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Abstract
This paper is devoted to the study of multigraded alge-
bras and multigraded linear series. For an ℕ𝑠-graded
algebra𝐴, we define and study its volume function 𝐹𝐴 ∶
ℕ𝑠+ → ℝ, which computes the asymptotics of the Hilbert
function of 𝐴. We relate the volume function 𝐹𝐴 to the
volume of the fibers of the global Newton–Okounkov
body Δ(𝐴) of 𝐴. Unlike the classical case of standard
multigraded algebras, the volume function 𝐹𝐴 is not a
polynomial in general. However, in the case when the
algebra𝐴 has a decomposable grading, we show that the
volume function 𝐹𝐴 is a polynomial with nonnegative
coefficients. We then define mixed multiplicities in this
case and provide a full characterization for their positiv-
ity. Furthermore, we apply our results on multigraded
algebras to multigraded linear series. Our work recovers
and unifies recent developments on mixed multiplici-
ties. In particular, we recover results on the existence
of mixed multiplicities for (not necessarily Noetherian)
graded families of ideals and on the positivity of the
multidegrees of multiprojective varieties.
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1 INTRODUCTION

The main goal of this paper is to study and extend the current theory of graded algebras of
almost integral type and graded linear series to multigraded algebras of almost integral type and
multigraded linear series, respectively. The asymptotic behavior of graded algebras of almost inte-
gral type and graded linear series was extensively studied in the foundational papers of Kaveh
and Khovanskii [21] and of Lazarsfeld and Mustaţă [25]. Following ideas from seminal works of
Okounkov [29, 30], the authors of [21] and [25] associated a convex body Δ(𝐴) to a graded algebra
𝐴 equipped with a valuation with one-dimensional leaves. The convex body Δ(𝐴) is called the
Newton–Okounkov body of the algebra𝐴. One of the main results of [21, 25] relates the asymptotic
growth of the Hilbert function of a graded algebra of almost integral type with the corresponding
Newton–Okounkov body.
More precisely, let 𝕜 be an algebraically closed field and 𝔽 be a field containing 𝕜. Recall that

a graded 𝕜-subalgebra 𝐴 ⊂ 𝔽[𝑡] of the polynomial ring in one variable is of integral type if 𝐴 is
finitely generated over 𝕜 and is a finitely generatedmodule over the subalgebra generated by [𝐴]1.
A graded 𝕜-algebra𝐴 ⊂ 𝔽[𝑡] is of almost integral type if𝐴 ⊂ 𝐵 ⊂ 𝔽[𝑡], where𝐵 is a graded 𝕜-algebra
of integral type. Then, one has the following theorem.

Theorem 1.1 [21, 25]. Let 𝐴 ⊂ 𝔽[𝑡] be a graded 𝕜-algebra of almost integral type, and let 𝑞 =
dimℝ(Δ(𝐴)). Then, the Hilbert function of 𝐴 has a polynomial growth. Moreover, the main term
of asymptotics has degree 𝑞 and its coefficient is given by the volume of Δ(𝐴).

We generalize Theorem 1.1 to a far-reaching general case of algebras of almost integral type. We
consider an arbitrary field 𝕜 (not necessarily algebraically closed), and we replace the field 𝔽with
any reduced 𝕜-algebra𝑅. We also relate the dimension of theNewton–Okounkov body of𝐴 ⊂ 𝑅[𝑡]
to the Krull dimension of 𝐴.
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TheoremA (Theorem 3.6). Let 𝕜 be a field and 𝑅 be a reduced 𝕜-algebra. Let𝐴 ⊂ 𝑅[𝑡] be a graded
𝕜-algebra of almost integral type. Suppose 𝑑 = dim(𝐴) > 0. Then, there exists an integer𝑚 > 0 such
that the limit

lim
𝑛→∞

dim𝕜 ([𝐴]𝑛𝑚)

𝑛𝑑−1
∈ ℝ+

exists and it is a positive real number.

We prove this result by analyzing the graded algebras equipped with a valuation having leaves
of bounded dimension. In particular, we show that any algebra 𝐴 ⊂ 𝑅[𝑡] of almost integral type
has a valuation with bounded leaves (Proposition 3.13). Our treatment of singly graded algebras
also profited from the works of Cutkosky [9, 10].
We now focus on our developments of the multigraded case of algebras and linear series.

1.1 Multigraded algebras of almost integral type

Here, we describe our main results regarding arbitrary multigraded algebras of almost inte-
gral type.
Let 𝕜 be an arbitrary field and 𝑅 be a 𝕜-domain. Our results, in principle, could cover the case

when 𝑅 is an arbitrary reduced ring (see the general reductions used in Section 3); however, in
doing so, the notation would be quite cumbersome in the notion of volume function that we
define below.
First, we introduce our main object of study, which provides the multigraded extension of

graded algebras of almost integral type (as introduced in [21]). Let 𝑡1, … , 𝑡𝑠 be new variables over
𝑅 and consider 𝑅[𝑡1, … , 𝑡𝑠] as a standard ℕ𝑠-graded polynomial ring where deg(𝑡𝑖) = 𝐞𝑖 ∈ ℕ𝑠 and
𝐞𝑖 denotes the 𝑖th elementary vector (0, … , 1, … , 0). We have the following notions.

(i) An ℕ𝑠-graded 𝕜-algebra 𝐴 =
⨁
𝐧∈ℕ𝑠 [𝐴]𝐧 ⊂ 𝑅[𝑡1, … , 𝑡𝑠] is said to be of integral type if 𝐴

is finitely generated over 𝕜 and is a finite module over the subalgebra generated by
[𝐴]𝐞1 , [𝐴]𝐞2 , … , [𝐴]𝐞𝑠 .

(ii) An ℕ𝑠-graded 𝕜-algebra 𝐴 =
⨁
𝐧∈ℕ𝑠 [𝐴]𝐧 ⊂ 𝑅[𝑡1, … , 𝑡𝑠] is said to be of almost integral type if

𝐴 ⊂ 𝐵 ⊂ 𝑅[𝑡1, … , 𝑡𝑠], where 𝐵 is an ℕ𝑠-graded algebra of integral type.

