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1 Introduction

Ifindividuals of all age classes in an age-structured pop-
ulation are fertile, we say that the population possesses
an iteroparous life history. In the case where individu-
als of the last age class only are fertile, the population
is classified semelparous. Among several alternatives,
nonlinear Leslie matrix models are widely used tools
in order to capture and describe the dynamics as well
as other properties of populations as described above.
The usual approach in such models is to include non-
linearities (or density dependence) in fecundity terms
and not in year-to-year survival probabilities. Partic-
ularly in fishery models [1], this has been motivated
by the assumption that most density effects are present
only in the first year of life. There are fewer studies
where density dependence is incorporated in the sur-
vival or both in fecundity and survival terms, but see
[2,3]. The dynamics obtained from semelparous and
iteroparous population models are often very differ-
ent. Regarding the semelparous case (nonlinear fecun-
dities, constant survival probabilities), the nontrivial
fixed point (equilibrium) tends to be unstable in most
of the parameter space, and in contrast to what one
finds from iteroparous models, also at low population
densities. Instead, one observes a cyclic state where the
whole population is in just one single-year class (SYC
dynamics) at each time step, confer [4-11]. Ergodic
properties of semelparous models may be obtained
in [12,13], and in recent years we have seen much
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attention towards describing and understanding insect
cycles, in particular the 17 years cicada (magicicada)
cycle, confer [14,15] and references therein. On the
other hand, the dynamics found from Leslie matrix
models where species who possess iteroparous life his-
tories are targets, turns out to be quite different. Instead,
by use of the compensatory Beverton and Holt recruit-
ment function, the nontrivial fixed point was found
to be stable in the whole parameter space, see [16—
18]. However, in the overcompensatory Ricker case,
the fixed point is stable at low population densities but
the population may exhibit periodic, quasiperiodic as
well as chaotic behaviour of stunning complexity at
higher population densities, confer [19-27]. Regarding
the work at hand, we shall use a much more sophisti-
cated recruitment function than those referred to above,
and thus, we will be able to show and prove several new
and general results.

Let us now turn to ‘real” populations. As it is well
known, several fish populations of commercial inter-
est, for example the Northeast Arctic cod stock may
exhibit severe fluctuations in biomass from one year to
another. In certain periods, the stock biomass seems to
be dominated by strong year classes, while other peri-
ods show a more harmonic composition of the total
stock biomass. Thus, by use of data from the fisheries,
calibrated in order to fit, Leslie matrix models may pro-
vide important insight in complex dynamical behaviour
and subsequently contribute to reliable fishing strate-
gies.

Invading species may also become a serious prob-
lem. Both in the 1960s and the 1980s, pink salmon
(also known as humpback salmon) was released in the
Kola Peninsula in Russia. Later, the pink salmon has
migrated to northern part of Norway, invaded rivers and
represents today a severe threat to its Atlantic salmon
rival, confer [28]. In 2021, local fish counts estimated
up to 50,000 pink salmon in the Tana river (which is a
famous ’salmon river’ in northern Norway). Therefore,
analysis of 2 x 2 Leslie matrix models (pink salmon)
n x n models (Atlantic salmon) or a combination could
provide valuable knowledge of dynamical behaviour
and interaction, which again may be used in order to
reduce and prevent the threat from the pink salmon.

Finally, as mentioned before, cicada cycles have on
several occasions been studied by use of Leslie matrix
models. Examples of insect species where such models
could be excellent modelling tools may be found among
caterpillars. Indeed, in recent years moth larvae have
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destroyed about 10,000 km? of birch forest in northern
Scandinavia. Actually, there appears to be three dif-
ferent species responsible for the disaster, two species
with high outbursts in numbers between 9 and 11 years,
while the cycle is approximately 3 years for the last
species. Climate warming is allowing these species to
expand their ranges northwards, see [29]. Just as in
the cicada case, discrete age-structured models could
be very helpful in order to understand the mechanisms
that lead to such outcomes.

Hence, in order to summarize, the more we know
about the complex dynamics which nonlinear Leslie
matrix models may generate, the better are our chances
to describe and understand complicated dynamical phe-
nomena that occur among species in nature.

The novelties of this paper are as follows: By use of
a general recruitment function, we have been able to
account for much more complex dynamical behaviour
including births and deaths of coexisting attractors than
in previous quoted papers. In another direction, we have
presented proofs of nature of bifurcations involved both
in 2- and 3-age class models as well as proofs of 1 : 2
and 1 : 3 resonance phenomena which lack in the lit-
erature. Regarding species who possess overcompen-
satory recruitment functions, the nonstationary dynam-
ics of species of even and odd number of age classes
differ in case of sufficiently large survival probabili-
ties. We have also succeeded in finding an upper limit
of population size where the population is stable in an
n-age class model given that all survivals equal unity.
At this limit, all eigenvalues of the linearized map are
located on the boundary of the unit circle, which sig-
nals complex dynamical behaviour beyond instability
threshold.

The plan of the paper is as follows: In Sect. 2, we
present the model. Section 3 focuses on general proper-
ties, while we in Sects. 4 and 5 scrutinize 2- and 3-age
class dynamics, respectively. Finally, in Sect. 6 we dis-
cuss and unify results obtained from general n-age class
models, which is followed by a summary, Sect. 7.

2 The model

Let x14, ..., X, be n nonoverlapping age classes of
a population at time ¢ and define the population vector
xasx = (xg,... ,xn)T. Then we may express the
relation between X at two consecutive time steps as a
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map
h: R"—=R" ¥ AX (1a)

or as a system of difference equations

Y;+] == AY[ (1b)
where the n x n Leslie matrix A is defined as
fl cee fn—l fn
P1 0 0
A= ) . 2)
0 Pn—1 0

Here f; is the average fecundity (the number of daugh-
ters born per female in age class i), and p; is the survival
probability from age class i to age class i + 1.

The matrix elements may be density-dependent or
not. In fishery models, one often assumes density-
dependent fecundities and constant year-to-year sur-
vival probabilities. Moreover, it is customary to express
fi(x) as a product of a density-independent term F; >
0 and a density-dependent term f x), ie. filx) =
F; f (x). Other possibilities are to express f; as fi(y)
where y = )" a;x;, i.e. a weighted sum of age classes,
or f;(x;) which means that only age class i contributes
to density effects. Frequently used fecundity functions
may be found among members of the Deriso—Schnute
family fi(x) = F;(1 — yax)"”. Observe that when
y — 0 fi(x) equals the well-known overcompensatory
Ricker relation f;j(x) = Fje™**, and when y = —1,
fi(x) = F;(1 + ax)~! which is nothing but the com-
pensatory Beverton and Holt formula. In cases where it
is natural to consider density-dependent survival prob-
abilities, we adopt the same strategy as above and write
pi(x) = P;p(x) where 0 < P; < 1. Finally, from a
biological point of view, we shall assume f/'(x) < 0
and p’(x) < 0.

Map (la) or (1b) may serve as excellent tools in
order to reveal the dynamics of species with a wide
range of different life histories. Species possessing pre-
cocious semelparous life histories, which is character-
ized by rapid development followed by only one repro-
duction, exemplified by annual plants, may be scru-
tinized by letting n = 2 and F; = 0. Species like
cicadas and salmons possess delayed semelparous life
histories. They live for many years and reproduce only
once just before they die. 'Translated’ to the Leslie
matrix (2), this means that F} = --- = F,_1 = 0
and F,, > 0. Whenever all or most age classes are
fertile, we say that the species exhibit a precocious

iteroparous life history. Examples may be found among
small rodent populations, in particular when n < 4.
In the final case, delayed iteroparity, we find species
who live through several years before maturity and
then survive to reproduce for many years. Humans and
large mammals belong to this subclass. Regarding the
Leslie matrix, this corresponds to F1 = --- = F = 0,
Fry1>0,...,F, > 0.

3 Some general properties

We start by considering the case where fi(x) =
F;(1 — yax)"”,i = 1,...,n (which means that the
fecundities belong to the Deriso—Schnute family) and
constant year-to-year survival probabilities p; = P;,
i=1,...,n—1,0 < P; <1, thatis

n
X141 = Z Fi(1 —yax)x;,

i=1

X241 = Pixi; 3)

Xnrl = Poo1Xn—1

Let L; = Py P>--- P;,_1, where L1 = 1 and define the
net inherent reproductive number as

n
Ry=LiFi+ - +L,Fy=)Y LiF )
i=1
and throughout the paper we will assume Ry > 1 in
order to obtain a feasible equilibrium population

*_L _p7Y
= (k) 5)

The equilibrium point of (3) may be expressed as

(x]k,...,x;k,...,x:)

= (ﬂx*ﬁx*ﬂx*> 6)
K K K
where K = > 1 | L;.

Regarding stability properties of (6), we find under
the assumption F; = --- = F, = F (which is a rea-
sonable assumption for many species who possess a
precocious iteroparous life history), that the eigenval-
ues X of the linearization of (3) satisfy the equation

1 — 1 —(y + Dax* .
M——y Li| ——————|A""=0 7
KZ ’< 1 — yax* ) 0

i=1
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Here, we may notice, due to (5), that « drops out of the
equation. Therefore, we shall in the following assume
a = 1. The equilibrium point (6) is stable as long as all
eigenvalues of (7) are located on the inside of the unit
circle |z| = 1 in the complex plane.

