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Abstract
For a certain class of radial weights, we prove weighted norm estimates for commuta-
tors with BMO coefficients of singular operators in local generalized Morrey spaces.
As a consequence of these estimates, we obtain norm inequalities for such commuta-
tors in the generalized Stummel-Morrey spaces.We also discuss a.e. well-posedness of
singular operators and their commutators onweighted generalizedMorrey spaces. The
obtained estimates are applied to prove interior regularity for solutions of elliptic PDEs
in the frameworks of the corresponding weighted Sobolev spaces based on the local
generalized Morrey spaces or Stummel-Morrey spaces. To this end also conditions
for the applicability of the representation formula, for the second-order derivatives
of solutions to elliptic PDEs, are found for the case of such weighted spaces. In both
results, for commutators and applications, we admit weights beyond theMuckenhoupt
range.

Keywords Non-standard function spaces · Generalized Morrey spaces · Weighted
singular integral operators · Weighted commutators and their applications · Elliptic
PDE with discontinuous coefficients

Mathematics Subject Classification 46E30 · 42B35 · 42B25 · 47B38

1 Introduction

We obtain weighted norm estimates, for a certain class of radial weights, in local
generalized Morrey spaces Lp,ϕ(�) for commutators of singular operators

T f (x) =
∫

�

T (x, y) f (y)dy = lim
ε→0

∫

y∈�: |x−y|>ε

T (x, y) f (y)dy (1.1)
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over an open bounded set � ∈ R
n . For interpretation of the operator (1.1) on Morrey

spaces, we refer to Sect. 2.2. The general interest to the study of commutators of
singular integral operators is due to their use in the investigation of the regularity
problems for elliptic PDEs. Our main interest being in application to elliptic PDEs in
case of weighted Morrey spaces, in this paper we mainly focus on the case of bounded
sets �, though some statements are given for unbounded sets.

Commutators of singular operators have been studied in various function spaces.
We refer, for instance, to [5] for Lebesgue spaces L p(�), to [8] for classical Morrey
spaces Lp,λ(�), and to [4] and [7] for the generalised Morrey spaces. For the theory
of Morrey spaces we refer, for instance, to the books [20, 26] and [38] and survey
[27], and for the applications to integral operators and PDEs, to the book [38].

Our aim is to obtain weighted estimates for commutators of singular operators
in the local generalized Morrey spaces. In [31], in the case of the one-dimensional
singular operator (Hilbert transform) there was found an effect of shifting exponents
of power weights for the boundedness of this operator. More precisely, the familiar
Muckenhoupt interval −n < α < n(p − 1), in case of classical Morrey spaces Lp,λ

is replaced by

λ − n < α < λ + n(p − 1)

(with n=1 in [31]). This was extended to the multi-dimensional case for the Riesz
transforms in [24].

The above shifting cuts off someMuckenhopt weights but on the other hand, admits
non-Muckenhoupt weights. Such an effect got the name of “beyond the Muckenhoupt
range”-effect see e.g. [10].

We deal with radial weights of a certain class defined in Sect. 2.3.
We also introduce the spaces which we call generalized Stummel-Morrey spaces.

For the spaces which might be called by analogy as Stummel-Lebesgue spaces we
refer e.g. to [1] and [37]. As a consequence of our weighted estimates for commuta-
tors of singular operators in local Morrey spaces, we obtain norm estimates of these
commutators in the generalized Stummel-Morrey spaces.

We also give applications of the obtained weighted estimates to regularity problems
for solutions to elliptic PDEs. In both the results, for commutators and applications,
our preoccupation is to admit weights beyond the Muckenhoupt range.

The study of regularity problems of solutions to elliptic PDEs is based on the so-
called representation formula for second order derivatives of solutions. The validity
of this representation formula is well known for the Lebesgue spaces Ls(�), s >

1, see [5]. Note that weighted Morrey spaces, if not somehow restricted, may be
not embedded into any Lebesgue space Ls(�), s > 1, and may even contain non-
integrable functions, see Sect. 4.1. Consequently, the use of the representation formula
in the frameworks of weighted Morrey spaces needs a justification. We focus on such
a justification in Sect. 4.1.

We refer the reader to [7] for a comprehensive presentation of application of norm
estimates of the singular operators and their commutators in the case of non-weighted
generalized Morrey spaces.
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The paper is organized as follows. In Sect. 2 we provide necessary definitions,
used notation, and recall some known results on norm estimates for commutators of
non-weighted singular operators and weighted Hardy operators. The main results for
commutators of weighted singular operators are proved in Sect. 3. We start with a
certain point-wise estimate for the commutators, for the weights under consideration,
which reduces the estimate of the commutator of a weighted singular operator to the
estimate of commutators of the following operators: non-weighted singular operator,
certain hybrid of potential operator and Hardy operator and weighted Hardy operator.
The main result on the weighted norm estimate for the commutator of singular oper-
ators in local generalized Morrey spaces is contained in Theorem 3.4. We conclude
Sect. 3 by deriving from Theorem 3.4 a similar estimate for Stummel-Morrey spaces.
In Sect. 4 we give an application of obtained estimates to interior estimate for solutions
of elliptic PDEs.

The author is thankful to the anonymous referee for careful reading of the paper.

2 Preliminaries

2.1 Defenition of spaces

Let � be an open set in R
n, � ⊆ R

n and � = diam �.

The global and local (central) Morrey spaces Lp,ϕ(�) and Lp,ϕ
{x0}(�) are defined by

the norms

‖ f ‖Lp,ϕ(�) = sup
x∈�,r>0

⎛
⎜⎝ 1

ϕ(r)

∫

B(x,r)∩�

| f (y)|p dy

⎞
⎟⎠

1
p

(2.1)

and

‖ f ‖Lp,ϕ
{x0}(�) = sup

r>0

⎛
⎜⎝ 1

ϕ(r)

∫

B(xx0 ,r)∩�

| f (y)|p dy

⎞
⎟⎠

1
p

, (2.2)

respectively, where x0 ∈ �, 1 ≤ p < ∞ and everywhere in the sequel the function
ϕ(r) is assumed to satisfy the following à priori conditions:
(1) it is a non-negative almost increasing (a.i.) function on (0, �),
(2) limr→0 ϕ(r) = 0 and infδ<r<� ϕ(r) > 0 for every δ > 0.
In the case of global spaces we also additionally assume that
(3) ϕ(t)

tn is almost decreasing (a.d.) on (0, �).
Note that the function ϕ satisfies the doubling condition ϕ(2t) ≤ Cϕ(t), 0 < t <

�
2 , in view of the assumption 3).

In the case of classic Morrey spaces, i.e. ϕ(r) = rλ, we admit λ > 0 for the local
Morrey space and 0 < λ ≤ n for the global one.
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The weighted version of the space Lp,ϕ(�,w) is defined by the norm

‖ f ‖Lp,ϕ(�,w) = sup
x∈�,r>0

⎛
⎜⎝ 1

ϕ(r)

∫

B(x,r)∩�

| f (y)|p w(y)dy

⎞
⎟⎠

1
p

,

where the weightw and the function ϕ(r) are independent of each other, and similarly
for weighted local Morrey space.

In a similar way we interpret the weighted Lebesgue space L p(�,w).

