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A B S T R A C T

This paper serves as the first empirical study on self-supervised pre-training on partially supervised learning,
an emerging yet unexplored learning paradigm with missing annotations. This is particularly important in the
medical imaging domain, where label scarcity is the main challenge of practical applications. To promote the
awareness of partially supervised learning, we leverage partially supervised multi-label classification on chest
X-ray images as an instance task to illustrate the challenges of the problem of interest. Through a series of
simulated experiments, the empirical findings validate that solving multiple pretext tasks jointly in the pre-
training stage can significantly improve the downstream task performance under the partially supervised setup.
Further, we propose a new pretext task, reverse vicinal risk minimization, and demonstrate that it provides a
more robust and efficient alternative to existing pretext tasks for the instance task of interest.
1. Introduction

Fueled by the recent success of deep learning, there is a renaissance
of research on self-supervised learning (SSL) [1–7]. The core concept
of contemporary SSL is to formulate a pretext task, which has its own
annotation-free label, i.e. the supervision signal of the pretext task can be
defined by the information within the unlabeled data [8–12]. The goal
of solving the pretext task is to learn meaningful representations for the
target task of interest, i.e. the downstream task. It has been reported
that SSL can achieve competitive performance or even outperform
standard supervised learning in representation learning [8–11], and is a
core component of many current medical imaging approaches [13,14].
An important application of SSL is to learn transferable representations
and then fine-tune these with the labels of a given downstream task in
a supervised fashion.

Though self-supervised pre-training has shown promising results in
boosting the model performance under a supervised setup, especially
when only limited labels are available, its role in partially supervised
learning (PSL) [15] remains unclear. An illustrative diagram of self-
supervised pre-training for partially supervised downstream tasks is
presented in Fig. 1. PSL is an emerging label-efficient learning paradigm
that has a close tie with multi-task learning (MTL) [16]. In PSL, a
task of interest can be decomposed into multiple sub-tasks and each
instance in the training set is labeled for a true subset of sub-tasks,
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instead of all sub-tasks. In other words, each instance has task-wise
missing annotations. Common downstream tasks for vision tasks that
can be formulated as MTL include multi-label classification, semantic
segmentation, and object detection. These tasks could all be formulated
as PSL problems when multiple relatively small datasets annotated for
specific downstream tasks are collected to form a larger dataset.

The partial label problem is a common challenge in medical im-
age analysis. As an exploratory study in this field, this work utilizes
partially supervised multi-label classification (PSMLC) [17] on chest X-
ray images (CXRs) as the downstream task to demonstrate the impact
of self-supervised pre-training on PSL. PSMLC is a partially supervised
variant of standard multi-label classification (MLC), where the training
data do not have complete annotations for all classes of interest. For
example, a small pneumonia dataset and a small tuberculosis dataset
are collected from two different hospitals and annotated by clinicians
with different expertise to form a large dataset. Each medical image
is then partially labeled concerning either pneumonia or tuberculosis.
An example is presented in Fig. 2 to convey the concept of PSMLC.
Specifically, we use thoracic disease classification on chest X-ray images
(CXRs) to illustrate two practical challenges in PSL [18], namely label
scarcity and inter-class imbalance. Given limited partially labeled CXR
vailable online 14 June 2024
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Fig. 1. Diagram of self-supervised pre-training for partially supervised downstream
tasks. The network backbone (feature extractor) is pre-trained on unlabeled data. Then,
the network backbone and task-dependent head are jointly fine-tuned with the partially
supervised data.

Fig. 2. Partially supervised multi-label classification on medical images. The top row
illustrates a fully labeled CXR with respect to diseases of interest, while the bottom row
illustrates a partially labeled one. ‘‘1’’ and ‘‘0’’ denote whether a disease is diagnosed,
and ‘‘?’’ denotes the missing annotation.
Source: The images are taken from the ChestX-ray14 dataset [19].

Fig. 3. Illustration of the concept of task affinity in terms of optimization. Intuitively,
when three tasks denote three unit vectors in linear algebra, we can use the dot product
between any two tasks to denote a hypothetical task affinity score between them.
Let Task 1 (the blue arrowed line tangent to the arc) be the anchor task (i.e. the
downstream task). The ideal pretext task should optimize the parameters 𝜃 along the
direction of Task 1. Let the gray dashed line (perpendicular to Task 1) denote the zero
task affinity score. Task 2 in this case should have a positive task affinity score with
Task 1 as the gradient is still in a direction that contributes to a decrease of the loss.
Task 3 on the other hand should have a negative task affinity score with Task 1 as the
gradient direction increases the loss. However, in practice, there is no such quantitative
measurement.

images, we aim to use large-scale unlabeled CXR images to learn trans-
ferable representations, which can be used to improve the performance
of the downstream task.

To the best of our knowledge, there is no empirical study yet on the
problem of interest. In this study, we try to answer three exploratory re-
search questions in order to facilitate the understanding of the impact of
self-supervised pre-training on partially supervised downstream tasks.
RQ1: Is task affinity a reliable tool to choose an efficient pretext task
2

for PSMLC on CXRs? RQ2: What is the impact of self-supervised pre-
training on PSMLC on CXRs? RQ3: Can MTL improve self-supervised
pre-training when PSMLC on CXRs is the downstream task?

In this work, the discussion of task affinity is bounded within the
scope of machine learning (ML). The concept arises from the study of
MTL [16], which aims to understand which tasks should be learned
together to improve overall learning performance [20,21]. Then, it is
conceptualized as a term to describe the task alignment between the
source and target tasks in transfer learning [22], i.e. the pretext and
downstream tasks in the literature of SSL. As the task affinity between
the pretext and downstream tasks cannot be directly measured, we
use proxy task affinity for quantitative comparison. Here, we use the
term ‘‘proxy’’ following the definition in SSL literature [8,9,11], where
the performance of the pretext task cannot be assessed quantitatively.
The ‘‘proxy task’’ instead is a task that is defined in such a fashion:
the learning outcomes of the pretext task (e.g. representations) can be
linked to a task that can directly be quantitatively measured.