Theorem 1 Assume that F{ = --- = F,, = F. Then,
equilibrium point (6) of map (3) is always locally
asymptotic stable provided

N 2
Xt < (8)
2y +1

where x* is given by (5).

Proof Let
1 & 1—(y 4+ Dx* .
—\n N n—
P,(A) = A —?;L,( e ),\ i
=0

and assume that [(1 — [y + 1lx*)(1 — yx")7| <
1. Then, write the left-hand side of the equation as
P,(A) = g(A) + h()) where g(A) = A" and h()\) con-
sist of the remaining terms. Clearly, g and 4 are analytic
functions on and inside the unit circle |z] = 1 and the
equation g(A) = 0 has n roots inside |z| = 1. On the
boundary, we have

'_izLi(l—(V‘f‘l)X*)‘
K 1 —yx*

- Li/1—(y+1x*
| K I —yx*
L, (1—(y+1Dx*
" +‘K< I —yx*
1—(y+ Dx*
< | g =1
1—yx

Then, according to Rouché’s theorem P, (1) = g(A) +
h(X)) and g(A) have the same number of zeros located
inside the unit circle, i.e. n-zeros, which proves that
(1 = [y + 112 — yx*)~!| < 1 is sufficient to
guarantee a stable equilibrium which is equivalent to
say

2
2y +1

x* <
O
Hence, in the Ricker case Cworst’ case), x* < 2,y =

—1/4 implies x* < 4, y = —1/3 implies x* < 6 and in
the Beverton and Holt case the equilibrium point will
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always be stable. Note that the regions above (x* < «)
are regions where stability is guaranteed. Depending
on the number of age classes and parameters, the actual
instability thresholds may be larger.

4 2-Age classes

Whenn = 2,0 = 1 and F; = F, = F, equilibrium
point (6) may be expressed as

1 Py
*k * * *
) = ) 9
(*1, %) <1+P1x 1+P1x> ©
where Ry = F(1 + P;) and x* is given by (5). The
corresponding eigenvalue Eq. (7) is on the form
AV 4aritar=0 (10)

where

/% 1 x*
ap = (f'x +f)=_l+P1 1_1—)/)(*

P x*
= P "x* = — 1-—
@ = PI(f'x" 4 f) 1+Pl< l—yx*)

and f, f’ are evaluated at equilibrium. In order for
(x}, x3) to be locally asymptotic stable, the Jury crite-
ria

14+a;+ay>0 (11a)
l—ay+a >0 (11b)
1—|ay| >0 (11¢)

must hold. Easy calculations show that (11a) is satisfied
for any x* > 0. Hence, (x{, x3) will never experience
a saddle node bifurcation at instability threshold. (11b)
may be written as (1 +2y — P))x* < 2.If y < (P| —
1)/2, then (11b) is valid for any x* > 0. Whenever y >
(P — 1)/2, (11b) holds if x* < 2/(1 + 2y — P;) and
a flip bifurcation will occur at threshold x* = 2/(1 +
2y — Pp) for x* sufficiently large. Regarding (11c¢),
(P1+[142P]y)x* < 142Py,itholds forany x* > 0
provided y < —P;/(1 +2P;). Wheny > —P1/(1 +
2Py), (11c) is still valid if x* < (1 +2Py)/(P; +
[1 4 2Pi]y) and (x}, x3) will lose its hyperbolicity
through a Neimark—Sacker (hereafter shortened NS)
bifurcation at threshold x* = (1 +2P;)/(P; + [1 +
2P]y).

Thus, if y < (Pf — 1)/2 and y < —P1/(1 +
2Py), then (x},x3) will be locally asymptotic sta-
ble for any x* > 0. Whenever y > (P — 1)/2,
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0 0.2 04 06 0.8 1
P

Fig. 1 Graphs that separate stable and unstable parameter
regions in the case y = —1/6 (blue graph), y = —1/8 (red graph)
and y — O (green graph). The stable parameter regions are
located below the graphs

y > —P/(1 +2P)) and x* < min{2/(1 + 2y —
Py), 1+2Py)/(P1+y[1+2P1])}, the equilibrium will
also be stable. At thresholds x* = 2/(1 + 2y — Py),
x* = (1 +2P)/(P1 + y[1 +2P1]), (x],x5) will
undergo a flip or a NS bifurcation respectively. If a
flip shall occur prior to a NS bifurcation, then

2P =12)(P1+ 1)
(1+2y — P)(P1+y(1+2P))

In Fig. 1, we show the graphs that separate stable and
unstable parameter regions in the cases y = —1/6,
y = —Il/8and y — 0 and clearly, the larger the y,
the smaller the stable parameter region.

Our next goal is to scrutinize what happens at the
various instability thresholds and we start by consider-
ing the interval 0 < P; < 1/2.

<0 (12)

Theorem 2 Consider the map

(x1,x2) > (F(1—yx)7x
+F(1—yx)"xa, Pixy) (13)

whose equilibrium is

(xT7x;) _ 1 x*, Pl x*
14+ P 14+ P

where

X = %(1 —(Fa+ Pl))iy)

Then, in case of y > (P1 — 1)/2 and a fixed P, 0 <
Py < 12, (x{, x3) will undergo a supercritical flip
bifurcation at threshold

. 2
142y - P
1 [(142y—P\7
F = 14
< 1+P1( 1— P ) (14

Hence, when (x{, x3) fails to be stable, an attracting
period 2 orbit is established. For a formal proof, confer
Appendix A.

Regarding the dynamics beyond instability thresh-
old the results are as follows: As proved, independent
of the value of P; (0 < P; < 1/2) there will always
be an F interval just beyond threshold (14) where we
find stable orbits of period 2. Through further increase
of F there may be stable orbits of period 2% as well
as chaotic dynamics as exemplified in the bifurcation
diagram, Fig. 2a blue graph, and the Lyapunov expo-
nent graph, Fig. 2b blue graph, in the case y — 0 (i.e.
F(1 —yx)r = Fe ™) and P; = 0.4. (If the Lya-
punov exponent L < 0, it corresponds to a stable fixed
point or a stable periodic orbit, L = 0 means that the
dynamics occurs on an attracting invariant curve, while
L > 0 corresponds to chaotic oscillations). However,
in nonlinear systems one may not rule out the possi-
bility of multiple attractors. Indeed, still referring to
Fig. 2a, in the interval 34.18 < F < 39.42 we observe
that the stable 2-cycle coexists with a 3-cycle red graph
and in case of larger values of F there is coexistence
between the 2-cycle and a chaotic attractor which dis-
appears when F' = 46.13. The structure of the attrac-
tor is displayed in Fig. 3a and b; we provide a corre-
sponding time-series graph. Coexistence has also been
detected for smaller values of y. For example, when
y = —1/6 the 3-cycle coexists with (x], x3) as well,
and the smaller the y, the larger becomes the F interval
where coexistence is possible. Hence, in all intervals
where we find coexistence, the ultimate fate of an orbit
depends on the initial condition. We postpone a more
thorough analysis of the 3-cycle to the P; = 1 case.

When P; = 1/2, the solution of the eigenvalue
Eq. (10) at instability threshold becomes 11 = Ay =
—1, i.e. a codimension 2 bifurcation which is also
referred to as a 1 : 2 resonance, cf [30] (p. 411). In
this case, the procedure used in order to prove The-
orem 2 does not apply anymore. Instead we have the
following result:

@ Springer
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Fig. 2 a Bifurcation diagram generated by map (13). y =0, P;
7 T T T T T T T T
6 - -
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o
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Fig. 3 a Chaotic attractor (blue graph) generated by map (13)
when (Py, F) = (0.4,44) together with a magnification of
the lower left branch (red graph). Initial values (x1,9,x2,0) =

Theorem 3 Assume Py = 12 and —1/4 < y < O.
Then map (13) undergoes a1 : 2 resonance at threshold
x* = 4/(1 + 4y) and the map may be cast in 1 : 2
resonance form as

()= G s ()
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(b)

= 0.4. b Values of Lyapunov exponent L

16

14

12

10

i i+5 i+ 10

t

(b)

(0.5, 6.0). b Time series obtained from map (13), x; blue and x
red. Same parameters as in a

0
* <C(B)s? +D(§)sféz> (1>

where

1
CO) = ¢y + 12(—4y% +3y —2)

1 20,2
D(0) = 5(4V+ D*@y* =5y +5)
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For a formal proof confer Appendix B.