Let 𝐴 ⊂ 𝑅[𝑡1, … , 𝑡𝑠] be an ℕ𝑠-graded algebra of almost integral type. To simplify notation, we
also need to assume that [𝐴]𝐞𝑖 ≠ 0 for all 1 ⩽ 𝑖 ⩽ 𝑠. One has that the Krull dimension of𝐴 is finite
(see Theorem 2.5), that is, dim(𝐴) < ∞. Let 𝑑 = dim(𝐴) and 𝑞 = 𝑑 − 𝑠. Our main focus is on the
volume function of 𝐴, which is defined as

𝐹𝐴 ∶ ℤ
𝑠
+ → ℝ, 𝐹𝐴(𝑛1, … , 𝑛𝑠) = lim

𝑛→∞

dim𝕜

(
[𝐴](𝑛𝑛1,…,𝑛𝑛𝑠)

)
𝑛𝑞

. (1)

As a direct consequence of Theorem 3.11, we obtain that the limit defining the volume function
𝐹𝐴 always exists. Note that, when𝐴 is a standard ℕ𝑠-graded algebra, then the volume function 𝐹𝐴
encodes the mixed multiplicities of 𝐴 (see Remark 4.1).
In a similar fashion to [25], we relate the volume function 𝐹𝐴 of 𝐴 to a global Newton–

Okounkov body that we define below. For that, we can safely assume that 𝑅 is finitely generated
over 𝕜 (see Remark 3.4) and that there exists a valuation 𝜈 ∶ Quot(𝑅) → ℤ𝑟 with certain good
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properties (see Proposition 3.13). Of particular importance is the fact that the valuation 𝜈 has
leaves of bounded dimension. Let Γ𝐴 be the valued semigroup of the ℕ𝑠-graded algebra 𝐴:

Γ𝐴 =
{
(𝜈(𝑎),𝐦) ∈ ℤ𝑟 × ℕ𝑠 ∣ 0 ≠ 𝑎 ∈ [𝐴]𝐦

}
.

We define

Δ(𝐴) = Con(Γ𝐴) ⊂ ℝ𝑟 × ℝ𝑠⩾0

to be the closed convex cone generated by Γ𝐴 and we call it the global Newton–Okounkov body
of 𝐴. We denote the index of 𝐴 by ind(𝐴) and the maximal dimension of leaves of 𝐴 by 𝓁𝐴 (these
invariants refer to a uniform behavior of the Veronese subalgebras 𝐴(𝐧) =

⨁∞
𝑛=0[𝐴]𝑛𝐧; for more

details, see Definition 4.10). One has the diagram below

where 𝜋1 ∶ ℝ𝑟 × ℝ𝑠⩾0 → ℝ
𝑟 and 𝜋2 ∶ ℝ𝑟 × ℝ𝑠⩾0 → ℝ

𝑠
⩾0
denote the natural projections. We denote

the fiber of the global Newton–Okounkov body Δ(𝐴) over 𝑥 ∈ ℝ𝑠
⩾0
by Δ(𝐴)𝑥 = Δ(𝐴) ∩ 𝜋−12 (𝑥).

The following theorem contains our main results regarding the relations between the volume
function 𝐹𝐴 and the global Newton–Okounkov body Δ(𝐴).

TheoremB (Theorem 4.7, Corollary 4.11).Under the notations above, the following results hold.

(i) The fiber Δ(𝐴)𝐧 of the global Newton–Okounkov body Δ(𝐴) ⊂ ℝ𝑟 × ℝ𝑠⩾0 coincides with the
Newton–Okounkov body Δ(𝐴(𝐧)) for each 𝐧 ∈ ℤ𝑠+, that is:

𝜋1(Δ(𝐴)𝐧) × {1} = 𝜋1
(
Δ(𝐴) ∩ 𝜋−12 (𝐧)

)
× {1} = Δ(𝐴(𝐧)) ⊂ ℝ𝑟 × {1}.

(ii) There exists a unique continuous homogeneous function of degree 𝑞 extending the volume
function 𝐹𝐴(𝐧) defined in Equation 1 to the positive orthant ℝ𝑠⩾0. This function is given by

𝐹𝐴 ∶ ℝ
𝑠
⩾0 → ℝ, 𝑥 ↦ 𝓁𝐴 ⋅

Vol𝑞(Δ(𝐴)𝑥)

ind(𝐴)
.

Moreover, the function 𝐹𝐴 is log-concave:

𝐹𝐴(𝑥 + 𝑦)
1
𝑞 ⩾ 𝐹𝐴(𝑥)

1
𝑞 + 𝐹𝐴(𝑦)

1
𝑞 for all 𝑥, 𝑦 ∈ ℝ𝑠

⩾0.

We illustrate the concrete computation of the volume functions in Example 4.4 and Exam-
ple 4.15. In particular, we show that in general, part (ii) of Theorem B is the strongest result
that can be obtained in this setting: for any nonnegative, homogeneous of degree 1, concave
function 𝑓 ∶ ℝ𝑠

⩾0
→ ℝ⩾0, we construct an ℕ𝑠-graded algebra 𝐴 whose volume function is 𝑓 (see

Example 4.12).
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1.2 Algebras with decomposable grading

An important question is to determine the following:

∙ When is the volume function 𝐹𝐴 a polynomial?