In MTL, grouping tasks with large task affinities can efficiently
improve the training performance [21]. Thus, a larger task affinity
between the pretext task and the downstream task should intuitively
lead to better transfer learning performance. A few representative
pretext tasks are discussed and evaluated empirically to provide insight
into RQ1. Later in this work, we shall see that, (proxy) task affinity is
not a robust measure for partially supervised downstream tasks, despite
its success for fully supervised downstream tasks.

For RQ2, self-supervised pre-training can be viewed as provid-
ing a strong initialization for the fine-tuning phase (c.f. random ini-
tialization). Specifically, we focus on understanding the impact of
self-supervised pre-training on the downstream task under partial su-
pervision, from a task affinity perspective. A simulated experiment is
designed to investigate this question in a controllable environment,
where we examine three representative pretext tasks. Several interest-
ing findings are reported. For example, we find that self-supervised pre-
training does not necessarily lead to performance gain on downstream
tasks with partial labels.

A recent study has shown that MTL can benefit supervised down-
stream tasks in self-supervised pre-training [23]. However, the role of
MTL in self-supervised pre-training for partially supervised downstream
tasks remains unclear. Motivated by this empirical finding, a reasonable
hypothesis to RQ3 is that multiple pretext tasks can also make a differ-
ence in self-supervised pre-training for PSL. To validate this hypothesis,
multiple pretext tasks are designed based on proxy task affinity and
evaluated to provide an empirical understanding of multi-pretext-task
learning for PSL.

In addition, this work also presents an empirical study to explore
a pretext task based on vicinal risk minimization (VRM) [24]. VRM
has shown its robustness in standard supervised learning as a data
augmentation technique [25]. Again, whether VRM can benefit the
partially supervised downstream tasks remains unclear. Given a pair of
unlabeled images and a MixUp hyperparameter [25], a vicinal image
can be generated. The model of interest is pre-trained to predict the
MixUp hyperparameter with two original images and the vicinal image
as the input. In contrast to seminal pretext tasks, the pretext task of
interest does not utilize the intrinsic information but instead utilizes
an additional hyperparameter to set up the task and introduces ran-
domness to improve generalization. The experimental results show that
the proposed pretext task, reverse vicinal risk minimization can achieve
competitive performance with seminal pretext tasks but with a smaller
computational cost.

The main contributions of this work can be summarized as follows.

1. This is the first empirical study of the relationship between the
pretext task and downstream task in PSL on CXRs and the first
empirical study of the impact of self-supervised pre-training on
PSMLC on CXRs.
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2. We explore the potential of proxy task affinity in choosing
an efficient pre-training pretext task for a partially supervised
downstream task and empirically show the limitations of proxy
task affinity.

3. This is the first study of MTL in self-supervised pre-training for
PSMLC on CXRs.

4. A pretext task based on vicinal risk minimization is proposed for
PSMLC on CXRs for the first time.

The rest of the paper is organized as follows. Section 2 reviews the
related work on partially supervised learning and self-supervised learn-
ing. Section 3 formulates the problem of interest and Section 4 provides
the preliminary knowledge to understand the pretext task. Section 5
introduces task affinity, multi-pretext learning, and reverse vicinal risk
minimization. Section 6 and Section 7 provide the experimental setup
and results.

2. Related work

Partially Supervised Learning PSL has become an emerging research
question due to the non-trivial annotation cost in medical image anal-
ysis tasks. Instead of collecting large-scale fully labeled data, it is more
convenient to collect multiple small-scale datasets that are annotated
for specific sub-tasks. PSL is still in its early stage and existing studies
still rely on fully labeled data [26,27] or complex specification [28,29].
Dong et al. [15] first tackles the small-scale partially labeled data with
VRM. For PSMLC, Durand et al. [30] first discusses the problem and
leverages large-scale partially labeled datasets to address the problem.
However, this study assumes data scarcity in the fine-tuning stage,
which is more realistic in the medical domain.

Self-Supervised Learning The recent renaissance of SSL is associated
with pretext tasks. In the context of deep learning, by solving a different
task that is related to the downstream task, the model of interest
learns to extract transferable representations from the unlabeled data.
These pretext tasks only utilize the information contained in the unla-
beled data. However, designing a good pretext task commonly requires
non-trivial human effort because a good self-supervised task is neither
simple nor ambiguous [31]. For example, common pretext tasks include
predicting the relative position information between two augmented
views of the same instance [32], solving jigsaw puzzles [31], rota-
tion prediction [33], and masked image modeling [34]. In contrast
to these hand-crafted pretext tasks, the state-of-the-art SSL methods
are based on instance discrimination, a pretext task also known as
contrastive learning [35]. So far, contrastive learning has provided a
universal pre-training solution for various downstream tasks. However,
our experiments show that contrastive learning might not be an optimal
solution for PSL under data scarcity.

A similar and related work to the proposed pretext task is [36],
which also utilizes vicinal risk minimization [25] in SSL. There are
two main differences between the proposed pretext task and [36]. First,
the downstream tasks are different, where [36] targets the time series
prediction task and the proposed pretext task targets PSMLC. Second,
the loss functions are different with [36] leveraging a contrastive
loss, which requires the processing of the examples individually. The
proposed pretext task instead simply adopts the standard mean squared
error (2 loss). Further, while [36] relies on a contrastive loss to
learning the representations, in the proposed pretext tasks, the model
takes the concatenation of two input examples and the vicinal example
and predicts the MixUp parameter [25]. See Section 5.3 for the details
of the proposed pretext task.
3

Fig. 4. Pretext task of rotation prediction (clockwise) [33]. The network is trained to
predict the rotation degree.

Fig. 5. Pretext task of masked image modeling [34]. The network is trained to
reconstruct the masked image.

3. Problem formulation

Given a downstream task of interest, there are two training datasets,
a large-scale unlabeled dataset  and a small-scale partially labeled
dataset . Let 𝑓𝜃 denote the feature extractor with parameter 𝜃 that is
pre-trained on  and 𝑔

𝑡𝑝
𝜙 denote the auxiliary prediction head for the

pretext task 𝑡𝑝 with parameter 𝜙. In the fine-tuning phase, only 𝑓𝜃 will
be transferred, i.e. to be fine-tuned in conjunction with a new prediction
head for the downstream task.