Now, in order to analyse in somewhat more detail
what happens at threshold, one possibility is to approx-
imate (15) by a flow. However, since the eigenvalues
of the matrix are negative when E = 0, this will not
work. Therefore, we consider the second iterate of (15)
which in difference equation form may be expressed as

<51) =( 1+ B -2+ B2 )
£),., \ 28148182 1+ 1 =28+ B3

b E@@)
(&), * (F(? ) (1o
where

E( B) =C(B)&i + D(B)sitx

and

FEB) = (~2() + 1D (F) + 120 ()
+(3¢(B) - 2D(B) - 261 D()
+ 2D (B) )&fes + (- 3C(B) +2D(B)
+B1D(B) ~ 2620 (B) )13
+(C(B) ~ D(B) +#20(B))5 + 0(I&1")

and any nontrivial fixed point of (16) corresponds to a
single period to orbit of (15). Moreover, following the
procedure outlined in [30] it is possible to approximate
(16) by a flow which may be cast in the form

(n)=(2a) ()
2 €1 e2) \m
0 4
" (Clnf + Dm%nz) +o(r) a7

where

e1=e€1(B) =4p1+ O(IB%)
e =e(B) =261 — 28

C1 = Ci(B)
Dy = Dy @
such that

C1(0) =4C(0) = §(4y + 1)2( —4y% 43y — 2)

<0
D1(0) = —2D(0) — 6C(0)

1
=—5Ur+ D*(dy? -y +4) <0

so the nondegeneracy conditions C(0) # 0, D1(0) #
0 hold. Finally, by use of s = sign C{(0) = —1,
D1(0) < 0 and scaling we may rewrite (17) as

Q]z.Qz

. 3 5 (18)
8§20 = 61821 + 82822 + 5827 — 2152
Clearly, (0, 0) is a trivial fixed point of (18) and since
s = —1 there are also two nontrivial fixed points of
the form (£4/81, 0) provided §; > 0. Moreover, (0, 0)
bifurcates to (4/81, 0) through a pitchfork bifurcation
at 61 = 0. Now, if we relate our findings above to our
original discrete system (16) the nontrivial fixed point
corresponds to a period 2 orbit of (15). Consequently,
when P; = 1/2 the fixed point will bifurcate to a stable
period 2 orbit.
Next, focus on the Pj interval /2 < Py < 1.

Theorem 4 If1/2 < Py < 1 and —P1/(1 +2P1) <
y < Othe fixed point (x, x3) of map (13) will undergo
a supercritical NS bifurcation at threshold

. 1+2P
TP+ y(142P)
14+2P\ 7
F = 1 19
< 1+P1( Ty P > (1%

For a formal proof see Appendix C.

From Theorem 4, it follows that when (x7', x3) fails
to be stable, an attracting invariant curve is estab-
lished and in Fig. 4 we show such a curve in the case
y — 0 (Ricker Case) and (P, F) = (0.6,26). On
such a curve map (13) is topologically equivalent to
a circle map with associated irrational rotation num-
ber o. However, as a result of increasing the fecun-
dity, o approaches 1/5 and through frequency locking
there exists an F interval where the invariant curve
turns to a 5-cyclic attractor. This scenario is displayed
in the bifurcation diagram in Fig. 5a, as well as in
the Lyapunov exponent diagram, Fig. 5b. For larger
values of Pj, the dynamics may change. Indeed, cf
Fig. 6a, when P; = 0.8 there exist parameter inter-
vals F3 < F < Fg and Fp < F < F¢ where the
stable fixed point (first interval) and an invariant curve
(second interval) coexist with a stable 3-cycle with
large amplitude, respectively. The 3-cycle is created at
F3 = 11.851 (through a saddle node bifurcation) and
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disappears when F = F¢c = 16.216. Fp = 14.328
is the bifurcation value computed from (19). Regard-
ing the trapping regions we have the following: When
F > F3but F — F3 is small the trapping region for the
invariant curve consist of all initial points located on
the inside of the curve as well as three regions outside
the curve as displayed in Fig. 6¢. Through an increase
of F but F < F¢ the regions of points outside the
invariant curve become smaller and when F is located
close to F¢ the trapping region for the invariant curve
consists mostly of points located on the inside of the
curve, as illustrated in Fig. 6d. The rationale behind this
may be understood along the following line. Through
the saddle node bifurcation at F = F3, three branches
of unstable (repelling) points are created too. When
F > Fpgbut F— Fp is small the distance between these
branches and the invariant curve is ’large’, hence the
invariant curve is perfectly capable of attracting points
located at some distance outside the curve. However,
as F is approaching F¢ the branches of unstable points
are located very close to the invariant curve. Hence, a
majority of points in the vicinity (outside) the invariant
curve are pushed away from the region and towards the
stable 3-cycle. Consequently, the trapping region for
the invariant curve consists mainly of points located
on the inside of the curve. Whenever F > F¢ but
F — F¢ is small the 3-cycle is the only attractor and as
F is further increased periodic orbits of period 3 - 2%
are established and eventually the dynamics becomes
chaotic. These findings are visualized in Fig. 6a and b.
Thus an increase of P; acts in a destabilizing fashion.
When P; — 1, the value of A approaches third root
of unity which implies that o — 1/3. Thus, in this part
of parameter space the large 3-cycle coexists with an
almost 3-periodic orbit restricted to an invariant curve
as accounted for in Fig. 7. The ultimate fate on an orbit
depends on the initial condition. The trapping region
for the invariant curve consists almost exclusively of
initial points located on the inside of the curve.

Next, consider smaller values of y, and as proved,
smaller values of y imply better stability properties.
For example, when P; = 0.8 we find from Theorem 4
in the Ricker case (y — 0) that (x}, x3) undergoes a
supercritical NS bifurcation when F = 14.33 while the
corresponding bifurcations when y = —1/gand y =
—1/6 occur at F = 35.97 and F = 59.93 respectively.
Otherwise the qualitative picture is in many respects
quite similar. However, since (xf‘, xi“) is stable in much
larger F intervals we find that the fixed point when
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Fig. 4 An invariant curve generated by map (13), y — 0 and
(P1, F) = (0.6, 26)

P; = 0.8 may coexist with 3 - 2% cycles which we do
not find when y — 0. Actually, when P; = 0.6 there
exists an interval where (x}, x) coexists with a chaotic
attractor.

Next, consider the remaining case Py = 1. At
instability threshold A equals third root of unity (A =
1+ 12 «/§i), and in accordance with [30], we
refer to this case as the 1:3 resonance case. P} = 1
implies that the normal form of map (13) (cf Eq. (C.8)
in Appendix C) contains an additional resonant term of
degree 2 and we have the following result:

Theorem S If P = 1 and —1/3 < y < 0 map (13)
undergoes a 1 : 3 resonance and may be written in
complex form as

Wit1 = Awy + C(y)W7 + D) we|w, |
+0(Jw,[*) (20)

where

1—9y? .
C(y) = — 3—
) 3 (V3-i)
(14 3y)?

0 (992 + 6y +5+ 3y By — D)

D(y) =

For a formal proof, confer Appendix D.

Next, consider the dynamics. As accounted for there
are F intervals both when P; < 1/2and P; > 1/2 where
a stable 3-cycle coexists with the stable fixed point
(x7, x3). Moreover, when P; > 1/2, the 3-cycle may
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Fig. 5 a Bifurcation diagram generated by map (13) when y — 0 and P; = 0.6. b Values of Lyapunov exponent L when P; = 0.6

coexist with an invariant curve as well but the F inter-
vals where this occurs shrink as P; approaches unity.
Now, considering the 3-cycle, we have verified numeri-
cally thatitis established as the third iterate of map (13)
undergoes a saddle node bifurcation. When P; = 1,
this occurs in the Ricker case when F' = Fg = 8.9438.
Hence, at F = Fx three branches of stable equilibria
are born but also three branches of unstable equilibria.
In Fig. 8, we see two stable branches (solid lines). (The
reason that we see two and not three is that when P; = 1
the sum x = x; + x3 is the same for two of the points
in the cycle. For example, when F = 10.5 the points in
the cycle are (3.8300, 0.5680), (0.5680, 3.8300) and
(0.5680, 0, 5680), but the sum x = x| + x7 is the same
for the first two points). The figure also displays the
branches of unstable points (dashed lines). Itis a tedious
task to compute these points, but we have managed to
do so by backward iterations

X1\ _ 0 1 0 1
<x2,t> N (Fe_x’)_l —1 (Fe—xr+1)_1 —1
0 1 X1,143
((Fe—x,+2)—l _1) <x2,t+3) (21)

where x;42, x;4+1 and x; satisfy

X1,143
Xi42 = Wo(%)

X2,142
X1 = Wo( ;: )

X142 — X2,143
Xy = W0<—F )

and Wy is the Lambert function. Therefore, from our
calculations and Fig. 8, we conclude that (x,x3)
undergoes a subcritical bifurcation at (P, F) =
(1, (1/2)6‘3) where it collides with the three branches
of unstable periodic points generated by the third iter-
ate of (13). Consequently, when F' exceeds threshold
(1/2)e® and |F — (1/2)€3| is small the only attractor is
the 3-cycle which in turn bifurcates to orbits of period
3 . 2K and chaotic dynamics through further enlarge-
ment of F. Finally, our conjecture is that a similar phe-
nomenon occurs for smaller values of P; as well. Refer-
ring to Fig. 6a, the invariant curve disappears when
F = 16.125. Numerical experiments clearly suggest
that this happens as the curve is hit by branches of
unstable periodic points generated by the third iterate
of (13) at F = 11.851.