Everywhere in the sequel, when considering globalMorrey spaces, we suppose that
in the case � 	= R

n there holds the so-called condition A :

|� ∩ B(x, r)| ≥ crn (2.3)

for all x ∈ �̄ and 0 < r < �.

The following statement is derived from Theorem 3.2 in [1].

Proposition 2.1 Let 1 ≤ p < ∞, x0 ∈ �, 0 < � ≤ ∞, w be a weight on � and ϕ

satisfy the condition 1). Then there holds the embedding

Lp,ϕ
{x0}(�,w) ↪→ L p

(
�,

w

ϕx0
ξx0

)
(2.4)

with ϕx0(x) = ϕ(|x − x0|) and ξx0(x) = ξ(|x − x0|), where ξ is any non-negative
function on (0, �) satisfying the conditions:

�∫

0

ξ(t)

t
dt < ∞, (2.5)

ξ is a.i. on (0, �), when � < ∞, and a.i. on (0, r0) and a.d. on (r0,∞) for some
r0 > 0, when � = ∞.

If additionally ϕ is doubling and ξ(t)
ϕ(t) is decreasing on (0, �), then the inequality

‖ f ‖
L p

(
�, w

ϕx0
ξx0

) ≤ c‖ f ‖Lp,ϕ
{x0}(�,w), (2.6)

for norms holds with the constant c = c(p, ϕ,w, ξ) not depending on x0.

The space BMO(Rn) is defined by the quasi-norm

‖a‖∗ = sup
B⊂Rn

1

|B|
∫

B

|a(z) − aB | dz, (2.7)

where aB := 1
|B|

∫
B a(z)dz.
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The space VMO(Rn) is defined as the subspace of functions in BMO(Rn) such that

ηa(r) := sup
x∈Rn

1

|B(x, r)|
∫

B(x,r)

|a(z) − aB(x,r)| dz → 0 as r → 0. (2.8)

The spaces BMOext(�) and VMOext(�) are defined as the spaces of restrictions onto
� of functions in BMO(Rn) and VMO(Rn), respectively.

The space CMOp,x0(R
n) is defined by the quasi-norm

‖a‖∗
CMOp,x0

(Rn) := sup
r>0

⎛
⎜⎝ 1

|B(x0, r)|
∫

B(x0,r)

|a(z) − aB(x0,r)|p dz

⎞
⎟⎠

1
p

, (2.9)

where aB(x0,r) := 1
|B(x0,r)|

∫
B(x0,r)

a(z)dz.
Spaces of the type CMOp,x0 are known as spaces of central mean oscillation, see

e.g. [2], [15] and [23]. The spaces CMOp,x0(�) are defined as the spaces of restrictions
onto � of functions in CMOp,x0(R

n), with the quasi-norm

‖a‖∗
CMOp,x0

(�) := inf ‖ã‖∗
CMOp,x0

(Rn), (2.10)

where inf is taken with respect to all functions ã ∈ CMOp,x0(R
n) coinciding with a

on �.

Finally, we define generalized Stummel spaceSp,ψ (�), 1 ≤ p < ∞, by the norm

‖ f ‖Sp,ψ (�) := sup
x∈�

⎛
⎝

∫

�

| f (y)|pψ(|x − y|)dy

⎞
⎠

1
p

, (2.11)

where ψ is a positive function on (0, �), see [37, Section 3.1] and references therein.
Besides Morrey spaces, spaces of such a type are used in the study of regularity
problems for PDEs, see e.g. [21] and [22]. The notion of Stummel spaces goes back to
[39], where the case of ψ(r) = r−λ and p = 2 was considered. In Sect. 3.2 we define
spaces which we call Morrey-Stummel spaces.

2.2 On interpretation of singular operators onMorrey spaces

We consider singular integral operators (1.1).
In Theorem 3.4 we shall use the class SCZ of Calderón-Zygmung kernels T (x, y),

defined as follows. We say that T (x, y) ∈ SCZ, if T (x, y) = k(x, x − y), where
k(x, z) : R

n × R
n → R satisfies the conditions:

(i) k(x, ·) is homogeneous of degree −n and k(x, ·) ∈ C∞(Rn \ {0}) for almost all
x ∈ R

n;
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(ii)
∫

Sn−1 k(x, σ )dσ(x) = 0, where σ denotes the surface measure;

(iii) max|α|≤2n ‖ ∂αk
∂zα (x, z)‖L∞(Rn×Sn−1) < ∞.

Singular integral operators are known to be studied in a general setting of so-called
standard kernels. Recall that the kernel of a singular operator is called standard if it
satisfies the size condition

|T (x, y)| ≤ C

|x − y|n , x 	= y. (2.12)

and the conditions

|T (x, y) − T (x, z)| ≤ C
|y − z|σ

|x − y|n+σ
, if |x − y| > 2|y − z|, (2.13)

|T (x, y) − T (ξ, y)| ≤ C
|x − ξ |σ

|x − y|n+σ
, if |x − y| > 2|x − ξ |, (2.14)

for x, y, z, ξ ∈ R
n and some σ > 0, see e.g. [9, p.99].

By Sst we denote for brevity the class of standard kernels such that the singular
operator T generated by them is bounded in L2.

The operator T beingwell defined on smooth functions is also defined, by extension
arguments, on the whole Lebesgue space L p(�), 1 < p < ∞, or weighted Lebesgue
spaces L p(�,w) with Muckenhoupt weight. For functions in these spaces a continu-
ous extension from a dense set leads to the representation of singular integrals on the
whole space in terms of almost everywhere existence of the principal value.

In the case of Morrey spaces smooth functions are not dense, so that definition by
a unique continuous extension proves to be impossible. For discussion of problems of
defining singular operators on Morrey spaces, see [11, 16], [38, Vol. I], [28, 41] and
references therein. In particular, in [29] it was proved that singular operators admit
many continuous extensions from smooth functions to the Morrey space.

Meanwhile, keeping in mind that the singular operators exist almost everywhere
for such “bad” functions as functions in L p(�) may be, one can define the singular
operator on the whole Morrey space directly almost everywhere in the principal value
sense. Such a definition of singular integrals on Morrey spaces was silently assumed
in various papers. Certainly, such an á priori assumption needs a justification that the
principal value almost everywhere indeed exists for all functions in the Morrey space.
When the Morrey space under consideration is embedded into a larger space where
the almost everywhere existence of principal value is known, there is no need in such
a justification. I.e. the singular operator is defined then in fact in restriction terms.

In particular, the singular operator T is well defined by restriction arguments on
Morrey spaces whenever ϕ ∈ L∞(0, �), since

Lp,ϕ
{x0}(�) ↪→ L p(�),
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in this case. However, condition ϕ ∈ L∞(0, �) implies that � should be bounded in
the case of the classical Morrey space with ϕ(r) = rλ.

The situation is more complicated in the case of weightedMorrey spaces, moreover
that we admit Morrey spaces with weights beyond the Muckenhoupt range.

We need the following notation for classes of Ap-weights. Let 1 < p < ∞.