Assume the downstream task of interest can be decomposed into
a set of sub-tasks  . A partially labeled training dataset  consists of
𝐾 > 1 partially labeled sub-datasets collected from 𝐾 different sources,
i.e.  can be split into 𝐾 multiple non-overlapping non-empty subsets:
 =

⋃𝐾
𝑖=1 𝑖. Each subset 𝑖 is annotated with a set of tasks 𝑖 ⊂  .

⋃𝐾
𝑖=1 𝑖 =  is ensured, i.e. each sub-task has at least one instance

annotated. 𝑓𝜃 will be fine-tuned on .

4. Preliminaries

This section provides the necessary methodological background for
this study. Three representative pretext tasks for semantic understand-
ing tasks are presented.

Let 𝑓𝜃 denote the feature extractor, or the model of interest, with
parameter 𝜃, and let 𝑔𝑡𝜙 denote the auxiliary prediction head for the
pretext task 𝑡 with parameter 𝜙. In the fine-tuning phase, only 𝑓𝜃 will
be transferred, i.e. to be fine-tuned in conjunction with a new prediction
head for the downstream task.

4.1. Pretext tasks

4.1.1. Rotation prediction
Let 𝑥 be an image and let 𝜏(⋅) denote a random rotation augmen-

tation applied on 𝑥, where the rotation degree can only be chosen
from {0, 90, 180, 270} with equal probability. The pretext task is then
a multi-class classification task.

𝑔𝑟𝑜𝑡𝜙 ◦𝑓𝜃 ∶ 𝜏(𝑥) ↦ R4

See Fig. 4 for a visual illustration of the task.

4.1.2. Masked image modeling
Let 𝑥 be an image and let 𝜏(⋅) denote a random masking operation

applied on 𝑥. The optimization goal for the pretext task is to minimize
a reconstruction loss, e.g. a mean squared loss.

𝑚𝑖𝑚 = ‖𝑔𝑚𝑖𝑚𝜙 ◦𝑓𝜃(𝜏(𝑥)) − 𝑥‖2

See Fig. 5 for a visual illustration of the task.
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Fig. 6. Pretext task of instance discrimination. The network is trained to learn the
invariance between two augmented views of the same image.

4.1.3. Instance discrimination
SimSiam [11] is chosen to illustrate the concept of instance discrim-

ination for its simplicity and robustness.
Let 𝑥1 = 𝜏(𝑥) and 𝑥2 = 𝜏′(𝑥) be two augmented views of the image 𝑥.

The pretext task is to maximize the agreement between the embeddings
of 𝑥1 and 𝑥2. Let 𝑑(⋅, ⋅) be a distance measure, the optimization goal is
to minimize

𝑖𝑛𝑠 = 𝑑(𝑔𝑝𝑟𝑒𝑑𝜙 ◦𝑓𝜃(𝑥1), 𝑓𝜃(𝑥2)),

where 𝑔𝑝𝑟𝑒𝑑𝜙 is a prediction head. The asymmetric design of 𝑔𝑝𝑟𝑒𝑑𝜙 is
designed to avoid collapsing solutions [10]. See Fig. 6 for a visual
illustration of the task.

A common choice of 𝑑(⋅, ⋅) is the negative cosine similarity:

𝑑(𝑔𝑝𝑟𝑒𝑑𝜙 ◦𝑓𝜃(𝑥1), 𝑓𝜃(𝑥2)) = −
𝑔𝑝𝑟𝑒𝑑𝜙 ◦𝑓𝜃(𝑥1)

‖𝑔𝑝𝑟𝑒𝑑𝜙 ◦𝑓𝜃(𝑥1)‖
⋅

𝑓𝜃(𝑥2)
‖𝑓𝜃(𝑥2)‖

,

where ‖ ⋅ ‖ is the norm operator.

4.2. Weighted loss

To combat class imbalance, the weighted binary cross-entropy (BCE)
loss is commonly adopted in multi-label classification tasks [37]. Given
an instance-label pair (𝑥, 𝑦), 𝑦𝑖 denotes the 𝑖th entry of the label vector
𝑦. The weighted binary cross-entropy loss for the 𝑖th class is

𝐵𝐶𝐸 (𝑥, 𝑦𝑖, 𝑤𝑖
+, 𝑤

𝑖
−) = −𝑤𝑖

+𝑦
𝑖 log 𝑝(𝑦𝑖 = 1|𝑥)

− 𝑤𝑖
−(1 − 𝑦𝑖) log 𝑝(𝑦𝑖 = 0|𝑥),

(1)

where 𝑤𝑖
+ = 𝑛𝑖−

𝑛𝑖++𝑛𝑖−
and 𝑤𝑖

− = 𝑛𝑖+
𝑛𝑖++𝑛𝑖−

with 𝑛𝑖+ and 𝑛𝑖− being the number
of positive and negative cases for the 𝑖th class, respectively.

5. Method

5.1. Task affinity

In ML, proxy task affinity has been widely adopted in MTL and SSL
as quantitative tools. One of the goals of this work is to understand
whether proxy task affinity is a reliable tool to study the relationship
between the pretext task and the partially supervised downstream
task. To provide the background, this section presents the following
definitions and hypotheses.

5.1.1. Concept
So far, there is no universally good mathematical tool to quan-

tify the similarity between tasks. In transfer learning, a high task
affinity between the pretext task and the supervised downstream task
is commonly a positive signal of performance gain. Thus, from the
perspective of optimization, if a pretext task 𝑡𝑝 has a high task affinity
with the downstream task 𝑡 , it should facilitate the optimization of
4

𝑑

𝑡𝑑 . Concretely, at a specific time stamp in gradient descent, a random
batch , and a loss measure , the task affinity should be measured
by

𝑑𝑡𝑎 = sim(∇𝜃𝑝,∇𝜃𝑡), (2)

where sim(⋅, ⋅) is a hypothetical similarity measure between two sets of
gradients with respect to 𝜃𝑝 and 𝜃𝑡. 𝜃𝑝 and 𝜃𝑡 are two sets of parameters
for the pretext task and the downstream task with the same network
backbone. An intuitive explanation of task affinity is diagrammed in
Fig. 3. However, Eq. (2) is difficult to implement in practice for two
reasons. First, the training of 𝑡𝑝 and 𝑡𝑑 are commonly disjoint. Second,
while using  introduces randomness, leveraging larger amounts of
data causes a non-trivial computational cost.