5 3-Age classes

Next, let us focus on three age classes, i.e. the map

(x1,x2, x3) > (F1(1 — yax) /" x; + (1 — yax) 7 x)

+ F3(1 — yax) /" x3, Pyxy, Pyx3)
(22)
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Fig. 6 a Bifurcation diagram generated by map (13) when y — 0 and P; = 0.8. b Values of Lyapunov exponent L when P; = 0.8. ¢
Trapping region (red) for the invariant curve, F = 14.5. d Trapping region (red) for the invariant curve, F' = 16.215

By use of results from Sect. 3 we find the nontrivial
fixed point as

1 P
(x], x5, x3) = x*, ! x*,
I+ P+ P I+ P+ P
PP
#x*) (23)
1+ P+ P
where
= (1 Ry)
yo 0

@ Springer

3
Ry=) LiF;

i=1

Moreover, assuming « = 1 and equal fecundities
(F1 = F» = F3 = F) the eigenvalue equation may
be cast in the form

Mrart+artaz=0 (24)
where
1 1—(y + Dx*
a; = —
B oy G
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Fig. 7 Coexisting attractors. (Py, F) = (0.95, 10.945), with
initial conditions (x1,0,x2,0) = (0.7,3.3) and (x1,0,x2,0) =
(1.6, 1.4) for the 3-cycle and almost 3 periodic orbit, respec-
tively

ay = Piay

a3 = P Pay

In order for the fixed point to be stable, the eigenvalues
A must satisfy |A| < 1 which is ensured whenever the
Jury criteria

l+a+a+a3>0 (25a)
l—ay+ay—az >0 (25b)
1—laz| >0 (25¢)
11 —a3| — |az — aza1| > 0 (25d)

are satisfied. Now, in case of x* ~ (y + 1)’1 all coeffi-
cients g; are close to zero and subsequently all four cri-
teria clearly hold. Hence, fixed point (23) (equal fecun-
dities) is locally asymptotic stable in case of x* small.
Criteria (25a) hold for any x* > 0. Denoting the values
of x* where (25b)—~(25d) fail for x}, x}¢; and x} g,
respectively, we find after some algebra

Xp = XNs)
P —1=P Py(1—Pp) o
(1= P+ PPy +2y(1+ Py P))((1+ Py + 2P P2)y + P P2)

Moreover, in order for x,‘;, o~
inequality

(1—P)(1—-2P1+3P1P) <0 (26)

must be satisfied. Therefore, whenever (26) is valid, a
NS bifurcation will take place prior to a flip bifurcation

x} to be negative, the

Fig.8 Branches of stable points (solid lines) and unstable points
(dashed lines) generated by the third iterate of map (13) together
with (x}, x3) generated by map (13), P; = 1 (Ricker case)

and this is only possible in parameter regions where
P1 > 1/2and P, <« P;. Thus, we conclude that in
case of x* small the fixed point (x{, xJ, xgk) is stable
and when x* is increased (as a result of increasing F')
a NS bifurcation will occur at threshold x* = xY ¢, if
1 —2P;+3P; P, < 0Oor alternatively a flip bifurcation
at threshold x* = x3, if 1 —2P; +3P P> > 0.

In Fig. 9a where y — 0 we have drawn the graphs
of x} and x} ¢, in the cases P; = 0.8 (blue graph),
P; = 0.5 (red graph) and P; = 0.2 (green graph). The
stable parameter region is located below the graphs.
When P; = 0.2 or 0.5 the transfer from stability to
instability will always go through a flip bifurcation,
but when P; = 0.8 and P> < 0.25, the fixed point will
experience a NS bifurcation at threshold. Figure9b,
where y = —1/10, displays qualitatively the same situ-
ation. The difference is that the size of x* at threshold
is larger which in many respects is nothing but a con-
sequence of Theorem 1.

Next, assuming xj < Xjx,, let us study the flip
bifurcation in somewhat more detail. At threshold x* =
x}, the value of F becomes

Iy
2(1 4+ P1Py) ) @7

1
S N
1+P1+ PP 1—Pi+ PP
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Fig. 9 Values of x} and xj, in the cases Py = 0.8 (blue graph), P; = 0.5 (red graph) and P; = 0.2 (green graph). a y

y =—1/10

and from (24) we obtain the solutions

M =-—1
PGPy

20— P+ P P2)

\/4(1 — P+ P{P))P, P, — PX(1 — P,)>
* 2(1 = P+ P Po)

A23 =

1

(28)

with property

PP
A3l = ——— <1
1— P+ PP,

Regarding the nature of the flip bifurcation we have the
following result:

Theorem 6 Assume 0 < P < 1,0 < P, < 1 and
Xp < Xjngp (Le. 1 —2Py + 3P Py > 0). Then, the
fixed point (23) of map (22) where F1 = F, = F3 = F
will undergo a supercritical flip bifurcation at threshold
x* = xj.

For a formal proof, confer Appendix E.

Let us now turn to the dynamics. Assuming x} <
X} gy (Which is the case in most of the parameter
space), y = 0, and x* > x7. Theorem 6 implies that as
long as [x* — x}| is small the dynamics is stable period
2 orbits. As we continue to increase x* (as a result of

@ Springer
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(b)
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increasing F'), stable orbits of period 4 are detected
but through further enlargement of F a NS bifurcation
occurs so the dynamics now turns quasiperiodic and
is restricted to four disjoint invariant curves which are
visited once every fourth iteration. This is exemplified
in Fig. 10a. In case of larger values of F, the dynamics
turns chaotic, confer the Lyapunov exponent calcula-
tions presented in Fig. 10b. For small negative values
of y, we find much of the same dynamics. The main
difference is that the value of F and x* at bifurcation
threshold x7} is much larger which clearly suggests that
a decrease of y acts stabilizing. Otherwise, no other
qualitative changes have been found.

Next, assuming y = 0, consider xy¢, < xj and
x* < x3 g, Which occurs in regions where P is "large’
and P, ’small’. Here, through an increase of F, Jury
criterion (25d) fails before criterion (25b) and sub-
sequently the eigenvalues at bifurcation threshold are
complex. Thus, at threshold x* = x;{, - the fixed point
(x7, x5, x3) undergoes a (supercritical) NS bifurcation.
Hence, beyond threshold the dynamics is quasiperi-
odic. Through further enlargement of F the dynam-
ics alternates between quasiperiodic orbits and periodic
orbits of long period before it turns chaotic. Moreover,
no qualitative changes have been observed for small
negative values of y.
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Fig. 10 a Four disjoint invariant curves generated by map (22). Parameter values P = P, = 0.8,y = 0, F = 26. Each curve is visited
once every fourth iteration. b Values of Lyapunov exponent. Pj = P, = 0.8,y =0,10 < F <30

Finally, the case P = P> = 1 is special. Then at
bifurcation threshold

4
X XF = XNS1 1+ 4y (29)
(see (25b) and (25¢)) and the solutions of the eigenvalue
Eq. (24) become A1 = —1, Ap 3 = %i, i.e. all eigenval-

ues are located on the boundary of the unit circle. What
we observe here is that when (x7, x5, x3) fails to be
stable, the dynamics immediately turns chaotic. Such
a sudden appearance of a chaotic attractor is called a
crisis. There are several different mechanisms that may
lead to crises, see [31-33] and references therein. The
attractor we observe, and display in Fig. 11, is a result
of a boundary crisis which acts as a root to chaos, cf
[33].

6 Discussion

First, let us comment on survival probabilities. As
shown earlier, whenn =3 and 1 — 2P, + 3PP, <0
(which implies P; > P»), the transfer from stability
to instability does not go through a flip bifurcation but
through a NS bifurcation. If the inequality is reversed
the flip is the only possibility. The biological rationale
behind this is as follows. When P, becomes small, age
class 3 does not contribute in any essential way to the
size of x*. Consequently, if P, is small the dynamics
in the 3-age class model should be retained already

7
0.5,
6
5 0.3+
4.
&
3. 01
075 L 7
2 15 4 5.5

[}
O
o

T T

Fig. 11 A chaotic attractor (blue graph) generated by (22). P; =
P, =1,y =0and F = 19. An enlarged version of the subset
to the right is shown in red. Each of the (blue) subsets are visited
every fourth iteration

when n = 2. Therefore large values of P; combined
with P, small should result in quasiperiodic behaviour
beyond instability threshold while P; and P, both small
should lead to periodic dynamics of period 2¥. More-
over, assuming n arbitrary and Py, P>, ..., P,_1 small
one may in fact argue that the general model (3) degen-
erates to the one-population model (x| ~ x)

Xep1 = f(1—yx)x (30)
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An easy calculation shows that the equilibrium x* of
model (30) is stable as long as x* < 22y + 1)~! which
is the same stability criteria as we found in Theorem 1.
Thus we may interpret the content of Theorem 1 as to
say thatx* < 2(2y +1)~! guarantees that . xy)
is stable in case of small survival probabilities. Since
A = —1 at threshold x* = 2(2y 4+ 1)~!, the dynamics
beyond threshold will be periodic of period 2%. When
F becomes large the dynamics turns chaotic as a result
of successive flip bifurcations.

