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A singular k-tuple of a tensor T of format (n1, . . . , nk) is essentially 
a complex critical point of the distance function from T constrained 
to the cone of tensors of format (n1, . . . , nk) of rank at most one. 
A generic tensor has finitely many complex singular k-tuples, and 
their number depends only on the tensor format. Furthermore, if 
we fix the first k − 1 dimensions ni , then the number of singular 
k-tuples of a generic tensor becomes a monotone non-decreasing 
function in one integer variable nk , that stabilizes when (n1, . . . , nk)

reaches a boundary format.
In this paper, we study the linear span of singular k-tuples of 
a generic tensor. Its dimension also depends only on the tensor 
format. In particular, we concentrate on special order three tensors 
and order-k tensors of format (2, . . . , 2, n). As a consequence, if 
again we fix the first k − 1 dimensions ni and let nk increase, we 
show that in these special formats, the dimension of the linear 
span stabilizes as well, but at some concise non-sub-boundary 
format. We conjecture that this phenomenon holds for an arbitrary 
format with k > 3. Finally, we provide equations for the linear 
span of singular triples of a generic order three tensor T of 
some special non-sub-boundary format. From these equations, we 
conclude that T belongs to the linear span of its singular triples, 
and we conjecture that this is the case for every tensor format.
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1. Introduction

A singular k-tuple of an order-k tensor is the generalization of the notion of singular pair of a 
rectangular matrix. Singular k-tuples preserve important properties of singular pairs. For instance, in 
the problem of minimizing the distance between a given tensor T and the algebraic variety of rank-
one tensors, the singular k-tuples of T correspond to the constrained critical points of the distance 
function. Therefore, they essentially provide an answer to the so-called best rank-one approximation 
problem for T (Lim, 2005).

In Definition 4.1, we introduce the projective variety ZT of rank-one tensors corresponding to 
the singular k-tuples of a given tensor T . When T is sufficiently generic, the variety Z T is zero-
dimensional and consists of simple points. What is more, the variety Z T is degenerate, namely it is 
contained in some proper subspace of the ambient tensor space. Therefore, our primary goal is to 
study the projective span 〈ZT 〉 of the set ZT .

Recently, the linear space 〈ZT 〉 has been compared to another important linear space associated 
with T . In particular, in Ottaviani and Paoletti (2015, Section 5.2) the authors introduced the singular 
space HT of a tensor T . In Definition 4.2 we call it the critical space as in Draisma et al. (2018, 
Definition 2.8). Due to its relevance in Euclidean distance optimization, more recently Ottaviani (2022)
defined critical spaces of algebraic varieties invariant for the action of a Lie subgroup of the orthogonal 
group. In few words, the equations of H T can be obtained from the equations defining singular k-
tuples without restricting to rank-one solutions.

In Draisma et al. (2018, Proposition 2.12), the authors show that the critical space H T of a generic 
tensor T contains all the best rank-k approximations of T . Furthermore, they show in Draisma et al. 
(2018, Proposition 3.6) that, if the ambient tensor space is of sub-boundary format (see Definition 2.6), 
then the projectivization of HT coincides with the span 〈ZT 〉 of the singular k-tuples of T . In partic-
ular, this identification makes the problem of writing equations for 〈Z T 〉 very easy. As an immediate 
consequence, the tensor T itself belongs to 〈ZT 〉.

The techniques used in Draisma et al. (2018) are nontrivial to extend when the boundary format 
condition is relaxed. More precisely, the vanishing of the cohomology spaces in Draisma et al. (2018, 
Lemma 3.2) does not hold anymore. Nevertheless, the authors observe that still T ∈ 〈Z T 〉 in the tensor 
format (2, 2, 4), although the subspace 〈ZT 〉 has codimension one in the projectivized critical space. 
This suggests that, beyond the boundary format, the singular k-tuples satisfy extra linear relations 
than the ones of HT .

Our motivating problem is finding which are the extra linear relations satisfied by the singular 
k-tuples when the boundary format condition is dropped. On one hand, we perform the cohomology 
computations presented in Draisma et al. (2018) for some “defective” tensor formats to estimate the 
dimensional gap between 〈ZT 〉 and the projectivization of HT . On the other hand, in some examples 
we provide explicitly the equations of 〈ZT 〉 which are linearly independent from the ones of H T , and 
our cohomology computations allow us to guarantee that the new equations are sufficient to obtain 
〈ZT 〉. This part of the paper is closely related to the characterization of determinantal relations among 
singular k-tuples that is studied in the recent paper (Beorchia et al., 2022).

More precisely, in this paper we present results for the order � + 1 tensor format (2, . . . , 2, n)

as well as for the order three tensor format (2, 3, n). We are currently working on generalizations 
of the presented results to any format. In Lemmas 5.2, 5.3 and 5.4 we study the vanishing of the 
cohomology spaces used in Draisma et al. (2018) for the order � + 1 tensor format (2, . . . , 2, n) and 
we extend their results beyond the boundary format. Our first main result is Theorem 5.7, where we 
show that for � ≥ 4 and n = � + 2 it still holds that H T = 〈ZT 〉. With similar techniques we derive 
Theorem 5.8 that estimates the dimension of 〈ZT 〉 in the order three format (2, 3, n). Furthermore, 
in this format and in the format (2, 2, n) we study the extra relations satisfied by 〈Z T 〉 that give its 
defective dimension when compared with the critical space H T for the tensor formats (2, 2, n) and 
(2, 3, n). This allows us to show in Theorem 6.4 that T ∈ 〈ZT 〉. We confirm numerically our results 
with a Julia code for the computation of singular k-tuples for any tensor format.

Our results have another interpretation. The second author showed in Turatti (2022, Theorem 1.3)
that the generic fiber of the rational map sending a tensor T to the zero dimensional scheme of 
its singular k-tuples consists only of T , provided that the boundary format condition is satisfied. In 
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Theorem 6.6 we extend this fact to the above-mentioned “defective” tensor formats assuming Con-
jecture 6.5 holds. Our argument relies only on the fact that T ∈ 〈ZT 〉. This shows that solving the 
membership problem T ∈ 〈ZT 〉 leads to a full generalization of Turatti (2022, Theorem 1.3). Corol-
lary 6.7 gives a concrete generalization of Turatti (2022, Theorem 1.3) for some tensor formats.

Our paper is structured as follows. In Section 2 we set up our notations and recall the definition 
of singular tuples of tensors as well as some useful known results. In Section 3 we describe the 
cohomology tools used to compute the dimension of the span of singular tuples. In Section 4 we 
introduce the span of singular tuples as well as the critical space of a tensor, and we review the state 
of the art about their relations. Section 5 is the core of our paper, where we compute the dimension of 
the span of singular tuples beyond the boundary format. In Section 6 we derive explicit equations for 
the span of singular tuples in special formats, which allow us to conclude that, in those formats, the 
tensor T belongs to the span of its singular tuples. Finally, in Section 7 we present code implemented 
in Julia for the numerical computation of the singular vector tuples of a tensor for any format, we 
also provide a couple of examples that hopefully will motivate further research on this topic.

2. Preliminaries on singular tuples of tensors

Notation. We often use the shorthand [k] to denote the set of indices {1, . . . , k}. Throughout the 
paper, if not specified we denote by j a vector ( j1, . . . , jk) of k variables and we set |j| := j1 +· · ·+ jk . 
Define 1 = (1, . . . , 1) ∈Nk and, for m ∈N , let m1 = (m, . . . , m) ∈Nk .

For every i ∈ [k] we consider an ni -dimensional vector space V i over the field F = R or F = C. 
If F = R, then we prefer the notation V R

i . We denote by V the tensor product 
⊗k

i=1 V i . This is the 
space of tensors of format n = (n1, . . . , nk).