By mimicking the classical case of standard multigraded algebras, the existence of such a poly-
nomial yields a natural notion of mixed multiplicities for the algebra 𝐴 (see Remark 4.1). It turns
out that the volume function 𝐹𝐴 is not always a polynomial (see, e.g., Example 4.4, Example 4.12,
and Example 4.15). However, we show that the volume function is a polynomial for the family of
multigraded algebras with decomposable gradings.
An ℕ𝑠-graded algebra 𝐴 is said to have a decomposable grading if the equality

[𝐴](𝑛1,𝑛2,…,𝑛𝑠) = [𝐴]𝑛1𝐞1 ⋅ [𝐴]𝑛2𝐞2 ⋅ ⋯ ⋅ [𝐴]𝑛𝑠𝐞𝑠

holds for each (𝑛1, 𝑛2, … , 𝑛𝑠) ∈ ℕ𝑠.
Now, we additionally assume that the ℕ𝑠-graded algebra 𝐴 ⊂ 𝑅[𝑡1, … , 𝑡𝑠] of almost integral

type has a decomposable grading. For each 𝑝 ⩾ 1, let 𝐴[𝑝] = 𝕜[[𝐴]𝑝𝐞1 , … , [𝐴]𝑝𝐞𝑠 ] ⊂ 𝐴 be the ℕ
𝑠-

graded algebra generated by [𝐴]𝑝𝐞1 , … , [𝐴]𝑝𝐞𝑠 , and denote by𝐴[𝑝] =
⨁
𝐧∈ℕ𝑠 [𝐴[𝑝]]𝑝𝐧 the standard

ℕ𝑠-graded algebra obtained by regrading 𝐴[𝑝].
The following theorem deals with the case of algebras with a decomposable grading.

Theorem C (Theorem 5.5). Assume the notations above with 𝐴 having a decomposable grading.
Then, there exists a homogeneous polynomial 𝐺𝐴(𝐧) ∈ ℝ[𝑛1, … , 𝑛𝑠] of degree 𝑞 with nonnegative
real coefficients such that

𝐹𝐴(𝐧) = 𝐺𝐴(𝐧) for all 𝐧 ∈ ℤ𝑠+.

Additionally, we have

𝐺𝐴(𝐧) = lim
𝑝→∞

𝐺𝐴[𝑝]
(𝐧)

𝑝𝑞
= sup
𝑝∈ℤ+

𝐺𝐴[𝑝]
(𝐧)

𝑝𝑞
for all 𝐧 ∈ ℤ𝑠+.

We illustrate Theorem C with an example of the Cox ring of a full flag variety (Example 5.6).
Moreover, we can write the polynomial 𝐺𝐴 of Theorem C as follows:

𝐺𝐴(𝐧) =
∑
|𝐝|=𝑞

1

𝐝!
𝑒(𝐝; 𝐴) 𝐧𝐝.

Then, for each𝐝 = (𝑑1, … , 𝑑𝑠) ∈ ℕ𝑠 with |𝐝| = 𝑞, we define the nonnegative real number 𝑒(𝐝; 𝐴) ⩾
0 to be themixed multiplicity of type 𝐝 of 𝐴.
In Corollary 5.8, we provide an extension into amultigraded setting of the Fujita approximation

theorem for graded algebras given in [21, Theorem 2.35]. We show the following equalities:

𝑒(𝐝; 𝐴) = lim
𝑝→∞

𝑒
(
𝐝;𝐴[𝑝]

)
𝑝𝑞

= sup
𝑝∈ℤ+

𝑒
(
𝐝;𝐴[𝑝]

)
𝑝𝑞

.
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Furthermore, in Theorem 5.9, we provide a full characterization for the positivity of the mixed
multiplicities 𝑒(𝐝; 𝐴) of 𝐴.
In our findings, we got that a number of interesting applications follow rather easily by studying

certain multigraded algebras with decomposable grading. The list of applications includes the
following.

(1) In Section 6, we recover some results from [7, 8, 11] by showing the existence of mixed
multiplicities for (not necessarily Noetherian) graded families of ideals.

(2) In Section 6.1, we provide a full characterization for the positivity of the mixed multiplicities
of graded families of equally generated ideals.

(3) In Section 6.2, we recover a classical characterization for the positivity of the mixed volumes
of convex bodies.

1.3 Multigraded linear series

Finally, we are interested in the notion of multigraded linear series. Let 𝕜 be an arbitrary field and
𝑋 be a proper variety over 𝕜. Let 𝐷1,… , 𝐷𝑠 be a sequence of Cartier divisors on 𝑋, and consider
the corresponding section ring

(𝐷1, … , 𝐷𝑠) =
⨁

(𝑛1,…,𝑛𝑠)∈ℕ
𝑠

H0(𝑋,(𝑛1𝐷1 +⋯ + 𝑛𝑠𝐷𝑠)).

Amultigraded linear series associated to the divisors 𝐷1,… , 𝐷𝑠 is an ℕ𝑠-graded 𝕜-subalgebra𝑊 of
the section ring (𝐷1, … , 𝐷𝑠). In particular,𝑊 is of almost integral type (see Proposition 7.2). The
Kodaira–Itaka dimension of𝑊 is given by

𝜅(𝑊) = dim(𝑊) − 𝑠,

where as before dim(𝑊) denotes the Krull dimension of𝑊. As simple consequence of our devel-
opments for multigraded algebras, we have the following theorem for multigraded linear series
(which we enunciate below for the sake of completeness).

Theorem D (Theorem 7.4). Under the above notations, let 𝑊 ⊂ (𝐷1, … , 𝐷𝑠) be a multigraded
linear series and suppose that [𝑊]𝐞𝑖 ≠ 0 for all 1 ⩽ 𝑖 ⩽ 𝑠. Then, the following statements hold.

(i) The volume function

𝐹𝑊(𝐧) = lim
𝑛→∞

dim𝕜 ([𝑊]𝑛𝐧)

𝑛𝜅(𝑊)

of𝑊 is well defined for all 𝐧 ∈ ℤ𝑠+.
(ii) There exists a unique continuous function that is homogeneous of degree 𝜅(𝑊) and log-concave

and that extends the volume function 𝐹𝑊(𝐧) to the positive orthant ℝ𝑠⩾0. This function is given
by

𝐹𝑊 ∶ ℝ
𝑠
⩾0 → ℝ, 𝑥 ↦ 𝓁𝑊 ⋅

Vol𝜅(𝑊)(Δ(𝑊)𝑥)

ind(𝑊)
.
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(iii) If 𝑊 has a decomposable grading, then there exists a homogeneous polynomial 𝐺𝑊(𝐧) ∈
ℝ[𝑛1, … , 𝑛𝑠] of degree 𝜅(𝑊) with nonnegative real coefficients such that

𝐹𝑊(𝐧) = 𝐺𝑊(𝐧)

for all 𝐧 ∈ ℤ𝑠+.