Ap(R
n) will stand for the usual Muckenhoupt class, see e.g. [9, p.135] and Aext

p (�)

for restrictions of weights w ∈ Ap(R
n) onto �. Finally, Ap(�) will denote the class

of weights on � defined by the condition

sup
Q

⎛
⎜⎝ 1

|Q|
∫

Q∩�

w(x)dx

⎞
⎟⎠

⎛
⎜⎝ 1

|Q|
∫

Q∩�

w(x)1−p′
dx

⎞
⎟⎠

p−1

< ∞,

where the supremum is taken with respect to all cubes in R
n .

Proposition 2.2 ([14, p.439, Theorm 5.6]) Let w be a weight on �. Then w ∈ Aext
p (�)

if and only if there exists ε0 such that w1+ε0 ∈ Ap(�).

As a justification of definition of singular operators on localMorrey space in restric-
tion terms, we provide the following theorem. Note that the assumption (2.15) may
be replaced by an assumption in intrinsic terms of � in view of Proposition 2.2.

Theorem 2.3 Let w be a weight on � and ϕ satisfy the condition 1). If

w(x)

ϕ(|x − x0|) ∈ Aext
p (�), (2.15)

then there exists a weight W ∈ Aext
p (�) such that

Lp,ϕ
{x0}(�,w) ↪→ L p (�, W ) . (2.16)

Proof By Proposition 2.1 we have the embedding (2.4) with the “correcting” factor
ξ(|x − x0|) in the weight of the larger space. It remains to show that this factor may
be chosen so that the condition (2.15) implies the condition w(x)

ϕ(|x−x0|) ξ(|x − x0|) ∈
Aext

p (�).

Thus, to arrive at the embedding (2.16), we take W (x) := w(x)
ϕ(|x−x0|) ξ(|x − x0|),

where the function ξ will be appropriately chosen. We have to show that the function
ξ may be chosen so that W ∈ Aext

p (�).

We assume that � = ∞ the case � < ∞ being easier, and choose ξ(t) ={
tε, 0 < t ≤ 1
t−ε, t ≥ 1

, where ε > 0 will be chosen small enough. Note that ξ(|x − x0|) ∈
Aext

p (�) for ε < np−, where p− = min{1, p − 1}. This is easily derived from the
fact that the Muckenhoupt condition for radial weights, satisfying the doubling and
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reverse doubling conditions, may be written in the form

sup
r>0

1

rn

r∫

0

tn−1ξ(t)dt

⎛
⎝ 1

rn

r∫

0

tn−1ξ(t)1−p′
dt

⎞
⎠

p−1

< ∞.

(see [12, p. 2097]), taking also into account that we may take x0 = 0, since the class
Ap(R

n) is invariant with respect to translations.
By Proposition 2.2 there exists an ε0 > 0 such that

[
w(x)

ϕ(|x − x0|)
]1+ε0

∈ Aext
p (�). (2.17)

We represent the weight W (x) as

W (x) = w1(x)λw2(x)1−λ,

where w1(x) =
[

w(x)
ϕ(|x−x0|)

]1+ε0
, w2(x) = ξ(|x − x0|)γ , λ = 1

1+ε0
< 1 and γ =

1
1−λ

= 1+ε0
ε0

. Here w1 ∈ Aext
p (�) by (2.17) and w2 ∈ Aext

p (�) under the choice
of ε sufficiently small: εγ < np−. It remains to use the well known property of
Ap-weights: w1, w2 ∈ Aext

p (�) ⇒ wλ
1w

1−λ
2 ∈ Aext

p (�). ��

Corollary 2.4 Let 1 < p < ∞ and ϕ be almost increasing. Any singular operator
T with the kernel T ∈ Sst ∪ SCZ and its commutator C[a, T ] = aT − T a, a ∈
BMOext(�), are defined in the a.e. sense (1.1) on every weighted local Morrey space
Lp,ϕ

{x0}(�,w) satisfying the condition (2.15).

Proof Recall that singular operators and their commutators are well studied in
Lebesgue spaces with Ap-weights. Thus, in case of kernels T ∈ Sst we refer to
[9] and [6] for the operators T and C[a, T ], respectively, and in case of T ∈ SCZ to
[8] for both T and C[a, T ]. ��

Correspondingly, if instead of the operator T in the weighted space Lp,ϕ
{x0}(�,w)

we consider the weighted operator wT 1
w

in the non-weighted space Lp,ϕ
{x0}(�), then

the condition (2.15) is replaced by

w(x)p

ϕ(|x − x0|) ∈ Aext
p (�). (2.18)

Remark 2.5 In the case of classical Morrey space with ϕ(r) = rλ and radial power
weight w = |x − x0|α, the assumption (2.15) reduces to the familiar condition

λ − n < α < λ + n(p − 1).
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For Muckenhoupt condition in case of radial weights we refer to [12, p.2097]. We say
that a weight v on R+ belongs to the class DRD(0, �), 0 < � ≤ ∞, (doubling and
reverse doubling condition) if c1v(r) ≤ v(2r) ≤ c2v(r), 0 < r < �

2 , ci > 0, i =
1, 2.

Remark 2.6 In the case of radial weights w(x) = v(|x − x0|) and � = R
n, the

condition (2.15) takes the form

sup
r>0

1

rn

r∫

0

tn−1 v(t)

ϕ(t)
dt

⎛
⎝ 1

rn

r∫

0

tn−1
[
ϕ(t)

v(t)

]p′−1

dt

⎞
⎠

p−1

< ∞, (2.19)

if

v

ϕ
∈ DRD(R+). (2.20)

Note that the condition (2.20) is satisfied for weights considered in this paper, see
Lemma 2.12

Finally, we comment the “size condition”

|T f (x)| ≤ c
∫

Rn

| f (y)|
|x − y|n dy, x /∈ supp f , (2.21)

which is a formal consequence of the assumption (2.12). As we show in the lemma
below, if we only care about existence of the right-hand side of (2.21) for functions
in Morrey space, not about definition of the singular operator T in general, then the
conditions for such existencemay be given in a formmilder than (2.15), see conditions
(2.23) and (2.26).

Lemma 2.7 Let 1 < p < ∞, w be a weight on �. Then for all x ∈ �

I ( f , x, δ) :=
∫

y+x0∈�,|x−y|>δ

| f (y)|
|x − y|n dy < ∞, δ > 0, f ∈ Lp,ϕ

{x0}(�,w)

(2.22)

for every space Lp,ϕ
{x0}(�,w) satisfying the condition that there exists an ε such that

∫

|y|>δ

[
ϕ(|y|)(ln e

δ
|y|)1+ε

w(y + x0)

] 1
p−1 dy

|y|np′ < ∞. (2.23)

Proof Assume for simplicity that x0 = 0. Suppose also that f (y) ≡ 0 outside �

whenever necessary in the proof.
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Since I ( f , x, δ) is a decreasing function in δ, it suffices to consider small δ under
which B(0, δ) ⊂ �. From the embedding of Proposition 2.1 with the choice ξ(t) =

1
(ln e

δ
t)1+ε , ε > 0, for t > δ, and ξ(t) = 0 for t ≤ δ, we obtain that

∫

|y|>δ

| f (y)|pw(y)

ϕ(|y|)(ln e
δ
|y|)1+ε

dy < ∞ (2.24)

for every ε > 0, if f ∈ Lp,ϕ
{x0}(�,w). Since |y|

|y−x | ≤ 1 + |x |
δ

, we have

I ( f , x, δ) ≤ c(x, δ)

∫

|y|>δ

g(y)

[
ϕ(|y|)(ln e

δ
|y|)1+ε

w(y)

] 1
p dy

|y|n ,

where g(y) = f (y)
[

w(y)

ϕ(|y|)(ln e
δ
|y|)1+ε

] 1
p ∈ L p(�\B(0, δ)). It suffices to apply the

Hölder inequality, taking into account (2.24) and using the condition (2.23). ��
Remark 2.8 In the case of radial weights w(y) = v(|y − x0|), the condition (2.23)
reduces to

�∫

δ

[
ϕ(t)(ln e

δ
t)1+ε

v(t)tn

] 1
p−1 dt

t
< ∞. (2.25)

If � < ∞, then the condition (2.25) is trivial when ϕ
v
is for instance bounded on (δ, �).