Let us now turn to the general n-age class model. As
already proved (see Theorem 1) there exists a param-
eter region x* < 2/(y + 1) where the fixed point
(x7, ..., xy) is guaranteed to be stable. Outside this
region, we have shown in our 2- and 3-age class anal-
ysis that the transfer from stability to instability may
occur in different ways. If n = 2, the fixed point will
undergo a supercritical flip bifurcation in the interval
0 < P; < 1/2 and a supercritical NS bifurcation when-
ever /2 < P; < 1. When n = 3, the region where
(], x5, xg‘) may undergo a NS bifurcation is small.
In case of equal survival probabilities P| = P, = P,
the transfer from stability to instability will always go
through a flip. Now, assuming A = —1 at threshold, the
value of x* becomes

250" Loy
" i1 D)2
N Do DL 42y 3T Loy
X
22,-/:21 L

Y (D L 2y Y Loy

n odd (31a)

neven (31b)

and we observe that when the survival probabilities P;,
i = 1,...,n — 1 approach unity, x* (depending on
y) tends to infinity in the even number of age classes.
Consequently, we may rule out the possibility of a flip
bifurcation for large survival probabilities if z is even.
In Fig. 12 where n = 4 and Py = P, = P3 = P we
show the values of x* at bifurcation threshold. x* is
computed from

1+ K
* B W (32)
1+ +Kayy
where K = Z?:o P! and a; is defined through
A+ air? + Paja? + P2ajh + Pla; =0 (33)

and is determined by use of the Jury criteria J;. (A
general formulation of the Jury criteria may be obtained
in [34]).
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Fig. 12 Jury criteria when n = 4. The stable parameter region
is located below the graphs

In the flip case J, (blue graph in Fig. 12)

1

al=—3

Yo (=D P
In the NS cases J3 (red graph), J4 (green graph)

1

a) = F

P2 —/P*— P31 - P3)
ar =

2P3(1 — P3)

respectively, while a; in the NS case J5 (orange graph)
must be found by means of numerical methods from

—PO(1+ PY)(1 = P?)af — P*(1 —2P%)q]
+P*(1-2PYa} — Pai +1=0

The stable parameter region is located below all
graphs. In other words, if x* is small, the fixed point
(x7, x5, x5, x3) will always be stable, if P < 0.6061
an increase of x* (i.e. an increase of F) eventually
leads to a flip bifurcation, while the fixed point will
undergo a NS bifurcation if P exceeds 0.6061. Hence,
we conclude that there is a great resemblance between
the n = 2 and n = 4 cases. The main difference is that
the P interval where a flip bifurcation may occur has
been extended when n = 4. Moreover, when P — 1
we find that a; in the flip case J> tends to infinity. In the
remaining cases J3, Jq4 and J5, a; — 1 which proves
that

X = (34)
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at bifurcation threshold. Now, from formulas (29), (32)
and (34), we find it natural to conjecture that if all sur-
vival probabilities equal unity in a general n-age class
model the value of the total equilibrium population x*
at bifurcation threshold should be

* L (35)
14+ 0+ 1y
We shall now explore this further. When P; = 1,i =
1,...,n — 1 then K = n and the eigenvalue equation
may be cast in the form
Dx*—1
Py =M+ —(7/ + Dx
n(l —yx*)
(AT A+ 1) =0 (36)
Further, define
n
Por) =Y A
i=1
n—1
Pi(A) = Z Al
i=1
and
(n+1)—(1+@n+ Dy)x*
€ =
n(l —yx*)
Then, we may rewrite (36) as
PO =Py(A) —ePi(M) =0 37
and if
n—+1 "

I+@m+hy
is small, € is small too.

Our next goal is to show that whenever x* < (n +
D/ 4+ [n+ 1]y), i.e. € > 0, all eigenvalues of (37)
are located on the inside of the unit circle. To this end,
following the procedure outlined in [21], assume that
A is a root of Py(A) = 0. Clearly, Ao # 0 may equal
—1if n is even, otherwise complex. Next, suppose that
A=A+ €A1+ --- is a solution of (37) when € > 0
and € small. Then

n n—1 n—1
Dabten Y i+ —ed agt =0
i=1 i=0 i=1
from which we obtain

i LoL N ik
M= o - M T S
Y+ DA nn Y+ DA

1 1
= —(*)»0 -—-(1- M))
n n

which in turn implies that A1 = (n + D=1 = xg) and

€ €
r=(1- A 0(e? 38
( n+1> ot 7t oE) (38)

Finally, let Ao = ¢'? and consider A and A1 as vectors.
Then

kY 5 _l * *
Ao €A = 56()»0)»1 + XoAT)

=€ (cos6 —1) <0
n+1

and we conclude that all eigenvalues are located on the
inside of the unit circle so our conjecture is supported.
x* as defined in (35) is the bifurcation threshold when
all survival probabilities equal unity. From a dynamical
point of view the result above signals that in case of
large survival probabilities, the region where the fixed
point retains its stability will increase as n becomes
larger. Hence, an increase of the number of age classes
acts in a stabilizing fashion.

Next, consider an even number of age classes and
equal survival probabilities. Whenn = 2 andn = 4 we
have proved the existence of an interval Py < P < 1
where the fixed point will undergo a NS bifurcation at
threshold (n =2 = P, =05n=4 = P, =
0.6061). In Fig. 13 we show the value of Py as function
of n, and clearly, the larger the n, the smaller becomes
the interval. However, there are limits as to how small
such intervals may be. This is due to our previous find-
ing that an increase of n (especially when P is large)
acts in a stabilizing way. If Py shall approach unity, this
will only be possible in case of extreme (unrealistic) F
values. Therefore, we conclude that there will always
be aninterval Py < P < 1 where the dynamics beyond
threshold consists of quasiperiodic orbits and possible
chaotic dynamics.

Regarding an odd number of age classes it follows
from Theorem 6 that whenever P = P, = P the flip
is the only possibility when n = 3. Now, assume equal
survival probabilities, n odd and n > 3. If the fixed
point shall undergo a flip at threshold, x* must equal
(31a) from which we obtain the associated eigenvalue
equation

1

Yiy (=D
(A P 4 P2+ P = 0(39)

A4+
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085 . where
.-
o‘.—
- ’."
ety o P(1—=P")+(1—P)1—x* —(1— P F)yx*
0.75F B o = (L= PP)(1— %)
»
A =P)P"(1=(y+1x¥)
K 0651 ,," (1= P")( = yx*)
’,'/ A = P is one solution of (42). The others are the same
o5k S as the solutions of (7). Moreover, any solution A = et?
' K located on the boundary of the unit circle satisfies
L]
05 | cos(n+ 1) + Rcosnf — S =0 (43a)
o 4 8 12 16 20 sin(n + 1)6 + Rsinnd =0 (43b)

n

Fig. 13 Values of Pk (dots) when n is even

A = —lisnecessarily a solution of (39). The remaining
solutions must be obtained from

n—1
)Ln—l + — 1 : (( (_l)i+1Pi)An—2

2ico (DTPIANIT
n—1

+ (Z(—l)ipi))»n3
i=2
n—1

+ (Z(—l)i+1Pi>)\n4 4.
i=3

+ (Pn72_ Pnfl))\’_i_ Pn]) :0

(40)

Applying Rouche’s theorem on (40) in the same way
as in the proof of Theorem 1, we find that all roots A of
(40) will satisty [A] < 1if

P+P3+"'~|—Pn_2
1—P+P2—...4 pr-l

When n = 3, (41) is satisfied for any 0 < P < 1,
but when n becomes large, (41) is satisfied only if
0 < P <1/2. Thus 0 < P < 1/2is sufficient to guar-
antee that there will be a flip bifurcation at threshold.
However, our conjecture is that in case of any n > 3
the transfer from stability to instability will go through
a flip bifurcation also when 1/2 < P < 1. In order to
support this, we have rewritten the general eigenvalue

<1 (41)

Eq. (7) under the assumption F| = --- = F, = F,
Pip=---=P,_1=Panda =1as

@ Springer

Lots of numerical experiments show that when n is
odd both equations are satisfied for the first time when
6 = m which implies A = cosz +isinw = —1 and
thus a flip bifurcation. This is exemplified in Fig. 14a
wheren = 7, P = 0.8 and the curves equal zero simul-
taneously for the first time when x* = 6.8795. For
comparison reasons, we have also performed similar
experiments when # is even. In Fig. 14b, we show how
the curves develop when n = 8 and P = (.8. Here
both curves become zero simultaneously when x* is
increased to the value x* = 7.8612. Moreover, 0 2 =
£ 0.2522 which leads to A = —0.9684 £ 0.2495i
with property || = 1, i.e. a NS bifurcation.