5.1.2. Proxy evaluation
A practical challenge in defining task affinity is that task affinity

cannot be quantified directly. This is a common challenge in ML.
Instead, ML researchers solve this issue by defining a proxy term. Fol-
lowing the logic in Section 5.1.1, a proxy evaluation strategy inspired
by [8,9,11] is used to measure task affinity between the pretext and
downstream tasks.1 Concretely, 𝑓𝜃 is pre-trained by the pretext task
only and frozen for later fine-tuning. In the fine-tuning phase, only
𝑔𝜙 is fine-tuned for the downstream task. The performance on the
downstream task is used to reflect the task affinity between two tasks: a
higher performance indicates a higher task affinity score and vice versa.
In this way, 𝑓𝜃 and 𝑔𝜙 are optimized separately, and the downstream
task will not ‘‘leak’’ information to 𝑓𝜃 . Otherwise, the downstream task
performance might be dominated by the downstream task in the joint
optimization process. Note, when the downstream task has fully labeled
data, proxy task affinity has been a benchmark tool to compare the
efficiency of pretext tasks [8,9,11].

Mathematically, let (𝑡𝑝, 𝑡𝑑 ) denote the downstream task perfor-
mance acquired with the pretext task 𝑡𝑝, the downstream task 𝑡𝑑 , and
the training procedure described above. In practice, random initializa-
tion could be considered a null pretext task with zero impact on the
downstream task. Thus, let (𝚁𝚊𝚗𝚍𝙸𝚗𝚒, 𝑡𝑑 ) denote the downstream task
performance without any pretext task, where RandIni denotes ran-
dom initialization. To ensure fairness, 𝑓𝜃 should be randomly initialized
with the same random seed for both 𝑡𝑝 and RandIni. Thus, the proxy
task affinity is defined as below.

Definition 1 (Proxy Task Affinity). Given the pretext task 𝑡𝑝 and the
downstream task 𝑡𝑑 , the proxy task affinity under hyperparameters2 ∗
is

𝑑𝑝𝑡𝑎(𝑡𝑝, 𝑡𝑑 | ∗) = (𝑡𝑝, 𝑡𝑑 ) − (𝚁𝚊𝚗𝚍𝙸𝚗𝚒, 𝑡𝑑 ).

5.1.3. Hypotheses of proxy task affinity
With the proxy task affinity defined in Section 5.1.2, it is time to

think about the role of proxy task affinity in self-supervised pre-training
for partially supervised downstream tasks. Based on the empirical
observations in self-supervised learning [8,9,11], self-supervised pre-
training consistently improves the performance of fully supervised
downstream tasks.

As pointed out in [21], tasks with high task affinity should be
grouped together in the learning process to improve overall learn-
ing performance. Thus, it is natural to come up with the following
hypothesis.

1 It is worth mentioning that proxy task affinity is also called the linear
classification protocol in SSL, where the downstream task is fixed to be a linear
classification task with fully labeled data.

2 In practice, the hyperparameters could include 𝑓𝜃 , 𝑔𝜙, optimization
hyperparameters, etc.. More details can be found in Section 6.
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𝑥

Hypothesis 1. Given a downstream task of interest, a pretext task with
higher proxy task affinity leads to better downstream task performance.

The understanding of the above two hypotheses should substantially
benefit the study of SSL and PSL. For the first time, the initial answers
to these hypotheses are provided in Section 7 by experiments. Interest-
ingly, both hypotheses are negated. We shall get back to this conclusion
in Section 7 in detail.

5.2. Multi-pretext-task learning

Doersch et al. [23] suggests that incorporating MTL in self-supervi-
sed pre-training can always improve the performance under the stan-
dard supervised training setup. Dong et al. [13] has further shown
that solving multiple pretext tasks can mitigate the task misalignment
between the pretext and downstream tasks. However, the effect of
simultaneously solving multiple pretext tasks on PSL remains unclear.

Hypothesis 2. Given a downstream partially supervised task, solving
multiple pretext tasks can improve the downstream task performance.

Concretely, let (𝑥𝑡, 𝑦𝑡) denote the pair of input and ground truth
labels for the pretext task 𝑡 ∈ 𝑝𝑟𝑒𝑡𝑒𝑥𝑡. The optimization goal of multi-
pretext-task learning can be defined as

𝑀𝑃𝑇𝐿 =
∑

𝑡∈𝑝𝑟𝑒𝑡𝑒𝑥𝑡

𝑤𝑡𝑡(𝑔𝑡𝜙◦𝑓𝜃(𝑥
𝑡), 𝑦𝑡), (3)

where 𝑡 is the loss term for the pretext task 𝑡 and 𝑤𝑡 is the correspond-
ing weight with ∑

𝑡∈𝑝𝑟𝑒𝑡𝑒𝑥𝑡 𝑤𝑡 = 1. Note, in Eq. (3), only 𝑓𝜃 is shared
across pretext tasks and each pretext task has its own task-dependent
prediction head.

5.3. Reverse vicinal risk minimization

[17] has shown that vicinal risk minimization (VRM) [25] can
benefit the partially supervised learning on multi-object images. We
further propose a pretext task based on VRM for PSMLC.

5.3.1. Training
In MixUp [25], the vicinal image �̃� is first generated by two ran-

domly selected unlabeled images 𝑥𝑖 and 𝑥𝑗 by a linear combination, as
shown in Eq. (4), where 𝜆 ∼ Beta(𝛼, 𝛼) is a MixUp hyperparameter.