Finally, in Theorem 7.5, we express the mixed multiplicities of a multigraded linear series with
decomposable grading in terms of the multidegrees of the multiprojective varieties obtained as
the image of certain Kodaira rational maps.

1.4 Organization of the paper

The basic outline of this paper is as follows. In Section 2, we recall some important results and fix
some notations. In Section 3, we deal with singly graded algebras and we prove Theorem A. In
Section 4, we begin our study of multigraded algebras and we prove Theorem B. Our treatment
of multigraded algebras with decomposable grading is made in Section 5, where we show Theo-
rem C. In Section 6, we obtain some applications for the mixed multiplicities of graded families
of ideals and for the mixed volumes of convex bodies. Finally, in Section 7, we apply our results
on multigraded algebras to multigraded linear series and we prove Theorem D.

2 NOTATION AND PRELIMINARIES

In this preparatory section, we fix our notation and recall some important results to be used
throughout the paper. We denote the set of nonnegative integers by ℕ = {0, 1, 2, …} and the set
of positive integers by ℤ+ = {1, 2, …}. Let 𝑑 ⩾ 1. For a vector 𝐧 = (𝑛1, … , 𝑛𝑑) ∈ ℕ𝑑, we denote by|𝐧| the sum of its entries. We also denote by 𝐞𝑖 ∈ ℕ𝑑 the 𝑖th elementary vector (0, … , 1, … , 0). For
𝐧 = (𝑛1, … , 𝑛𝑑) and𝐦 = (𝑚1,… ,𝑚𝑑) inℕ𝑑, wewrite𝐧 ⩾ 𝐦 if𝑛𝑖 ⩾ 𝑚𝑖 for every 1 ⩽ 𝑖 ⩽ 𝑑. The null
vector (0, … , 0) ∈ ℕ𝑑 is denoted by 𝟎 ∈ ℕ𝑑. Moreover, we write 𝐧 ≫ 𝟎 if 𝑛𝑖 ⩾ 0 for every 1 ⩽ 𝑖 ⩽ 𝑑.
We also use the abbreviations 𝐧! = 𝑛1!⋯𝑛𝑑! and 𝐧𝐦 = 𝑛

𝑚1
1

⋯𝑛𝑚𝑑
𝑑
.

We first describe the notions andmethods of Newton–Okounkov bodies and recall some impor-
tant results from [21]. Let 𝑑 ⩾ 1. Suppose that 𝑆 ⊂ ℤ𝑑+1 is a semigroup inℤ𝑑+1. Let 𝜋 ∶ ℝ𝑑+1 → ℝ
be the projection into the last component. Let 𝐿 = 𝐿(𝑆) be the linear subspace of 𝑅𝑑+1 that is gen-
erated by 𝑆. Let 𝑀 = 𝑀(𝑆) be the rational half-space 𝑀(𝑆) ∶= 𝐿(𝑆) ∩ 𝜋−1(ℝ⩾0) = 𝐿(𝑆) ∩ (ℝ𝑑 ×
ℝ⩾0), and let 𝜕𝑀ℤ = 𝜕𝑀 ∩ ℤ𝑑+1. Let Con(𝑆) ⊂ 𝐿(𝑆) be the closed convex cone that is the closure
of the set of all linear combinations

∑
𝑖 𝜆𝑖𝑠𝑖 with 𝑠𝑖 ∈ 𝑆 and 𝜆𝑖 ⩾ 0. Let 𝐺(𝑆) ⊂ 𝐿(𝑆) be the group

generated by 𝑆.
We say that the semigroup 𝑆 is nonnegative if 𝑆 ⊂ 𝑀; additionally, if Con(𝑆) is strictly convex

and intersects the space 𝜕𝑀 only at the origin, then 𝑆 is strongly nonnegative (see [21, Definition
1.9 and §1.4]).
Following [21], when 𝑆 is nonnegative, we fix the following notation:

– [𝑆]𝑛 ∶= 𝑆 ∩ 𝜋−1(𝑛) = 𝑆 ∩ (ℤ𝑑 × {𝑛}),
– 𝑚(𝑆) ∶= [ℤ ∶ 𝜋(𝐺(𝑆))],
– ind(𝑆) ∶= [𝜕𝑀ℤ ∶ 𝐺(𝑆) ∩ 𝜕𝑀],
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8 of 38 CID-RUIZ et al.

– Δ(𝑆) ∶= Con(𝑆) ∩ 𝜋−1(𝑚(𝑆)) (the Newton–Okounkov body of 𝑆),
– Vol𝑞(Δ(𝑆)) is the integral volume of Δ(𝑀, 𝑆) (see [21, Definition 1.13]); this volume is computed
using the translation of the integral measure on 𝜕𝑀.

The following result is of remarkable importance for us.

Theorem 2.1 Kaveh–Khovanskii [21, Corollary 1.16]. Suppose that 𝑆 is strongly nonnegative. Let
𝑚 = 𝑚(𝑆) and 𝑞 = dimℝ(Δ(𝑆)). Then

lim
𝑛→∞

#[𝑆]𝑛𝑚
𝑛𝑞

=
Vol𝑞(Δ(𝑆))

ind(𝑆)
.

For a subset𝑈 ⊂ 𝑆 of 𝑆 and 𝑛 ∈ ℕ, we define 𝑛 ⋆ 𝑈 ∶= {
∑𝑛
𝑖=1 𝑢𝑖 ∣ 𝑢1, … , 𝑢𝑛 ∈ 𝑈}. For 𝑝 ∈ ℕ,

we denote by 𝑆𝑝 the subsemigroup of 𝑆 generated by [𝑆]𝑝, that is,[
𝑆𝑝

]
𝑛𝑝
= 𝑛 ⋆ [𝑆]𝑝 and

[
𝑆𝑝

]
𝑛
= 0 if 𝑝 does not divide 𝑛.