7 Summary

In this paper, we have focused on nonlinear iteroparous
Leslie matrix models. Nonlinearities are incorporated
in fecundity terms by use of the general Deriso—
Schnute recruitment function. Survival probabilities
P; are regarded as constants. Under the assumption
of equal fecundities F = --- = F, = F, it is
proved (Theorem 1), independent of degree of compen-
satory/overcompensatory recruitment (measured by
parameter y, —1 < y < 0), that there always exists
a region where the model possesses a nontrivial stable
equilibrium (x7, ..., x;) and that the region becomes
smaller as y — 0. This is in contrast to what one
obtains from semelparous models where the equilib-
rium is unstable also at low population densities. Con-
sidering n = 2 age classes, it is shown that the bifur-
cations that occur at instability threshold (flip when
Py < 1/2, NS when 1/2 < P} < 1) are of supercritical
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Fig. 14 Solution of Egs. (43a) and (43b).an=7,P =08.bn =8, P =0.8

nature (Theorem 2 and 4) and we also provide normal
form expressions of 1 : 2 and 1 : 3 resonance cases
(Theorem 3 and 5). Still assuming n = 2, we also elab-
orate findings about coexisting attractors. It is shown,
depending on P, that fixed points, 2 period orbits and
invariant curves may coexist with a 3-cyclic attractor
with large amplitude. (In some cases the 3-cycle turns
chaotic through a series of flip bifurcations which gives
births to other coexistences as well). In this part of the
parameter space, the ultimate fate of an orbit depends
on the initial condition. A general finding is that for
a fixed value of Pj (in particular when P; > 1/2) an
increase of F (F1 = F, = F) makes the trapping
region for the fixed point or the invariant curve smaller
and for P; values close to unity the trapping region
for the invariant curve consists almost exclusively of
points located inside the curve.

When n = 3, the transfer from stability to instabil-
ity goes through a supercritical flip bifurcation (The-
orem 6) in most of parameter space. Hence, close to
but above threshold the dynamics is 2-periodic, but in
contrast to the n = 2 case when F is further increased
there are regions where the dynamics occurs on 4 dis-
joint invariant curves. Moreover, in the special case
Py = P, = 1 all eigenvalues are located on the bound-
ary of the unit circle at instability threshold. Through
further increase of F' a crisis occurs and the dynamics
turns instantly chaotic.

Next let us summarize our results about the dynam-
ics when n is arbitrary. It is necessary to distinguish

between even and odd number of age classes. In the
former, there existsa P (P; = --- = P,_; = P)inter-
val P, < P < 1, P, > 1/2, where the fixed point will
undergo a NS bifurcation at instability threshold and
as shown the interval becomes smaller as n becomes
larger. Consequently, when F is sufficiently large and
Py < P < 1 the nonstationary dynamics just beyond
instability threshold is restricted to invariant curves. On
the other hand, if n is odd or 0 < P < P, when n is
even, periodic dynamics of period 2k k > 1, is the
most likely outcome, but confer Fig. 10a for a counter

example.
Finally, let us comment on number of age classes.
Whenever P;,i = 2,...,n — 1, are small our findings

clearly suggest that the dynamics found in a general n-
age class model to a large extent will be retained already
in a 2-age class model. When all survival probabilities
approach unity, x* = x*(n) atinstability threshold (see
(35)) is found to be an increasing function. The impact
of this is that the stable parameter region expands as n
is increased from which we conclude that an increase
of number of age classes acts in a stabilizing fashion.
Finally, we want to stress that we have not consid-
ered any concrete species in our analysis, but what we
have done, besides proving some general theorems of
nature of bifurcations involved, is to show and unify
results about possible dynamical outcomes in a more
general setting than in previous quoted papers. There-
fore, results obtained should be valuable and may con-
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tribute to a better understanding of mechanisms behind
observed dynamical behaviour in nature.
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Appendix A: Proof of Theorem 2

Expanding the first component of (13) up to third
order about (x}, xj) together with the transformation
(X1, X2) = (x1 — x§, x2 — x5) yields at threshold

- . 1 .
Ml = =y + <f/ + 5f”x*>x,2
+ lf// + lf///x* )23 (A.1a)
2 6 d

X241 = P1X1, (A.1b)
where

1 142y — P)(P —
f/+ _f//x* _ ( + 2y l)( 1 2]/)

2 (14 P)(1 = Py)
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At threshold the eigenvalues of (10) become A} = —1,
A = —P;(1 — Py) and |X;| < 1. Next, define

L1
P —P
< LS 1) (A2)

where the columns of 7 are the associated eigenvectors
of A1 and X, respectively. Then, by use of

()n() = (=) o
we may express (A.la) and (A.1b) as

u (-1 © u

(0).,= (0 5) ),

gug, vr)
(S ) =

T

where
2 2.1\2
g(u,v) = A((l — P1)%u+ Pj v)
+B((1 = P)?u + Plv)’

and

1 / 1 V3
A= P1<2P1—1>(1—P1><f T3t x)

1 1 4 1 "k
b= PE(2P1—1)<1—P1>2(§f el x)

Next, by use of the procedure outlined in [35] we may
restrict (A.4) to the centre manifold as

w1 = wu) = —u; + A — P)*u? + (1 — Pp)°
(B —2A*PE(1 — P))u; (A.5)

Still, following [35] the bifurcation will be of super-
critical nature whenever

ow 92w 92w

42— £ A6
oF 902 " CoudF 7 (A.6a)
1/02w\> 1/8w

E(W) + g(m) >0 (A.6b)

The left-hand side of (A.6a) (the nondegeneracy con-
dition) becomes

2 - py)?
Y ( 1)
1- P 1 - 2P
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and is clearly nonzero while the left-hand side of (A.6b)
may be expressed as

( 2y )2 2(1 — Pp)?
1-P PE(1+ P)(1—2P)

1
((Pl -y 4+ =1y =3P + 1))

and since y > —I1/2makes y > —(1 — Py)/2 for all
P1,0 < Py < 1/2, we find that

1
(PL—y)*+ c=ply =3P +1
5 1
> Pj +4—LPI >0

Consequently, the left-hand side of (A.6b) is positive
and we conclude that the bifurcation is supercritical.

Appendix B: Proof of Theorem 3

When P; = 1/2, the Jacobian matrix evaluated at
threshold becomes

-2 =2
o= (l/z 0)

Consequently, A; = A2 = —1 and an eigenvector u
and generalized eigenvector u satisfying Joug = —uo,
Jouy = —uy + up are found to be wy = (=2, HT
and 1 = (2, 0)7 respectively. Define the matrix 7 =
(ug, u1). Then by use of

(2)=2() = ()= ()
X2 » 2 X2

and Q = P; — 1/2, (13) may be transformed to
<y1> _ <—1 +a(Q) 1+b(0) ) (M)
), (@ —1+d@)\»n),

G, 0)
+ (h@, Q)) ®.1)

where a(Q) = —20,b(Q) =20, C(Q) =40%/(1—
20),D(Q) = -20(14+20)/(1-2Q), with properties
a(0) = b(0) = ¢(0) = d(0) =0 and

801 Q) =0

_ _ 20 +4y —20)d -2y +20)
9= 2( (1-207G+20)
@y2 = y1.0? =1 =)

(14+4y —20)*(1 — 8y +60)
3(1-20)3(3+20)

Qyz,r — )’I,t)3>

Next, following the procedure outlined in Lemma 9.7
in [30], denote the matrix in Eq. (B.1) for M (Q) and
define

142
no1=("35%)
Then
5080 = (9 1+ 500))
(1 1 B2
“\o -3 "
where

€(Q) = c(Q) +b(Q)c(Q) —a(Q)d(Q) =0

40
8(Q) = a(Q) +d(Q) = —7 ~20

By use of the nonlinear coordinate transform

yiy _ uj
<y2> = B(Q) (uz) (B.3)

it now follows from (B.1) and (B.2)
u _ -1 Y141
(”2>;+1 =50 ()’2,t+1>
~(c@ -1+50) ()
- \e(Q) —1+8(0)) \uz),

(B, Q)
+5 (Q)(h(B(Q)ﬁt,Q)> ®4

~(c@ 1450) ()
Q) -14+8(0)) \u2/,
G, Q)
- (H@, Q))
where G (i, Q) = 0 and

(I+4y -20)0 -2y +20)
(1-20)3+20)

1
(20 — Duy + 2u3)” — c1=7)

(1+4y —20)*(1 — 8y +60)
1-2033+20)
(20 — Duy + 2us)’

Hu, Q) =

(B.5)
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Now, let 81(Q) = €(Q) and p2(Q) = 5(Q) with prop-
erties B1(0) = €(0) = 0 and B,(0) = §(0) = 0. Then,
from (B.5)

_ 4A 8A
H(u,p) = u’ + u1u2+4Au2
(7. 6) Br—22""" pp—2 :
L 8B s B,
u ujuy
B—23"" " (Br—22!
+ muluz + 8Bu;
= hoou? + hyyuiua + hopud + haous
+ hzlu%uz + h12M1u% + hosu%
where
a W B =2 =2)2B -1 =2y (B2 = 2)(B2 =)
B 8282 —3)
5 %“ ) (4y (B2 —2) —2)2(2<2§2 — 1) =8y(f—2)(f2—2)
Br—3

Finally, confer Lemma 9.9 in [30] (normal form for
1 : 2 resonance), there exists a smooth invertible
coordinate transform which brings (B.4) (81 = €(Q),

