locus Cr(f 2
1 , . . . , f

2
r ) contains a variety of affine dimension ≥ r + 1.

Proof. Suppose f =
∑r

i=1(
∑r

j=1mijfj)
2 =

∑r
i=1(
∑r

j=1 nijgj)
2 are two different orbits of de-

composition for f , where (mij), (nij) ∈ O(r). Since the orbits are different there is at least
one gi /∈ ⟨f1, . . . , fr⟩. Indeed, if for every i = 1, . . . , r we would have gi ∈ ⟨f1, . . . , fr⟩, then
g2i = (

∑r
j=1 αijfj)

2, thus
r∑

i=1

g2i =
r∑

i=1

(
r∑

j=1

αijfj)
2 =

r∑
i=1

f 2
i .

If σr(Sqd,n) has the expected dimension r
(
n+d/2
d/2

)
−
(
r
2

)
then the tangent spaces at f 2

i have span
of maximal dimension. Therefore we satisfy the assumptions of Proposition 3.5, and it follows
that (αij) ∈ O(r), thus both decompositions lies in the same orbit, a contradiction. This
means that the tangential contact locus of f 2

1 , . . . , f
2
r , which by Proposition 3.3 is a linear space

containing ⟨f1, . . . , fr⟩, contains also gi /∈ ⟨f1, . . . , fr⟩ by Terracini Lemma, then its dimension
is ≥ r + 1. □

We are ready to prove our criterion for generic identifiability.

Theorem 3.8. Let fi ∈ Sd/2Cn+1 be general. Let H1, . . . , Hm be a basis of the space of hyper-
planes vanishing on Id = f1Sd/2Cn+1 + . . . + frSd/2Cn+1. In other words ⟨H1, . . . , Hm⟩ = I⊥d
where I = (f1, . . . , fr).

Let ti be a basis of Sd/2Cn+1, N =
(
n+d/2

n

)
, and assume that the rank of the N ×mN stacked

Hessian matrix of scalars ∂H1

∂ti∂tj
| . . . | ∂Hm

∂ti∂tj
is equal to N − r. Then σr(Sqd,n) has dimension

rN −
(
r
2

)
and it is generically O(r)-identifiable.
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Proof. The assumptions imply that Cr(f 2
1 , . . . , f

2
r ) for general fi is a linear space of affine di-

mension r by Proposition 3.3 (2). Then the result follows from the contrapositive of Proposi-
tion 3.7. □

The following is a sufficient criterion for O(r)-identifiability of a specific polynomial f .

Theorem 3.9. Let N =
(
d/2+n

n

)
, f ∈ SdCn+1,

f =
r∑

i=1

f 2
i , (3.1)

assume it is a smooth point of σr(Sqd,n), which we assume to have dimension equal to the
expected dimension rN −

(
r
2

)
. Let I = (f1, . . . , fr), ⟨H1, . . . , Hm⟩ = I⊥d be a basis of hyperplanes

vanishing on Id = f1Sd/2Cn+1 + . . .+ frSd/2Cn+1. Assume that dim Id = rN −
(
r
2

)
and let ti be

a basis of Sd/2Cn+1.

(1) Assume that the rank of the N ×mN stacked Hessian matrix of scalars ∂H1

∂ti∂tj
| . . . | ∂Hm

∂ti∂tj

is equal to N − r. Then f is O(r)-identifiable, in other words, all decomposition of f as
a sum of r squares are in the same O(r)-orbit of (3.1).

(2) Let {f1, . . . , fr, sr+1, . . . , sN} be a basis of Sd/2Cn+1. Assume that the rank of the (N −
r)×m(N − r) stacked Hessian matrix of scalars ∂H1

∂si∂sj
| . . . | ∂Hm

∂si∂sj
is maximum, so equal

to N − r. Then f is O(r)-identifiable, in other words all decomposition of f as sum of
r squares are in the same O(r)-orbit of (3.1).

Proof. The assumptions (1) (respectively (2)) imply that Cr(f 2
1 , . . . , f

2
r ) is a linear space of

affine dimension r by Proposition 3.3 (2) (respectively (3)). Then the result follows from
Proposition 3.7 and a modification of the arguments in the proof in [COV17, Prop. 5.1], as
follows.

Let f =
∑r

i=1 f
2
i be a smooth point of σr(Sqd,n) and dim(Cr(f 2

1 , . . . , f
2
r )) = r. Then there exists

an open neighbourhood of f where every point is smooth, its contact locus is r-dimensional
and its tangent space is described as in Terracini’s Lemma. In particular, this implies σr(Sqd,n)
is generically O(r)-identifiable by Theorem 3.8.