Definition 2.1. A tensor T ∈ V is of rank-one (or decomposable) if T = x1 ⊗ · · · ⊗ xk for some vectors 
x j ∈ V j for all j ∈ [k]. Tensors of rank at most one in V form the affine cone over the Segre variety of 
format n1 × · · · × nk , that is the image of the projective morphism

Seg : P (V 1) × · · · × P (Vk) → P (V )

defined by Seg([x1], . . . , [xk]) := [x1 ⊗ · · · ⊗ xk] for all non-zero x j ∈ V j .

Throughout the paper, we adopt the shorthand P = Seg(P (V 1) ×· · ·×P (Vk)) to indicate the Segre 
variety introduced before. Furthermore, we abuse notation identifying a tensor T ∈ V with its class in 
the projective space P (V ).

On each projective space P (V i) we fix a smooth projective quadric hypersurface Q i = V(qi), where 
qi is the homogeneous polynomial in C[xi,1, . . . , xi,ni ]2 associated to a positive definite real quadratic 
form qR

i : V R
i → R. We refer to Q i as the isotropic quadric in the i-th factor P (V i). We will always 

assume that qR
i (xi) = x2

i,1 + · · · + x2
1,ni

for all i ∈ [k].

Definition 2.2. The Frobenius (or Bombieri-Weyl) inner product of two complex decomposable tensors 
T = x1 ⊗ · · · ⊗ xk and T ′ = y1 ⊗ · · · ⊗ yk of V is

qF (T , T ′) := q1(x1,y1) · · ·qk(xk,yk) , (2.1)

and it is naturally extended to every vector in V . We identify all the vector spaces with their duals 
using the Frobenius inner product.

Definition 2.3. Let T ∈ V . A singular (vector) k-tuple of T is a k-tuple (x1, . . . , xk) of non-zero vectors 
xi ∈ V i such that

rank

(
T (x1 ⊗ · · · ⊗ xi−1 ⊗ xi+1 ⊗ · · · ⊗ xk)

xi

)
≤ 1 ∀ i ∈ [k] , (2.2)
3
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where

T (x1 ⊗ · · · ⊗ xi−1 ⊗ xi+1 ⊗ · · · ⊗ xk) :=
∑

j�∈[n�]
t j1··· ji ··· jk x1, j1 · · · x̂i, ji · · · xk, jk (2.3)

is the tensor contraction of T = (t j1,..., jk ) with respect to x1 ⊗ · · · ⊗ xi−1 ⊗ xi+1 ⊗ · · · ⊗ xk . The symbol 
x̂i, ji in (2.3) means that the variable xi, ji is omitted in the product. If we interpret T as a multi-
homogeneous polynomial in the coordinates of each vector xi , then the previous tensor contraction 
corresponds to the gradient ∇i T with respect to the vector xi = (xi,1, . . . , xi,ni ).

A singular k-tuple (x1, . . . , xk) is normalized if qi(xi) = 1 for all i ∈ [k]. A singular k-tuple 
(x1, . . . , xk) is isotropic if qi(xi) = 0 for some i ∈ [k].

The number of singular k-tuples of a tensor T of format n is constant if the tensor T is generic. It 
is computed in the following theorem.

Theorem 2.4. (Friedland and Ottaviani, 2014, Theorem 1) Let T ∈ V be a generic tensor. Then T has exactly 
ed(n) simple singular tuples, where ed(n) equals the coefficient of the monomial hn1−1

1 · · ·hnk−1
k in the poly-

nomial

k∏
i=1

ĥni
i − hni

i

ĥi − hi
, ĥi :=

k∑
j �=i

h j .

The number ed(n) coincides with the ED degree of the Segre variety P ⊂ P (V ) with respect to the Frobenius 
inner product in V .

We refer to Draisma et al. (2016) for more details on ED degrees of algebraic varieties.

Definition 2.5. A tensor T ∈ V is said to be concise if there is no proper linear subspace Li such that 
T ∈ V 1 ⊗ · · · ⊗ Li ⊗ · · · ⊗ Vk for every i ∈ [k]. The tensor space V is concise if there exists a tensor 
T ∈ V such that T is concise.

If V is non-concise, then for every tensor T ∈ V there exist linear subspaces Li ⊂ V i such that 
T ∈ L = ⊗k

i=1 Li and L is a concise tensor space. Moreover, it is a classical result that the space V is 
concise if and only if ni ≤ ∏

j �=i n j for every i ∈ [k].
Theorem 2.4 tells us that the number ed(n) of singular k-tuples of a generic tensor is finite, and its 

value depends only on the format n. To study the number ed(n) and later the linear span of singular 
k-tuples, we need to introduce the following tensor format terminology.

Definition 2.6. Consider a tensor space V of format n = (n1, . . . , nk). Then n is

(1) a sub-boundary format if for all i ∈ [k] we have ni ≤ 1 + ∑
j �=i(n j − 1).

(2) a boundary format if for some i ∈ [k] we have ni = 1 + ∑
j �=i(n j − 1).

(3) a concise format if for all i ∈ [k] we have ni ≤ ∏
j �=i n j . Otherwise we say that n is a non-concise 

format. In particular, if n is a non-concise format, then for every tensor T ∈ V there exists a tensor 
subspace V ′ ⊂ V of concise format n′ = (n′

1, . . . , n
′
k) such that T ∈ V ′ .

We recall from Gel’fand et al. (1994, Chapter 1) the notion of dual variety of a projective variety.

Definition 2.7. Let X ⊂P (W ) be a projective variety, where dim(W ) = n. Its dual variety X∨ ⊂P (W ∗)
is the closure of all hyperplanes tangent to X at some smooth point. The dual defect of X is the 
natural number δX := n − 2 − dim(X∨). A variety X is said to be dual defective if δX > 0. Otherwise, it 
is dual non-defective. When X = P (W ), taken with its tautological embedding into itself, X∨ = ∅ and 
codim(X∨) = n.
4
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Of particular interest is the characterization of non-defectiveness of the Segre variety P ⊂ P (V )

given in the following result.

Theorem 2.8. (Gel’fand et al., 1994, Chapter 14, Theorem 1.3) Let P ⊂ P (V ) be the Segre variety of format 
n = (n1, . . . , nk). Then P is dual non-defective if and only if V is of sub-boundary format.

Definition 2.9. Let P ⊂ P (V ) be the Segre variety of format n = (n1, . . . , nk). When P is dual non-
defective, the polynomial equation defining the hypersurface P∨ ⊂ P (V ∗) (up to scalar multiples) 
is called the hyperdeterminant of format n and is denoted by Det. The hyperdeterminant of format 
n = (n, . . . , n) is said to be hypercubical.

Suppose now that, given a tensor format n = (n1, . . . , nk), the last dimension nk is sent to infinity. 
One verifies from Theorem 2.4 that the value ed(n) stabilizes as long as nk becomes equal to n1 +
· · ·+nk−1, namely when n becomes a boundary format. This combinatorial phenomenon has a deeper 
geometric counterpart, which is established by the following theorem.

Theorem 2.10. (Ottaviani et al., 2021, Theorem 4.13) Let N = 1 + ∑k−1
i=1 (ni − 1) and m ≥ N. Let Det be 

the hyperdeterminant in the boundary format (n1, . . . , nk−1, N). Consider a tensor T ∈ ⊗k−1
i=1 V i ⊗CN+1 ⊂⊗k−1

i=1 V i ⊗Cm+1 with Det(T ) �= 0. Then the critical points of T on the Segre variety 
∏k−1

i=1 P (V i) ×P (Cm+1)

lie in the subvariety 
∏k−1

i=1 P (V i) ×P (CN+1).

