

View

Online

Export
Citation

RESEARCH ARTICLE | APRIL 26 2024

VAMPyR—A high-level Python library for mathematical
operations in a multiwavelet representation
Special Collection: Modular and Interoperable Software for Chemical Physics

Magnar Bjørgve ; Christian Tantardini ; Stig Rune Jensen ; Gabriel A. Gerez S. ; Peter Wind ;
Roberto Di Remigio Eikås ; Evgueni Dinvay ; Luca Frediani

J. Chem. Phys. 160, 162502 (2024)
https://doi.org/10.1063/5.0203401

 06 August 2024 06:18:31

https://pubs.aip.org/aip/jcp/article/160/16/162502/3284896/VAMPyR-A-high-level-Python-library-for
https://pubs.aip.org/aip/jcp/article/160/16/162502/3284896/VAMPyR-A-high-level-Python-library-for?pdfCoverIconEvent=cite
https://pubs.aip.org/jcp/collection/16595/Modular-and-Interoperable-Software-for-Chemical
javascript:;
https://orcid.org/0000-0003-3533-1566
javascript:;
https://orcid.org/0000-0002-2412-9859
javascript:;
https://orcid.org/0000-0002-2175-5723
javascript:;
https://orcid.org/0000-0002-9866-6630
javascript:;
https://orcid.org/0000-0003-1611-3395
javascript:;
https://orcid.org/0000-0002-5452-9239
javascript:;
https://orcid.org/0000-0001-7331-8245
javascript:;
https://orcid.org/0000-0003-0807-682X
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0203401&domain=pdf&date_stamp=2024-04-26
https://doi.org/10.1063/5.0203401
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2510973&setID=592934&channelID=0&CID=908659&banID=522064382&PID=0&textadID=0&tc=1&rnd=4450531347&scheduleID=2429170&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fjcp%22%5D&mt=1722925111731994&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fjcp%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0203401%2F19901174%2F162502_1_5.0203401.pdf&hc=61ec03622f3344a9d13a529d4533f8411d0c3b06&location=

The Journal
of Chemical Physics SOFTWARE pubs.aip.org/aip/jcp

VAMPyR—A high-level Python library
for mathematical operations in a multiwavelet
representation

Cite as: J. Chem. Phys. 160, 162502 (2024); doi: 10.1063/5.0203401
Submitted: 13 February 2024 • Accepted: 2 April 2024 •
Published Online: 26 April 2024

Magnar Bjørgve,1,a) Christian Tantardini,1 ,2 Stig Rune Jensen,1 Gabriel A. Gerez S.,1 Peter Wind,1

Roberto Di Remigio Eikås,1 ,3 Evgueni Dinvay,1 and Luca Frediani1,a)

AFFILIATIONS
1 Hylleraas Center, Department of Chemistry, UiT The Arctic University of Norway, P.O. Box 6050 Langnes, N-9037 Tromsø,
Norway

2Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, USA
3Algorithmiq Ltd., Kanavakatu 3C, FI-00160 Helsinki, Finland

Note: This paper is part of the JCP Special Topic on Modular and Interoperable Software for Chemical Physics.
a)Authors to whom correspondence should be addressed: magnbjor@gmail.com and luca.frediani@uit.no

ABSTRACT
Wavelets and multiwavelets have lately been adopted in quantum chemistry to overcome challenges presented by the two main families of
basis sets: Gaussian atomic orbitals and plane waves. In addition to their numerical advantages (high precision, locality, fast algorithms for
operator application, linear scaling with respect to system size, to mention a few), they provide a framework that narrows the gap between
the theoretical formalism of the fundamental equations and the practical implementation in a working code. This realization led us to the
development of the Python library called VAMPyR (Very Accurate Multiresolution Python Routines). VAMPyR encodes the binding to a C++
library for multiwavelet calculations (algebra and integral and differential operator application) and exposes the required functionality to
write a simple Python code to solve, among others, the Hartree–Fock equations, the generalized Poisson equation, the Dirac equation, and
the time-dependent Schrödinger equation up to any predefined precision. In this study, we will outline the main features of multiresolution
analysis using multiwavelets and we will describe the design of the code. A few illustrative examples will show the code capabilities and its
interoperability with other software platforms.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0203401

I. INTRODUCTION

Wavelets and multiwavelets have emerged in the past few
decades as a versatile tool for computational science. Their strength
derives from the combination of frequency separation with locality
and a robust mathematical framework to gauge the precision
of a calculation. In particular, multiwavelets have recently been
employed within the field of quantum chemistry to overcome
some of the known drawbacks of traditional atomic orbital
(AO)-based calculations.1–9 The code that pioneered this approach
is M-A-D-N-E-S-S,10 followed by our own code, MRChem.11 To

date, they are the only two codes available for quantum chemistry
calculations using multiwavelets.

As the development of MRChem unfolded, we found it
advantageous to separate the mathematical code dealing with
the multiwavelet (MW) formalism in a separate library, called
MRCPP (Multiresolution Computation Program Package).12 MRCPP
is a high-performance C++ library, which provides the tools of
Multi–Resolution Analysis (MRA) with multiwavelets. It imple-
ments low-scaling algorithms for mathematical operations and
convolutions and a robust mechanism for error control during
numerical computations.

J. Chem. Phys. 160, 162502 (2024); doi: 10.1063/5.0203401 160, 162502-1

© Author(s) 2024

 06 August 2024 06:18:31

https://pubs.aip.org/aip/jcp
https://doi.org/10.1063/5.0203401
https://pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0203401
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0203401&domain=pdf&date_stamp=2024-April-26
https://doi.org/10.1063/5.0203401
https://orcid.org/0000-0003-3533-1566
https://orcid.org/0000-0002-2412-9859
https://orcid.org/0000-0002-2175-5723
https://orcid.org/0000-0002-9866-6630
https://orcid.org/0000-0003-1611-3395
https://orcid.org/0000-0002-5452-9239
https://orcid.org/0000-0001-7331-8245
https://orcid.org/0000-0003-0807-682X
mailto:magnbjor@gmail.com
mailto:luca.frediani@uit.no
https://doi.org/10.1063/5.0203401

The Journal
of Chemical Physics SOFTWARE pubs.aip.org/aip/jcp

Once MRCPP was available, we realized that it would be useful to
make its functionality easily accessible. For this purpose, we turned
our attention to Python, which has become a de facto standard in
the scientific community, widely taught to science students and used
extensively in research. Its high-level syntax and rich ecosystem,
including libraries such as NumPy,13 SciPy,14 and Matplotlib,15

make it a powerful tool for scientific computing. Moreover, Python’s
integration with Jupyter notebooks16 has facilitated interactive and
reproducible research. This is in contrast to traditional quantum
chemistry codes, which are implemented in lower-level languages
(Fortran, C, or C++) and can pose significant barriers for non-expert
programmers.

That led us to the development of VAMPyR (Very Accurate
Multiresolution Python Routines),17 which builds on the MRCPP
capabilities, by making them available in the high-level program-
ming framework provided by Python, thereby simplifying the
processes of code development, verification, and exploration. The
purpose of VAMPyR is to allow a broader audience to make use
of these tools while maintaining the original power and efficiency
of the MRCPP library. This includes inheriting MRCPP’s paralleliza-
tion, which employs the multi-platform shared-memory parallel
programming model provided by OpenMP.18,19

II. MULTIWAVELETS
The foundations of Multiresolution Analysis (MRA) have been

laid in the early 1980s, thanks to the pioneering work of Meyer,
Daubechies, Strömberg, and others,20–27 who defined for the first
time the concepts of wavelet functions and nested wavelet spaces.
We here provide a short survey by focusing on a particular kind of
wavelets called multiwavelets.28–32

A. Multiresolution analysis
The construction of a Multiresolution Analysis (MRA) starts

by considering a basis of generating functions, called scaling and
wavelet functions. We will here limit ourselves to the specific case
of multiwavelets, referring to the literature for a wider presenta-
tion of the subject.20–27 The most common choice is the set of
k + 1 polynomials up to order k in the unit interval, such as the
Legendre polynomials or interpolating Lagrange polynomials.31,32

The original scaling function can be translated and dilated,

φn
j,l(x) = 2n/2φi(2nx − l), (1)

where φ are the generating polynomials, j is the polynomial
index (j = 0, 1, . . . , k), n is the scale index, and l is the transla-
tion index. For a given scale n, the functions φn constitute a scaling
space Vn. By construction, each interval Vn

l in Vn splits into two
sub-intervals in Vn+1: Vn+1

2l and Vn+1
2l+1, doubling the basis with every

n along the ladder. This establishes the nested structure Vn
⊂ Vn+1

seen in (2). It is also possible to show that this hierarchy is dense in
L2
(R),

⋅ ⋅ ⋅ ⊂ V−1
⊂ V0

⊂ V1
⊂ ⋅ ⋅ ⋅ ⊂ Vn

⊂ ⋅ ⋅ ⋅ . (2)

The wavelet space Wn is defined as the orthogonal complement
of Vn with respect to Vn+1,

Wn
= Vn+1

⊖ Vn. (3)

The wavelet functions are also supported on the same disjoint inter-
vals on the real line as the corresponding scaling functions. The
dilation and translation relationships hold for wavelet functions as
well,

ψn
i,l(x) = 2n/2ψi(2nx − l). (4)

By construction, the wavelet functions ψi are orthogonal to the poly-
nomials in the corresponding scaling space. This property, known as
“vanishing moments,” is key in achieving fast algorithms for various
operations with multiwavelets. The construction of the multiwavelet
functions is not unique (each Wn

l spans a k + 1 dimensional space,
and any orthonormal basis in this space is a legitimate choice). We
follow the construction presented by Alpert,31 which both maxi-
mizes the number of vanishing moments and divides the functions
into symmetric and antisymmetric ones.