Let

A(σr(Sq
P
d,n)) =

{(
[g],
(
[g21], . . . , [g

2
r ]
))

| g ∈ ⟨g21, . . . , g2r⟩
}
⊂ PSdCn+1 ×

r∏
i=1

SqPd,n

be the abstract r-secant variety of squares, and π : A(σr(Sq
P
d,n)) → PSdCn+1 the projection to

the first factor. Notice π(A(σr(Sq
P
d,n))) = σr(Sq

P
d,n) and the generic fibre consists of the unique

O(r)-orbit of decompositions, in particular it has dimension
(
r
2

)
.

Assume π−1([f ]) contains two different O(r)-orbits of decompositions, i.e., there exist two
points ([f ], ([f 2

1 ], . . . , [f
2
r ])), ([f ], ([h21], . . . , [h

2
r])) ∈ π−1([f ]) such that hi /∈ ⟨f1, . . . , fr⟩ for at

least one index i, otherwise the orbit would be the same as explained previously in the proof of
Proposition 3.7. Terracini’s Lemma and its proof imply that the tangent space at f =

∑r
i=1 f

2
i

of σr(Sqd,n) contains the span of Tf2
i
Sqd,n for i = 1, . . . , r. This span is exactly the space

Id in the statement. Since the dimension of Id coincides by assumption with the dimension
of σr(Sqd,n), which is smooth at f , we have that Id coincides with the tangent space at f . It
follows that the derivative of π (whose Jacobian matrix is sometimes called the Terracini matrix)
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drops rank at ([f ], ([f 2
1 ], . . . , [f

2
r ])) exactly by

(
r
2

)
, hence the connected component of the fibre

containing ([f ], ([f 2
1 ], . . . , [f

2
r ])) cannot have dimension larger than

(
r
2

)
and it coincides with

the O(r)-orbit. The O(r)-orbit containing ([f ], ([h21], . . . , [h
2
r])) must lie in another connected

component of π−1([f ]).

However [f ] is a smooth point of σr(SqPd,n) and π is a surjective proper morphism, thus Zariski
Connectedness Theorem implies that π−1([f ]) is connected, contradicting the previous para-
graph. Therefore, f is O(r)-identifiable. □

Proposition 3.10. Assume n ≥ 2, d ≥ 2 + 4
n−1

, r ≤ n + 1. Then σr(Sqd,n) is generically
O(r)-identifiable.

Proof. The first inequality in the assumption is equivalent to (n + 1)(d/2 − 1) ≥ d, so under
this assumption we have a monomial xα of degree d with αi ≤ (d/2 − 1) for i = 0, . . . , n. We
may assume r = n+ 1.

Our strategy is the following. We will show that C(xd0, . . . , xdn) = {(
∑n

i=0 cix
d/2
i )2 | ci ∈ C},

so in particular it has dimension n + 1. Then we may apply Proposition 3.7 to conclude
identifiability.

Let N =
(
n+d/2

n

)
, and denote R = {xα | |α| = d

2
, αi <

d
2
∀ i ∈ {0, . . . , n}} = {rn+2, . . . , rN}, so

that dimR = N − (n+ 1). Consider
n∑

i=0

Txd
i
Sqd,n =

∑
0≤i≤j≤n

⟨xd/2i x
d/2
j ⟩+

n∑
i=0

x
d/2
i R,

hence we have dim
∑n

i=0 Txd
i
Sqd,n =

(
n+2
2

)
+ (n + 1) (N − (n+ 1)) = (n + 1)N −

(
n+1
2

)
, in

agreement with the assumptions of Proposition 3.7.

Moreover R2 +
∑n

i=0 Txd
i
Sqd,n = SdCn+1, in the following we will analyze in detail this sum,

which, in particular, is not a direct sum. Let

R = (R2 +
n∑

i=0

Txd
i
Sqd,n)/

n∑
i=0

Txd
i
Sqd,n ≃ R2/(R2 ∩

n∑
i=0

Txd
i
Sqd,n).

It follows c := dim(R) =
(
n+d
n

)
+
(
n+1
2

)
−N(n+1), and let {[xβ] | |β| = d, βi <

d
2
} = {s1, . . . , sc}

be a basis of R, seen as representatives of lateral classes in SdCn+1 modulo
∑n

i=0 Txd
i
Sqd,n.