We know that the number of singular k-tuples of a tensor of format n = (n1, . . . , nk) stabilizes 
for sufficiently large nk , more precisely when n becomes a boundary format. This implies that also 
the linear span of singular k-tuples stabilizes for sufficiently large nk . It is natural to ask when exactly 
this stabilization occur. In particular, in the upcoming sections we will address the following question: 
does the dimension of the linear span defined by the singular tuples stabilize at a boundary format? We will 
see that the answer is negative for many formats. Furthermore, we will observe that the dimension 
of this linear span will eventually stabilize for some value of nk such that n is neither a boundary 
format nor the last concise format.

3. Cohomological preliminaries

We recall some classical concepts and results that we apply throughout the paper. We refer to 
Weyman (2003) for more details.

Notation. Let P be the Segre variety of Definition 2.1. For every i ∈ [k], we consider the projection 
πi : P → P (V i). Furthermore, we denote by Qi the quotient bundle on P (V i). The fiber of Qi over 
[xi] ∈ P (V i) is V i/〈xi〉. For any vector bundle B on P , we use the shorthand B(1) to denote the 
tensorization B ⊗O(1) = B ⊗O(1, . . . , 1).

In general, if X ⊂ P (W ) is any projective variety and B is a vector bundle on X , for all i ≥ 0 we 
denote by Hi(X, B) the i-th cohomology group of B. If it is clear from the context, we also use the 
shorthand Hi(B) and we call hi(B) := dim(Hi(B)).

Theorem 3.1 (Künneth’s formula). Consider a vector space V of order-k tensors and the Segre variety P ⊂
P (V ). For all i ∈ [k] let Bi be a vector bundle on P (V i). Then for all q ∈Z≥0

Hq

(
P ,

k⊗
i=1

π∗
i Bi

)
∼=

⊕
|j|=q

k⊗
i=1

H ji (P (V i),Bi) . (3.1)

Let G be a semisimple simply connected group, let P ⊂ G be a parabolic subgroup. Let �+ be 
the set of positive roots of G . Let δ = ∑

λi be the sum of all the fundamental weights and let λ be 
5
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a weight. Let Eλ be the homogeneous bundle arising from the irreducible representation of P with 
highest weight λ and (·, ·) be the Killing form.

Definition 3.2. The fundamental Weyl chamber is the convex set

C = {λ is a weight | (λ,α) ≥ 0, ∀ α ∈ �+}. (3.2)

Definition 3.3. The weight λ is called singular if there exists a root α ∈ �+ such that (λ, α) = 0. 
Otherwise, if (λ, α) �= 0 for all the roots α ∈ �+ , we say that λ is regular of index p if there exist 
exactly p roots α1, . . . , αp ∈ �+ such that (λ, α) < 0.

Theorem 3.4 (Bott). The following are true:

(1) If λ + δ is singular, then Hi(G/P , Eλ) = 0 for all i.
(2) If λ + δ is regular of index p, then Hi(G/P , Eλ) = 0 for i �= p. Furthermore H p(G/P , Eλ) = G w(λ+δ)−δ , 

where w is the unique element of the fundamental Weyl chamber of G which is congruent to λ + δ under 
the action of the Weyl group.

The next proposition is a direct consequence of Theorem 3.4.

Proposition 3.5 (Bott’s formulas). Let �r
m(d) be the O(d)-twisted sheaf of differential r-forms on an m-

dimensional projective space. For q, m, r ∈Z≥0 and d ∈Z it holds:

hq(�r
m(d)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(d+m−r

d

)(d−1
r

)
if q = 0 ≤ r ≤ m and d > r

1 if 0 ≤ q = r ≤ m and d = 0;(−d+r
−d

)(−d−1
m−r

)
if q = m ≥ r ≥ 0 and d < r − m

0 otherwise.

(3.3)

4. The span of singular tuples and the critical space of a tensor

Next, we introduce the most important subset of rank-one tensors of this paper.

Definition 4.1. Consider a tensor T ∈ V . Then

ZT := {[x1 ⊗ · · · ⊗ xk] ∈ P (V ) | (x1, . . . ,xk) is a singular k-tuple of T } . (4.1)

For a generic T ∈ V we have dim(ZT ) = 0 and its cardinality |ZT | equals the ED degree of the 
Segre variety P computed by the Friedland-Ottaviani formula of Theorem 2.4. Throughout the paper 
we compare the projective span 〈ZT 〉 with another important tensor subspace which we recall in the 
next definition.

Definition 4.2. The critical space HT of a tensor T ∈ V is the linear subspace of V defined by the 
equations (in the unknowns zi1 ···ik that serve as linear functions on V )∑

i�∈[n�]

(
ti1··· p ··· ik zi1···q ··· ik − ti1···q ··· ik zi1··· p ··· ik

) = 0 where 1 ≤ p < q ≤ n� and � ∈ [k]. (4.2)

The equations in (4.2) are obtained after computing the two by two minors of the matrix in 
(2.2) and substituting the relations z j1 ··· jk = x1, j1 · · · xk, jk . In particular, the equations of HT are linear 
relations among the elements of ZT , thus in general 〈ZT 〉 ⊂ P (HT ). Another immediate observation 
is that T always belongs to HT , as its coordinates always satisfy the equations in (4.2). We recall a 
result on the dimension of the critical space.
6
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Proposition 4.3. (Ottaviani and Paoletti, 2015, Proposition 5.6) Consider a tensor T ∈ V of format n =
(n1, . . . , nk). Assume n1 ≤ · · · ≤ nk and let D = ∏k−1

i=1 ni . The dimension of the critical space H T ⊂ V is{∏k
i=1 ni − ∑k

i=1

(ni
2

)
for nk ≤ D(D+1

2

) − ∑k−1
i=1

(ni
2

)
for nk ≥ D .

(4.3)

Proposition 4.4. (Draisma et al., 2018, Proposition 3.6) Consider a generic tensor T in a tensor space V of 
sub-boundary format. Then 〈ZT 〉 =P (HT ).

Following up Proposition 4.4, in Draisma et al. (2018, Remark 3.7) the authors observed that the 
containment 〈ZT 〉 ⊂ P (HT ) may become strict beyond the boundary format. Hence they posed the 
problem of studying the dimension of 〈ZT 〉 beyond the boundary format. This problem motivated 
our research. Another problem is to check whether T ∈ 〈Z T 〉 even when 〈ZT 〉 is strictly contained in 
P (HT ).

A close friend of ZT is the following set, which is defined only for generic tensors.

Definition 4.5. Let P ⊂P (V ) be the Segre variety and T ∈ V be a generic tensor. We define

Eig(T ) := {(x(1), . . . ,x(ed(n))) | x(i) is a singular k-tuple of T for all i ∈ [k]} (4.4)

as a subset of the non-ordered cartesian product P×ed(n)/Sed(n) , where ed(n) is the ED degree of P
computed in Theorem 2.4 and Sed(n) denotes the symmetric group on ed(n) elements.

Theorem 4.6. (Turatti, 2022, Theorem 1.3) Consider a tensor space V of sub-boundary format. Let

τ : P (V ) ��� P×ed(n)

Sed(n)

(4.5)

be the rational map sending a tensor T ∈ V to the locus of singular k-tuples Eig(T ). If T ∈ V is generic, then 
the fiber τ−1(T ) consists only of T .

We generalize the previous result in Theorem 6.6.

5. Computing the dimension of the span of singular tuples

Consider the notations used in Section 3. We recall the construction of ZT as zero locus of a 
section σ of a suitable vector bundle on P , which is defined as

E :=
k⊕

i=1

Ei , Ei := (π∗
i Qi) ⊗O(1, . . . ,1,

i

0,1, . . . ,1) ∀ i ∈ [k] . (5.1)

We have that rank(E) = dim(P ) = ∑k
i=1(ni − 1). For every i ∈ [k], the tensor T yields a global section 

of Ei , which over the point ([x1], . . . , [xk]) ∈P is the map

(λ1x1, . . . , λkxk) ∈
k∏

i=1

〈xi〉 �→ [T (λ1x1 ⊗ · · · ⊗ λi−1xi−1 ⊗ λi+1xi+1 ⊗ · · · ⊗ λkxk)] ∈ V i

〈xi〉 .