We finally note that Eq. (3) leads to the following telescopic
series:

VN
= V0

⊕W0
⊕W1

⊕ ⋅ ⋅ ⋅ ⊕WN−1. (5)

B. Multiwavelet transform
The ladder of space structure, which is summarized in Eqs. (3)

and (5), implies that it is possible to span Vn+1 either through the
scaling functions φn+1 or through the scaling functions φn and the
wavelet functions ψn. The basis set transformation between these
two bases is known as the multiwavelet transform or two-scale filter
relationship. The unitary transformation matrix is assembled by
making use of the four wavelet filters G(0), G(1), H(0), and H(1),

(
φn

l

ψn
l
) =
⎛

⎝

H(0) H(1)

G(0) G(1)
⎞

⎠
(
φn+1

2l

φn+1
2l+1
). (6)

The matrices H(0), H(1), G(0), and G(1) are each of dimension
(k + 1) × (k + 1). See Ref. 32 for a comprehensive derivation of
these matrices. The operation illustrated in Eq. (6) is called forward
wavelet transform , also known as wavelet compression. The inverse
of this operation is termed backward wavelet transform or wavelet
reconstruction. The operation is strictly local: the scaling function
ϕn

l and the wavelet function ψn
l are only connected to ϕn+1

2l and
ϕn+1

2l+1. This structure simplifies numerical algorithms, enabling fast
implementations.

C. Function projection onto the multiwavelet space
The most basic operation in MRA is the projection of a

function. It generates the representation of an arbitrary function in
a MW basis. Let us consider the scaling space Vn and the associated
projector Pn. The MW projection of a given function f(x) can be
obtained as

f n
(x) = Pn f (x) =

2n
−1

∑
l=0

k

∑
j=0

sn, f
j,l φ

n
j,l(x). (7)

Here, sn, f
j,l are the scaling coefficients, given by

sn, f
j,l = ∫ f (x)φn

j,l(x)dx. (8)

J. Chem. Phys. 160, 162502 (2024); doi: 10.1063/5.0203401 160, 162502-2

© Author(s) 2024

 06 August 2024 06:18:31

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics SOFTWARE pubs.aip.org/aip/jcp

Similarly, a wavelet projector Qn is associated with the wavelet space
Wn,

d f n
(x) = Qn f (x) =

2n
−1

∑
l=0

k

∑
j=0

wn, f
j,l ψ

n
j,l(x). (9)

The wavelet coefficients wn, f
j,l can also be obtained as

wn, f
j,l = ∫ f (x)ψn

j,l(x)dx. (10)

D. Adaptive projection
Keeping in mind the projections defined in Sec. II C, the com-

plete representation of a function in a given MRA can be written as
follows:

PN f = f N
= f 0

+
N−1

∑
n=0

d f n
= (P0

+
N−1

∑
n=0

Qn
) f . (11)

This equation gains special significance when considering that the
wavelet coefficients, wn

l , approach zero for smooth functions. The
precision of the representation can thus be assessed by inspecting
the wavelet coefficients at a specific scale n and translation l,

∣wn
l ∣ < ε. (12)

This consideration provides the foundation for an adaptive pro-
jection strategy: rather than fixing the projection to a predefined
scale N, one can incrementally increase the scale from 0 only in
those intervals where the wavelet norm is larger than the requested
precision. Utilizing the two-scale filter relations, Eq. (6), we can
compute the wavelet coefficients and assess their magnitude. If these
coefficients meet predefined precision criteria at a specific transla-
tion l, that branch of the function representation can be truncated.
This truncation effectively focuses computational and data resources
only where high precision is necessary. Should the desired precision
level not be reached, the refinement process continues in a recursive
manner. This recursion can, in principle, be carried out indefinitely
until the precision requirements are met. In practice, a maximum
allowed scale is set.

E. Operator application in multiwavelet
framework—Non-standard form

The most convenient strategy to apply an operator using MWs
is to construct its non-standard (NS) form. Similarly to functions,
one can construct the operator projection TN

= PNTPN. By recalling
that for every scale n, Pn+1

= Pn
+Qn, one obtains

TN
= PN TPN

= (PN−1
+QN−1

)T(PN−1
+QN−1

) (13)

= QN−1TQN−1
+QN−1TPN−1

+ PN−1TQN−1
+ PN−1TPN−1 (14)

= AN−1
+ BN−1

+ CN−1
+ TN−1, (15)

where for each n, the following definitions are used:

Tn
= PnTPn, An

= QnTQn, (16)

Bn
= QnTPn, Cn

= PnTQn. (17)

This structure is the operator analog of the two-scale rela-
tionship for functions, and it can be extended telescopically to
obtain

TN
= T0

+
N

∑
n=0
(An
+ Bn

+ Cn
), (18)

where An, Bn, and Cn components exhibit sparsity properties, similar
to what is observed for the wavelet coefficients of function represen-
tations, and are, therefore, leading to fast and often linearly scaling
algorithms, for any arbitrary predefined precision. The purely scal-
ing part T0 of the operator is only required at the coarsest scale,
where only a handful of grid points are present. Another important
feature of the NS form is the absence of coupling between differ-
ent scales, which allows us to preserve the adaptive precision of the
representation, on the one hand, and independent or asynchronous
operator application across different scales, which boosts computa-
tional efficiency, on the other hand. For additional details about the
application of operators in the non-standard form,33 the reader is
referred to the literature on the subject.32,34

III. VAMPyR

In the architecture of VAMPyR, MRCPP serves as the founda-
tional layer, integrated into Python through Pybind11, as illus-
trated in Fig. 1. This setup enables seamless interoperability between
Python and C++, allowing Pybind11 to automatically convert many
standard C++ types to their Python equivalents and vice versa.
This leads to a more Pythonic and natural interface to the MRCPP
codebase.

For the development of VAMPyR, we opted for Pybind11 as
our binding framework, chiefly for its robustness, maintainabil-
ity, and alignment with our development objectives. Pybind11 is a

FIG. 1. Connections between MRChem,35 MRCPP, and VAMPyR. MRCPP imple-
ments a high-performance MRA framework with MWs. It implements the rep-
resentation of functions and operators as well as fast algorithms for operator
application. MRChem implements electronic structure methods and uses MRCPP
for the underlying mathematical operations. VAMPyR imports features from MRCPP
using Pybind11 and brings intuitive design and easy prototyping through Python.
It is used as a Python library and can, therefore, be interfaced with other quan-
tum chemistry software applications. VAMPyR does not include functionality from
MRChem, at the current stage. All software packages are available on GitHub,
under the MRChemSoft organization.

J. Chem. Phys. 160, 162502 (2024); doi: 10.1063/5.0203401 160, 162502-3

© Author(s) 2024

 06 August 2024 06:18:31

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics SOFTWARE pubs.aip.org/aip/jcp

lightweight, header-only library that utilizes modern C++ standards
to infer type information, thus streamlining the binding process and
enhancing the overall code quality.

To facilitate deployment, multiple installation options are avail-
able for VAMPyR and MRCPP. The source code for both is openly
accessible and distributed under the LGPLv3 license on GitHub,
specifically within the MRChemSoft organization. For users who
prefer a simplified installation procedure, binary packages are also
provided through the Conda package manager, which is compatible
with various Linux and macOS architectures.36,37 Each new release
triggers an automated build process that uploads the binary pack-
ages to the Conda-Forge channel on anaconda.org, thereby easing
the installation process and incorporating all requisite dependencies.
The packages are designed to be compatible with current Python
versions, ranging from 3.8 to 3.11. The installation process using
Conda is straightforward:

A. Implementation
In MRCPP, C++ template classes and functions are utilized

to provide abstraction over the dimensionality of the simulation
box. These templates enable the generic implementation of data
structures and algorithms for problems in D dimensions.38 The
specialization for one-, two-, and three-dimensional problems is
performed at compile time, thereby eliminating any impact on
runtime performance.39

In Python, native template constructs are absent, presenting
a challenge for dimension-specific specialization. In VAMPyR, we
emulate MRCPP’s generic approach by implementing dimension-
dependent bindings using Pybind11. Specifically, our binding
code incorporates template classes and functions similar to those
in MRCPP. MRCPP’s one-, two-, and three-dimensional template
classes and functions are directly bound to their corresponding
dimensions in VAMPyR, as demonstrated in Listing 1. Through
this approach, VAMPyR keeps the flexible design of MRCPP, despite
Python’s limitations in handling generic datatypes.

While the MultiResolutionAnalysis (see Sec. IV A) and
FunctionTree (see Sec. IV B) classes in VAMPyR are inherited from
MRCPP, there are noteworthy distinctions between vanilla C++ and
the corresponding Python classes. These differences are introduced
to enhance the Python version of the MRCPP classes with the so called
syntactic sugar, which improves the user experience and leads to
faster prototyping. Among these enhancements are the overload of
various dunder (double underscore, also known as magic) methods
that have been added to the classes to extend their functionalities
and make them more Pythonic.