We show now that C(xd0, . . . , xdn) = {(
∑n

i=0 cix
d/2
i )2 | ci ∈ C}. Suppose that (

∑n
i=0 cix

d/2
i +∑N

j=n+2 djrj)
2 ∈ C(xd0, . . . , xdn), ci, dj ∈ C, we have to prove that dj = 0 for j = n + 2, . . . , N .

From the definition of tangential contact locus we have that (
∑n

i=0 cix
d/2
i +

∑N
j=n+2 djrj)rℓ ∈∑n

i=0 Txd
i
Sqd,n. It follows that its projection to R vanishes, so [

∑N
j=n+2 djrjrℓ] = 0 ∈ R for

every ℓ = n+ 2, . . . , N .

Since the rj = xα are the elements of the monomial basis such that αi <
d
2

for every i = 0, . . . , n,
we have rirℓ = rjrℓ if and only if i = j, so if [rirℓ] ̸= 0, then [rirℓ] = [rjrℓ] if and only if i = j.
Moreover, from the definition of the si, we have that si = [rkrℓ] for some k and ℓ . Therefore
for each ℓ = n+ 2, . . . , N there exists a subset Jℓ ⊂ {n+ 2, . . . , N} such that we have[

N∑
j=n+2

djrjrℓ

]
=

∑
j∈Jℓ⊂{n+2,...,N}

dj[rjrℓ] = 0,
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where [rjrℓ] ̸= 0 for j ∈ Jℓ. Since {[rjrℓ] | j ∈ Jℓ} ⊂ {s1, . . . , sc} and [rjrℓ] ̸= [rirℓ] for
i ̸= j ∈ Jℓ, it follows that it is a set of linearly independent vectors in R, so dj = 0 for all
j ∈ Jℓ. Moreover, notice that for each fixed j ∈ {n + 2, . . . , N}, there exists at least one
ℓ ∈ {n + 2, . . . , N} such that [rjrℓ] ̸= 0, therefore dj = 0 for all j ∈ {n + 2, . . . , N}. This
concludes the proof that C(xd0, . . . , xdn) = {(

∑n
i=0 cix

d/2
i )2}. It follows by semicontinuity that

dim(C(f 2
1 , . . . , f

2
n)) = r for generic f1, . . . , fr and applying Proposition 3.7 we get the desired

O(r)-identifiability. □

Remark 3.11. The technical condition d ≥ 2 + 4
n−1

is satisfied for all n ≥ 3 and d ≥ 4.
For n = 2 it is not satisfied only for d = 4, in which case the generic rank is 3 = n + 1.
However, in such case it is known by [FOST24, Theorem 1.4] that the 2-secant is generically
identifiable, that is the only non-trivial subgeneric case. For d = 2, σn(Sq2,n) is the determinant
hypersurface and σn+1(Sq2,n) \ σn(Sq2,n) consists of all symmetric matrices of maximal rank,
every element in this SO(n+1)-orbit is easily seen to be SO(n+1)-identifiable by the definition
of orthogonal group. In the same way, every element of σj(Sq2,n) \ σj−1(Sq2,n) is a symmetric
matrix of rank j and it is SO(j)-identifiable; here the contact locus can be identified with the
span of the columns of the matrix.

Corollary 3.12. Ternary forms of subgeneric rank are generically O(r)-identifiable.

Proof. The generic rank of squares in SdC3 is at most 4 [FOS12, Theorem 4]. So we have r ≤ 3

and the result follows then by Proposition 3.10. □

Remark 3.13. Corollary 3.12 also implies that σr(Sqd,2) has dimension equal to its expected
dimension, however, it is important to mention this was previously noted from a known case of
Fröberg’s Conjecture [Frö85].

In a nutshell, for a homogeneous ideal I = (f1, . . . , fr) generated by generic forms, Fröberg’s
Conjecture foresees the dimension of the degree d piece Id of the ideal I. In our setting,
deg(f1) = · · · = deg(fr) = d/2, then Id = Tfσr(Sqd,n), for f =

∑r
i=1 f

2
i , so Id corresponds

to the tangent plane in a generic point f . The connections of Fröberg’s Conjecture and the
expected dimension of secant varieties is described in details in [One16]. The main point is that
if Fröberg’s Conjecture is true then the secant varieties σr(Sqd,n) are never defective.