Combining these k sections, the tensor T yields a global section sT of E . By Draisma et al. (2018, 
Proposition 2.6), if T is generic, then [x1 ⊗ · · · ⊗ xk] ∈ ZT if and only if ([x1], . . . , [xk]) is in the zero 
locus of the section sT . The section sT of E yields a homomorphism E∗ →O of sheaves whose image 
is contained in the ideal sheaf IZT of the zero locus of sT .
7
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Lemma 5.1. (Draisma et al., 2018, Lemma 3.2) Define E (r) := (∧r E∗) ⊗O(1) for all integer r ≥ 1. Then

E(r) ∼=
⊕
|j|=r

k⊗
i=1

π∗
i �

ji
ni−1(2 ji + 1 − r) . (5.2)

Using the isomorphism (5.2), in the following three lemmas we compute the cohomology groups 
Hq(E (r)) for the order � + 1 format n = (2, . . . , 2, n).

Lemma 5.2. Consider a space V of order � + 1 tensors of format n = (2, . . . , 2, n) with n ≥ � + 2. Given 
nonnegative integers r ≥ 2 and q ≤ r, then Hq(E (r)) = 0 for all r < �.

Proof. We use Theorem 3.1 and Lemma 5.1 to compute the cohomology of Hq(E (r)). Notice that

H0(�
ji
1 (1 + 2 ji − r)) = 0

for all 0 ≤ ji ≤ r. The only possibility for the non-vanishing of Hq(E (r)) is that

H1(�
ji
1 (1 + 2 ji − r)) �= 0 ,

that holds for r > 2. This implies that

Hq(E(r)) =
(

�⊗
i=1

H1(�
ji
1 (1 + 2 ji − r))

)
⊗ H j�+1(�

j�+1
�+1 (1 + 2 j�+1 − r)) .

In turn we have q ≥ �, thus the claim holds. �
Lemma 5.3. Consider a space V of order � + 1 tensors of format n = (2, . . . , 2, n) with n ≥ � + 2. Given 
nonnegative integers r ≥ 2 and q < r, we have that

(i) if � + 1 ≤ r ≤ n − 1, then

Hq(E(r)) =
{

0 if q �= �(⊗�
i=1 H1(�0

1(−r + 1))
)

⊗ H0(�r
n(r + 1)) if q = �

(ii) if r ≥ n − 1, then H�(E (r)) = 0.

Proof. Again we use the fact that Hi(�
ji
1 (2 ji + 1 − r)) �= 0 if and only if i = 1. We consider the 

cases where the cohomology of � j�+1
n−1 (1 + 2 j�+1 − r) does not vanish. Notice also that r − � ≤ j�+1 ≤

min{r, n − 1}.

(1) We have H0(�
j�+1
n−1 (1 + 2 j�+1 − r)) �= 0 if and only if 1 + 2 j�+1 − r > j�+1. Hence j�+1 + 1 > r, 

namely r = j�+1. In such case we have ji = 0 for all i ∈ [�].
(2) We have Hn−1(�

j�+1
n−1 (1 + 2 j�+1 − r)) �= 0 if and only if 1 + 2 j�+1 − r < j�+1 −n + 1. Hence r − � +

n ≤ j�+1 + n < r which yields n < �, a contradiction.

(3) Finally, we have H j�+1 (�
j�+1
n−1 (1 + 2 j�+1 − r)) �= 0 if and only if 1 + 2 j�+1 − r = 0. This means that 

j�+1 = r−1
2 . Furthermore q = � + j�+1 < r. On the other hand r = ∑�

i=1 ji + j�+1 ≤ � + j�+1, so 
r ≤ � + j�+1 < r, a contradiction.

Thus the only non-zero cohomology of � j�+1
n−1 (1 + 2 j�+1 − r) comes from case (1), that corresponds 

exactly to H�(E (r)) =
(⊗�

i=1 H1(�0
1(−r + 1))

)
⊗ H0(�r

n−1(r + 1)). Notice also that if r ≥ n, then 
�r

n−1 = 0. �

8
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Lemma 5.4. Consider a space V of order � + 1 tensors of format n = (2, . . . , 2, n) with n ≥ � + 2. Given 
nonnegative integers r ≥ 2 and q ≤ r, if � = r then the only non vanishing cohomology is

H�(E(�)) =
(

�⊗
i=1

H1(�0
1(−r + 1))

)
⊗ H0(�r

n−1(r + 1)) .

Proof. For q < � it is trivial since H0(�
ji
1 (2 ji + 1 − r)) = 0 for all i ∈ [�]. For the cohomology q = �

to be non vanishing we need that H0(�
j�+1
n−1 (2 j�+1 + 1 − r)) �= 0. This happens if and only if −r + 1 +

2 j�+1 > j�+1. This means j�+1 > r − 1 = � − 1, thus j�+1 = �.
Otherwise, we could have the case H0(�0

n−1(−r + 1)) �= 0 if and only if r = 1. Since r ≥ 2 such 
case does not hold. �

In the following proofs we use also the Koszul complex (we refer to Hartshorne (1977, Chapter III, 
Proposition 7.10A) for more details)

0 →
dim(P )+1∧

E∗ ϕdim(P )−−−−→
dim(P )∧

E∗ ϕdim(P )−1−−−−−−→ · · · ϕ2−→
2∧
E∗ ϕ1−→ E∗ → IZT → 0 (5.3)

and for all r ≥ 1 we define the quotient bundle Fi :=
(∧i E∗

)
/Im(ϕi). After tensoring with O(1) the 

complex (5.3) we get the short exact sequences

0 → Fr+1(1) → E(r) → Fr(1) → 0

0 → F2(1) → E(1) → IZT (1) → 0 .
(5.4)

Our goal is to use the long exact sequences in cohomology of the two previous short exact sequences 
to compute the dimension h0(IZT (1)), that is, the codimension of 〈ZT 〉 in P (V ).

Lemmas 5.2, 5.3 and 5.4 directly imply the next corollary.

Corollary 5.5. Consider a space V of order � + 1 tensors of format n = (2, . . . , 2, n) with n ≥ � + 2. The 
following chains of isomorphisms and inclusions hold:

H0(F2(1)) ∼= · · · ∼= H�−1(F�+1(1))

H�+1(F�+3(1)) ∼= · · · ∼= H�+n−2(F�+n(1)) = 0

H1(F2(1)) ∼= · · · ∼= H�−1(F�(1)) ⊂ H�(F�+1(1))

H�+2(F�+2(1)) ⊂ · · · ⊂ H�+n−1(F�+n(1)) = 0 .

Proposition 5.6. Let T be a generic tensor of format (2, 2, 4). Then 〈ZT 〉 has dimension six in P (V ) ∼= P 15

and codimension one in P (HT ). This is the last concise format (2, 2, n).

Proof. Following the similar cohomology computation in Draisma et al. (2018, Lemma 3.5), we have 
that the vanishing of the cohomologies Hq(E (r)), q = r −1, r −2, does not hold anymore. Furthermore, 
this means that computing Hr(E (r)) is useful in many cases. In this case one computes that the only 
non-zero dimensions hq(E (r)) are

h2(E(3)) = 1 , h3(E(3)) = 1 .