�̃� = 𝜆𝑥𝑖 + (1 − 𝜆)𝑥𝑗 (4)

The corresponding labels 𝑦𝑖 and 𝑦𝑗 are linearly added in the same way
to generate a vicinal label.

�̃� = 𝜆𝑦𝑖 + (1 − 𝜆)𝑦𝑗 (5)

For VRM, the generated vicinal image and label pair are directly used
in supervised learning to improve model generalization.

In contrast to VRM, we reverse the MixUp process and design the
pretext task as predicting the MixUp hyperparameter 𝜆. Let the feature
extractor be 𝑓𝜃 and the prediction head 𝑔𝑟𝑣𝑟𝑚𝜙 . The optimization goal for
the pretext task is then a regression task:

𝑉 𝑅𝑀 = ‖𝑔𝑟𝑣𝑟𝑚𝜙 ◦𝑓𝜃(𝒙) − 𝜆‖2, (6)

where 𝒙 is simply a concatenation of (𝑥𝑖, 𝑥𝑗 , �̃�) alongside the channel
dimension. The pretext task is illustrated in Fig. 7.

5.3.2. Inference
In the inference phase, given an input image 𝑥𝑘, 𝒙 is then the con-

catenation of (𝑥𝑘, 𝑥𝑘, 𝑥𝑘). That is to say, the input image is replicated
three times. Note, in the whole training and inference process, there is
no involvement of ground truth label 𝑦 or vicinal label �̃�. Thus, this is
a self-supervised or unsupervised task. We denote this pretext task as
reverse vicinal risk minimization (RVRM). Similar to [15], the additional
computational costs caused by RVRM is trivial as Eq. (4) only involves
element-wise addition supported by broadcasting. We will see later in
Section 7.4 that this pretext task requires fewer computational costs
5

than the seminal baselines while obtaining comparable performance.
Fig. 7. Pretext task of reverse vicinal risk minimization. Given two randomly sampled
images and the generated vicinal images, the network is trained to predict the MixUp
hyperparameter 𝜆.

6. Experimental setup

The purposes of the experimental design are threefold. First, we aim
to understand the relationship between the pretext and downstream
tasks. Second, the first empirical study of the impact of self-supervised
pre-training on PSMLC is provided. Third, the hypotheses proposed in
Section 5 are discussed. It should be highlighted that the experiments in
this section are not designed to outperform the state-of-the-art. Instead,
the numerical results of the simulated experiments provide empirical
insight.

6.1. Data

We use multi-label thoracic disease classification as the partially
supervised downstream task. The public multi-label dataset of thoracic
conditions ChestX-ray14 [19] is used.  contains 104 unlabeled CXR
images3 and  contains 2200 partially labeled CXR images. For ,
we choose 11 common diseases among all 14 diseases, which are
infiltration, effusion, atelectasis, nodule, consolidation, pneumothorax, car-
diomegaly, fibrosis, pleural thickening, mass, and emphysema. For each
disease, we randomly sample 100 positive cases and 100 negative cases
as a balanced set.4 There is another independent test set  that contains
another 2200 partially labeled CXR images following the same sampling
strategy as .

6.2. Implementation

Following the setup of [37], DenseNet121 [38] is chosen as the
feature extractor backbone for all methods. The weighted loss is min-
imized by an Adam optimizer [39] with batch size 64. The learning
rate is fixed to be 10−2 for both the pre-training and the fine-tuning
stage. In the inference phase, 0.5 is set as the default threshold for
the predicted probability score. Following [37], the evaluation metric
is the area under the receiver operating characteristic (AUROC). For
each class of interest, AUROC is computed. Then, the mean of eleven
AUROCs is used to measure the overall learning performance, denoted
as mAUROC.

All experiments are conducted in PyTorch on an NVIDIA Tesla
V100. All chest X-ray images are resized to a fixed size of 224×224.
As a pre-processing step, instance normalization [40] is performed on
each chest X-ray image.

̂ 𝑖𝑗 =
𝑥𝑖𝑗 − 𝜇(𝑥)

𝜎(𝑥)
(7)

3 Note,  follows a long-tailed distribution due to inter-class imbalance.
We use this unlabeled dataset to illustrate the challenge of class imbalance in
pre-training.

4 We aim to exclude the negative effect caused by intra-class imbalance.
The other 3 diseases are too rare to create balanced sets.
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In Eq. (7), 𝑥 is an image, �̂� is the normalized image, (𝑖, 𝑗) is the position
f the pixel, and 𝜇 and 𝜎 are the mean and standard deviation of the
ixels of 𝑥.

.2.1. Proxy task affinity
We implement the proxy task affinity based on the linear classifi-

ation protocol (LCP) [8,9], which has been widely used to evaluate
he quality of the representations learned by SSL methods. Given

network backbone 𝑓𝜃 , e.g. a DenseNet121 without the last layer,
he weights of 𝑓𝜃 are first frozen and a randomly initialized fully-
onnected layer (i.e. 𝑔𝜙) is appended after 𝑓𝜃 as the classification head.
n the training phase, only the weights of the classification head are
pdated. Then, the classification performance (mAUROC) on the test
et (i.e.  in Definition 1) is used as the proxy evaluation for the learned
epresentations.

.2.2. Rotation prediction
The original image is rotated by {90×𝑖} degrees where 𝑖 is an integer

randomly sampled from a discrete uniform distribution {0, 1, 2, 3}. The
auxiliary prediction head 𝑔𝑟𝑜𝑡𝜙 is just the last layer of DenseNet121,
which is a fully-connected layer with 1024 input channels and 4 output
channels.

6.2.3. Masked image modeling
A 4 × 4 grid is first generated to split each input image into 16

patches. A patch is randomly selected out of 16 patches for each
image. This patch is masked out by replacing original pixel values with
zeros. The model 𝑔𝑚𝑖𝑚𝜙 ◦𝑓𝜃 is implemented as a fully-convolutional net-
work [41], where the auxiliary prediction head 𝑔𝑚𝑖𝑚𝜙 is a 2D transposed
convolutional layer with kernel size 64, stride size 32, dilation rate 1,
and padding size 16.