These dunder (or magic) methods enable the use of Python’s
built-in operators on FunctionTree objects. For instance, the
addition (__add__) and multiplication (__mul__) operators allow

LISTING 1. Importing dimensional-dependent bindings from VAMPyR.

LISTING 2. Syntax sugar for FunctionTree addition in action.

LISTING 3. C++ binding for operator +.

LISTING 4. De-sugared syntax for FunctionTree addition using the advanced
binding submodule.

for the direct use of + and ∗ operators with FunctionTree objects.
This allows us to write more intuitive code, which is easier to both
read and write.

As an example, consider the addition of two FunctionTree
objects, which can be expressed in natural Python syntax (Listing 2),
thanks to the binding code in Listing 3.

The Python code in Listing 2 can be equivalently written in the
de-sugared form in Listing 4. Although Listing 4 is more involved
than simply applying an arithmetic operator, it does provide more
flexibility and control, which might be necessary in some specific
applications.

IV. MATHEMATICS WITH VAMPyR

Here, we display some of the theoretical concepts discussed in
Sec. II with practical examples using VAMPyR.

A. The MultiResolutionAnalysis object in VAMPyR

The foundation of VAMPyR’s internal operations is built upon
the MultiResolutionAnalysis object. This object encapsulates

J. Chem. Phys. 160, 162502 (2024); doi: 10.1063/5.0203401 160, 162502-4

© Author(s) 2024

 06 August 2024 06:18:31

https://pubs.aip.org/aip/jcp
http://anaconda.org

The Journal
of Chemical Physics SOFTWARE pubs.aip.org/aip/jcp

LISTING 5. Standard usage of the MRA object.

essential information about the physical space being modeled, along
with configurations for the scaling and wavelet basis functions as
defined in the theory of MRA (see Sec. II).

1. Standard usage
For users seeking a straightforward implementation, VAMPyR

provides a “standard usage” option. In this approach, users are only
required to specify the box size and polynomial order. The remain-
ing parameters, such as the choice of interpolating polynomials
for the scaling basis, are automatically configured by the library.
Listing 5 illustrates how to create an MRA object either specifying
the start and end points or the length: the former has length 2L,
whereas the latter starts in 0 and ends in L.

2. Advanced usage
For users requiring more control over the computational setup,

VAMPyR offers an “advanced usage” approach. This method allows
for the customization of various parameters, including the world box
size and the specific type of scaling basis, such as Legendre polyno-
mials. This level of customization grants the user full control over
the basis configuration,

as demonstrated in Listing 6. This flexibility allows users to
choose the level of interaction with the MRA object based on their
specific needs and expertise.

B. Function projectors
In VAMPyR, functions are represented using a tree-based data

structure: the FunctionTree object. This structure naturally arises
from the MRA framework outlined in Sec. II C.

1. The tree
The FunctionTree object consists of interconnected nodes

organized hierarchically. The root node40 represents the entire
physical domain, and each non-terminal node or branch begets 2d

child nodes while connecting to a single parent node. Terminal
nodes, or leaves, possess a parent but have no children. Here, d rep-
resents the dimensionality of the system. VAMPyR currently supports
d = 1, 2, 3.

2. The node
Each node corresponds to a d-dimensional box within the

physical domain and encapsulates information about a specific set of
scaling and wavelet functions defined therein. Specifically, each node
indexed by scale n and translation vector l = (l1, l2, . . . , ld) stores
(k + 1)d scaling coefficients and (2d

− 1)(k + 1)d wavelet coefficients.
Here, the indices n and l dictate the node’s spatial size and position,
respectively.

C. Scaling and wavelet projectors in VAMPyR

To facilitate the implementation of function projec-
tions into scaling and wavelet spaces, VAMPyR provides the
vp.ScalingProjector and vp.WaveletProjector classes. In
Listing 7, we define a lambda function f, whose body can be any
valid Python expression.41 This illustrates how to project a function
using the vp.ScalingProjector and vp.WaveletProjector
classes. The instances P_n and Q_n are created to perform the
projection into the scaling and wavelet spaces. The resulting
representations, denoted f_n and df_n, are fully described by their
mathematical definitions in Eqs. (7) and (9), respectively.42

Figures 2 and 3 provide visual insights into the projection of
an exponential (Slater) function, e−a∣r∣, onto different scales. Each
figure consists of two subfigures: the left-hand side displays the scal-
ing function space [Fig. 2(a) and 3(a)], while the right-hand side
illustrates the wavelet function space [Figs. 2(b) and 3(b)].

In Fig. 2, the projection onto the root scale is far from the
target, and the large wavelet part indicates that a representation

LISTING 6. Advanced usage of the MRA object.

J. Chem. Phys. 160, 162502 (2024); doi: 10.1063/5.0203401 160, 162502-5

© Author(s) 2024

 06 August 2024 06:18:31

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics SOFTWARE pubs.aip.org/aip/jcp

LISTING 7. Function projection in VAMPyR by scaling and wavelet projectors. at a finer scale is mandatory. The vertical lines in both subfigures
delineate the physical space spanned by k + 1 scaling and wavelet
functions. In Fig. 3, the exponential (Slater) function is projected
onto the fourth scale. The representation is now close to its target
function: it is, however, not as sharp as the original exponential
(Slater) function, and the wavelet projection indicates that in the
cusp region, a finer representation would be required to attain high
precision.

FIG. 2. Projection of a Slater function at root scale. Left: Projection onto scaling function space V0
4 with vertical lines marking the physical space spanned by k + 1 scaling

functions. Right: Projection onto wavelet function space W 0
4 , where vertical lines indicate the physical space spanned by k + 1 wavelet functions.

FIG. 3. Projection of a Slater function at the fourth scale. Left: Projection onto scaling function space V4, with vertical lines delineating the physical space spanned by k + 1
scaling functions. Right: Projection onto wavelet function space W 4, where vertical lines mark the physical space spanned by k + 1 wavelet functions.

J. Chem. Phys. 160, 162502 (2024); doi: 10.1063/5.0203401 160, 162502-6

© Author(s) 2024

 06 August 2024 06:18:31

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics SOFTWARE pubs.aip.org/aip/jcp

LISTING 8. Adaptive function projection in VAMPyR.

D. Adaptive projection in VAMPyR

Building on the mathematical framework presented in Sec. II D,
we cover here the practical aspects of adaptive projection within
VAMPyR. Unlike the fixed-scale projection illustrated in Listing 7,
adaptive projection makes use of the prec keyword to refine
the function’s representation, as shown in Listing 8. The visual
comparison in Fig. 4 between the adaptive and fixed-scale pro-
jections (previously shown in Figs. 2 and 3) reveals the power
of adaptivity: a representation, which is at the same time more
compact as well as more precise, is achieved. As Fig. 4 shows,
nodes at finer and finer resolution are created only where it is
necessary to represent the sharp features of the function. This
strategy is also computationally more efficient as it guarantees that
resources are used where and when needed, based on precision
requirements.

E. Arithmetic operations in FunctionTrees

In VAMPyR, arithmetic operations on FunctionTree objects
are intuitive and flexible. Standard Python operators such as +,
−, ∗ , /, and ∗ ∗ are employed for these elementary operations.
For an example, see Listing 9, where we have examples of usage
for both standard arithmetic operations between FunctionTrees
and between FunctionTrees and scalars. In these examples, f and
g are instances of FunctionTree and a is a scalar. These oper-
ations provide an efficient and user-friendly way to manipulate
FunctionTree objects in VAMPyR.

FIG. 4. Adaptive projection of the Slater function with prec = 1.0 × 10−1. The
non-uniform vertical lines indicate the physical space spanned by the adaptive
basis functions, underscoring the method’s efficiency and precision.

LISTING 9. Basic Arithmetic Operations in VAMPyR.

F. Vectorizing FunctionTrees with NumPy

The integration between the overloaded arithmetic methods
in VAMPyR and NumPy’s flexible data structures provides a range of
computational advantages. Among these advantages, the support for
multi-dimensional arrays, broadcasting, and linear algebra opera-
tions stands out. Although NumPy is primarily optimized for integers
and floating-point numbers, its data structures can be extended to
accommodate custom objects such as FunctionTrees. This capa-
bility enables the incorporation of FunctionTrees within NumPy
arrays, thus allowing for the full suite of NumPy’s array-oriented
computing features. For illustration, consider the example in
Listing 10, where we construct a matrix of FunctionTrees within
a NumPy array and execute various matrix operations.

As demonstrated in Listing 10, the integration between
VAMPyR’s FunctionTree objects and NumPy arrays simplifies the
implementation of complex mathematical operations. Through
NumPy’s multi-dimensional arrays, it is possible to organize and
manipulate arrays of function trees efficiently. Broadcasting allows
for the addition of a single FunctionTree (or scalar) to an entire
array of FunctionTrees. Furthermore, NumPy’s built-in linear
algebra functions, such as the matrix multiplication operator @,
can be used for matrix operations. This approach improves the
readability of the code, as will be seen in Sec. V.