Consider the first short exact sequence in (5.4). The corresponding long exact sequence in cohomology 
is

· · · → Hr−2(E(r)) → Hr−2(Fr(1)) → Hr−1(Fr+1(1)) → Hr−1(E(r)) →
→ Hr−1(F (1)) → Hr(F (1)) → Hr(E(r)) → ·· · (5.5)
r r+1

9
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The sequence (5.5) yields the following inclusions and isomorphisms:

• Hr−2(Fr(1)) ∼= Hr−1(Fr+1(1)) and Hr−1(Fr(1)) ∼= Hr(Fr+1(1)) for r �= 3
• H1(F3(1)) ⊂ H2(F4(1)) and H2(F3(1)) ∼= H2(E (3)) for r = 3.

In turn, we get that

• H0(F2(1)) ∼= H1(F3(1)) ⊂ H2(F4(1)) ∼= H3(F5(1)) ∼= H4(F6(1)) = 0
• H1(F2(1)) ∼= H2(F3(1)) and H3(F4(1)) ∼= H4(F5(1)) ∼= H5(F6(1)) = 0

Therefore, if we take the second short exact sequence in (5.4) and we compute the corresponding 
long exact sequence in cohomology, we get that

0 = H0(F2(1)) → H0(E(1)) → H0(IZT (1)) → H1(F2(1)) → H1(E(1)) = 0 ,

thus h0(IZT (1)) = h0(E (1)) + h1(F2(1)) = 8 + 1. This means that 〈ZT 〉 has codimension 9 in P (V ) ∼=
P 15, that is dim〈ZT 〉 = 15 − 9 = 6. �
Theorem 5.7. Let T be a generic order � + 1 tensor of format (2, . . . , 2, � + 2). Then the projective span of 
singular (� + 1)-tuples has dimension

dim(〈ZT 〉) = 2�(� + 2) − (� + 1) −
(

� + 2

2

)
− max{0, (� − 1)� − (� − 2)�(� + 2)} . (5.6)

In particular 〈ZT 〉 =P (HT ) for � ≥ 4.

Proof. We start noticing that, by Lemmas 5.2, 5.3, 5.4 and Corollary 5.5, only H�(E (�)) and H�(E (�+1))

are non-zero. Furthermore, it holds

H0(F2(1)) ∼= · · · ∼= H�−1(F�+1(1)) ⊂ H�(F�+2(1)) ∼= · · · ∼= H2�(F2�+2(1)) = 0

H1(F2(1)) ∼= · · · ∼= H�−1(F�(1)) ⊂ H�(F�+1(1))

H�+1(F�+2(1)) ⊂ · · · ⊂ H2�+1(F2�+2(1)) = 0 .

In simple terms, to determine the dimension of 〈ZT 〉 we need to compute h�−1(F�(1)). We first 
consider the long exact sequence in cohomology coming from equation (5.4). For r = � + 1 we have:

0 → H�(E(�+1)) → H�(F�+1(1)) → H�+1(F�+2(1)) = 0 .

Thus h�(E (�+1)) = h�(F�+1(1)). For r = � we get:

0 → H�−1(F�(1))
α−→ H�(F�+1(1))

β−→ H�(E(�)) → ·· ·
Notice that since α is injective, it is enough to determine the rank of β to determine h�−1(F�(1)). We 
recall the commutative diagram

H�(E(�+1)) H�(E(�))

H�(F�+1(1))

γ

∼= β

We have that the rank of γ is equal to the rank of β .
The associated weights to H�(E (�)) and H�(E (�+1)) are respectively:

(1) (1 − �)λ
(1)
1 ⊗ · · · ⊗ (1 − �)λ

(�)
1 ⊗ λ

(�+1)
�+1 .
10
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(2) −�λ
(1)
1 ⊗ · · · ⊗ −�λ

(�)
1 ⊗ λ

(�+1)
�+2 .

Thus using Theorem 3.4, we have that

(1) H�(E (�)) ∼= G�−3 ⊗ · · · ⊗ G�−3 ⊗ G�+1 ∼= (
S�−3C2

)⊗� ⊗ ∧�+1 C�+2.

(2) H�(E (�+1)) ∼= G�−2 ⊗ · · · ⊗ G�−2 ⊗ G�+2 ∼= (
S�−2C2

)⊗� ⊗ ∧�+2 C�+2.

The map

γ : (S�−2C2)⊗� → (S�−3C2)⊗� ⊗
�+1∧

C�+2

acts as a contraction:

γ ( f1 ⊗ · · · ⊗ f�) =
2∑

i1,··· ,i�=1

∂i1 f1 ⊗ · · · ⊗ ∂i� f� ⊗ Ti1···i� ,

where

T =
2∑

i1,··· ,i�=1

e1,i1 ⊗ · · · ⊗ e�,i� ⊗ Ti1···i� , Ti1···i� :=
�+2∑
j=1

ti1···i�, je�+1, j ∈C�+2 .

Each element f j ∈ S�−2C2 can be written as f (xi,1, xi,2) = ∑�−2
d j=0 c j,d j x

�−2−d j

j,1 · x
d j

j,2. Hence a basis of 

(S�−2C2)⊗� is {⊗�
j=1 x

�−2−d j

j,1 x
d j

j,2 | 0 ≤ d j ≤ � − 2}. In particular

γ

⎛⎝ �⊗
j=1

x
�−2−d j

j,1 x
d j

j,2

⎞⎠ =
2∑

i1,··· ,i�=1

�⊗
j=1

∂i j (x
�−2−d j

j,1 x
d j

j,2) ⊗ Ti1···i� .

If T is generic, then the rank of γ is maximal, and coincides with the minimum between the dimen-
sions of the domain and the codomain of γ . More precisely, we conclude that

rank(β) = rank(γ ) = min{(� − 1)�, (� − 2)�(� + 2)} =
{

(� − 1)� for � ≥ 4

(� − 2)�(� + 2) for � = 3 .

This implies that

h�−1(F�(1)) = dim(ker(β)) = h�(F�+1(1)) − rank(β) = (� − 1)� − rank(γ ) = 0

for all � ≥ 4, in turn h1(F2(1)) = 0. Therefore h0(IZT (1)) = h0(E (1)) = � + (
�+2

2

)
, hence

dim(〈ZT 〉) = dim(P (HT )) = 2�(� + 2) − (� + 1) −
(

� + 2

2

)
,

which agrees with (5.6). �
With similar techniques, we are able to prove the following result.

Theorem 5.8. Let T be a generic order three tensor of format (2, 3, n).

(i) If n = 5, then 〈ZT 〉 has either dimension 13 or 14 in P (V ) ∼= P 29 . The expected dimension is 13, hence 
there are 2 more linear relations among the singular triples of T .

(ii) If n = 6, 〈ZT 〉 has either dimension 13 or 14 in P (V ) ∼= P 35 . The expected dimension is 13, hence there 
are 3 more linear relations among the singular triples of T . This is the last concise order three format 
(2, 3, n).
11
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6. Equations of the span of singular tuples in special formats

In Section 5 we computed the dimension of 〈ZT 〉 for a generic tensor T with the aid of cohomology 
tools. This section is more oriented towards the computation of the equations of 〈Z T 〉. At the current 
status of research, in this direction the range of possible formats covered is smaller than the more 
general formats studied in Section 5, and the results mostly rely on symbolic computations with 
Macaulay2 (Grayson and Stillman, 1997). However, as explained soon, for the formats studied we can 
confirm our general conjecture that the tensor T always belongs to the span 〈Z T 〉.

6.1. Equations of 〈ZT 〉 in the format n = (2, 2, n)

In this format, there is only one interesting case that is for n = 4. The format is non-concise for 
n ≥ 5.

Consider a generic tensor U = (uijk) of format n = (2, 2, 4), and consider the set ZU ⊂ P (C2 ⊗
C2 ⊗C4). From Theorem 2.4, we have that dim(ZU ) = 0 and |ZU | = 8 for a generic U . The 8 singular 
triples of U may be computed numerically from the code presented in Section 7.