In the particular case of Corollary 3.12, we have n = 2 and r ≤ 3, in this case Fröberg’s
Conjecture has been proved, as shown in [Sta80], see [Frö85, §3, Example 2], it holds for
r ≤ n+ 2.

To verify non-defectiveness we recall [BDP12, Theorem 5.3].

Theorem 3.14 ([BDP12, Theorem 5.3]). Let b = min{n, r − n − 2}, then σr(Sqd,n) is non-
defective if

r

(
d

2
+ 1

)
≤ nd+ b.

Proof. We specialize r general forms of degree d/2 to ld/2i for i = 1 . . . r where deg li = 1. The
span of tangent spaces to Sqd,n at sq(ld/2i ) = ldi is the degree d piece of the ideal (ld/21 , . . . , l

d/2
r ),

which is dual to the linear system of degree d forms having multiplicities d/2 + 1 at the points
dual to li. This is denoted as Ln,d ((d/2 + 1), . . . , (d/2 + 1)) in [BDP12]. The result follows
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from [BDP12, Theorem 5.3] since from their notations we have s(d) = 0, i.e., there are no
points of multiplicity d. □

Corollary 3.15. σr(Sqd,n) is non-defective for

(1) n = 4, r = 7, d ≥ 12.
(2) n = 5, r = 8, d ≥ 7.
(3) n = 5, r = 9, d ≥ 14.
(4) n = 6, r = 9, d ≥ 6.
(5) n = 6, r = 10, d ≥ 8.
(6) n = 6, r = 11, d ≥ 16.

Corollary 3.16. σr(Sqd,n) is non-defective if r ≤ 2n− 2
d
(n+ 2).

Proof. We may assume r ≥ n+3 and set r = n+2+ k with k ≥ 1. From our hypothesis b = k

in Theorem 3.14, therefore the inequality in Theorem 3.14 is (n + 2 + k)(d/2 + 1) ≤ nd + k,
thus k ≤ n− 2

d
(n+ 2)− 2. □

4. Apolarity for squares

Recall the i-catalecticant map for a polynomial f ∈ SdCn+1 is the linear map

Cati(f) : S i(Cn+1)
∨ → Sd−iCn+1

D 7→ Df

where S i(Cn+1)∨ = S i(Cn+1∨) is the space of differential operators of degree i. The middle
catalecticant map (in case d is even) is the map Catd/2(f). The subspace f⊥ : = ⊕i≥0kerCati(f) ⊂
S((Cn+1)

∨
) is an ideal called the apolar ideal. An operator g ∈ f⊥ is called apolar to f .

Recall the dual variety of a projective variety X ⊂ Pn is

X∨ = {H ∈ (Pn)∨ | H ⊃ TxX for some x smooth point in X}

In this paper we work in the affine setting and consider dual varieties of affine cones, like the
variety of squares Sqd,n.

Proposition 4.1. The dual variety of Sqd,n is the middle catalecticant hypersurface with equa-
tion detCatd/2.

Proof. The tangent space to Sqd,n at f 2 consists of fg with any g of degree d/2, the hyperplanes
containing such space consist of operators which are apolar to fg for any g. Then they are
apolar to f (see e.g. [OR23, Prop. 6.5]), hence their middle catalecticant vanishes. □

In other words, the dual variety of Sqd,n is the set of all degree d/2 forms g ∈ f⊥, for some
f ∈ Sd/2Cn+1, and by bi-duality we can identify it with the forms in Sd/2Cn+1 whose middle
catalecticant is rank deficient.

Proposition 4.2. The dual variety of the k-secant variety σk(Sqd,n), assumed not to fill the
ambient space, is contained in the locus where the middle catalecticant drops rank at least by k.
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Proof. Assume f =
∑k

i=1 f
2
i with fi independent forms. Assume now a hyperplane H contains

the tangent space at f of the k-secant σk(Sqd,n). Then by Terracini’s Lemma this hyperplane
contains the tangent spaces at f 2

i which are {fig | g ∈ Sd/2Cn+1}, thus fi are apolar to H. It
follows that the middle catalecticant of H has ⟨f1, . . . , fk⟩ in the kernel. □

For plane sextics the containment in Proposition 4.2 becomes an equality for k = 1, 2, 3, see
[CO23, Section 3]. Indeed the catalecticant C3 is 10×10, the locus where it drops rank by 2 has
codimension 3 (while the 8-secant to ν6(P2) has codimension 4) and dual given by σ2(Sq3,2). The
locus where C3 drops rank by 3 has codimension 6 (while the 7-secant to ν6(P2) has codimension
7) and dual given by σ3(Sq3,2).