The following approximation theorem relates the semigroup 𝑆 with the semigroups 𝑆𝑝𝑚 for 𝑝 big
enough.

Theorem 2.2 [21, Theorem 1.27; 25, Proposition 3.1]. Suppose that 𝑆 is strongly nonnegative. Let
𝑚 = 𝑚(𝑆) and 𝑞 = dim(Δ(𝑆)). Let 𝜀 > 0 be a positive real number. Then, for 𝑝 ≫ 0, the following
statements hold.

(i) dimℝ(Δ(𝑆𝑝𝑚)) = 𝑞.
(ii) ind(𝑆𝑝𝑚) = ind(𝑆).
(iii) We have the inequalities

lim
𝑛→∞

#[𝑆]𝑛𝑚
𝑛𝑞

− 𝜀 ⩽ lim
𝑛→∞

#
(
𝑛 ⋆ [𝑆]𝑝𝑚

)
𝑛𝑞𝑝𝑞

⩽ lim
𝑛→∞

#[𝑆]𝑛𝑚
𝑛𝑞

.

We now briefly recall Minkowski’s theorem and the notion of mixed volume of convex bodies.
Let 𝐊 = (𝐾1, … , 𝐾𝑠) be a sequence of convex bodies in ℝ𝑑. For any sequence 𝜆 = (𝜆1, … , 𝜆𝑠) ∈ ℕ𝑠
of nonnegative integers, we denote by 𝜆𝐊 the Minkowski sum 𝜆𝐊 ∶= 𝜆1𝐾1 +⋯ + 𝜆𝑠𝐾𝑠 and by
𝐊𝜆 the multiset 𝐊𝜆 ∶=

⋃𝑠
𝑖=1

⋃𝜆𝑖
𝑗=1
{𝐾𝑖} of 𝜆𝑖 copies of 𝐾𝑖 for each 1 ⩽ 𝑖 ⩽ 𝑠. Below is the classical

Minkowski’s theorem (see, e.g., [31, Theorem 5.1.7]).

Theorem 2.3 (Minkowski). Vol𝑑(𝜆𝐊) is a homogeneous polynomial of degree 𝑑.

We write the polynomial Vol𝑑(𝜆𝐊) as

Vol𝑑(𝜆𝐊) =
∑

𝐝∈ℕ𝑠 |𝐝|=𝑑
1

𝐝!
MV𝑑(𝐊𝐝) 𝜆𝐝,

where MV𝑑(−) denotes themixed volume.
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MULTIGRADED ALGEBRAS ANDMULTIGRADED LINEAR SERIES 9 of 38

Next, we concentrate on describing the dimension of a subalgebra of an algebra finitely gener-
ated over a field. Following the terminology of [23], we say that these algebras are subfinite. Let 𝕜
be a field and 𝐴 be a 𝕜-algebra. We shall always denote by dim(𝐴) the Krull dimension of 𝐴. We
say that 𝐴 is subfinite over 𝕜 if there exists a finitely generated 𝕜-algebra 𝐵 containing 𝐴. Denote
by 𝛿𝕜(𝐴) the maximal number of elements in𝐴 that are algebraically independent over 𝕜, that is,

𝛿𝕜(𝐴) ∶= sup
{
𝑑 ∣ there exists 𝑥1, … , 𝑥𝑑 ∈ 𝐴, which are algebraically independent over 𝕜

}
.

Equivalently, 𝛿𝕜(𝐴) = 𝑑 if 𝑑 is the largest integer such that there is an inclusion 𝕜[𝑥1, … , 𝑥𝑑] ↪ 𝐴
where 𝕜[𝑥1, … , 𝑥𝑑] is a polynomial ring over 𝕜.

Remark 2.4. If 𝐴 is finitely generated over 𝕜, then dim(𝐴) = 𝛿𝕜(𝐴). This is a classical result that
follows, for instance, from the Noether normalization theorem (see, e.g., [12, Theorem 13.3]).

The following theorem extends the above remark to algebras that are subfinite over 𝕜 (cf. [14]).

Theorem 2.5 [23, Theorem 4.6, Corollary 4.7]. Let 𝐴 be a subfinite algebra over 𝕜. Then, the
following statements hold.

(i) dim(𝐴) = 𝛿𝕜(𝐴).
(ii) If 𝐵 ⊃ 𝐴 is a subfinite algebra over 𝕜, then dim(𝐵) ⩾ dim(𝐴).

3 SINGLY GRADED ALGEBRAS OF ALMOST INTEGRAL TYPE

In this section, we extend the results of [21, Part II] regarding the asymptotic behavior of algebras
of almost integral type. Our results are slightly more complete than the ones in [21, Part II] with
respect to the following points.

(1) We consider an arbitrary field 𝕜 instead of assuming that 𝕜 is algebraically closed.
(2) We substitute the field 𝔽 by any reduced 𝕜-algebra 𝑅.
(3) We show that the asymptotic growth of an algebra of almost integral type is determined by its

Krull dimension.

Similar results to the ones in this section were also obtained in [10] for graded linear series.
Let 𝕜 be an arbitrary field and 𝑅 be a reduced 𝕜-algebra. Let 𝑅[𝑡] be a standard graded

polynomial ring over 𝑅. Below we introduce the notion of almost integral type in our current
setting.

Definition 3.1.

(i) A graded 𝕜-algebra 𝐴 ⊂ 𝑅[𝑡] is called of integral type if 𝐴 is finitely generated over 𝕜 and is a
finitely generated module over the subalgebra generated by [𝐴]1.