In the case of � = ∞, which is of more interest, the condition (2.25) is fulfilled with
ε < ε0, if the quotient

ϕ
v
satisfies the growth condition

ϕ(t)

v(t)
≤ C

tn

(ln t)1+ε0
as t → ∞ (2.26)

for some ε0 > 0.

2.3 On a class of weights

We deal with radial weights w(x) = v(|x |), where v: (0, �) → (0, �) belongs to a
certain class of functions defined in [31] and reproduced below.

Definition 2.9 By V±, we denote the classes of functions v positive on (0, �), defined
by the conditions:

V+ : |v(t) − v(τ)|
|t − τ | ≤ C

v(t+)

t+
, (2.27)

V− : |v(t) − v(τ)|
|t − τ | ≤ C

v(t−)

t+
, (2.28)
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where t, τ ∈ (0, �), t 	= τ, and t+ = max(t, τ ), t− = min(t, τ ).

Lemma 2.10 [31] Functions v ∈ V+ are a.i. and functions v ∈ V− are a.d..

Recall that a measurable positive function v on (0, �), 0 < � ≤ ∞, is called quasi-
monotone if there exist α, β ∈ R such that v(t)

tα is a.i. and v(t)
tβ

is a.d.. Thus, functions
in V+ ∪ V− are quasi-monotone by Lemma 2.10.

For power weights we have

tγ ∈ V+ ⇐⇒ γ ≥ 0, tγ ∈ V− ⇐⇒ γ ≤ 0.

The following lemma provides sufficient conditions for functions to belong to the
classes V+ and V−.

Lemma 2.11 ([31, Lemma 2.11 and Example 2.12]) Let v be a function positive and
differentiable on (0, �). If

0 ≤ v′(t) ≤ c
v(t)

t
, t ∈ (0, �),

for some c > 0, then v ∈ V+. If

−c
v(t)

t
≤ v′(t) ≤ 0, t ∈ (0, �),

for some c > 0, then v ∈ V−.
In particular,

tα
(
ln emax

{
t,
1

t

})β

∈
{
V+, if α > 0, β ∈ R or α = 0 and β ≤ 0
V−, if α < 0, β ∈ R or α = 0 and β ≥ 0,

Note also that for v ∈ V+ ∪ V− the following properties hold:

tCv(t) is increasing and
v(t)

tC
is decreasing, (2.29)

where C is the constant from (2.27)–(2.28). Indeed, from (2.27)–(2.28) we obtain
−C ϕ(t)

t ≤ ϕ′(t) ≤ C ϕ(t)
t , whence [tCϕ(t)]′ ≥ 0 and [t−Cϕ(t)]′ ≤ 0.

Lemma 2.12 Let � = ∞ and ϕ satisfy the conditions 1)-3) of Sect.2.1. The condition
(2.20) is satisfied for every weight v ∈ V+ ∪ V−.

Proof It suffices to observe that both v an ϕ are in DRD(R+). For the function v this
follows from Lemma 2.10 and the properties (2.29), and for the function ϕ from the
properties 1)-3) of Sect. 2.1 ��

Finally, we shall need Lemma 2.13 given below for quasi-monotone functions.
Statements of such a kind may be found dispersed in literature, see e.g. [3, 17], [25,
30] and [32]. For completeness we provide a short straightforward proof of this lemma.
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Lemma 2.13 Let g(t) be quasi-monotone, γ > 0 and 0 < � ≤ ∞. There hold the
following equivalences

r∫

0

g(t)
dt

t
≤ Cg(t) ⇔

r∫

0

g(t)γ
dt

t
≤ Cg(t)γ , 0 < r < � (2.30)

and

�∫

r

g(t)
dt

t
≤ Cg(t) ⇔

�∫

r

g(t)γ
dt

t
≤ Cg(t)γ , 0 < r < �, (2.31)

and inequalities in (2.30) and (2.31) imply that g(t) is a.i. and a.d., respectively.

Proof It is known that quasi-monotone functions have finite Matuszewska-Orlicz
indices m(g), M(g) ∈ (−∞,∞) and the left-hand side inequalities in (2.30) and
(2.31) are equivalent to m(g) > 0 and M(g) < 0, respectively, see e.g. [17] and [32,
Appendix]. Since, m(gγ ) = γ m(g) and M(gγ ) = γ M(g) for γ > 0, the statement
of the lemma follows. ��

2.4 Notation for commutators

Given an operator T and a function a, we denote

C[a, T ] = aT − T a.

In the case T is an integral operator:

T f (x) =
∫

�

T (x, y) f (y)dy,

we also define

C̃[a, T ] f (x) =
∫

�

|a(x) − a(y)| · |T (x, y)| f (y)dy.

2.5 Norm estimates for commutators of singular and weighted Hardy operators

The following statement is derived from [7, Theorem 3.5] taking into account that its
proof given in [7] for global Morrey spaces keeps for local ones as the analyses of the
proof shows.
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Proposition 2.14 Let 1 < p < ∞, ϕ satisfy the conditions 1) and 3), T ∈ SCZ and

∞∫

r

(
ϕ(t)

tn

) 1
p dt

t
≤ c

(
ϕ(r)

rn

) 1
p

. (2.32)

Let f ∈ Lp,ϕ
{x0}(R

n) and a ∈ BMO. Then the limit (1.1) and the corresponding limit
for the commutator C[a, T ] = aT − T a exist almost everywhere and

‖T f ‖Lp,ϕ
{x0}(Rn) ≤ C‖ f ‖Lp,ϕ

{x0}(Rn),

‖C[a, T ] f ‖Lp,ϕ
{x0}(Rn) ≤ C‖a‖∗

BMO‖ f ‖Lp,ϕ
{x0}(Rn).

As regards singular operators with standard kernel, their weighted boundedness in
both global and local Morrey spaces is provided by the following proposition derived
from [36, Theorem 3.20], where amore general setting of quasi-metricmeasure spaces
was dealt with.

In Proposition 2.15 we impose the following Zygmund-type conditions on the
function ϕ :

∫ �

r

ϕ(t)
1
p

t1+
n
p

dt ≤ c
ϕ(r)

1
p

r
n
p

(2.33)

and

r∫

0

ϕ(t)

t
dt ≤ cϕ(r), (2.34)

where 0 < r < �, � = diam � < ∞.