B> = 8§(Q)) over to
()= Gl idn) ()
&/, pr 1+ p2)\&/,

0
+ (C(ﬂ)si, + D(ﬁ)éﬁtéz,t) B7

where
1 1
C(0) = h30(0) + Eh%O(O) + 5h20(0)h11 (0)
5
D(0) = h21(0) + ZhZO(O)hll(O) —+ h20(0)h2(0)
1
+ h3,(0) + 5h%l(O)
Thus
1 2 2
C(0) = §(4y + D (—4y“ +3y —2)

D(O) = é(4y 4 12@®y% — 5y +53)

Appendix C: Proof of Theorem 4
At threshold (19), the modulus 1 solutions of (10)

become

1 b

o 2P 2P
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where b = (4P12 — 1)"2. Moreover,

y—1
d P, 14+2P1\ v
—al=—11 0
ar ! 2( Y ) g

which implies that the eigenvalues leave the unit cir-
cle at threshold. Equations (A.la) and (A.1b) (see
Appendix A) are still valid but since (x}, x3) at thresh-
old now is given by (19) we have

P 14+2P 1—y(+2P
f/+lf”x*=(l+)/(+ D)(1 =y +2P))

2 2(1+ P)P?
=A (C.1)

and

1 " 1 " %
SRR
2
(A=) (PL+y(+2P)) (1= Py =2y (1 +2P)))
6(1+ PP}

=B (C2)

The transition matrix 73 (confer (A.2)) which now con-
sists of the real and imaginary parts of eigenvectors
associated with A as columns is found to be

_ 1 _ b
T3 =< 21P12 éP%) (C.3)

and by use of the transformations

(£)=n() « €)== ()

we find (confer (A.4)) that map (13) may be written in
standard form as

_ 1 _ b 0
<ut+l) — 2P 2{)1 <Mt> + ( > (C.4)
Vr+1 3P T3P Ut gus, vr)

b
where
. 9) 2P —1 2+2P12—1A
u,v) =— u uv
§ 2bP? P?
b 2P — 1)
LItV
2P; 4b P;
3epf—1)?
3@P -1 o
4p;}

32P% — )b b?
4P 4P
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Next, let z = u + vi and N = 0 + ig(u, v). Then we (1 —=21)x 1 _
. § = ——ojop + — 0D
may express (C.4) in complex form as 1—A 1—2
2+ 24— 2 A ¥ C.9
Zial = hzy g L 2 H =7 e s (C.9)
2 2i
_ — — C5
= Az + onz,2 +o2z/Zs + oc3z,2 + omz? (€.5) Moreover,
2— =2 =3 —
tasy T +aszz oz i1 = Awy (1 + 28w, )
with complex coefficients _ Qi (1 + Re(%6|w, |2)>ei Tm (781w, )
A 2 (12 2 2 +0M
a = W(z;;(zpl —1) +i(p? - P = 1?)) C.10)
2 .
oy = —71Ai and if we introduce polar coordinates w = re'® we

a3 (-26PE = 1) +i(b? - @PF = 17?))

~ 8hP?

as = %(b—i(ZPlz 1))

The next step is to simplify (C.5). Assuming A" #
I,n = 1,2,3,4,5, we may by use of near-identity
transformation z = w + B w? + Boww + B3W> and its
inverse w = z — (,81z2 + B2z7 + ,3322) express (C.5)
as
=2

Wis1 = Awy + (Mp1 + o1 — BiA w)

+ (AB2 + a2 — Bl )w, W, (C.6)

=2\
+ (483 + a3 — B33 )w; + 03)

and if we choose

B =

=32

Br=—2

Uy (€7
a3

B3 ==
A

all second order terms of (C.6) will vanish and through
two more near-identity transformations (of order 3 and
4 respectively) we may get rid of all terms of order 3
and 4 in (C.6) except the wfw, term. Thus, we obtain
the normal form of (C.5)

w1 = Awy + Sw;w; + 0(5) (C.8)

where § is the sum of a5 and terms of first and second
order which have been lifted to w?w, after the first
near-identity transformation. Thus,

may express (C.10) as

riet = (1 +Re(R8)r}) + 0(4)
bir1 = ¢ + 270 + Im(A8)r? + 0(4)

(C.11a)
(C.11b)

Now, in order to obtain an attracting curve, @ = Re (XB )
must be negative and after multiplying (C.9) by 2,
inserting the expression for «; from (C.5) we find

_ (Atya+ 2p))’
16P2(1+2P)(1 + Pp)?

<(3P1 +2)+ (1= P2 = 1)1 +2P)

(C.12)

+ (V2P =y (1 +4P)) (1 +2P)?)

which is negative for 12 < P; < 1 and —P;/(1 +
2y) < y < 0. Consequently, the bifurcation is super-
critical. Thus when (x}, x3) fails to be stable, an attract-
ing invariant curve about (x{, x3) is established.

Appendix D: Proof of Theorem 5

When Py = 1, A equals —1/2 + 1/24/3i, i.e. third root
of unity, which implies that the denominator in the 3
expression in (C.7) (see Appendix C) becomes zero.
Hence, we cannot get rid of the Etz term in (C.6) so
let B3 = 0. Consequently, there will be an additional
resonant term a3w,2 in (C.8) which may be expressed
as

1 —9y2
——— (V3-i)w?
16V3
Moreover, 83 = 0 also implies that the a3a3 in (C.9)
becomes zero. Thus, when P; = 1 we find the wtzw,

Cy)w? =
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term from (C.10) as

) (1 =20
D(y)wlw;|” = BT L
L+ )I 2
- —apay +os Jws|w
1 3 2002 5 t | Wt

_ (1+3y)?
192
+ 3y By = Di)w,w,

(9y* + 6y +5

Appendix E: Proof of Theorem 6

The proof follows the same pattern as the proof of The-
orem 2. First we expand the first component of map (22)
up to third order about (x}, x5, x3) together with the
transformation (X1, X2, X3) = (x| — x}, x2 — x5, x3 —
x3) in order to bring the bifurcation to the origin. Thus,
at bifurcation

% - % + A2+ B3}
1,r+1 1— Pl + P1P2 t t t

A ~ E.1
X2,141 = Pix1; (E.I)

X341 = PaXo;

where
1
A — f/ + 5‘](‘//x*
(1= P+ P P+2y(1+ P P))

T+ P+ P P)(— P+ PPy’
(1=P +PP,— (1 —y)(1+ P P))

and
B= st Ly
2 "6
Zla_wu—ﬂ+ﬁ&+wu+ﬁ5ﬁ
6 (1+ P+ P{P)(1 — Py + Py P)?

(301 = Py + P1Py) — 2(1 = 2y)(1 + Py Py))

The transition matrix 7 where the first column is the
eigenvector associated with A = —1 and the other
columns are eigenvectors corresponding to

_ —Pi(1—P)+bi
2(1— P+ P Py)

A23

where

b:ﬂu—ﬁ+ﬂmm&—ﬁu—&ﬂ

@ Springer

becomes

1 201 _ 212 (1=Py)b

rp Pi0 = P =07 oy iy
T=1]_1 Pi(1=P) b (E.2)

P, T 2P(I-Pi+PP) ~ 2P,(0-Pi+PPy)
1 1 0

so after the transformations

X1 u u X1
Hl=T[v] © |v]|=T""|% (E.3)
X3 w w X3

we may write map (22) in standard form as

Ur+1 —1 0 0
0 — Pi(1-P) _ b
Vgl | = 2(17fl>),+P. P>) 2(1;1(011 +I§’1)Pz)
Wr+1 0 2(0—P+P1 P2) _2(1—|P1+P21P2)
Ut b11g(us, v, wy)
v | + | ba1g(uy, ve, wy) (E4)
Wy b318 Uy, v, wy)
where

g(u, v, w) = A(ciu + cav + c3w)?
+ B(ciu + cpv + C3w)3

1-P+P P
Y
Pi(1 — P))(Py —3P,+ PP, — 2P\ P)
= 2P (1 — Py + P Py’
o = b(Pi(1 — Py) — P2)
2P (1 — Py + P1P2)2
and
(I =P+ P P)P P,
by =

1—-2P1+3P P,
b1 = —byy
(1—=P+ P P)R—-3P+3PP)P P
b(l —2P; + 3P P2)
The next step is to restrict (E.4) to the centre manifold.
This is done by defining

2 3
- (Z) — Fw) = <a1u + byu ) E5)

aru? + byu’

b3 = —

and then obtain coefficients ay, as, b1, by (cf the proof
of Theorem 2 or the procedure outlined in [35]) from
the relations

ay(—u + b11g)* + by (—u + by g)°

:<_ Pa-r) b a)u2
=P+ PP 20—P+ PP
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Pi(1 — P, b
n (_ 1 2) by — bz)u3
2(1 = P1+ P P) 20 =P+ P11 Pp)

+Dbag (E.6a)

ay(—u + b11g)% + by(—u + by g)°

( b Pi(1— Py) ) 2

= ap — ay

20 =P+ P P) 2(1 = P+ P Py)
b Pi(1-P
+ ( by — 1 2) b2>u3
20 = P+ P P) 21— P+ P P2)

+b3i1g (E.6b)

The result becomes

Pi(1—P)(1— P + P Py)°
(14+ P Py))(1 =2P +3P P)P| Py

aI:—A

LU= P PP (24 PE—4PI( 4+ PPy 43P P2+ P1LP)

2= b(I+ Py P)(1— 2P| + 3P, PP P

(The values of b1 and b, are of no interest since they
only contribute to terms u* and higher). Now, substi-
tuting for v and w into the first component of (E.4) we
obtain the restricted map as

U1 = h(ug) = —u, + by (A(C%uf

+2ci(cra; + C3a2)uf’) + Bc%u?) + 04)
(E.7)
Finally, referring to the same theorem as we did in the

proof of Theorem 2, the flip bifurcation will be of super-
critical nature whenever

2bi1c1(A%b11e] + 2A(c2a1 + c3a2) + Be?)
>0 (E.8)

which after substitutions and simplifications may be
expressed as

(1= Py + P Py)(1 — Pl + P{ Py + 2y (1 + P Py))?