On one hand, the projectivized critical space P (HU ) ⊂ P (C2 ⊗ C2 ⊗ C4) ∼= P 15 has dimension 
7. Indeed, the linear relations coming from the contractions of U are 

(2
2

) + (2
2

) + (4
2

) = 8 and are 
pairwise linearly independent by Proposition 4.3. On the other hand, the projective span 〈ZU 〉 is 
strictly contained in P (HU ): indeed, we showed in Proposition 5.6 that dim(〈ZU 〉) = 6. Therefore, 
there exists an additional linear relation among the singular triples of U . In Section 7 we explain how 
to double-check this numerically by tensorizing the singular tuples previously computed.

The additional linear relation may be obtained in this way. Let (x1, x2, x3) be a singular triple of 
U . By definition the two vectors U (x1 ⊗ x2) and x3 are proportional. From this fact we build the 4 × 4
matrix

A := [
U (x1 ⊗ x2) x3 U (1,1) U (1,2)

]T
,

where U (i, j) = (uij1, . . . , uij6) for all (i, j) ∈ [2] × [2]. If U is generic, we have that rank(A) = 3. Now 
let x′

1 = (x1,2, x1,1) and consider the matrix

A′ := [
U (x′

1 ⊗ x2) x3 U (2,1) U (2,2)

]T
.

In this case the first two rows of A′ are not proportional. We checked symbolically that still 
rank(A′) = 3, hence the determinant of A′ , which is linear in the coordinates zi jk of P (C2 ⊗C2 ⊗C4), 
is contained in the ideal of 〈ZU 〉. We verified also that det(A′) is linearly independent from the 
equations of HT . Hence det(A′) can be considered as “the” unknown additional relation among the 
singular triples of U .

Developing det(A′) using the Laplace expansion along the first two rows of A′ and taking into 
account the relations zi jk = x1,i x2, j x3,k , we get that (we omit the computation)

det(A′) =

∣∣∣∣∣∣∣∣
z211 z212 z213 z214
u111 u112 u113 u114
u211 u212 u213 u214
u221 u222 u223 u224

∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣
z221 z222 z223 z224
u121 u122 u123 u124
u211 u212 u213 u214
u221 u222 u223 u224

∣∣∣∣∣∣∣∣ .

From this expression, we immediately observe that this additional relation is satisfied by the tensor 
U itself, meaning that [U ] ∈ 〈ZU 〉. Note the change of indices with respect to

det(A) =

∣∣∣∣∣∣∣∣
z211 z212 z213 z214
u211 u212 u213 u214
u111 u112 u113 u114
u121 u122 u123 u124

∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣
z221 z222 z223 z224
u221 u222 u223 u224
u111 u112 u113 u114
u121 u122 u123 u124

∣∣∣∣∣∣∣∣ .

Both determinants may be seen as bihomogeneous polynomials in the variables uijk and zi jk of bide-
gree (3, 1). What is more, observe that in the construction of A we have made a choice for the last 
12
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two rows. In general, there are 6 = (4
2

)
possibilities to complete the matrix A using the vectors (uijk)k . 

Consider also the vector x′
2 = (x2,2, x2,1) and build the 9 × 4 matrix[

U (x′
1 ⊗ x2) U (x1 ⊗ x′

2) U (x2 ⊗ x1) U (x′
2 ⊗ x′

1) x3 U (1,1) U (1,2) U (2,1) U (2,2)

]T
.

(6.1)

We computed symbolically all maximal minors of the previous matrix. There are exactly 6 of them 
which belong to the ideal of 〈ZU 〉. One of them is exactly the determinant of A′ studied above. The 
other five are obtained considering all remaining choices of pairs of rows (U (i1, j1), U (i2, j2)) among 
the last four rows, the row of x3 and one of the first four rows (according to symmetries of the pair 
(U (i1, j1), U (i2, j2)) chosen).

6.2. Equations of 〈ZT 〉 in the format n = (2, 3, n)

In this case, there are two interesting formats between the sub-boundary format and the non-
concise format, precisely for n ∈ {5, 6}.

Example 6.1. Consider a generic tensor U = (uijk) of format n = (2, 3, 5). It admits 18 singular triples, 
and by Proposition 4.3 the projectivized critical space P (HU ) ⊂ P (C2 ⊗ C3 ⊗ C5) ∼= P 29 has di-
mension 15. Let ZU ⊂ P (C2 ⊗C3 ⊗ C5). By Theorem 2.4, we have that |ZU | = 18 for a generic U . 
The projective span 〈ZU 〉 is strictly contained in P (HU ): indeed we showed in Theorem 5.8(i) that 
13 ≤ dim(〈ZU 〉) ≤ 14. We verified symbolically that there exist two new relations among the singular 
triples, thus proving that dim(〈ZU 〉) = 13. We write them as determinants of 5 × 5 matrices:

det(A1) = ∣∣U (x′
1 ⊗ x2) x3 U (1,1) U (1,2) U (1,3)

∣∣ =

∣∣∣∣∣∣∣∣∣
T(1,1)

U (2,1)

U (1,1)

U (1,2)

U (1,3)

∣∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣∣
T(1,2)

U (2,2)

U (1,1)

U (1,2)

U (1,3)

∣∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣∣
T(1,3)

U (2,3)

U (1,1)

U (1,2)

U (1,3)

∣∣∣∣∣∣∣∣∣
det(A2) = ∣∣U (x′

1 ⊗ x2) x3 U (2,1) U (2,2) U (2,3)

∣∣ =

∣∣∣∣∣∣∣∣∣
T(2,1)

U (1,1)

U (2,1)

U (2,2)

U (2,3)

∣∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣∣
T(2,2)

U (1,2)

U (2,1)

U (2,2)

U (2,3)

∣∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣∣
T(2,3)

U (1,3)

U (2,1)

U (2,2)

U (2,3)

∣∣∣∣∣∣∣∣∣ .

Also in this case we have chosen specific vectors (uijk)k to form the matrices A1 and A2, but there 
are of course other choices and all possibilities can be obtained by computing all maximal minors of 
a large matrix similar to the one in (6.1).

Example 6.2. Consider a generic tensor U = (uijk) of format n = (2, 3, 6). It admits 18 singular triples, 
and by Proposition 4.3 the projectivized critical space P (HU ) ⊂P (C2 ⊗C3 ⊗C6) ∼=P 35 has dimen-
sion 16. Let ZU ⊂ P (C2 ⊗C3 ⊗C6). By Theorem 2.4, we have that |ZU | = 18 for a generic U . Also 
in this case the projective span 〈ZU 〉 is strictly contained in P (HU ). By Theorem 5.8(ii) we have that 
13 ≤ dim(〈ZU 〉) ≤ 14, hence there are at least two and at most three new relations among singular 
triples. We computed symbolically the new three linear relations in this way. Consider x′

1 = (x1,2, x1,1)

and the 6 × 6 matrices

A1 = [
U (x′

1 ⊗ x2) x3 U (0,0) U (0,1) U (0,2) U (1,0)

]T

A2 = [
U (x′

1 ⊗ x2) x3 U (0,0) U (0,1) U (0,2) U (1,1)

]T

A3 = [
U (x′

1 ⊗ x2) x3 U (0,0) U (0,1) U (0,2) U (1,2)

]T
13
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where U (i, j) = (uij1, . . . , uij6) for all (i, j) ∈ [2] ×[3]. Each determinant det(A j), after the substitutions 
zi jk = x1,i x2, j x3,k , gives a linear relation among the 18 singular triples of the generic tensor U . Each 
linear relation can be seen as a sum of 2 determinants of 6 × 6 matrices.

The next proposition generalizes the observations made in Section 6.1 and in Examples 6.1 and 
6.2, and provides a method to check easily that the new relations among singular k-tuples of a tensor 
U are satisfied by U itself.