(ii) A graded 𝕜-algebra 𝐴 ⊂ 𝑅[𝑡] is called of almost integral type if 𝐴 ⊂ 𝐵 ⊂ 𝑅[𝑡], where 𝐵 is a
graded algebra of integral type.

Notice that, if 𝐴 ⊂ 𝑅[𝑡] is a graded 𝕜-algebra of almost integral, then dim𝕜([𝐴]𝑛) < ∞ for all
𝑛 ∈ ℤ. By definition, one has that a graded 𝕜-algebra of almost integral type is a subfinite algebra
over 𝕜. For any positively graded 𝕜-algebra 𝐴 that is subfinite over 𝕜, we denote by 𝐺𝑖(𝐴) the
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10 of 38 CID-RUIZ et al.

finitely generated graded 𝕜-algebra that is generated by the graded components [𝐴]0, … , [𝐴]𝑖 , that
is,

𝐺𝑖(𝐴) ∶= 𝕜[[𝐴]0, … , [𝐴]𝑖] ⊂ 𝐴.

First, we discuss some properties of graded 𝕜-algebras that are subfinite over 𝕜.

Lemma 3.2. Let 𝐴 be a positively graded 𝕜-algebra that is subfinite over 𝕜. Then, the following
statements hold.

(i) There exists 𝑖0 ∈ ℕ such that dim(𝐴) = dim(𝐺𝑖(𝐴)) for all 𝑖 ⩾ 𝑖0.
(ii) Suppose that 𝑑 = dim(𝐴) > 0. Then there exists ℎ ∈ ℤ+ and 𝛼 ∈ ℝ+ such that

dim𝕜 ([𝐴]𝑛ℎ) > 𝛼𝑛
𝑑−1

for all 𝑛 > 0.

Proof.

(i) This part follows from Theorem 2.5.
(ii) Let 𝐶 = 𝐺𝑖(𝐴) such that dim(𝐶) = 𝑑. Since 𝐶 is finitely generated over 𝕜, by [15, Lemma

13.10, Remark 13.11], one has a positive integer ℎ > 0 such that the Veronese subalgebra
𝐶(ℎ) =

⨁∞
𝑛=0[𝐶]𝑛ℎ is a standard graded 𝕜-algebra. The ring [𝐴]0 is Artinian because by

assumption, it is a finite-dimensional vector space over 𝕜. As dim(𝐶(ℎ)) = dim(𝐶) = 𝑑, by
[27, Corollary of Theorem 13.2], the Hilbert polynomial of 𝐶(ℎ) has degree 𝑑 − 1 and it coin-
cides with length[𝐴]0([𝐶]𝑛ℎ) for 𝑛 ≫ 0. Therefore, there exists a positive real number 𝛼 such
that dim𝕜([𝐴]𝑛ℎ) ⩾ dim𝕜([𝐶]𝑛ℎ) > 𝛼𝑛𝑑−1 for all 𝑛 > 0. □

Lemma 3.3. Let𝐴, 𝐵, and𝐶 be graded 𝕜-algebras that are subfinite over 𝕜. Suppose that there exists
𝑛0 ⩾ 0 such that for all 𝑛 ⩾ 𝑛0, we have a short exact sequence 0 → [𝐴]𝑛 → [𝐵]𝑛 → [𝐶]𝑛 → 0. Then,
dim(𝐵) = max{dim(𝐴), dim(𝐶)}.

Proof. After choosing some ℎ ⩾ 𝑛0, we substitute 𝐴, 𝐵, and 𝐶 by the Veronese subalgebras 𝐴(ℎ),
𝐵(ℎ), and 𝐶(ℎ), respectively. Thus, we may assume that 0 → [𝐴]𝑛 → [𝐵]𝑛 → [𝐶]𝑛 → 0 is exact for
all 𝑛 ⩾ 1.
By invoking Theorem 2.5, we choose 𝑖 > 0 such that dim(𝐺𝑖(𝐵) ∩ 𝐴) = dim(𝐴), dim(𝐺𝑖(𝐵)) =

dim(𝐵), and dim(𝐺𝑖(𝐶)) = dim(𝐶). Notice that we have the short exact sequence

0 →
[
𝐺𝑖(𝐵) ∩ 𝐴

]
+
→

[
𝐺𝑖(𝐵)

]
+
→

[
𝐺𝑖(𝐶)

]
+
→ 0,

where [𝑆]+ =
⨁∞
𝑛=0[𝑆]𝑛 for any graded 𝕜-algebra 𝑆. From the above short exact sequence, we

obtain that the ideal [𝐺𝑖(𝐵) ∩ 𝐴]+ is finitely generated (as it is an ideal over 𝐺𝑖(𝐵)), which implies
that 𝐺𝑖(𝐵) ∩ 𝐴 is a finitely generated graded 𝕜-algebra (see, e.g., [3, Proposition 1.5.4]). We substi-
tute 𝐴, 𝐵, and 𝐶 by 𝐺𝑖(𝐵) ∩ 𝐴, 𝐺𝑖(𝐵), and 𝐺𝑖(𝐶), respectively. So, we assume that 𝐴, 𝐵, and 𝐶 are
finitely generated 𝕜-algebras.
Finally, by standard arguments, we can show that dim(𝐵) = max{dim(𝐴), dim(𝐶)}. We choose

ℎ > 0 such that 0 → 𝐴(ℎ) → 𝐵(ℎ) → 𝐶(ℎ) → 0 is a short exact sequence of standard graded
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MULTIGRADED ALGEBRAS ANDMULTIGRADED LINEAR SERIES 11 of 38

𝕜-algebras (see, e.g., [15, Lemma 13.10, Remark 13.11]), and then the result follows from the
additivity of Hilbert polynomials and [27, Corollary of Theorem 13.2]. □

The following easy remark shows that we can always substitute 𝑅 by a reduced finitely
generated 𝕜-algebra (cf. [21, Proposition 2.25]).