5. Computational verification

Utilizing the computer algebra system Macaulay2 [GS] we were able to verify further cases of
generic O(r)-identifiability by applying the sufficient criterion in Theorem 3.8.

Proposition 5.1. Let r < rg, then σr(Sqd,n) is generically O(r)-identifiable in the following
cases

(1) n = 2.
(2) r ≤ n+ 1.
(3) n = 3, d ≤ 34.
(4) n = 4, d ≤ 16.
(5) n = 5, d ≤ 12.
(6) n = 6, d ≤ 14.
(7) n = 7, d ≤ 8.
(8) d = 4, n ≤ 16.
(9) d = 6, n ≤ 9.

We further verified cases of non-defectiveness of σr(Sqd,n) utilising Macaulay2. This together
with Corollary 3.15 guarantee the non-defectiveness for small r when n = 4, 5, 6. For the
convenience of the reader we repeat in item (14) of Proposition 5.2 the inequality of Corollary
3.16.

Proposition 5.2. Let r ≤ rg, then σr(Sqd,n) has dimension equals to the expected dimension
(according to Definition 1.4) in the following cases:

(1) n = 2.
(2) r ≤ n+ 2.
(3) n = 3, d ≤ 44.
(4) n = 4, d ≤ 30.
(5) n = 4, r ≤ 7.
(6) n = 5, d ≤ 20.
(7) n=5, r ≤ 9

(8) n = 6, d ≤ 14.
(9) n = 6, r ≤ 11.

(10) d = 4, n ≤ 29.
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(11) d = 6, n ≤ 13.
(12) d = 8, n ≤ 10.
(13) d = 10, n ≤ 8.
(14) r ≤ 2n− 2

d
(n+ 2).

We would like to stress that during the experiments no defective or not generically O(r)-
identifiable cases have been found.
The codes utilized in M2 to verify the generic identifiability and the dimension respectively
are presented next. In the code we produced random points fi and computed respectively the
stacked Hessian matrix and the dimension of the span of their tangent spaces. Since both
the rank of the stacked Hessian and the dimension of the span of their tangent spaces were
maximal, by semicontinuity the same holds for generic points fi, this allows to apply our
criterion Theorem 3.8.

n=3;
K=ZZ/101[x_0..x_n]
d=4;
m=binomial(n+sub(d/2,ZZ),n);
N=binomial(n+d,n);
g=floor(N/m)-1;
b=basis(sub(d/2,ZZ),K);
B=basis(d,K);
while (g+1)*m-binomial(g+1,2)<binomial(n+d,n) do (g=g+1);
cod=N+binomial(g,2)-g*m;
for i from 0 to g-1 do f_i=random(sub(d/2,ZZ),K);
M_0=matrix{{f_0}};
for i from 1 to g-1 do M_i=M_(i-1)||matrix{{f_i}};
I_0=ideal(f_0);
for i from 1 to g-1 do I_i=I_(i-1)+ideal(f_i);
for i from 0 to g-1 do
c=b*gens kernel contract(b,M_(g-1));
for i from 0 to g-1 do sb_i=f_i*b;
A=sb_0;
for i from 1 to g-1 do A=A|sb_i;
H=B*gens kernel transpose diff(transpose B,A);
p=H_0;
for i from 1 to cod-1 do p=p+random(ZZ/101)*H_i;
Hess= sub(matrix apply(m-g,i->apply(m-g,j->contract(p_0,c_(0,i)*c_(0,j)))),ZZ/101);
print(rank Hess==m-g,d,g)

n=3;
d=8;
m=binomial(n+sub(d/2,ZZ),n);
D=binomial(n+d,n);
K=ZZ/101[x_0..x_n];
g=floor(D/m)-1;
while (g+1)*m-binomial(g+1,2)<binomial(n+d,n) do (g=g+1);
for i from 0 to g-1 do p_i=random(sub(d/2,ZZ),K)
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b=basis(sub(d/2,ZZ),K);
bb=basis(sub(d,ZZ),K);
for i from 0 to g-1 do
for j from 0 to m-1 do
M_{i,j}=transpose(coefficients((p_i*b_j)_0,Monomials=>bb))_1
N=M_{0,0};
for i from 0 to g-1 do
for j from 0 to m-1 do
N=N||M_{i,j}
rank N==g*m-binomial(g,2)
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