6.2.4. Instance discrimination
The pretext task with negative cosine similarity is implemented

as SimSiam.5 The 3-layer projector has the following architecture:
𝐹𝐶(1024, 1024) → 𝐵𝑁 → 𝑅𝑒𝐿𝑈 → 𝐹𝐶(1024, 1024) → 𝐵𝑁 → 𝑅𝑒𝐿𝑈 →

𝐹𝐶(1024, 2048) → 𝐵𝑁 , where 𝐹𝐶(𝑎, 𝑏) denotes a fully-connected layer
with 𝑎 input channels and 𝑏 output channels, BN denotes batch normal-
ization [42], and ReLU denotes a rectified linear unit [43]. The 2-layer
predictor has the following architecture: 𝐹𝐶(2048, 1024) → 𝐵𝑁 →

𝑅𝑒𝐿𝑈 → 𝐹𝐶(1024, 2048).
Previous studies on contrastive learning tend to focus on RGB

images [9]. Thus, a direct application of the data augmentation policy
adopted by these studies is not feasible as medical images are com-
monly grayscale images. To overcome this issue, we first project the
image from the grayscale domain to the standard RGB domain. After
data augmentation applied in the RGB domain (e.g. following [9]), we
project it back to the grayscale domain.

6.2.5. Multi-pretext-task learning
As discussed in Section 5.2, the DenseNet121 backbone is shared

across different pretext tasks and each pretext task has its own task-
dependent prediction head. Equal weights are adopted for losses in
Eq. (3).

6.2.6. Reverse vicinal risk minimization
The implementation of RVRM is based on the original implementa-

tion of MixUp.6 The two shape parameters of the Beta distribution are
both 1 in this work.

5 https://github.com/facebookresearch/simsiam
6 https://github.com/facebookresearch/mixup-cifar10
6

o

7. Empirical analysis

7.1. Analysis on task relationships

Three pretext tasks are considered under the LCP, which are ro-
tation prediction (ROT), masked image modeling (MIM), and instance
discrimination (InstDis). As the feature extractor is fixed under the
LCP, only the prediction head for the downstream task, namely PSMLC
in this work, is fine-tuned. The mAUROC over 11 classes is used as
the proxy evaluation performance to measure the proxy task affinity
between the pretext and downstream tasks.

Three pretext tasks are pre-trained for 400 epochs. The learning
curves (i.e. the loss for each pretext task) are presented in Figs. 8(a)–
8(c), where all losses converge. In the meantime, the corresponding
learning performance under LCP is also depicted in Fig. 8(d). The
reported number is the mean of mAUROCs over three random seeds.

There are three important findings. First, the linear classification
performance suggests that MIM has a larger proxy task affinity with
PSMLC than ROT and InstDis with the current experimental setup.
Second, the sign of the proxy task affinity for a pretext task and a down-
stream task is not fixed. ROT and InstDis can achieve lower linear
classification performance than RandIni (0 epochs) with insufficient
pre-training or too much pre-training. This suggests that the proxy
task affinity is dependent on the number of training epochs, which
can be linked with underfitting and overfitting. Last but not least, a
larger number of pre-training epochs does not necessarily improve the
performance, which could be dependent on the size and quality of the
pre-training datasets.

7.2. Impact of self-supervised pre-training

To better understand the impact of self-supervised pre-training on
PSMLC, we follow a similar experimental setup as in Section 7.1. But
this time, we evaluate the performance of downstream tasks directly
(c.f.LCP). That is to say, the feature extractor backbone is fine-tuned
jointly with the prediction head. In this section, the two control vari-
ables are the number of partially labeled instances for each class and
the number of pre-training epochs. As was done in the previous section,
mAUROCs under three random seeds are considered as the downstream
task performance for each pretext task. The reported numbers are
depicted in Fig. 9 and Fig. 10, respectively. In addition to RandIni,

randomly initialized baseline fine-tuned with full labels is included,
enoted as RandIni-Full.

There are five important findings. First, a higher proxy task affinity
oes not always lead to a higher downstream task performance, which
nvalidates Hypothesis 1. A good example is MIM, which has the
ighest task affinity among the three pretext tasks (Fig. 8(d)). MIM
ends to have lower performance than the other two pretext tasks
ith small 𝑛. Similarly, even with a lower task affinity than MIM,
nstDis can achieve competitive or even better results. We conclude

hat proxy task affinity is not a reliable tool when the downstream task is
artially supervised (RQ1). Second, PSL baselines can even outperform
he supervised learning baseline with full labels (RandIni-Full) in
ig. 10(d). This is an interesting phenomenon as a supervised learning
aseline with full labels is commonly considered as Oracle in the
iterature [18], which is an upper bound for the downstream task
erformance. A reasonable explanation is that full labels introduce class
mbalance. Note, the designed partial labels experiment has a balanced
lass distribution. Though full labels have ten times more class-wise
abels, most of the labels belong to negative cases and common diseases
ave more positive cases than uncommon diseases. Third, given 𝑛, more
re-training epochs can lower the downstream task performance. This
ould be caused by the pre-training overfitting, i.e. the feature extractor
verfits to the pretext task and exacerbates the task misalignment.
ourth, though all three pretext tasks can improve the performance

f RandIni, there is no ‘‘best’’ pretext task. Fifth, the performance

https://github.com/facebookresearch/simsiam
https://github.com/facebookresearch/mixup-cifar10
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Fig. 8. (a)–(c) Learning curves for three different pretext tasks. The losses for all pretext tasks converge. (d) Linear classification performance for three different pretext tasks. The
reported AUROCs are the mean mAUROCs over three random seeds. Best viewed with digital zoom.
Fig. 9. Downstream task performance with different numbers of partially labeled instances for each class (𝑛) given specific pre-training epochs. The reported AUROCs are the
mean mAUROCs over three random seeds. Best viewed with digital zoom.
Table 1
Class-wise downstream task performance for pretext tasks. The reported numbers are the mean and standard deviation of AUROCs over three
random seeds. Blue denotes the highest AUROC for each class (each row).