Proposition 6.3. Consider a tensor U = (ui1···ik ) of format n = (n1, . . . , nk), where nk ≥ 1 + ∑k−1
i=1 (ni − 1). 

Consider the nk × nk matrix

A = [
U (y1 ⊗ · · · ⊗ yk−1) yk U I1 · · · U Ink−2

]T

where Il ∈ ∏k−1
i=1 [ni] and U Il = (u j1··· jk−1 jk | ( j1, . . . , jk−1) ∈ Il) for all l ∈ [nk − 2], while using (2.3),

U (y1 ⊗ · · · ⊗ yk−1)s =
∑

j�∈[n�]
u j1··· jk−1s y1, j1 · · · yk−1, jk−1 ∀ s ∈ [nk] .

Then det(A) contains only terms in y1, j1 · · · yk, jk with ( j1, . . . , jk−1) ∈ ∏k−1
i=1 [ni] \ {I1, . . . , Ink−2}.

Proof. We compute det(A) by applying the generalized Laplace formula with respect to the first two 
rows of A. We use the shorthand U (p,q)

Il
to denote the row vector obtained after removing the columns 

p and q from U Il . We also denote by σp,q the permutation of [nk] sending 1 to p and 2 to q.

det(A) =
∑

1≤p<q≤nk

sign(σp,q)

∣∣∣∣U (y1 ⊗ · · · ⊗ yk−1)p U (y1 ⊗ · · · ⊗ yk−1)q

yk,p yk,q

∣∣∣∣ ·

∣∣∣∣∣∣∣∣
U (p,q)

I1
...

U (p,q)
Ink−2

∣∣∣∣∣∣∣∣
=

∑
1≤p<q≤nk

sign(σp,q)
∑

j�∈[n�]
(u j1··· jk−1 p z j1··· jk−1q − u j1··· jk−1qz j1··· jk−1 p)

∣∣∣∣∣∣∣∣
U (p,q)

I1
...

U (p,q)
Ink−2

∣∣∣∣∣∣∣∣
=

∑
j�∈[n�]

∑
1≤p<q≤nk

sign(σp,q)

∣∣∣∣u j1··· jk−1 p u j1··· jk−1q
z j1··· jk−1 p z j1··· jk−1q

∣∣∣∣ ·

∣∣∣∣∣∣∣∣
U (p,q)

I1
...

U (p,q)
Ink−2

∣∣∣∣∣∣∣∣
=

∑
j�∈[n�]

det( Ã( j1, . . . , jk−1)) ,

(6.2)

where in the second equality in (6.2) we plugged in the relations u j1··· jk = y1, j1 · · · yk, jk and

Ã( j1, . . . , jk−1) := [
U ( j1,..., jk−1) z( j1,..., jk−1) U I1 · · · U Ink−2

]T
.

Hence det( Ã( j1, . . . , jk−1)) �= 0 only if ( j1, . . . , jk−1) ∈ ∏k−1
i=1 [ni] \ {I1, . . . , Ink−2}, giving the desired 

result. �
Equation (6.2) tells us that det(A) may be written as a sum of determinants of the matri-

ces Ã( j1, . . . , jk−1). The number of non-zero summands is equal to the cardinality of 
∏k−1

i=1 [ni] \
{I1, . . . , Ink−2}, that is n1 · · ·nk−1 −nk + 2. For example, we have seen in Section 6.1 that the unknown 
relations among singular triples of a 2 × 2 × 4 tensor can be written as the sum of 2 · 2 − 4 + 2 = 2
determinants. Or in Example 6.1 that the unknown relations among singular triples of a 2 × 3 × 5
tensor can be written as the sum of 2 · 3 − 5 + 2 = 3 determinants.
14
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Theorem 6.4. Let T ∈ V be a generic tensor of order-k of the following formats:

(1) k = 3, n = (2, 2, n), n ≥ 4;
(2) k = 3, n = (2, 3, n), n ≥ 5;
(3) k = � + 1, n = (2, . . . , 2, � + 2), � ≥ 4.

Then T ∈ 〈ZT 〉.

Proof. The first two items are done in the Sections 6.1 and 6.2. The last item comes from Theorem 5.7, 
since in such case T ∈ HT = 〈ZT 〉. �

This result and some numerical experiments in M2 give indications that the following conjecture 
is true.

Conjecture 6.5. Suppose T ∈ V is a generic tensor. Then T ∈ 〈ZT 〉.

The next result extends Theorem 4.6 by the second author for some special formats.

Theorem 6.6. Let T ∈ V be a generic tensor of order k and assume Conjecture 6.5 holds, i.e., T ∈ 〈ZT 〉. Then 
the fiber of the rational map τ : T �→ Eig(T ) is T itself.

Proof. Let T ∈ ⊗k−1
i=1 C

ni ⊗ L ⊂ V be a generic tensor of boundary format n, that is dim(L) =
1 +∑k−1

i=1 (ni − 1). By Theorem 2.10 we have that 〈ZT 〉 ⊂ ⊗k−1
i=1 C

ni ⊗ L. Furthermore Theorem 4.6 says 
that the fiber of the map τ : T �→ Eig(T ) introduced in (4.5) is one point for tensors in spaces satis-
fying the boundary format. Suppose that U ∈ V is not contained in any subspace satisfying boundary 
format. Assuming that Conjecture 6.5 holds, it follows that U ∈ 〈ZU 〉 and 〈ZU 〉 is not contained in any 
subspace of boundary format. Thus ZU �= ZT and the fiber of the map at Eig(T ) is a single point.

We know proceed by using the fact that the rank of the map τ satisfies semi-continuity, therefore 
the map is generically finite-to-one. Furthermore, since the fibers are linear spaces, we obtain that 
the generic fiber is a single point. �
Corollary 6.7. If T is a generic tensor of one the formats in Theorem 6.4, then the fiber of the map τ is T itself.

7. Computing singular tuples using HomotopyContinuation.jl

In this section we describe a code that computes numerically the singular tuples of a tensor U of 
format n, if there are finitely many. The code uses the Julia package HomotopyContinuation.jl (Brei-
ding and Timme, 2018). Since in all our examples we input a generic tensor U , then all its singular 
tuples (x1, . . . , xk) of U are such that xi,1 �= 0 for all i ∈ [k]. For this reason, in the code we will 
consider the following square system in the n1 + · · · + nk + k variables x1, . . . , xk, λ1, . . . , λk , which is 
obtained from (2.2):{

U (x1 ⊗ · · · ⊗ xi−1 ⊗ xi+1 ⊗ · · · ⊗ xk) = λi xi ∀ i ∈ [k]
xi,1 = 1 ∀ i ∈ [k] . (7.1)

The value λi is called the i-th singular value of the singular k-tuple (x1, . . . , xk). If the tensor U is 
sufficiently generic, then all its singular tuples are non-isotropic, hence up to rescaling they are nor-
malized. The immediate consequence is that, for every (normalized) singular tuple (x1, . . . , xk) of U
we have λ1 = · · · = λk = λ. The value λ is called the singular value associated to (x1, . . . , xk).