Remark 3.4. Let 𝐴 ⊂ 𝑅[𝑡] be a graded 𝕜-algebra of almost integral type. By definition, let 𝐵 ⊃ 𝐴
be a graded 𝕜-algebra of integral type and suppose that 𝑓𝑖1𝑡

𝑖1 , … , 𝑓𝑖𝑚𝑡
𝑖𝑚 are generators of 𝐵 as a

𝕜-algebra. Let 𝑅′ ⊂ 𝑅 be the reduced 𝕜-algebra generated by the elements 𝑓𝑖1 , … , 𝑓𝑖𝑚 ∈ 𝑅. So, one
has that 𝐴 ⊂ 𝑅′[𝑡] with 𝑅′ being a reduced finitely generated 𝕜-algebra.

Thus, as a consequence of the above remark, we now safely assume that 𝑅 is a reduced finitely
generated algebra. Hence, let 𝔭1, … , 𝔭𝓁 ∈ Spec(𝑅) be theminimal primes of 𝑅. Since 𝑅 is assumed
to be reduced, we have a canonical inclusion 𝑅[𝑡] ↪

⨁𝓁
𝑖=1 𝑅∕𝔭𝑖[𝑡]. Let 𝐴 ⊂ 𝑅[𝑡] be a graded 𝕜-

algebra of almost integral type. For each 1 ⩽ 𝑖 ⩽ 𝓁, let 𝐵𝑖 be the 𝕜-subalgebra defined by

[
𝐵𝑖

]
𝑛
∶=

{
𝕜 if 𝑛 = 0[
𝑀𝑖

]
𝑛

if 𝑛 > 0,
(2)

where 𝑀𝑖 ∶= (𝐴 ∩ 𝔭1𝑅[𝑡] ∩⋯ ∩ 𝔭𝑖−1𝑅[𝑡])∕(𝐴 ∩ 𝔭1𝑅[𝑡] ∩⋯ ∩ 𝔭𝑖−1𝑅[𝑡] ∩ 𝔭𝑖𝑅[𝑡]). By construc-
tion, 𝐵𝑖 is a graded 𝕜-algebra of almost integral type and we have a canonical inclusion 𝐵𝑖 ↪
𝑅∕𝔭𝑖[𝑡].

Lemma 3.5. Under the above notation, the following statements hold.

(i) dim(𝐴) = max{dim(𝐵𝑖) ∣ 1 ⩽ 𝑖 ⩽ 𝓁}.
(ii) For all 𝑛 > 0, one has dim𝕜([𝐴]𝑛) =

∑𝓁
𝑖=1 dim𝕜([𝐵

𝑖]𝑛).

Proof. For each 1 ⩽ 𝑖 ⩽ 𝓁, we have the short exact sequence

0 → 𝑀𝑖 →
𝐴

𝐴 ∩ 𝔭1𝑅[𝑡] ∩⋯ ∩ 𝔭𝑖−1𝑅[𝑡] ∩ 𝔭𝑖𝑅[𝑡]
→

𝐴

𝐴 ∩ 𝔭1𝑅[𝑡] ∩⋯ ∩ 𝔭𝑖−1𝑅[𝑡]
→ 0.

Since 𝑅 is reduced, 𝔭1𝑅[𝑡] ∩⋯ ∩ 𝔭𝓁𝑅[𝑡] = 0. Therefore, part (ii) is clear and part (i) follows from
Lemma 3.3. □

The following theorem contains themain result of this section. By using the general arguments
above, the first idea in the proof is to reduce to the case when 𝑅 is a domain. For organizational
purposes, in the next subsection, we encapsulate a proof of Theorem 3.6 under the assumptions
of 𝑅 being a finitely generated 𝕜-domain (see Theorem 3.11).

Theorem 3.6. Let 𝕜 be a field and 𝑅 be a reduced 𝕜-algebra. Let 𝐴 ⊂ 𝑅[𝑡] be a graded 𝕜-algebra
of almost integral type. Suppose 𝑑 = dim(𝐴) > 0. Then, there exists an integer 𝑚 > 0 such that the
limit

lim
𝑛→∞

dim𝕜 ([𝐴]𝑛𝑚)

𝑛𝑑−1
∈ ℝ+

exists and it is a positive real number.
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12 of 38 CID-RUIZ et al.

Proof. By Remark 3.4, we assume that 𝑅 is finitely generated over 𝕜. Suppose that 𝔭1, … , 𝔭𝓁 are the
minimal primes of 𝑅, and consider the algebras 𝐵𝑖 constructed in Equation (2). Since each 𝐵𝑖 ⊂
𝑅∕𝔭𝑖[𝑡] is an algebra of almost integral type, Theorem 3.11 yields the existence of the following
limits

lim
𝑛→∞

dim𝕜

([
𝐵𝑖

]
𝑛𝑚𝑖

)
𝑛𝑑𝑖−1

∈ ℝ+,

where 𝑚𝑖 = 𝑚(𝐵𝑖) and 𝑑𝑖 = dim(𝐵𝑖). Therefore, after taking 𝑚 = lcm(𝑚1, … ,𝑚𝓁), the result of
the theorem follows from Lemma 3.5. □

3.1 The case where 𝑹 is a domain

The setup below is used throughout this subsection.

Setup 3.7. Let 𝕜 be a field, 𝑅 be a finitely generated 𝕜-domain and 𝑟 = trdeg𝕜(Quot(𝑅)). Let 𝐴 ⊂
𝑅[𝑡] be a graded 𝕜-algebra of almost integral type. Let 𝑑 = dim(𝐴). Let𝑚(𝐴) be the index𝑚(𝐴) ∶=
[ℤ ∶ 𝐺] of the subgroup 𝐺 of ℤ generated by {𝑛 ∈ ℕ ∣ [𝐴]𝑛 ≠ 0}. For any 𝑝 > 0, we denote by 𝐴𝑝
the graded 𝕜-subalgebra 𝐴𝑝 ∶= 𝕜[[𝐴]𝑝] ⊂ 𝐴 generated by the graded part [𝐴]𝑝. By regrading the
algebra𝐴𝑝, we obtain the standard graded 𝕜-algebra𝐴𝑝 defined by [𝐴𝑝]𝑛 ∶= [𝐴𝑝]𝑛𝑝 for all 𝑛 ⩾ 0.
As customary, let

𝑒(𝐴𝑝) ∶= (dim(𝐴𝑝) − 1)! ⋅ lim𝑛→∞

dim𝕜

(
[𝐴𝑝]𝑛

)
𝑛dim(𝐴𝑝)−1

be the multiplicity of the standard graded 𝕜-algebra 𝐴𝑝.