Proposition 2.15 Let 1 < p < ∞, ϕ satisfy the conditions 1) and 3), wx0(x) =
v(|x − x0|), x0 ∈ �, where v ∈ V+ ∪ V−, and let ϕ satisfy the conditions (2.33) and
(2.34). Let T be a singular operator (1.1) with the kernel T ∈ Sst. Then the operator
T is bounded in the spaces Lp,ϕ

{x0}(�,w) and Lp,ϕ(�,w) :

‖T f ‖Lp,ϕ
{x0}(�,w) ≤ C‖ f ‖Lp,ϕ

{x0}(�,w)

and

‖T f ‖Lp,ϕ(�,w) ≤ C‖ f ‖Lp,ϕ(�,w),

where C does not depend on x0, if
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(1) r
n
p′ ϕ(r)

1
p

v(r)
is a.i. and

r∫

0

[
tn(p−1) ϕ(t)

v(t)p

] 1
p dt

t
≤ c

[
rn(p−1) ϕ(r)

v(r)p

] 1
p

, r ∈ (0, �), (2.35)

when v ∈ V+, and

(2) ϕ(r)
1
p

r
n
p v(r)

is a.d. and

�∫

r

[
ϕ(t)

tnv(t)p

] 1
p dt

t
≤ c

[
ϕ(r)

rnv(r)p

] 1
p

, r ∈ (0, �), (2.36)

when v ∈ V−.

The following corollary for the classical Morrey space clearly shows the weighted
boundedness of singular operators with power weights “beyond the Muckenhoupt
range”.

Corollary 2.16 Let p and T satisfy the assumptions of Proposition 2.15. Then the
operator T is bounded, uniformly with respect to x0, in the weighted Morrey spaces
Lp,ϕ

{x0}(�, |x − x0|α) and Lp,ϕ(�, |x − x0|α) with ϕ(r) = rλ, if 0 < λ < n and

λ − n < α < λ + n(p − 1). (2.37)

Remark 2.17 In [31] it was shown that the condition (2.37) is also necessary in the
one-dimensional case for the Hilbert transform. This was extended to Riesz transforms
in [24].

Norm estimates for commutators of weighted Hardy operators

Hw f (x) = w(x)

|x |n
∫

|y|<|x |

f (y)

w(|y|)dy and Hw f (x) = w(x)

∫

|y|>|x |

f (y)

|y|nw(|y|)dy,

(2.38)

provided in next propositions, are derived from [35, Theorems 3.11 and 3.16]

Proposition 2.18 Let 1 < p < ∞, ϕ be a.i. and ϕ(2r) ≤ cϕ(r), r ∈ R+, a ∈
CMOq,x0(R

n), where q > p and q ≥ p′. If v(t) is quasi-monotone and

r∫

0

tn(p−1)ϕ(t)

v(t)p

dt

t
≤ c

rn(p−1)ϕ(r)

v(r)p
, (2.39)
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then

∥∥∥∥C

[
a, wH

1

w

]
f

∥∥∥∥
Lp,ϕ

{0} (Rn)

≤ C‖a‖∗
CMOq,x0 (Rn)‖ f ‖Lp,ϕ

{0} (Rn). (2.40)

Proposition 2.19 Let 1 < p < ∞, ϕ be a.i. and ϕ(2r) ≤ cϕ(r), r ∈ R+, a ∈
CMOq,x0(R

n), where q > p and q ≥ p′. If v(t) is quasi-monotone and

r∫

0

ϕ(t)

t
dt ≤ cϕ(r) and

∞∫

r

ϕ(t)

tnv(t)p

dt

t
≤ c

ϕ(r)

rnv(r)p
, (2.41)

then

∥∥∥∥C

[
a, wH 1

w

]
f

∥∥∥∥
Lp,ϕ

{0} (Rn)

≤ C‖a‖∗
CMOq,x0 (Rn)‖ f ‖Lp,ϕ

{0} (Rn). (2.42)

3 Main results

Everywhere in this Section we assume that w(x) = v(|x − x0|), v ∈ V+ ∪ V− and
according to (2.18) there hold the conditions

1

ϕ(|x − x0|) ,
v(|x − x0|)p

ϕ(|x − x0|) ∈ Aexp
p (�). (3.1)

By (2.19) the assumption in (3.1) for 1
ϕ(t) reduces to

sup
0<r<�

1

rn

r∫

0

tn−1

ϕ(t)
dt

⎛
⎝ 1

rn

r∫

0

tn−1ϕ(t)p′−1dt

⎞
⎠

p−1

< ∞ (3.2)

and similarly for v(t)p

ϕ(t)

3.1 Point-wise estimate for weighted commutators of Singular operators

We consider the weights wx0(x) = v(|x − x0|), x0 ∈ � and deal with the following
“shifted” Hardy operators

Hwx0
f (x) = wx0(x)

|x − x0|n
∫

y∈�
|y−x0|<|x−x0|

f (y)

wx0(y)
dy,
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Hwx0
f (x) = wx0(x)

∫

y∈�
|y−x0|>|x−x0|

f (y)

|y − x0|nwx0(y)
dy. (3.3)

We also need the following “hybrids” of Hardy and potential operators:

Kx0 f (x) = 1

|x − x0|
∫

y∈�
|y−x0|<|x−x0|

f (y)dy

|x − y|n−1 and Kx0 f (x)

=
∫

y∈�
|y−x0|>|x−x0|

f (y)dy

|y − x0||x − y|n−1 . (3.4)

Theorem 3.1 Let v ∈ V+(0, �) ∪ V−(0, �), and let T be the operator (1.1) with the
size condition (2.12). Then for almost all x ∈ �

∣∣∣C[a, Twx0
] f (x)

∣∣∣ ≤ |C[a, T ] f (x)| + c
(

C̃[a, Hwx0
]| f |(x)

+C̃[a, Kx0 ]| f |(x) + C̃[a,Kx0 ]| f |(x)
)

(3.5)

if v ∈ V+, and

∣∣∣C[a, Twx0
] f (x)

∣∣∣ ≤ |C[a, T ] f (x)| + c
(

C̃[a,Hwx0
]| f |(x)

+C̃[a,Kx0 ]| f |(x) + C̃[a, Kx0 ]| f |(x)
)

(3.6)

if v ∈ V−, where c > 0 does not depend on f , a and x .

Proof We have
∣∣∣C[a, Twx0

] f (x)

∣∣∣

=
∣∣∣∣∣∣
∫

�

[a(x) − a(y)]
(

wx0 (x)

wx0 (y)
− 1

)
T (x, y) f (y)dy +

∫

�

[a(x) − a(y)]T (x, y) f (y)dy

∣∣∣∣∣∣
≤ c

∫

�

|a(x) − a(y)|
( |wx0 (x) − wx0 (y)|

wx0 (y)|x − y|n
)

| f (y)|dy + |C[a, T ] f (x)| ,

after which the estimation of the first term on the right hand side may be made exactly
in the same way as in the proof of [36, Theorem 3.11]. Following actions in [36, Page
18], in the case v ∈ V+ we obtain
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∣∣∣C[a, Twx0
] f (x)

∣∣∣ ≤ |C[a, T ] f (x)| + c

(
C̃[a, Hwx0

]| f |(x)

+
n−1∑
m=1

C̃[a, Km]| f |(x) + C̃[a,Kx0 ]| f |(x)

)
,

where

Km f (x) = 1

|x − x0|m
∫

y∈�
|y−x0|<|x−x0|

f (y)dy

|x − y|n−m
, K1 = Kx0

and it is assumed that the
∑n−1

m=1 is omitted in the case n = 1. To arrive at (3.5) it
remains to observe that |Km f (x)| ≤ 2Km−1| f |(x), m ≥ 2.