Model

RandIni ROT MIM InstDis RVRM RandIni-Full

Infiltration 0.563 ± 0.012 0.568 ± 0.017 0.597 ± 0.008 0.603 ± 0.022 0.583 ± 0.009 0.580 ± 0.054
Effusion 0.563 ± 0.017 0.577 ± 0.008 0.623 ± 0.008 0.650 ± 0.021 0.617 ± 0.021 0.632 ± 0.082
Atelectasis 0.532 ± 0.002 0.602 ± 0.028 0.602 ± 0.012 0.585 ± 0.047 0.595 ± 0.014 0.605 ± 0.043
Nodule 0.567 ± 0.031 0.583 ± 0.018 0.627 ± 0.010 0.598 ± 0.033 0.585 ± 0.015 0.508 ± 0.012
Consolidation 0.570 ± 0.011 0.632 ± 0.020 0.647 ± 0.014 0.665 ± 0.036 0.637 ± 0.035 0.548 ± 0.034
Pneumothorax 0.578 ± 0.042 0.628 ± 0.012 0.620 ± 0.012 0.595 ± 0.007 0.638 ± 0.023 0.532 ± 0.025
Cardiomegaly 0.598 ± 0.029 0.602 ± 0.006 0.625 ± 0.004 0.628 ± 0.040 0.637 ± 0.002 0.588 ± 0.035
Fibrosis 0.450 ± 0.025 0.405 ± 0.008 0.373 ± 0.008 0.438 ± 0.047 0.448 ± 0.041 0.518 ± 0.043
Pleural Thickening 0.622 ± 0.012 0.625 ± 0.016 0.632 ± 0.012 0.628 ± 0.049 0.678 ± 0.033 0.557 ± 0.018
Mass 0.543 ± 0.026 0.560 ± 0.018 0.610 ± 0.010 0.598 ± 0.022 0.593 ± 0.041 0.582 ± 0.043
Emphysema 0.613 ± 0.020 0.632 ± 0.020 0.648 ± 0.014 0.635 ± 0.047 0.615 ± 0.021 0.530 ± 0.012
Average 0.564 ± 0.016 0.583 ± 0.013 0.600 ± 0.012 0.602 ± 0.032 0.602 ± 0.016 0.562 ± 0.030
7
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Fig. 10. Downstream task performance with different numbers of pre-training epochs given specific numbers of partially labeled instances for each class (𝑛). The reported AUROCs
are the mean mAUROCs over three random seeds. Best viewed with digital zoom.
Fig. 11. (a) Linear classification performance of multi-pretext-task learning. (b) Learning curve for the pretext task based on VRM. (c) Linear classification performance of the
pretext task based on VRM. (d) Downstream task performance of the pretext task based on VRM with a different number of pre-training epochs given 𝑛. The reported AUROCs
are the mean mAUROCs over three random seeds. Best viewed with digital zoom.
Table 2
Class-wise downstream task performance for MPTL. The reported numbers are the mean and standard deviation of AUROCs
over three random seeds. Blue denotes the highest AUROC for each class among MPTL baselines.
Infiltration Model

ROT-MIM ROT-INS MIM-INS ROT-MIM-INS RandIni-Full
0.607 ± 0.002 0.578 ± 0.010 0.603 ± 0.014 0.603 ± 0.008 0.580 ± 0.054

Effusion 0.657 ± 0.014 0.665 ± 0.011 0.645 ± 0.031 0.631 ± 0.006 0.632 ± 0.082
Atelectasis 0.600 ± 0.008 0.625 ± 0.004 0.588 ± 0.044 0.617 ± 0.002 0.605 ± 0.043
Nodule 0.645 ± 0.011 0.643 ± 0.005 0.615 ± 0.011 0.597 ± 0.044 0.508 ± 0.012
Consolidation 0.645 ± 0.015 0.665 ± 0.015 0.650 ± 0.011 0.643 ± 0.019 0.548 ± 0.034
Pneumothorax 0.623 ± 0.002 0.630 ± 0.029 0.630 ± 0.011 0.642 ± 0.018 0.532 ± 0.025
Cardiomegaly 0.657 ± 0.024 0.648 ± 0.006 0.650 ± 0.011 0.641 ± 0.008 0.588 ± 0.035
Fibrosis 0.373 ± 0.018 0.455 ± 0.011 0.373 ± 0.002 0.400 ± 0.025 0.518 ± 0.043
Pleural Thickening 0.650 ± 0.011 0.640 ± 0.018 0.652 ± 0.012 0.646 ± 0.013 0.557 ± 0.018
Mass 0.618 ± 0.008 0.627 ± 0.002 0.580 ± 0.004 0.613 ± 0.009 0.582 ± 0.043
Emphysema 0.663 ± 0.006 0.667 ± 0.005 0.645 ± 0.015 0.677 ± 0.006 0.530 ± 0.012
Average 0.613 ± 0.007 0.622 ± 0.001 0.603 ± 0.011 0.610 ± 0.001 0.562 ± 0.030
8
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Fig. 12. Downstream task performance of multi-pretext-task learning with a different number of pre-training epochs. The reported AUROCs are the mean mAUROCs over three
random seeds. Best viewed with digital zoom.
difference between different pretext tasks are diminished when labeled
data for the downstream tasks get large. As shown in Fig. 9, there are
clearly larger performance gaps with small 𝑛 than large 𝑛 for the pretext
tasks. Thus, more partially labeled data can lead to diminishing returns.
A similar phenomenon is also reported in the SSL literature [8] with
fully labeled data.

The goal of this work is to understand the role of SSL for the
downstream tasks. According to the empirical findings in SSL, the
difference between the performance of different SSL baselines will be
diminished when labeled data for the downstream tasks get larger. To
support this claim, we use different number of partially labeled images
for fine-tuning. The results are shown in Fig. 9 in the manuscript.
SSL baselines clearly have larger performance gaps with small 𝑛 than
large 𝑛, which suggests that more partially labeled data can lead to
diminishing returns.