G. Derivative operators in VAMPyR

Handling derivatives with MWs is not straightforward: tra-
ditional derivative operators are not applicable. However, VAMPyR
offers the Derivative(mra, type) class (see Listing 11 for a
practical example), which applies the operators in the NS form as
described in Subsection II E, allowing for efficient and accurate
calculations. The types available are simple, center, forward, and
backward, which are based on the ABGV method devised by Alpert
et al. In addition, the Derivative class provides a type=b-spline
option based on the method by Anderson et al.

J. Chem. Phys. 160, 162502 (2024); doi: 10.1063/5.0203401 160, 162502-7

© Author(s) 2024

 06 August 2024 06:18:31

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics SOFTWARE pubs.aip.org/aip/jcp

LISTING 10. Performing matrix operations using function trees in a NumPy array.

LISTING 11. First- and second-order derivatives using b-spline type derivative operator.

J. Chem. Phys. 160, 162502 (2024); doi: 10.1063/5.0203401 160, 162502-8

© Author(s) 2024

 06 August 2024 06:18:31

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics SOFTWARE pubs.aip.org/aip/jcp

LISTING 12. Creating and applying Poisson and Helmholtz operators in VAMPyR.

ABGV Types: Designed for piecewise continuous functions,
these operators provide a weak formulation for first-order
derivatives.

B-Spline Type: This type is more versatile but works best for
smooth continuous functions. The implementation covers up

to second-order derivatives by transforming the function onto
a B-spline basis before differentiation.

H. Convolution operators in VAMPyR

Convolution operators are essential tools for solving integral
forms of key equations in quantum chemistry, such as the integral
formulation of the Hartree–Fock (HF) and Kohn–Sham (KS)
equations or the Poisson equation used in self-consistent reaction
field (SCRF) models. Both equations can be recast from the more
familiar differential form to an equivalent integral form by making
use of the bound-state Helmholtz (BSH) kernel (see Appendix A)
and the Poisson kernel. The key step in both problems is the
convolution of the corresponding Green’s function kernel with a test
function,

LISTING 13. Construction of a custom convolution operator in VAMPyR.

FIG. 5. Illustration of the convolution process in VAMPyR. (a) Original image projected onto the Multiresolution Analysis (MRA). (b) Resulting image after performing
convolution with a Gaussian Kernel, leading to smoothing or blurring of the original image.

J. Chem. Phys. 160, 162502 (2024); doi: 10.1063/5.0203401 160, 162502-9

© Author(s) 2024

 06 August 2024 06:18:31

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics SOFTWARE pubs.aip.org/aip/jcp

g(x) = ∫ K(x, y) f (y) dy. (19)

The two kernels are numerically implemented in the MRCPP
library and available in VAMPyR. They are constructed as a sum
of Gaussians, which represents the numerical quadrature of the
integral of a superexponentially decaying function,43 which depends
on the distance d = ∣x − y∣,

K(x, y) =
e−μ∣x−y∣

∣x − y∣
≈

M

∑
i=1

αi exp (−βi∣x − y∣2), (20)

where μ = 0 yields the Poisson kernel and μ > 0 corresponds to the
bound-state Helmholtz kernel (Listing 12).

A more general method for constructing convolution oper-
ators based on Gaussian expansions is also available in VAMPyR.
This approach is documented with an example in
Listing 13, and an unusual application is illustrated in Fig. 5 by
blurring an image with a Gaussian convolution kernel, although
VAMPyR is not generally optimized for such tasks.

V. FOUR LITTLE PIECES OF QUANTUM CHEMISTRY
One of the main technical challenges of quantum chemistry is

the large gap between the equations describing the physical nature of
the system and their practical realization in a working code. This gap
arises because the equations in their original form are, in general,
too complicated to be solved. To achieve equations that have a
manageable computational cost, it has so far been necessary to make
use of representations, which on the one hand lead to practical
numerical implementation, but on the other hand obfuscate the
original physical equations.

We will here present four little pieces of quantum chemistry
where we show how the MW representation of functions and
operators in MRCPP and the simple Python interface provided by
VAMPyR can close this semantic gap.

For each of the four examples presented, we will highlight
how VAMPyR has been employed to obtain working implementations
that closely resembles the theoretical framework. The underlying
equations will here be presented briefly to highlight their corre-
spondence with the code. We refer to separate Appendixes, or
previously published work, for a more in-depth exposition of the
theory.

All examples are available as Jupyter notebooks in a separate
GitHub repository,44 openly accessible under the CC-BY-4.0 license.
We have also put in Zenodo: VAMPyR: https://doi.org/10.5281/
zenodo.10290360 VAMPyR-coven: https://doi.org/10.5281/zenodo.
10887800.

A. The Hartree–Fock equations
The Hartree–Fock equations45 can be concisely written as

F̂φi =∑
j

Fijφj , (21)

where F̂ is the Fock operator, φi is an occupied orbital, and Fij are
the Fock matrix elements in the basis of the occupied orbitals.

Traditionally, a basis-set representation is introduced and most
of the successive discussion regards methods to achieve a good
performance and a sufficient precision. A MW representation avoids
this complication and solves the equations directly. As shown in
Appendix A, this is achieved by recasting the problem as an integral
equation,

φ̃n+1
i = −2Ĝ μn

i

⎡
⎢
⎢
⎢
⎢
⎣

(VN + 2Jn
− Kn
)φn

i −∑
j≠i

Fn
i jφ

n
j

⎤
⎥
⎥
⎥
⎥
⎦

, (22)

where Ĝ μn
i is the bound-state Helmholtz operator; VN , J, and K

are the nuclear, Coulomb, and exchange operators, respectively; and
we have restricted ourselves to closed-shell systems. i is the orbital
index, and n represents the iteration index and is displayed for
all quantities that are iteration-dependent. The resulting orbitals
φ̃i are not normalized (here indicated with a ̃ superscript), and
an orthonormalization step must then be performed. The complete
algorithm can be found in the accompanying Python notebook44

and includes a Löwdin orthogonalization of the orbitals, ensuring
the desired orthogonality condition. We base our implementation
on these equations. The Self-Consistent Field (SCF) equation (22) is
implemented in Python, as demonstrated in Listing 14. Thanks to
the VAMPyR interface, the code is now directly corresponding to the
mathematical formalism without any intermediate representation.

To achieve an even more compact structure, the set of orbitals
can be collected in a NumPy vector. This requires that the implemen-
tation of operators in the code accepts a vector of orbitals as an input.
The operators V_nuc, J_n, and K_n [defined in Eqs. (A2)–(A4),
respectively] are implemented in a vectorized manner using
NumPy. For example, the CoulombOperator class is presented in
Listing 15.

B. Continuum solvation
A very common approach to including solvent effects in

a quantum chemistry calculation is to consider the molecule
immersed in a dielectric continuum. The governing equation is the
generalized Poisson equation (GPE),

∇ ⋅ [ε(r)∇V(r)] = −4πρ(r), (23)

where V is the electrostatic potential, ρ is the charge distribution
of the molecule, and ε is the (position-dependent) permittivity of
the dielectric. The practical solution of the equation depends on
how ε is parametrized. Traditionally, a cavity boundary is defined
and the permittivity is a step function of the cavity: εi = 1 inside of
it and εo = εs outside, where εs is the bulk permittivity of the sol-
vent. This parametrization leads to an equivalent boundary integral
equation, solved with a suitable boundary element method.46 The
main advantage of the approach is transferring the problem from the
(infinite) three-dimensional space to the (finite) cavity surface. The

LISTING 14. Python implementation of the SCF equation.

J. Chem. Phys. 160, 162502 (2024); doi: 10.1063/5.0203401 160, 162502-10

© Author(s) 2024

 06 August 2024 06:18:31

https://pubs.aip.org/aip/jcp
https://doi.org/10.5281/zenodo.10290360
https://doi.org/10.5281/zenodo.10290360
https://doi.org/10.5281/zenodo.10887800
https://doi.org/10.5281/zenodo.10887800

The Journal
of Chemical Physics SOFTWARE pubs.aip.org/aip/jcp

LISTING 15. Python implementation of the Coulomb operator.

main disadvantage is a less physical parametrization of the model,
due to the presence of the sharp boundary.

Using MWs, Eq. (23) can, instead, be solved directly, without
assumptions on the functional form of ε. The main working equation
is the application of the Poisson operator P̂ to the effective charge
density ρeff(x) and the surface polarization γ(x),

V(x) = P̂[ρeff(x) + γ(x)], (24)

where the effective density ρeff and the surface polarization γ(x) are
defined, respectively, as

ρeff (x) =
ρ(x)
ε(x)

, (25)

γ(x) =
∇ log ε ⋅ ∇V

4π
. (26)

The surface polarization depends on the potential, which implies
that the equation must be solved iteratively.

These equations are easily represented in a MW framework,
and each of them can be written as a single line of code with VAMPyR.
This is shown in Listing 16. The model is extensively discussed
in a previous paper47 where a thorough study of theory and
implementation was presented. The example in Listing 16 shows
how continuum solvation has been implemented using VAMPyR.
Here, we have assumed that we already have a projected

LISTING 16. Python implementation of PCM in VAMPyR.

J. Chem. Phys. 160, 162502 (2024); doi: 10.1063/5.0203401 160, 162502-11

© Author(s) 2024

 06 August 2024 06:18:31

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics SOFTWARE pubs.aip.org/aip/jcp

permittivity function and the total solute density function
together with a suitable mra and a function that computes γ called
computeGamma.