Similarly in the case v ∈ V−, also following arguments on page 18 of [36], we
obtain

∣∣∣C[a, Twx0
] f (x)

∣∣∣ ≤ |C[a, T ] f (x)|

+c

(
C̃[a,Hwx0

]| f |(x) +
n−1∑
m=1

C̃[a,Km]| f |(x) + C̃[a, Kx0 ]| f |(x)

)
,

where

Km f (x) =
∫

y∈�
|y−x0|>|x−x0|

f (y)dy

|y − x0|m |x − y|n−m
, K1 = Kx0 .

To get (3.5), note that |Km f (x)| ≤ 2Km−1| f |(x), m ≥ 2. ��
In the lemma for � = R

n we consider commutators of operators, slightly more
general than the operators K and K that appeared in Theorem 3.1:

Kα f (x) = 1

|x |α
∫

|y|<|x |

f (y)dy

|x − y|n−α
and Kα f (x) =

∫

|y|>|x |

f (y)dy

|y|α|x − y|n−α
, x ∈ R

n,

(3.7)

where α ∈ (0, n).

Lemma 3.2 Let 1 < p < ∞, 0 < α < n and b ∈ BMO. Then

‖C[a, Kα] f ‖L p(Rn) ≤ c‖a‖∗
BMO‖ f ‖L p(Rn), (3.8)

‖C[a,Kα] f ‖L p(Rn) ≤ c‖a‖∗
BMO‖ f ‖L p(Rn). (3.9)
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Proof First we note that the operators Kα andKα, being examples of integral operators
with a kernel homogeneous of degree −n and invariant with respect to rotations, are
bounded in L p(Rn), see the book [19, Section 6.1] or overview [18]. Note that the
boundedness of operators of this class in Morrey spaces was studied in [34].

The estimate (3.9) follows from (3.8) by duality arguments. The proof of the esti-
mate (3.8) is standard in the sense that it follows the classical way of estimation of
commutators in terms of the maximal operator, see e.g. [40, 418-419]. Following this
way in the case of the operator Kα, we obtain the point-wise estimate

|C[a, Kα] f (x)| ≤ c‖a‖∗
BMO

(
M (|Kα f |) (x)

1
s + M

(| f |s) (x)
1
s

+Kαs
(| f |s) (x)

1
s

)
, 1 < s <

n

α
, (3.10)

where M is the maximal operator. (We omit details of the proof for (3.10) since this
proof is absolutely similar to that of [40, 418-419]). The estimate (3.8) immediately
follows from (3.10) in viewof the boundedness of the operators M and Kα,s in L p(Rn).

��

3.2 Weighted norm estimates for the commutators of singular operators in local
Morrey spaces

To prove the main Theorem 3.4 we need an auxiliary estimate given in the following
proposition. The statement of this proposition is derived from estimates in the proof
of Theorem 3.5 in [7], see the estimates between the formulas (11) and (18) in [7].

Proposition 3.3 Assume that ϕ is almost increasing and (2.32) holds and let

Ar f (x) := χB(x0,r)(x)

∫

Rn\B(x0,2r)

|a(x) − a(y)| | f (y)|
|x − y|n dy.

Then

‖Ar f ‖L p,ϕ
{x0}(Rn) ≤ c‖a‖∗

BMO‖ f ‖L p,ϕ
{x0}(Rn), (3.11)

Theorem 3.4 Let 1 < p < ∞, a ∈ BMOext(�) and w(x) = v(|x − x0|), x0 ∈ �,

where v ∈ V+ ∪ V−(0, �), � = diam �, 0 < � ≤ ∞ and T be the singular operator
(1.1) and ϕ satisfy the condition 1) and 3). Let the conditions

r∫

0

ϕ(t)
dt

t
≤ cϕ(r), (3.12)

�∫

r

[
ϕ(t)

tn

] 1
p dt

t
≤ c

[
ϕ(r)

rn

] 1
p

, (3.13)
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r∫

0

tn(p−1)ϕ(t)

v(t)p

dt

t
≤ c

rn(p−1)ϕ(r)

v(r)p
, (3.14)

�∫

r

ϕ(t)

tnv(t)p

dt

t
≤ c

ϕ(r)

rnv(r)p
(3.15)

be satisfied. Then the operator Tw = wT 1
w

is bounded in the spaceLp,ϕ
{x0}(�) whenever

its kernel T belongs to the class Sst, as well as its commutator C[a, Tw] whenever
T ∈ SCZ, and

‖C[a, Tw] f ‖Lp,ϕ
x0 (�) ≤ c‖a‖∗

BMO‖ f ‖Lp,ϕ
x0 (�), (3.16)

where c does not depend on f , a and x0.

Proof The boundedness of the operator Tw follows from Proposition 2.15 if we take
into account that the functions ϕ(t) and v(t) are quasi-monotone and consequently
conditions (2.35) and (2.36) are equivalent to the corresponding inequalities (3.14)
and (3.15) by Lemma 2.13.

Passing to commutators, we write w = wx0 to underline the dependence of
weighted operators on the point x0. In view of the estimates (3.5) and (3.6), to prove
(3.16) it suffices to have estimates for ‖C[a, T ] f ‖Lp,ϕ

{x0}(�), ‖C̃[a, Hwx0
] f ‖Lp,ϕ

{x0}(�),

‖C̃[a,Hwx0
] f ‖Lp,ϕ

{x0}(�), ‖C̃[a, Kx0 ] f ‖Lp,ϕ
{x0}(�), and ‖C̃[a,Kx0 ] f ‖Lp,ϕ

{x0}(�).

In what follows, we continue the function f outside� by zero, extend the operators
T , Hwx0

,Hwx0
, Kx0 ,Kx0 in natural way to R

n and continue v(r) by any positive
constant for r > � (in the case � < ∞). We also extend the function ϕ(r), when
� < ∞, keeping in mind that the conditions (3.12)-(3.15), should be preserved. To
this end one can use the extension ϕ(r) = r δ for r > � with sufficiently small δ > 0.
Note that one can take δ = 0 for the preservation of the conditions (3.13)- (3.15), but
for the preservation of (3.12) δ should be positive.

We should take care about uniformness of the constant c with respect to x0.
Estimate for ‖C[a, T ] f ‖Lp,ϕ

{x0}(Rn) is provided by Proposition 2.14 in view of (3.13).

The remaining four commutators C̃[a, Hwx0
], C̃[a,Hwx0

], C̃[a, Kx0 ] and C̃[a,Kx0 ]
depend on x0.

Let Cx0 denote any of them and let τx0 f (x) = f (x0 − x). We have

Cx0 = τx0C0τx0 ,

where C0 = Cx0 |x0=0. Note that

‖τx0 f ‖Lp,ϕ
{x0}(Rn) = ‖ f ‖Lp,ϕ

{0} (Rn).