>0
3PZPF(1+ P1Py)(1+ P + P1Py)(1 — 2P + 3P| Py)

(E.9)

where
0 =2y*(1+ PP’

+y[301+ PLP)* —9P((1 + P Py)]

+ (14 P P)*> =3P (1 —2P; 4 P, P2)
Now, regarding the fraction in (E.9) all terms are posi-
tive. Moreover, when P, > (2P; — 1)(3P;)~! the [o]
in Q becomes negative (negative for P; > 2/7 actually)
and finally since (1+ Py P2)2 —3Pi(1-2P1+ P Py)is
positive for P, > (2P; — 1)(3P;)~! too we conclude
that the flip is supercritical.

Comment: If P = P, = P we find in the Ricker
case (y — 0) that (E.9) may be expressed as
(1—P+ P31 —-3P+8P>—-3P3+ P4
3P4+ P)(1+ P+ PO{1 —2P +3P2)
and since the zeros of both [o] and {o} parenthesis are
complex numbers the result follows immediately.

0

References

1. Levin, S.A., Goodyear, C.P.: Analysis of an age-structured
fishery model. J. Math. Biol. 9(3), 245-274 (1980)

2. Wikan, A.: Dynamic consequences of reproductive delay in
Leslie matrix models with nonlinear survival probabilities.
Math. Biosci. 146(1), 37-62 (1997)

3. Wikan, A.: Age or stage structure? A comparison of dynamic
outcomes from discrete age- and stage-structured population
models. Bull. Math. Biol. 74, 1354-1378 (2012)

4. Davydova, N.V., Diekmann, O., van Gils, S.A.: Year class
coexistence or competitative exclusion for strict biennials.
J. Math. Biol. 46(2), 95-131 (2003)

5. Mjglhus, E., Wikan, A., Solberg, T.: On synchronization in
semelparous populations. J. Math. Biol. 50(1), 1-21 (2005)

6. Kon, R.: Nonexistence of synchronous orbits and class coex-
istence in matrix population models. SIAM J. Appl. Math.
66(2), 616-626 (2005)

7. Cushing, J.M.: Nonlinear semelparous Leslie models. Math.
Biosci. Eng. 3(1), 17-36 (2006). (PMID: 20361805)

8. Cushing, J.M.: Three stage semelparous Leslie models. J.
Math. Biol. 59(1), 75-104 (2009)

9. Cushing, J.M., Henson, S.M.: Stable bifurcations in semel-
parous Leslie models. J. Biol. Dyn. 6(2), 80-102 (2012)

10. Chow, Y., Kon, R.: Global dynamics of a special class of
nonlinear semelparous Leslie matrix models. J. Differ. Equ.
Appl. 26, 625-642 (2020)

11. Kon, R.: Bifurcations of cycles in nonlinear semelparous
Leslie matrix models. J. Math. Biol. 80, 1187-1207 (2020)

12. Cushing, J.M.: A strong ergodic theorem for some nonlinear
matrix models for the dynamics of structured populations.
Nat. Resour. Model. 3(3), 331-357 (1989)

13. Crowe, K.M.: A nonlinear ergodic theorem for discrete sys-
tems. J. Math. Biol. 32(3), 179-191 (1994)

14. Behncke, H.: Periodical cicadas. J. Math. Biol. 40(5), 413—
431 (2000)

15. Diekmann, O., Planqué, R.: The winner takes it all: how
semelparous insects can become periodical. J. Math. Biol.
80, 283-301 (2020)

16. DeAngelis, D.L., Svoboda, L.J., Christensen, S.W.,
Vaughan, D.S.: Stability and return times of Leslie matrices
with density-dependent survival: applications to fish popu-
lations. Ecol. Model. 8, 149-163 (1980)

17. Bergh, M., Getz, W.: Stability of discrete age-structured
and aggregated delay-difference population models. J. Math.
Biol. 26, 551-581 (1988)

18. Silva,J.A.L., Hallam, T.: Compensation and stability in non-
linear matrix models. Math. Biosci. 110, 67-101 (1992)

19. Guckenheimer, J., Oster, G., Ipaktchi, A.: The dynamics of
density dependent population models. J. Math. Biol. 4(2),
101-147 (1977)

@ Springer



2288

A. Wikan, @. Kristensen

20.

21.

22.

23.

24.

25.

26.

217.

28.

Silva, J.A.L., Hallam, T.: Effects of delay, truncation and
density dependence in reproduction schedules on stability of
nonlinear Leslie matrix models. J. Math. Biol. 31(4), 367-
395 (1993)

Wikan, A., Mjglhus, E.: Overcompensatory recruitment and
generation delay in discrete age-structured population mod-
els. J. Math. Biol. 35(2), 195-239 (1996)

Ugarcovici, 1., Weiss, H.: Chaotic dynamics of a nonlin-
ear density dependent population model. Nonlinearity 17(5),
1689-1711 (2004)

Pickmann-Soto, H., Arela-Pérez, S., Nina, H., Valero, E.:
Inverse maximal eigenvalues problems for Leslie and doubly
Leslie matrices. Linear Algebra Appl. 592, 93—112 (2020)

Vindenes, Y., Le Coeur, C., Caswell, H.: Introduction
to matrix population models. In: Salguero-Gomez, R.,
Gamelon, M. (eds.) Demographic Methods Across the Tree
of Life, chapter 9, pp. 163-180. Oxford University Press,
Oxford (2021)

Rand, T., Richmond, C., Dougherty, E.: Modeling the com-
bined impacts of host plant resistance and biological control
on the population dynamics of a major pest of wheat. Pest
Manag. Sci. 76 (2020)

Feng, C.Y., Ross, J.P., Mauger, D., Dreslik, M.J.: A long-
term demographic analysis of spotted turtles (Clemmys gut-
tata) inillinois using matrix models. Diversity 11(12) (2019)
Khan, A.Q., Alsulami, I.M.: Discrete Leslie’s model with
bifurcations and control. AIMS Math. 8(10), 22483-22506
(2023)

Mo, T., Thorstad, E., Sandlund, O., Berntsen, H., Fiske, P.,
Uglem, I.: The pink salmon invasion: a Norwegian perspec-
tive. J. Fish Biol. 93, 06 (2018)

@ Springer

29.

30.

31.

32.

33.

34.

35.

Vindstad, O.P.L., Jepsen, J.U., Molvig, H., Ims, R.A.: A
pioneering pest: the winter moth (Operophtera brumata) is
expanding its outbreak range into Low Arctic shrub tundra.
Arctic Sci. 8(2), 450-470 (2022)

Kuznetsov, Y.A.: Elements of applied bifurcation theory.
In: Applied Mathematical Sciences, 3rd edn. Springer, New
York (2004)

Grebogi, C., Ott, E., Yorke, J.A.: Crises, sudden changes
in chaotic attractors, and transient chaos. Physica D 7(1),
181-200 (1983)

Grebogi, C., Ott, E., Yorke, J.A.: Chaos, strange attractors,
and fractal basin boundaries in nonlinear dynamics. Science
238(4827), 632-638 (1987)

Ott, E.: Chaos in Dynamical Systems (2 edn). Cambridge
University Press (2002). Section 8.3

Murray, J.D.: Mathematical biology. In: Biomathematics,
2nd edn. Springer, Berlin (1993)

Guckenheimer, J., Holmes, P.: Nonlinear oscillations,
dynamical systems, and bifurcations of vector fields. In:
Applied Mathematical Sciences. Springer, New York (2002)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.



	On bifurcations, resonances and dynamical behaviour in nonlinear iteroparous Leslie matrix models
	Abstract
	1 Introduction
	2 The model
	3 Some general properties
	4 2-Age classes
	5 3-Age classes
	6 Discussion
	7 Summary
	Appendix A: Proof of Theorem 2
	Appendix B: Proof of Theorem 3
	Appendix C: Proof of Theorem 4
	Appendix D: Proof of Theorem 5
	Appendix E: Proof of Theorem 6
	References