The solvation energy ER is finally computed from the reaction
potential VR = V − ∫dr′ ρ(r

′
)

∣r−r′ ∣ and the solute charge density ρ,

ER =
1
2 ∫

dxVR(x)ρ(x). (27)

C. Implementation of four-component Dirac
equation for one-electron

Lately, we have made use of VAMPyR to extend our work toward
the relativistic domain. As such, VAMPyR has been used for a range
of proof-of-principle calculations, which all stem from the Dirac
equation.48,49 It is well known that the level of complexity required
to deal with the Dirac equation increases significantly: the scalar
non-relativistic eigenvalue problem, dealing generally with real-
valued functions, becomes a four-component problem involving
complex functions,

(
(V +mc2

− ε) c(σ ⋅ p)
c(σ ⋅ p) (V − ε −mc2

)
)(
ψL

ψS) = 0, (28)

where V is the external potential, ε is the energy eigenvalue, c is
the speed of light, p is the momentum operator, and σ is the vec-
tor collecting the three Pauli matrices. As shown by Blackledge
and Babajanov50 and later exploited by Anderson et al.,51 the Dirac
equation can also be reformulated as an integral equation as

(
ψL

ψS) =
−1

2mc2 (
(ε +mc2

) c(σ ⋅ p)
c(σ ⋅ p) (ε −mc2

)
)Ĝ μ
[V(

ψL

ψS)], (29)

where Ĝ μ is the BSH kernel as in the non-relativistic case (see
Sec. IV H), in which μ =

√
m2c4

−ε
mc2 .

The above integral equation can be solved iteratively as in the
non-relativistic case, and the algorithm is thus very similar to the
non-relativistic case. The main difference is that the infrastructure
required to deal with four-component spinors needs to be imple-
mented. Our design is built essentially on two Python classes: one
to deal with complex functions (a single component of a spinor is
a complex function) and another one to deal with the four compo-
nents. Thanks to VAMPyR, these classes are easy to implement and
use, for the most part overloading dunder operators.

Listing 17 shows a portion of the class implementation for the
four-component Spinor. The objects are made callable and work as
NumPy arrays. Each component is itself a complex function object
(defined in a separate class). Some dunder methods are shown, and
the methods to perform the operation c(α ⋅ p)ψ are also reported.

First, the energy is computed in order to obtain the parameter
μ, then comes the convolution of Vψ with the Helmholtz kernel Ĝ μ,
and finally the Dirac Hamiltonian plus the energy hD + ε is applied
to the convolution. The iteration is repeated until the norm of the
spinor update is below the requested threshold (Listing 18). At the

end of the iteration, the energy must be computed once more (not
reported in the listing).

D. Time-dependent Schrödinger equation
The MW framework can successfully be employed for real-

time simulations of a wave packet by directly integrating the
time-dependent Schrödinger equation,

i∂tΨ = (T̂ + V̂)Ψ, (30)

where the potential V̂ may be time-dependent. For simplicity, we
consider here a time-independent potential and a one-dimensional
problem: V = V(x) and Ψ = Ψ(x, t) with x, t ∈ R, and we assume
that the initial conditions are given as Ψ(x, 0) = Ψ0(x). The stan-
dard numerical treatment of (30) is to choose a small time step t > 0
and construct the time evolution operator on the interval [0, t]. By
applying it iteratively, the solution at any finite time can, in principle,
be obtained. The wave propagation can be expressed as

Ψ(t) = exp (−it(T̂ + V̂))Ψ0, (31)

where we used the fact that the potential is time-independent. We
proceed by splitting the propagator in the kinetic exp (−itT̂) and
potential exp (−itV̂) parts. The former is a multiplicative operator
in momentum space, whereas the latter is a multiplicative operator
in real space. This separation is not exact, because T̂ and V̂ do not
commute. The resulting operator has an error of order O (t2

),

exp (−it(T̂ + V̂)) = exp (−itT̂) exp (−itV̂) + O (t2
). (32)

This simple splitting is too rough for practical applications; there-
fore, we make use of the following fourth-order scheme:52

eAt+Bt
= exp(

t
6

B) exp(
t
2

A) exp(
2t
3

B̃) exp(
t
2

A) exp(
t
6

B)

+ O (t5
), (33)

where

B̃ = B +
t2

48
[B, [A, B]]. (34)

With A = −iT̂ and B = −iV̂ , B̃ becomes a multiplicative operator
containing the potential gradient ∂xV(x). Remarkably, this high-
order scheme requires only two applications of the free-particle
semigroup operator exp (−itT̂/2) per time step. For an example of
the implementation, see Listing 19.

The complex algebra is not supported natively in VAMPyR;
therefore, we represent complex exponential operators as follows:

exp (−iĤt) = (
cos Ĥt sin Ĥt
− sin Ĥt cos Ĥt

),

operating on vector − functionsΨ(t) = (
u(t)
v(t)
),

(35)

J. Chem. Phys. 160, 162502 (2024); doi: 10.1063/5.0203401 160, 162502-12

© Author(s) 2024

 06 August 2024 06:18:31

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics SOFTWARE pubs.aip.org/aip/jcp

LISTING 17. Excerpt of the four-component spinor class.

J. Chem. Phys. 160, 162502 (2024); doi: 10.1063/5.0203401 160, 162502-13

© Author(s) 2024

 06 August 2024 06:18:31

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics SOFTWARE pubs.aip.org/aip/jcp

LISTING 18. Iterative solution of the Dirac equation.

where self-adjoint Ĥ stands for either the kinetic energy −∂2
x or

the potential V(x) or the full Hamiltonian −∂2
x + V(x). The

implementation is shown in Listing 20. As a worked-out example,
we show a simulation of the time evolution of a Gaussian wave
packet Ψ(x, t) in harmonic potential V(x),

Ψ0(x) = Ψ(x, t = 0) = (
1

2πσ2)
1/4

exp(−
(x − x0)

2

4σ2),

V(x) = V0(x − x1)
2.

LISTING 19. ChinChen implementation.

It is well known that the density ∣Ψ(t)∣2 oscillates in the
harmonic potential with the period τ = π/

√
V0. More precisely,

Ψ(τ) = −Ψ0. This can immediately be seen taking into account that
the eigenvalues for the Hamiltonian are

√
V0(2n + 1). We take

x0 = 0.3, σ = 0.04 and x1 = 0.5, V0 = 25 000. The parameters are
chosen in such a way that the solution stays localized mainly on the
[0, 1] interval. Note that the B̃ operator simplifies to

B̃ = −iṼ = −iV +
it2

24
(∂xV)2

= −iṼ0(x − x0)
2,

LISTING 20. Unitary exponent group.

J. Chem. Phys. 160, 162502 (2024); doi: 10.1063/5.0203401 160, 162502-14

© Author(s) 2024

 06 August 2024 06:18:31

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics SOFTWARE pubs.aip.org/aip/jcp

where

Ṽ0 = V0 −
(tV0)

2

6
.

In Listing 21, we define all the necessary operators and initial-
ize Scheme (33). The numerical integration of the time evolution
is performed in Listing 22. Figure 6 shows the result of the
simulation: the oscillation movement of the density ∣Ψ(t)∣2 and the

difference between the numerical and exact solution at the time
moment t = τ.

VI. INTEROPERABILITY WITH OTHER PACKAGES
One of the main benefits of introducing a Python interface

is the seamless interoperability it offers with a number of other
packages. This not only simplifies the usage of the package but

LISTING 21. Preparation for the implementation of time evolution in VAMPyR.

J. Chem. Phys. 160, 162502 (2024); doi: 10.1063/5.0203401 160, 162502-15

© Author(s) 2024

 06 August 2024 06:18:31

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics SOFTWARE pubs.aip.org/aip/jcp

LISTING 22. Time evolution simulation in VAMPyR.

FIG. 6. Simulation of (30) in VAMPyR. (a) Density evolution in the harmonic potential. (b) The difference between the numerical and exact solutions.

also enhances its capabilities by allowing the integration of fea-
tures provided by other packages. In this section, we will explore
some potential applications of this interoperability, showcasing how
VAMPyR can interact with other packages to perform tasks that may
otherwise be computationally demanding or require a more complex
implementation.

As an example, the SCF solver implemented in VAMPyR, though
fully general, encounters practical limitations with more complex
molecular systems. One primary challenge is the selection of an

appropriate initial guess for the orbitals; a poor choice can severely
impact the convergence rate and even result in a failure to converge.
The first step beyond the HF approximation might be to incor-
porate exchange and correlation density functionals, which, while
beneficial, can be tedious to implement.

Here is where interoperability steps in. We can leverage
the capabilities of different Python packages to address these
issues. We will walk through examples demonstrating how
VAMPyR can:

J. Chem. Phys. 160, 162502 (2024); doi: 10.1063/5.0203401 160, 162502-16

© Author(s) 2024

 06 August 2024 06:18:31

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics SOFTWARE pubs.aip.org/aip/jcp

● Use VeloxChem53 to generate an initial guess for a SCF,
speeding up the process and increasing the chance of
successful convergence.

● Use VAMPyR and VeloxChem to compute a potential energy
surface grid, effectively utilizing computational resources.