First, applying Theorem 2.4 we determine the number of singular tuples ed(n) of a generic tensor 
of format n with the following function number_singular_tuples:
15
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using HomotopyContinuation;
function number_singular_tuples(dims)

ldims = length(dims);
@var t[1:ldims];
f = prod([sum([(sum(t)-t[i])^(dims[i]-1-j)*t[i]^j for j=0:(dims[i]-1)])

for i=1:ldims]);
(expf,cf) = exponents_coefficients(f,t);
dims2 = map(1:ldims) do i dims[i]-1 end;
ind = findall(i -> expf[:,i]==vcat(dims2...), collect(1:size(expf,2)))[1];
convert(Int64, cf[ind])

end

The function singular_tuples computes numerically the singular tuples of a tensor U :

function singular_tuples(U)
# (0) Preliminary settings
dims = size(U);
ldims = length(dims);
CI = CartesianIndices(U);
# (1) Define the variables
varu = map(CI) do i Variable(:u, collect(Tuple(i))...) end;
varu_vector = vec(varu);
varl = map(1:ldims) do i Variable(:l,i) end;
varx = map(1:ldims) do i map(1:dims[i]) do j Variable(:x, i, j) end end;
varx_vector = vcat(varx...);
var_vector = vcat(varx_vector,varl);
# (2) Define the tensor U
tU = sum([varu[i]*prod([varx[j][i[j]] for j=1:ldims]) for i in CI]);
# (3) Write the equations defining singular tuples
eq1 = [differentiate(tU,varx[i][j])-varl[i]*varx[i][j] for i=1:ldims for j=1:dims[i]];
eq = vcat(eq1,[varx[i][1]-1 for i=1:ldims]);
sys_tuples = System(eq; variables = var_vector, parameters = varu_vector);
# (4) Write one start solution of the previous system
randl = rand(ComplexF64);
L0 = vcat(map(i -> [1;zeros(dims[i]-1)], 1:ldims)...);
L0 = vcat(L0,[randl for i=1:ldims]);
# (5) Write start parameters for the start solution
U0 = Array{ComplexF64}(undef, dims);
for i in CI

if length(findall(>(1), Tuple(i))) == 0
U0[i] = randl

elseif length(findall(>(1), Tuple(i))) == 1
U0[i] = 0

else
U0[i] = rand(ComplexF64)

end
end;
U0_vec = vec(U0);
U_vec = vec(U);
# (6) Track the start solution L0 to a solution for the tensor U
sol_1 = solve(sys_tuples, L0; start_parameters = U0_vec, target_parameters = U_vec);
L = solutions(sol_1);
# (7) Compute the number of singular tuples of U
ed = number_singular_tuples(dims);
# (8) Find all other solutions of the system for U using monodromy
sol = monodromy_solve(sys_tuples, L, U_vec, target_solutions_count = ed);
solutions(sol)

end

The following list outlines the main steps of the function singular_tuples:

(1) Introduce the variables u j1··· , jk , xi = (xi,1, . . . , xi,ni ) and λ1, . . . , λk .
(2) Write the k-linear form tU associated to the tensor U . This is useful for writing (7.1).
(3) Define the system (7.1) whose solutions are the singular tuples (x1, . . . , xk) together with their 

singular values (λ1, . . . , λk).
16
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(4) Declare the start solution (x∗
1, . . . , x

∗
k , λ∗

1, . . . , λ
∗
k ), where x∗

i = (1, 0, . . . , 0) ∈ Cni for all i ∈ [k], 
λ∗

1 = · · · = λ∗
k = λ∗ and λ∗ is a randomly chosen complex number.

(5) Determine a tensor U∗ = (u∗
j1,..., jk

) (U0 in the code) such that (x∗
1, . . . , x

∗
k , λ∗

1, . . . , λ
∗
k ) is a solution 

of (7.1) with respect to U∗ . We build such a tensor by setting

u∗
j1··· jk

=
{

λ∗ if j1 = · · · = jk = 1

0 if j� = 1 for all � �= j and ji > 1 for some i ∈ [k] ,
while u∗

j1··· jk
is a randomly chosen complex number otherwise. It is easy to verify from (7.1) that 

(x∗
1, . . . , x

∗
k ) is a singular tuple of U∗ with singular value λ∗ .

(6) Determine one singular tuple of U by tracking the start solution (x∗
1, . . . , x

∗
k , λ∗

1, . . . , λ
∗
k ) of (7.1)

with respect to the parameters U∗ to a solution with respect to the parameters U , using the 
method of homotopy continuation.

(7) Determine an upper bound for the number of singular tuples of U , namely the ED degree of the 
Segre product P with respect to the format n. When U is sufficiently generic, this upped bound 
is attained.

(8) Find all the other solutions of (7.1) using monodromy.

The output of singular_tuples is a list of solutions of the form (x1, . . . , xk, λ1, . . . , λk). The 
function to_tensor extracts the components x1, . . . , xk and returns the vectorization of the rank-
one tensor x1 ⊗ · · · ⊗ xk:

function to_tensor(solutions,dims)
T = map(1:length(dims)) do i

k = sum(dims[1:i])
solutions[(k-dims[i])+1:k]

end
kron(T...)

end

Now that all the necessary functions are defined, we are ready to compute the dimension 
dim(〈ZU 〉) with the following lines, where U is randomly chosen.

nn = (2,3,4,5);
U = rand(ComplexF64,nn);
listsol = singular_tuples(U);
solVectors = map(s -> to_tensor(s,nn), listsol);
M = hcat(solVectors...);
using LinearAlgebra;
rk = rank(M);
A, S, B = svd(M, full = true);
[nn; rk; S[rk]; S[rk+1]]

The value rk equals dim(〈ZU 〉) +1 with probability one. The SVD of the matrix M computed in the 
last two lines ensures that the value rk is correct, in particular that the value of S[rk+1] is very 
close to zero compared to S[rk].

Using the previous code, we determined dim(〈ZU 〉) for several formats n. In Table 1 we display 
some values of dim(〈ZU 〉) when k = 3. We set nB := n1 + n2 − 2 to be the value of n3 such that 
(n1, n2, nB) is a boundary format. Furthermore, we denote by δ the difference between nB and the 
value of n3 for which dim(〈ZT 〉) stabilizes. A value of dim(〈ZT 〉) is highlighted in red if for n3 = nB +δ

we have that 〈ZT 〉 is a proper subspace of P (HT ). As the format size increases, the difference δ
increases as well.

Instead in Table 2 we study the dimension dim(〈ZT 〉) when T is an order-(� + 1) tensor of format 
n = (2, . . . , 2, n�+1). Again the blue values correspond to boundary formats. Similarly to Table 1, a 
17
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Table 1
Values of dim(〈ZT 〉) in the format n = (n1, n2, n3).

n nB dim(〈ZT 〉) if n = nB + δ δ ed(n)

(2,2,n) 3 6 0 8

(2,3,n) 4 13 0 18

(2,4,n) 5 22 0 32

(2,5,n) 6 33 0 50

(2,6,n) 7 46 0 72

(3,3,n) 5 29 1 61

(3,4,n) 6 50 1 148

(3,5,n) 7 76 1 295

(4,4,n) 7 87 1 480

(4,5,n) 8 133 2 1220

(4,6,n) 9 188 3 2624

(4,7,n) 10 252 3 5012

(5,5,n) 9 204 3 3881

(5,6,n) 10 289 4 10166

(5,7,n) 11 388 4 23051

(6,6,n) 11 410 5 31976

(6,7,n) 12 551 6 85526

(6,8,n) 13 712 7 201536

Table 2
Values of dim(〈ZT 〉) in the (� + 1)-dimensional format n = (2, . . . , 2, n�+1).

�

n�+1 3 4 5 6 7 8 9 10 11 12 13 · · · ed(n)

2 6 · · · 8

3 22 23 · · · 48

4 65 76 · · · 384

5 171 197 222 237 · · · 3840

6 420 477 533 588 642 695 722 · · · 46080

value of dim(〈ZT 〉) is highlighted in red if, when dim(〈ZT 〉) stabilizes, it is also strictly contained in 
P (HT ) (including the blue entry for (�, n�+1) = (2, 3)). For all entries not in red (except for (�, n�+1) =
(2, 3)), we have that 〈ZT 〉 = P (HT ). In particular, this confirms the statement of Theorem 5.7 for 
n�+1 = � + 2.
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