As shown in Figs. 9 and 10, PSMLC is a challenging downstream
task. The three considered pretext tasks represent three families of
state-of-the-art SSL methods that succeed in multi-class classification.
In contrast to multi-class classification on iconic images, multi-label
classification has multiple objects at multiple locations in the same
image [17]. Unfortunately, there is no existing efficient pretext task
that is designed for MLC or PSMLC. As a complement to RQ1, we
provide three general suggestions for choosing or designing pretext
tasks. First, for downstream tasks with data scarcity, long pre-training
should be avoided. An early stopping strategy can be adopted based
on the learning curves. The best-performing pre-training epochs seem
to overlap with the epochs when the loss starts to converge. Second,
among the discussed three pretext tasks, InstDis gives the most
robust performance when data scarcity is not severe in the downstream
task and MIM gives the most robust performance under severe data
scarcity. Third, ROT has the worse overall performance when compared
with MIM and InstDis. Meanwhile, ROT also has a lower proxy
task affinity and learning difficulty (easy to converge) compared to
MIM and InstDis. This suggests that when designing a pretext task,
the proxy task affinity and learning difficulty should be taken into
consideration. The proxy task affinity under small pre-training epochs
and the learning difficulty should not be low. For RQ2, though self-
supervised pre-training has the potential to improve the performance
of the downstream tasks, the choice of the pretext task, the number of
pre-training epochs, and the number of partial labels in the fine-tuning
stage are important factors to consider.
9

Within the downstream task (partially supervised multi-label classi-
fication), each sub-task (class) should also have its own learning diffi-
culty. This paragraph aims to understand the impact of self-supervised
pre-training on each class. Given 𝑛 = 200, the highest downstream
task performance is presented for all five baselines in Table 1. Similar
to the findings in the previous section, MIM and InstDis are better
choices than ROT. InstDis achieves the highest AUROCs for most
classes. MIM comes second and has the lowest standard deviations most
of the time. RandIni-Full only significantly outperforms MIM and
InstDis on fibrosis, a challenging disease for PSMLC. The results
in Table 1 also suggest that the performance of an MLC task can be
improved by dropping a few negative labels (or weighted sampling)
and transforming the problem into a PSMLC task. It is also worth
mentioning that we focus more on the average performance (the bot-
tom row in Table 1). Note, the class distribution is agnostic in the
unlabeled pre-training set. [18] shows that the class distribution in
the pre-training data can make a difference on the downstream task
performance in a class-specific fashion. Thus, the average performance
can better represent the overall performance.

7.3. Effect of multi-pretext-task learning

Following the discussion in Section 5.2, multiple pretext tasks are
pre-trained together to understand the interactions between pretext
tasks. As the first step, linear classification performance is reported
under the LCP in Section 7.1. The results are shown in Fig. 11(a). In
contrast to single pretext tasks (Fig. 8(d)), multi-pretext-task learning
(MPTL) efficiently improves proxy task affinity and robustness. ROT-
MIM, ROT-INS, and ROT-MIM-INS all consistently outperform the
RandIni baseline (MIM-INS achieves slightly lower performance
at 200 epochs), which supports Hypothesis 2, and the overfitting
phenomenon with a large number of pre-training epochs seems to be
efficiently alleviated.

In addition, the downstream task performance of MPTL is pre-
sented in Fig. 12, where the feature extractor and prediction head are
fine-tuned jointly. MPTL does improve the performance (the highest
mAUROC that a model of interest can achieve under a determined
experimental setup) over single pretext tasks when enough partially
labeled examples (𝑛) are available. However, one should also notice
that MPTL exposes disadvantages when 𝑛 is small, e.g. ROT-MIM-
INS with 𝑛 = 50 in Fig. 12(a). Interestingly, ROT-MIM-INS does not
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achieve the highest performance when compared to ROT-MIM, ROT-
INS, and MIM-INS. This suggests more pretext tasks might not always
elp. Similarly, even though MIM and INS perform well alone, MIM-
INS, the combination of MIM and INS, does not show the best result.

he class-wise mAUROCs for MPTL are summarized in Table 2 based on
he best-performing epochs given 𝑛 = 200. The empirical findings sug-
est that, while MPTL can improve the downstream task performance,
dditional attention should be paid to the size of fine-tuning dataset and
hoice of pretext tasks. Now, we are confident to provide an affirmative
nswer to RQ3. However, one should also realize the trade-off between
he performance gain and additional computational cost when adopting
PTL.

Last but not least, it is worth mentioning that a brute-force grid
earch can find the optimal weight assignment empirically and how to
ind the optimal weight assignment (e.g. by evolutionary algorithm [44]
r Bayesian optimization [45]) is beyond the scope of this work. Here,
or simplicity, equal weights are adopted just to illustrate the effect of
PTL.

.4. Evaluation of reverse vicinal risk minimization

We denote the proposed pretext task as RVRM. The learning curve
nd the linear classification performance are presented in Fig. 11(b)
nd Fig. 11(c), respectively. The loss for RVRM does converge and
RVRM can have positive proxy task affinity. The overall downstream
task performance of RVRM and the class-wise performance are pre-
ented in Fig. 11(d) and Table 1, respectively. In contrast to Fig. 10,
VRM shows competitive or even superior performance compared to
ther single pretext task baselines. RVRM also suffers from overfitting

with long pre-training. However, one should notice that, compared
with MIM and INS, the two best-performing baselines, RVRM achieves
ompetitive performance but requires much less computational cost,7
.g. RVRM does not require expensive transposed convolution operations
s MIM or additional memory footprint or network architecture as INS.

Meanwhile, RVRM outperforms ROT at different scales with a similar
computational cost.

8. Conclusion

This work serves as the first empirical study of self-supervised
pre-training for partially supervised multi-label classification and the
empirical results pose a new research direction on label-efficient learn-
ing. We make a concrete step towards understanding the relationship
between the pretext and downstream tasks and propose a novel pre-
text task reverse vicinal risk minimization which is more robust and
computation-efficient than alternative seminal self-supervised tasks.

Meanwhile, we note that the current empirical study is based on
multi-label classification on medical images. In the future, we will
evaluate the empirical results on more challenging tasks such as object
detection and segmentation with class imbalance.
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