● Perform stability analysis on Density Functional Theory
(DFT) functionals from Libxc.54,55

A. Generating an initial guess with VeloxChem

Here, we illustrate how to generate an initial guess using
VeloxChem that can be imported into VAMPyR. Reconstructing the

Molecular Orbitals (MOs) (or electron density) from the AO basis
set using the MO (or density) matrix is a rather complex task,
especially if the basis contains high angular momentum functions.
We thus want to make use of VeloxChem own internal evalua-
tor for these objects and wrap a simple function around it which
can be projected onto the MW basis using a ScalingProjector.
In principle, any R3

→ R function can be projected in this way,
so we just have to define a function that takes as argument
a point in real space, runs it through VeloxChem internal AO
evaluator code, and returns the function value of a given MO at that
point.

First, we set up and run the SCF calculation with VeloxChem:

We can define a function that returns the value of the MO at a given point in space. This function will be used for projecting onto an
MRA in VAMPyR:

Finally, we use a projector from VAMPyR to project the MOs
from VeloxChem onto an MRA, generating a list of FunctionTrees
for the initial guess:

In the last step, we loop over the desired number of orbitals,
project each one onto the MRA, and store the result in Phi_0. This
list of FunctionTrees represents an approximation to the molecu-
lar orbitals of the system and serves as an excellent initial guess for
the SCF procedure in VAMPyR.

B. Calculate a potential energy surface
with VeloxChem and VAMPyR

A Potential Energy Surface (PES) can be computed as a series
of single point energy calculations while varying one (or more)55

bond distance(s) in a molecule. We will here use VAMPyR’s adap-
tive function projector as a driver for computing the PES of the
hydrogen molecule using VeloxChem’s single-point Hartree–Fock
evaluator. We define a Python function, pes(r), that computes
the energy for two hydrogen atoms given the bond distance as an
input:

J. Chem. Phys. 160, 162502 (2024); doi: 10.1063/5.0203401 160, 162502-17

© Author(s) 2024

 06 August 2024 06:18:31

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics SOFTWARE pubs.aip.org/aip/jcp

FIG. 7. Potential energy surface calculated using VeloxChem and VAMPyR. The grid lines represent the adaptive MRA grid, from which the PES is
interpolated.

The function above computes the energy of a hydrogen
molecule as a function of the bond distance (the 0.2 offset is to avoid
the singularity at r = 0), by performing an SCF calculation at the
given geometry. Being a R→ R mapping, it can be projected on a
1D MRA using VAMPyR.

The adaptive projector will automatically sample the pes(r)
function in appropriate points in order to produce a smooth
surface. The potential energy surface obtained in this manner can
be visualized, as shown in Fig. 7.

The vertical lines in Fig. 7 represent the adaptive MRA grid,
and the potential energy surface depicted is interpolated from this
grid rather than computed directly at each point. The adaptive
algorithm focuses computational resources where needed to achieve
the desired precision. Further efficiency gains could be achieved
realizing that high precision is only required for the region of
low potential energy. This has not been exploited in the above
example.

C. Numerical stability analysis using VAMPyR
and Pylibxc

Inspired by the paper by Lehtola and Marques,57 we investigate
the numerical stability of density functional approximations (DFAs)
lda-c-vwn and lda-c-gk72, see Fig. 8, with VAMPyR and Pylibxc.54

The choice of these DFAs is due to their contrasting numerical
stability, making them interesting subjects for our analysis. The lda-
c-gk72, developed by Gordon and Kim in 1972, was known for its
problematic convergence, while the lda-c-vwn (Vosko, Wilk, and
Nusair functional) was noted for its numerical stability. Our objec-
tive is to verify these claims, illustrating the potential of VAMPyR as a
numerical analysis tool.

FIG. 8. Comparison of node growth between the lda-c-vwn and lda-c-gk72 DFAs.
This plot illustrates the sharp contrast in the convergence behavior, with lda-c-vwn
showing a stable, linear growth and lda-c-gk72 displaying an exponential growth.

J. Chem. Phys. 160, 162502 (2024); doi: 10.1063/5.0203401 160, 162502-18

© Author(s) 2024

 06 August 2024 06:18:31

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics SOFTWARE pubs.aip.org/aip/jcp

First, we initialize a neon atom and calculate the self-consistent field (SCF) using VeloxChem:

Next, we calculate the density and project it onto a Multiresolution Analysis (MRA) grid:

Subsequently, we use Pylibxc to define the chosen DFA functionals:

Following this, an exchange potential is generated. We iteratively refine the grid based on precision, one scale at a time, until no new
nodes are created:

Observing the output for each DFA, we note that the number
of nodes converges to a finite value for the chosen precision in case
of the lda_c_vwn functional. For the lda_c_gk72 functional, the
number of nodes grows exponentially before the requested precision
is reached. Looking at the wavelet norm, we notice that we are still
far from a converged result. In this example, we employed a rather
high precision (ε = 10−8

).

VII. SUMMARY

Multiresolution analysis is a relatively new tool in quan-
tum chemistry, compared to traditional methods based on atomic
orbitals. Its main advantages are the possibility to reach any
predefined arbitrary precision (the only limits are dictated by the
machine precision and the available memory), and a numerical

J. Chem. Phys. 160, 162502 (2024); doi: 10.1063/5.0203401 160, 162502-19

© Author(s) 2024

 06 August 2024 06:18:31

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics SOFTWARE pubs.aip.org/aip/jcp

implementation that stays close to the theoretical formalism.
VAMPyR has been designed to capitalize on these two aspects and,
at the same time, enable fast code development for prototype
applications.

We have employed VAMPyR to test new ideas and methods and
to create interfaces with existing codes. In the first category, we
have shown here a simple SCF optimization, a continuum solvation
model, the solution of the Dirac equation for one electron, and the
application of the time evolution operator. In the second category,
we illustrated how to import a starting guess for the orbitals, the plot-
ting of a PES, a numerical analysis of two density functionals. For all
the above examples, we have provided extracts of the code, which
show how VAMPyR is used. The complete set of working examples
illustrated in Sec. V has been collected in an openly accessible
GitHub repository,44 under the CC-BY-4.0 license.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Magnar Bjørgve: Conceptualization (lead); Methodology (lead);
Project administration (lead); Software (lead); Writing – origi-
nal draft (equal). Christian Tantardini: Conceptualization (equal);
Supervision (equal); Writing – original draft (equal); Writing –
review & editing (equal). Stig Rune Jensen: Conceptualization
(equal); Software (equal). Gabriel A. Gerez S.: Conceptualization
(equal); Software (equal); Writing – original draft (equal). Peter
Wind: Conceptualization (equal); Software (equal). Roberto Di
Remigio Eikås: Conceptualization (equal); Software (equal); Super-
vision (equal); Writing – review & editing (equal). Evgueni Dinvay:
Conceptualization (equal); Software (equal); Writing – original draft
(equal). Luca Frediani: Conceptualization (equal); Project admin-
istration (equal); Supervision (lead); Writing – review & editing
(lead).

DATA AVAILABILITY
The complete set of working examples illustrated in Sec. V

has been collected in an openly accessible GitHub repository
https://github.com/MRChemSoft/vampyr-coven, under the CC-
BY-4.0 license.

APPENDIX A: THE SELF-CONSISTENT FIELD
EQUATIONS OF HARTREE–FOCK AND DENSITY
FUNCTIONAL THEORY

The starting point of most quantum chemistry calculations
involve one Slater determinant, because it automatically accounts for
the Pauli exclusion principle and allows us to express quantities in a
sum of orbital contributions. In particular, the energy expression for
a Slater determinant Ψ in atomic units is given by

E[Ψ] =∑
i
⟨ψi∣ĥ∣ψi⟩ +

1
2∑i,j

⟨ψi∣Ĵj − K̂ j ∣ψj⟩. (A1)

Here, ĥ is the one-electron Hamiltonian,

ĥ = T̂ + V̂N = −
1
2
∇

2
−∑

I
(

ZI

∣r − RI ∣
), (A2)

where T̂ is the kinetic energy operator and V̂N is the attractive
nuclear-electron potential energy operator. Ĵ j and K̂ j denote the
Coulomb and exchange interaction operators, respectively, and are
defined as

Ĵjψi = P̂[∣ψj ∣
2
]ψi, (A3)

K̂ jψi = P̂[ψjψi]ψj. (A4)

By minimizing the energy E[Ψ] with respect to variations in
the orbitals, under the constraint that the spatial orbitals remain
orthonormal,

⟨E⟩HF = min E[Ψ] ⟨ψi∣ψj⟩ = δi,j , (A5)

the Hartree–Fock equations are obtained,45

F̂ψi = (ĥ + Ĵ − K̂)ψi =∑
j

Fijψj , (A6)

where F̂ is the Fock operator and Fi j = ⟨ψi∣F̂∣ψ j⟩ are its matrix
elements in the molecular orbital basis. The canonical HF equations
are obtained by diagonalizing the Fock operator,

F̂ϕi = εiϕi. (A7)

Traditional quantum chemistry methods make use of an expan-
sion of the orbitals in a fixed set of atomic orbitals {χα}. Each orbital
is expressed as a linear combination of atomic orbitals ϕi = ∑αχαCαi,
where elements Cαi representing the transformation from molecular
to atomic orbitals are collected in the matrix C. The resulting
equations, after substituting the expansion in Eq. (A7), multiplying
by a second atomic orbital χβ and integrating, are the so-called
Roothaan–Hall equations,

FC = εSC. (A8)

The problem is then cast in matrix form, and the eigenvalues
(energies) and eigenvectors (orbital expansion coefficients) are
obtained by standard linear algebra techniques. The immediate
advantage is a representation closely related to the physics of the
system (atomic orbitals), but this comes at a price: the implementa-
tion deals with the representation of such functions, their integrals,
their overlaps, and seemingly simple operations, such as applying
an operator or multiplying two functions, become technically com-
plicated obfuscating the physical significance. Moreover, the initial
scaling of the problem becomes n4, where n is the number of basis
functions, due to the two-electron integrals, and a lot of effort
is necessary to recover the original n2 scaling, which is, instead,
straightforward for a MW implementation.