We obtain

‖Cx0 f ‖Lp,ϕ
{x0}(Rn) = ‖C0τx0 f ‖Lp,ϕ

{0} (Rn), (3.17)
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which insures uniformness with respect to x0 and we can take x0 = 0.
The estimates for C̃[a, Hwx0

] and C̃[a,Hwx0
] follow from Propositions 2.18

and 2.19 in view of (3.12), (3.14) and (3.15).
Let now C0 stand for one of the commutators C̃[a, Kx0 ], C̃[a,Kx0 ]. To estimate

the norm ‖C0 f ‖Lp,ϕ
{0} (Rn) we split the function f in the standard way:

f (y) = χB(x0,2r)(y) + f (y)χRn\B(x0,2r)(y) =: f1(y) + f2(y).

The estimate for ‖C0 f1‖Lp,ϕ
{0} (Rn) follows from Lemma 3.2:

‖C0 f1‖L p(B(0,2r) ≤ ‖C0 f1‖L p(Rn) ≤ C‖a‖∗
BMO‖ f1‖L p(Rn) = C‖a‖∗

BMO‖ f ‖L p(B(0,2r)).

For f2 observe that 1
|x | < 2

|x−y| in the case of the operator K , and 1
|y| < 2

|x−y| in
the case of the operator K. Hence

χB(0,r)(x) C0 f2(x) ≤ 2Ar f2(x),

where Ar is the operator from Proposition 3.3. Then from that proposition

‖C0 f2‖Lp,ϕ
{0} (Rn) ≤ C‖a‖∗

BMO‖ f ‖Lp,ϕ
{0} (Rn).

Gathering the estimates, we arrive at (3.16). ��
Corollary 3.5 Under the assumptions of Theorem 3.4, there holds the following esti-
mate for the commutator of singular operator T in weighted local Morrey spaces:

sup
r>0

⎛
⎜⎝ 1

ϕ(r)

∫

B(x0,r)∩�

|C[a, T ] f (y)|pv(|y − x0|)pdy

⎞
⎟⎠

1
p

≤ c‖a‖∗
BMO sup

r>0

⎛
⎜⎝ 1

ϕ(r)

∫

B(x0,r)∩�

| f (y)|pv(|y − x0|)pdy

⎞
⎟⎠

1
p

, (3.18)

where c does not depend on x0.

In the following corollary we see the “beyond Muckenhoupt range” effect in the
estimate for commutators of singular operators in classical Morrey spaces.

Corollary 3.6 Let p and a satisfy the assumptions of Theorem 3.4. The estimate (3.16)
with ϕ(r) = rλ and v(r) = rα holds if

0 < λ < n and − n

p
+ λ

p
< α <

n

p′ + λ

p
.
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Proof To derive the statement of the corollary, it suffices to note that the conditions
(3.14) and (3.15) are satisfied under the choice ϕ(r) = rλ and v(r) = rα with
0 < λ < n and − n

p + λ
p < α < n

p′ + λ
p . ��

3.3 Norm estimates for the commutators of singular operators in
Stummel-Morrey spaces

Let 1 ≤ p < ∞ andϕ, v : (0, �) → R+.WedefineStummel-Morrey spaceSp,ϕ,v(�)

by the norm

‖ f ‖Sp,ϕ,v(�) = sup
x∈�,r∈(0,�)

⎛
⎜⎝ 1

ϕ(r)

∫

B(x,r)

| f (y)|p v(|x − y|)pdy

⎞
⎟⎠

1
p

. (3.19)

Spaces with the norm of the type (3.19) with the power function ϕ appeared in [13].
As a consequence of Corollary 3.5, we arrive at the following statement.

Theorem 3.7 Let p, ϕ and v satisfy the assumptions of Theorem 3.4 and a ∈
BMOext(�). Then

‖C[a, T ] f ‖Sp,ϕ,v(�) ≤ c‖a‖∗
BMO‖ f ‖Sp,ϕ,v(�), (3.20)

Proof It suffices to pass to supremum in (3.18) with respect to x0 ∈ �, taking into
account that the constant c in (3.18) does not depend on x0. ��

4 Applications to regularity properties of solutions of elliptic PDEs:
Interior estimates

Regularity properties of solution to elliptic equation in the non-weighted setting of
Lebesgue spaces were studied by Chiarenza etal in [5]. A crucial base in that studywas
the so-called representation formula for second order derivative of solution to elliptic
PDEs. This formula, proved in [5] for C∞

0 -functions in case of Lebesgue spaces, is
extended by density argument to Sobolev spaces. Such a study of regularity properties
in case ofMorrey spaceswas firstmade in [8], see also [7] and references therein. Since
Morrey spaces on bounded domains are embedded into Lebesgue spaces, application
of the representation formula for Morrey spaces on bounded domains does not need a
justification.

This is not the case for weighted Morrey spaces: functions in a weighted Morrey
space may prove to be non-integrable, see Sect. 4.1. So the use of the representation
formula for weighted Morrey spaces needs a justification.
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4.1 On the representation formula in the case of weightedMorrey spaces

Let � be a bounded C1,1-domain in R
n . We study regularity problems for solutions

to the elliptic equations

Lu :=
n∑

i, j=1

ai, j (x)uxi ,x j = f , x ∈ �. (4.1)

in weighted generalized Morrey spaces, and in Sect. 4.2 provide interior estimates for
the second order derivatives of solutions in these spaces.

Everywhere in the sequel, the following conditions of regularity and ellipticity are
assumed to be satisfied for the coefficients ai, j :
∗ {ai, j }n

i, j=1 ⊂ VMO(�) ∩ L∞(�),

∗ ai, j = a j,i for all i, j = 1, ..., n and for a. e. x ∈ �,

∗ ∃m > 0 : m−1|h|2 ≤ ∑n
i, j=1 hi h j ≤ m|h|2 for a.e. x ∈ � and all x ∈ R

n .
First, following [7] we recall the necessary definitions used in the representation

formula proved in [5].
Let

�(x, t) := 1

(n − 2)|B(0, 1)|√detai, j (x)

(
Ai, j (x)ti t j

)(2−n)2
, n ≥ 3, a.e. x ∈ �,

and for all t ∈ R
n\{0}, Ai, j denotes the entries of the inverse matrix of the matrix

{ai, j }n
i, j=1;

�i (x, t) := ∂

∂ti
�(x, t), �i, j (x, t) := ∂2

∂ti∂t j
�(x, t)

and

max
i, j=1,...,n

max|α|≤2n

∥∥∥∥∂α�i, j (x, t)

∂tα

∥∥∥∥
L∞(�×Sn−1)

=: M .

As known �i, j (x, t) are Calderòn-Zygmund kernels in the t variable and, for any
fixed x0 ∈ �, �(x0, t) is a fundamental solution for the operator L0u(x) :=∑n

i, j=1 ai, j (x0)uxi ,x j (x).

The representation formula for second order derivatives of a solution to the equation
(4.1), proved in [5, Theorem 3.1] for u ∈ C∞

0 (B), reads

uxi ,x j (x) = P.V .