J. Chem. Phys. 160, 162502 (2024); doi: 10.1063/5.0203401 160, 162502-20

© Author(s) 2024

 06 August 2024 06:18:31

https://pubs.aip.org/aip/jcp
https://github.com/MRChemSoft/vampyr-coven

The Journal
of Chemical Physics SOFTWARE pubs.aip.org/aip/jcp

When MWs are used, Eq. (A6) is, instead, kept in its original
form, but converted to an integral equation,

(T̂ + V̂N + Ĵ − K̂)ψi =∑
j

Fijψj , (A9)

(T̂ − Fii)ψi = −(V̂N + Ĵ − K̂)ψi +∑
j≠i

Fijψj , (A10)

ψi = −2Ĝ μi

⎡
⎢
⎢
⎢
⎢
⎣

(V̂N + Ĵ − K̂)ψi −∑
j≠i

Fijψj

⎤
⎥
⎥
⎥
⎥
⎦

. (A11)

In these equations, we have first split the one-electron operator
ĥ in the kinetic energy T̂ and the potential energy V̂N , then rear-
ranged the terms, including the diagonal element Fii of the Fock
matrix, and finally applied the BSH Green’s function to obtain the
final expression. Here, there is no need to transform the problem
to a different basis. The last term, which represents the Lagrangian
multipliers, can be omitted if the canonical HF equations are used.
The final equation can, moreover, be interpreted as a precondi-
tioned steepest descent, where the gradient is the expression in
the square bracket (it can be obtained by taking the differential of
the expectation value of the energy of a Slater determinant with
respect to a generic orbital variation) and the preconditioner is the
BSH kernel.

APPENDIX B: TIME EVOLUTION OPERATOR

The key component to achieve an efficient quantum time evolu-
tion simulation is a good numerical representation of exp (it∂2

x). We
remind that the exponent operator forms a semigroup, representing
the solutions of the free particle equation,

i∂tΨ + ∂2
xΨ = 0.

In other words, for any Ψ0 ∈ L2
(R) function, Ψ = exp (it∂2

x)Ψ0
solves this equation. This is a convolution operator with the kernel

K(x, y) =
exp (−iπ/4)
√

4πt
exp(

i(x − y)2

4t
),

and, so, one anticipates that the machinery described above would
work here as well. In practice, it turns out to be difficult to dis-
cretize it in a similar manner without damping the high frequencies
of Green’s function.57 We use a different approach based on the fact
that it is a multiplication operator in the frequency domain, namely,
Ψ̂(ξ, t) = exp (−itξ2

)Ψ̂0(ξ).
The detailed theory behind algorithm in use follows in a

separate upcoming publication.58 Here, we present only the work-
ing formulas encoded in VAMPyR. Let [σn

l′−l]j ′ j
(t) stay for matrix

elements of the time evolution operator Pn exp (it∂2
x)Pn at scale n

with respect to the Legendre scaling basis φn
j,l(x). Then,

[σn
l]pj
(t) =

∞

∑
k=0

C2k
jpJ2k+j+p(l, 4nt), (B1)

where

Jm(l, a) =
ei π4 (m−1)

2π(m + 2)!∫R
exp(ρl exp(i

π
4
) − aρ2

)ρmdρ, (B2)

satisfying the following relation:

Jm+1 =
il

2a(m + 3)
Jm +

im
2a(m + 2)(m + 3)

Jm−1, m = 0, 1, 2, . . . ,

(B3)
with the agreement J

−1 = 0 and

J0 =
e−i π4

4
√
πa

exp(
il2

4a
). (B4)

These power integrals depend on the time step parameter t > 0,
whereas the coefficients C2k

jp are problem-independent and can be
calculated once as

Ck
jp =

j

∑
m=0

p

∑
q=0

(−1)m+1
(k + 2 + j + p)!

(k + 2 + j + p +m + q)!

× (A j
mBp

q + (−1)k+j+p+m+qB j
mAp

q).

The coefficients appearing here under the double sum may be found
as follows:

A1
0 =
√

3, A1
1 = 2
√

3, B1
0 =
√

3, B1
1 = −2

√
3.

For j ⩾ 1, we have the following relation:

A j+1
0 =

√
2j + 3
2j − 1

A j−1
0 ,

A j+1
1 =

√
2j + 3
2j − 1

A j−1
1 − 2

√
(2j + 1)(2j + 3)A j

0,

⋮ ⋮ ⋮ ⋮ ⋮

A j+1
j−1 =

√
2j + 3
2j − 1

A j−1
j−1 − 2

√
(2j + 1)(2j + 3)A j

j−2,

A j+1
j = −2

√
(2j + 1)(2j + 3)A j

j−1,

A j+1
j+1 = −2

√
(2j + 1)(2j + 3)A j

j ,

and B j
m obey the same recurrence for j ⩾ 1.

The VAMPyR implementation of the time evolution operator
exp (it∂2

x) is under optimization currently, although it is already
available in VAMPyR (see Listing 23).

Finally, the tree structure of the potential semigroup exp (−itV)
is introduced in Listing 24.

Together with a splitting scheme, for example (33), this com-
pletes the algorithm description for the time evolution simulations.

J. Chem. Phys. 160, 162502 (2024); doi: 10.1063/5.0203401 160, 162502-21

© Author(s) 2024

 06 August 2024 06:18:31

https://pubs.aip.org/aip/jcp

The Journal
of Chemical Physics SOFTWARE pubs.aip.org/aip/jcp

LISTING 23. Time evolution operator.

LISTING 24. Unitary potential operator.

REFERENCES
1R. J. Harrison, G. I. Fann, T. Yanai, Z. Gan, and G. Beylkin, J. Chem. Phys. 121,
11587 (2004).
2T. Yanai, G. I. Fann, Z. Gan, R. J. Harrison, and G. Beylkin, J. Chem. Phys. 121,
6680 (2004).
3T. Yanai, G. I. Fann, Z. Gan, R. J. Harrison, and G. Beylkin, J. Chem. Phys. 121,
2866 (2004).
4T. Yanai, R. J. Harrison, and N. C. Handy, Mol. Phys. 103, 413 (2005).
5A. Brakestad, P. Wind, S. R. Jensen, L. Frediani, and K. H. Hopmann, J. Chem.
Phys. 154, 214302 (2021).
6S. R. Jensen, J. Jusélius, A. Durdek, T. Flå, P. Wind, and L. Frediani, Int. J. Model.,
Simul. Sci. Comput. 05, 1441003 (2014).
7S. R. Jensen, T. Flå, D. Jonsson, R. S. Monstad, K. Ruud, and L. Frediani, Phys.
Chem. Chem. Phys. 18, 21145 (2016).
8S. R. Jensen, S. Saha, J. A. Flores-Livas, W. Huhn, V. Blum, S. Goedecker, and L.
Frediani, J. Phys. Chem. Lett. 8, 1449 (2017).
9Q. Pitteloud, P. Wind, S. R. Jensen, L. Frediani, and F. Jensen, J. Chem. Theory
Comput. 19, 5863 (2023).
10R. J. Harrison, G. Beylkin, F. A. Bischoff, J. A. Calvin, G. I. Fann, J. Fosso-Tande,
D. Galindo, J. R. Hammond, R. Hartman-Baker, J. C. Hill, J. Jia, J. S. Kottmann,
M.-J. Yvonne Ou, J. Pei, L. E. Ratcliff, M. G. Reuter, A. C. Richie-Halford, N. A.
Romero, H. Sekino, W. A. Shelton, B. E. Sundahl, W. S. Thornton, E. F. Valeev, A.
Vázquez-Mayagoitia, N. Vence, T. Yanai, and Y. Yokoi, SIAM J. Sci. Comput. 38,
S123 (2016).
11P. Wind, M. Bjørgve, A. Brakestad, G. A. Gerez S, S. R. Jensen, R. D. R. Eikås,
and L. Frediani, J. Chem. Theory Comput. 19, 137 (2022).
12R. Bast, M. Bjorgve, R. Di Remigio, A. Durdek, L. Frediani, E. Fossgaard, G.
Gerez, S. R. Jensen, J. Juselius, S. Lehtola, R. Monstad, and P. Wind (2023).
“MRCPP: MultiResolution Computation Program Package (v1.5.0),” Zenodo.
https://doi.org/10.5281/zenodo.7967323
13C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus,
S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe,
P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser,
H. Abbasi, C. Gohlke, and T. E. Oliphant, Nature 585, 357 (2020).

14P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Courna-
peau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett,
J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson,
C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold,
R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt et al., “SciPy 1.0: Fundamental algorithms
for scientific computing in Python,” Nat. Methods 17, 261 (2020).
15J. D. Hunter, Comput. Sci. Eng. 9, 90 (2007).
16T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic,
K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, and
C. Willing, in Positioning and Power in Academic Publishing: Players, Agents and
Agendas, edited by F. Loizides and B. Schmidt (IOS Press, 2016), pp. 87–90.
17E. Battistella, M. Bjorgve, R. Di Remigio, L. Frediani, G. Gerez, and S. R. Jensen
(2023). “VAMPyR: Very Accurate Multiresolution Python Routines (v1.0rc1),”
Zenodo. https://doi.org/10.5281/zenodo.10290360.
18R. van der Pas, E. Stotzer, and C. Terboven, Using OpenMP—The Next Step:
Affinity, Accelerators, Tasking, and SIMD, Scientific and Engineering Computation
Series (MIT Press, 2017).
19T. G. Mattson, Yun, and A. E. Koniges, The OpenMP Common Core: Making
OpenMP Simple Again (The MIT Press, 2019).
20A. Haar, Math. Ann. 69, 331 (1910).
21J. O. Strömberg, “A modified Franklin system and higher-order spline systems
on Rn as unconditional bases for Hardy spaces,” in Conference on Harmonic
Analysis in Honor of Antoni Zygmund (1982), Vol. 2, pp. 475–494.
22G. Battle, Commun. Math. Phys. 110, 601 (1987).
23P.-G. Lemarié, “Ondelettes à localisation exponentielle,” J. Math. Pures Appl.
67, 227–236 (1988).
24Y. Meyer, “Principe d’incertitude, bases hilbertiennes et algèbres
d’opérateurs,” in Séminaire Bourbaki 1985/86, 651–668 (1987).
http://www.numdam.org/item/SB_1985-1986__28__209_0/
25Y. Meyer, Lectures given at the University of Torino, Italy 9, 1986.
26P. Steffen, P. N. Heller, R. A. Gopinath, and C. S. Burrus, IEEE Trans. Signal
Process. 41, 3497 (1993).
27R. R. Coifman, Y. Meyer, S. Quake, and M. V. Wickerhauser, in Wavelets and
Their Applications (Springer, 1994), pp. 363–379.
28S. G. Mallat, IEEE Trans. Pattern Anal. Mach. Intell. 11, 674 (1989).
29S. G. Mallat, Trans. Am. Math. Soc. 315, 69 (1989).
30W. Sweldens, SIAM J. Math. Anal. 29, 511 (1998).
31B. K. Alpert, SIAM J. Math. Anal. 24, 246 (1993).
32B. Alpert, G. Beylkin, D. Gines, and L. Vozovoi, J. Comput. Phys. 182, 149
(2002).
33G. Beylkin, V. Cheruvu, and F. Pérez, Appl. Comput. Harmonic Anal. 24, 354
(2008).
34G. Beylkin, R. Coifman, and V. Rokhlin, Commun. Pure Appl. Math. 44, 141
(1991).
35R. Bast, M. Bjorgve, R. Di Remigio, A. Durdek, L. Frediani, G. Gerez, S. R.
Jensen, J. Juselius, R. Monstad, and P. Wind (2024). “MRChem: MultiResolution
Chemistry (v1.1.4),” Zenodo. https://doi.org/10.5281/zenodo.10522608
36MRCPP on conda-forge, 2023, accessed 9 February 2024.
37Vampyr on conda-forge, 2023, accessed 9 February 2024.

J. Chem. Phys. 160, 162502 (2024); doi: 10.1063/5.0203401 160, 162502-22

© Author(s) 2024

 06 August 2024 06:18:31

https://pubs.aip.org/aip/jcp
https://doi.org/10.1063/1.1791051
https://doi.org/10.1063/1.1790931
https://doi.org/10.1063/1.1768161
https://doi.org/10.1080/00268970412331319236
https://doi.org/10.1063/5.0046023
https://doi.org/10.1063/5.0046023
https://doi.org/10.1142/s1793962314410037
https://doi.org/10.1142/s1793962314410037
https://doi.org/10.1039/c6cp01294a
https://doi.org/10.1039/c6cp01294a
https://doi.org/10.1021/acs.jpclett.7b00255
https://doi.org/10.1021/acs.jctc.3c00693
https://doi.org/10.1021/acs.jctc.3c00693
https://doi.org/10.1137/15m1026171
https://doi.org/10.1021/acs.jctc.2c00982
https://doi.org/10.5281/zenodo.7967323
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/mcse.2007.55
https://doi.org/10.5281/zenodo.10290360
https://doi.org/10.1007/bf01456326
https://doi.org/10.1007/bf01205550
http://www.numdam.org/item/SB_1985-1986__28__209_0/
https://doi.org/10.1109/78.258088
https://doi.org/10.1109/78.258088
https://doi.org/10.1109/34.192463
https://doi.org/10.2307/2001373
https://doi.org/10.1137/s0036141095289051
https://doi.org/10.1137/0524016
https://doi.org/10.1006/jcph.2002.7160
https://doi.org/10.1016/j.acha.2007.08.001
https://doi.org/10.1002/cpa.3160440202
https://doi.org/10.5281/zenodo.10522608

The Journal
of Chemical Physics SOFTWARE pubs.aip.org/aip/jcp

38 It should be noted that some performance-oriented functionalities, as well as
specific operators such as Helmholtz and Poisson, are currently exclusive to three-
dimensional problems. The extensions to lower or higher dimensions are possible
but are currently not implemented.
39D. Vandevoorde, N. M. Josuttis, and D. Gregor, C++ Templates: The Complete
Guide, 2nd ed. (Addison-Wesley, 2018).
40 In general, one root node is sufficient, but it is possible to specify a domain
containing more than one root node. This option can be useful in the multi-
dimensional case, if one wants a domain that had different sizes in different
directions.
41 We note that the projection in the MRA of arbitrary Python functions is exe-
cuted serially in VAMPyR, since it is not, in general, thread-safe to release Python’s
so-called global interpreter lock (GIL) to exploit MRCPP OpenMP parallelization.
42J. Anderson, R. J. Harrison, H. Sekino, B. Sundahl, G. Beylkin, G. I. Fann, S. R.
Jensen, and I. Sagert, J. Comput. Phys.: X 4, 100033 (2019).
43L. Frediani, E. Fossgaard, T. Flå, and K. Ruud, Mol. Phys. 111, 1143 (2013).
44M. Bjorgve, R. Di Remigio Eikås, L. Frediani, and G. Gerez (2024).
“MRChemSoft/vampyr-coven: VAMPyR-coven release candidate (v1.0rc1),” Zen-
odo. https://doi.org/10.5281/zenodo.10887800
45F. Jensen, Introduction to Computational Chemistry (John Wiley & Sons, 2017).
46J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 105, 2999 (2005).

47G. A. Gerez S., R. Di Remigio Eikås, S. R. Jensen, M. Bjørgve, and L. Frediani,
J. Chem. Theory Comput. 19, 1986 (2023).
48C. Tantardini, R. Di Remigio Eikås, M. Bjørgve, S. R. Jensen, and L. Frediani,
J. Chem. Theory Comput. 20, 882–890 (2024).
49C. Tantardini, R. Di Remigio Eikås, and L. Frediani, arXiv:2311.03290
(2024).
50J. Blackledge and B. Babajanov, Math. AEterna 3(7), 535–544 (2013).
51J. Anderson, B. Sundahl, R. Harrison, and G. Beylkin, J. Chem. Phys. 151,
234112 (2019).
52S. A. Chin and C. R. Chen, J. Chem. Phys. 114, 7338 (2001).
53Z. Rinkevicius, X. Li, O. Vahtras, K. Ahmadzadeh, M. Brand, M. Ringholm, N.
H. List, M. Scheurer, M. Scott, A. Dreuw, and P. Norman, WIREs Comput. Mol.
Sci. 10, e1457 (2020).
54S. Lehtola, C. Steigemann, M. J. T. Oliveira, and M. A. L. Marques, SoftwareX 7,
1 (2018).
55 In this example we do it with one variable. But current VAMPyR can support it
up to three variables.
56S. Lehtola and M. A. Marques, J. Chem. Phys. 157, 174114 (2022).
57N. Vence, R. Harrison, and P. Krstić, Phys. Rev. A 85, 033403 (2012).
58E. Dinvay, Y. Zabelina, and L. Frediani, “Multiresolution of the one dimensional
free-particle propagator” (2024) (unpublished).

J. Chem. Phys. 160, 162502 (2024); doi: 10.1063/5.0203401 160, 162502-23

© Author(s) 2024

 06 August 2024 06:18:31

https://pubs.aip.org/aip/jcp
https://doi.org/10.1016/j.jcpx.2019.100033
https://doi.org/10.1080/00268976.2013.810793
https://doi.org/10.5281/zenodo.10887800
https://doi.org/10.1021/cr9904009
https://doi.org/10.1021/acs.jctc.2c01098
https://doi.org/10.1021/acs.jctc.3c01056
https://arxiv.org/abs/2311.03290
https://doi.org/10.21427/D7JP6B
https://doi.org/10.1063/1.5128908
https://doi.org/10.1063/1.1362288
https://doi.org/10.1002/wcms.1457
https://doi.org/10.1002/wcms.1457
https://doi.org/10.1016/j.softx.2017.11.002
https://doi.org/10.1063/5.0121187
https://doi.org/10.1103/physreva.85.033403