∫
B

�i, j (x, x − y)

⎛
⎝ n∑

h,k=1

(ah,k(x) − ah,k(y))uxh ,xk (y) + Lu(y)

⎞
⎠ dy

+Lu(x)

∫
|t |=1

�i (x, t)t j dσ(t), for a.e. x ∈ B.
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As mentioned, by density arguments it is valid for u ∈ W 2,p
0 (B), and also for u ∈

W 2
0Lp,ϕ(�), since Morrey spaces on bounded domains are embedded into Lebesgue

spaces.
This is not the case for weighted Morrey spaces. Depending on weight, functions

in weighted Morrey spaces may prove to be even non-integrable. Indeed, let e.g.
� = B(0, 1), ϕ(r) = rλ, 0 < λ ≤ n, and w = |x |α, α ∈ R. The function

f0(x) = 1

|x | n−λ+α
p

belongs to Lp,ϕ(�, |x |α) and is not integrable when α ≥ n(p − 1) + λ (note that the
value α = n(p − 1) + λ is “beyond the Muckenhoupt range” borderline value for
exponents of power weights, see Corollary 2.16 and Remark 2.17; compare also with
Proposition 4.3 ).

Thus, in the case where no á priori information on weights is provided, application
of the representation formula for weighted Morrey spaces needs justification. To this
end, it suffices to have an embedding of weighted Morrey space into some Lebesgue
space Ls(�), s > 1.

We make use of the following proposition derived from [33, Theorem 3.2] where
it was proved in the general setting of quasi-metric measure spaces.

Proposition 4.1 Let 1 < p < ∞, ϕ satisfy the assumptions 1) - 3) of Sect.2.1. Suppose
that there exists s ∈ (1, p) such that

t
n
(
1
s − 1

p

)
ϕ(t)

1
p

v(t)
is almost increasing (4.2)

and

�∫

0

tn−1

[
ϕ(t)

1
p

t
n
p v(t)

]s

dt < ∞, � = diam �. (4.3)

Then

Lp,ϕ
{x0}(�,w

p
x0) ↪→ Ls(�). (4.4)

Corollary 4.2 Under the assumptions of Proposition 4.1, a similar embedding holds
for Stummel-Morrey spaces:

Sp,ϕ,v(�) ↪→ Ls(�).

The next statement of criterion-type for the classical Morrey space, i.e. ϕ(r) =
rλ, 0 < λ ≤ n, 0 < r < �, and power-logarithmic weights

v(r) = rα

(
ln

2�

r

)β

, (4.5)



72 Page 24 of 27 N. Samko

was proved in [33, Corollary 3.4] in a more general setting of quasimetric measure
spaces.

Proposition 4.3 Let 1 < p < ∞ Then the embeddings

Lp,ϕ
{x0}(�,wx0)|ϕ=rλ ↪→ Ls(�) and Lp,ϕ(�,wx0)|ϕ=rλ ↪→ Ls(�), λ > 0,

(4.6)

where s ∈ (1, p), hold, if and only if

α < λ + n
( p

s
− 1

)
and β ∈ R or α = λ + n

( p

s
− 1

)
and β >

p

s
, (4.7)

Corollary 4.4 Let the weight w be defined by (4.5). The exponent s ∈ (1, p) for the
embeddings (4.6) exists, if and only if α < λ+n(p−1) and β ∈ R, or α = λ+n(p−1)
and β > 1.

4.2 Interior estimates

Our main interest being related to weights, for readers’ convenience, below we collect
all the conditions on the weights arising from the results of Sect. 3 and Proposition 4.1:

r∫

0

t
n
p′ ϕ(t)

1
p

v(t)

dt

t
≤ cr

n
p′ ϕ(r)

1
p

v(r)
, r ∈ (0, �), (4.8)

�∫

r

ϕ(t)
1
p

t
n
p v(t)

dt

t
≤ c

ϕ(r)
1
p

r
n
p v(r)

, r ∈ (0, �), (4.9)

There exists s ∈ (1, p) such that t
n
(
1
s − 1

p

)
ϕ(t)

1
p

v(t)
is almost increasing (4.10)

and

�∫

0

tn−1

[
ϕ(t)

1
p

t
n
p v(t)

]s

dt < ∞, � = diam �. (4.11)

In Theorems 4.5 and 4.7 we use some notation for Sobolev-Morrey and Sobolev-
Stummel spaces. Denote by X = X(�) any function space on � and let

‖ f ‖W 2X = ‖ f ‖X +
n∑

j,k=1

∥∥∥∥ ∂2 f

∂x j∂xk

∥∥∥∥
X

. (4.12)

By W 2
0 X = W 2

0 X(�) we denote the closer, with respect to the norm (4.12), of C∞-
functions with compact support in �.
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Theorem 4.5 Let n ≥ 3, 1 < p < ∞. ai, j ∈ VMO(�)∩ L∞(�), q > p and q ≥ p′.
Let ϕ satisfy the à priory assumptions 1) - 3) of Sect.2.1, and let the conditions (2.34)
and (3.13) for ϕ be satisfied. If the weight w(x) = wx0 = v(|x − x0|), x0 ∈ �, v ∈
V+ ∪ V−. satisfies the conditions (4.8) - (4.11), then there exist positive constants
C = C(n, p, ϕ,w, M) not depending on x0, and r0 = r0(C), such that

‖uxi ,x j ‖Lp,ϕ
{x0}(Br ,w p) ≤ C‖ f ‖Lp,ϕ

{x0}(Br ,w p) (4.13)

for any ball Br � �, Br � x0 of radius r < r0, and all u ∈ W 2
0L

p,ϕ
{x0}(�,w p).

Proof The proof follows the known procedure, our main interest being to admit the
interior estimate for weightedMorrey spaces, so we omit details.We just have to apply
the weighted Morrey norm over B, B ⊂ �, to the representation formula termwise,
make use of Corollary 3.5 and to pass to small balls Br using the fact that ai, j ∈ VMO.

We only mention that the conditions (3.14) and (3.15) of Theorem 3.4 are equiv-
alent to the conditions (4.8) and (4.9), respectively, for quasi-monotone weights, see
Lemma 2.13. ��

Remark 4.6 In Theorem 4.5 one may replace Br � x0 by a ball Br located anywhere in
�, the main meaning of the restriction Br � x0 is that our interest concerns weighted
Morrey spaces whileLp,ϕ

{x0}(B\Bx0,ε, w
p
x0), ε > 0, is a non-weighted space for weights

under consideration.

Finally, in the following theorem we extend Theorem 4.5 to Stummel-Morrey
spaces, the latter being a kind of replacement of global Morrey spaces.

Theorem 4.7 Let p, ϕ and w satisfy the assumptions of Theorem 4.5 and ai, j ∈
VMO(�) ∩ L∞(�). Then there exist positive constants C = C(n, p, ϕ,w, M) and
r0 = r0(C), such that

‖uxi ,x j ‖Sp,ϕ,v(Br ) ≤ C‖ f ‖Sp,ϕ,v(Br ) (4.14)

for any ball Br � � of radius r < r0, and all u ∈ W 2
0S

p,ϕ,v(�), where

‖ f ‖Sp,ϕ,v(Br ) = sup
x0∈Br ,0<t<r

⎛
⎜⎝ 1

ϕ(t)

∫

B(x0,t)∩Br

| f (y)|p v(|x0 − y|)pdy

⎞
⎟⎠

1
p

.

Proof It remains to pass to supremum with respect to x0 in the estimate (4.13), taking
into account that the constant c there does not depend on x0. ��
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