Remark 3.8. We fix an order onℤ𝑟 that is compatible with an addition, that is, for any𝐧,𝐦, 𝐩 ∈ ℤ𝑟
with 𝐧 < 𝐦, we have 𝐧 + 𝐩 < 𝐦+ 𝐩. One way to do this is to fix a linear function 𝑙 on ℤ𝑟 with
rationally independent coefficients and set 𝐧 < 𝐦 ⟺ 𝑙(𝐧) < 𝑙(𝐦) for 𝐧,𝐦 ∈ ℤ𝑟.

We assume that Quot(𝑅) admits a valuation 𝜈 ∶ Quot(𝑅) → ℤ𝑟 such that 𝜈(𝛼) = 0 for all 𝛼 ∈
𝕜 ⊂ Quot(𝑅). We further suppose that 𝜈 ∶ Quot(𝑅) → ℤ𝑟 is faithful and has leaves of bounded
dimension. By Proposition 3.13, we can always construct such a valuation. The faithfulness of
𝜈 means that 𝜈(Quot(𝑅)) = ℤ𝑟. For any 𝐧 = (𝑛1, … , 𝑛𝑟) ∈ ℤ𝑟, we define 𝐾𝐧 ∶= {𝑓 ∈ Quot(𝑅) ∣
𝜈(𝑓) ⩾ 𝐧} and 𝐾+𝐧 ∶= {𝑓 ∈ Quot(𝑅) ∣ 𝜈(𝑓) > 𝐧}, and we say that the leaf with value 𝐧 is given by

𝐿𝐧 ∶= 𝐾𝐧∕𝐾
+
𝐧 .

Wesay that 𝜈 has leaveswith bounded dimension if sup𝐧∈ℤ𝑟 (dim𝕜(𝐿𝐧)) < ∞. Let𝓁 be themaximal
dimension of the leaves of 𝜈:

𝓁 ∶= max
𝐧∈ℤ𝑟

(dim𝕜 (𝐿𝐧)).
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MULTIGRADED ALGEBRAS ANDMULTIGRADED LINEAR SERIES 13 of 38

For every 𝑡 ⩾ 1, we define

Γ(𝑡)
𝐴
∶=

{
(𝐧, 𝑛) = (𝑛1, … , 𝑛𝑟, 𝑛) ∈ ℤ

𝑟 × ℕ ∣ dim𝕜
(
𝐾𝐧 ∩ [𝐴]𝑛∕𝐾

+
𝐧 ∩ [𝐴]𝑛

)
⩾ 𝑡

}
. (3)

For any 𝑛 ⩾ 0 and 𝐧 ∈ ℤ𝑟, one has the inequalities

dim𝕜
(
𝐾𝐧 ∩ [𝐴]𝑛∕𝐾

+
𝐧 ∩ [𝐴]𝑛

)
⩽ dim𝕜 (𝐿𝐧) ⩽ 𝓁.

We consider the integer

𝓁𝐴 ∶= max
{
𝑡 ∈ ℕ ∣ Γ(𝑡)

𝐴
⊈ {0}

}
⩽ 𝓁. (4)

Then, we have the following equalities:

dim𝕜 ([𝐴]𝑛) = dim𝕜

(⨁
𝐧∈ℤ𝑟

(
𝐾𝐧 ∩ [𝐴]𝑛∕𝐾

+
𝐧 ∩ [𝐴]𝑛

))

=

𝓁𝐴∑
𝑡=1

#
[
Γ
(𝑡)
𝐴

]
𝑛

(5)

for all 𝑛 ⩾ 0.
We have the following general lemma.

Lemma 3.9. Let 𝑆 ⊂ ℤ𝑟 × ℕ be a strongly nonnegative semigroup and let Γ ⊂ 𝑆 be a nontrivial
semigroup ideal (i.e., 𝑎 + 𝑆 ⊂ Γ for all 𝑎 ∈ 𝑆), then

(i) Δ(Γ) = Δ(𝑆),
(ii) ind(Γ) = ind(𝑆),
(iii) 𝑚(Γ) = 𝑚(𝑆).

Proof. Let 𝑎 ∈ Γ be any point, then we have an inclusion 𝑎 + 𝑆 ⊂ Γ, and hence 𝐺(𝑆) = 𝐺(Γ) and,
in particular, ind(Γ) = ind(𝑆) and𝑚(Γ) = 𝑚(𝑆). Moreover, we obtain inclusions of closed convex
cones

Con(𝑆) + 𝑎 ⊂ Con(Γ) ⊂ Con(𝑆),

which guaranties the equalities Con(𝑆) = Con(Γ) and Δ(Γ) = Δ(𝑆). □

In the next proposition, we study some properties of Γ(𝑡)
𝐴
. For the special case 𝑡 = 1, we simply

write Γ𝐴 ∶= Γ
(1)
𝐴
.

Proposition 3.10. Suppose that 1 ⩽ 𝑡 ⩽ 𝓁𝐴 (i.e., Γ
(𝑡)
𝐴
⊈ {0}). Then, the following statements hold.

(i) Γ(𝑡)
𝐴
⊆ Γ𝐴.
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14 of 38 CID-RUIZ et al.

(ii) Γ𝐴 is a semigroup, and Γ
(𝑡)
𝐴
is a semigroup ideal of Γ𝐴. In particular, one has that

Δ(Γ
(𝑡)
𝐴
) = Δ(Γ𝐴), ind(Γ

(𝑡)
𝐴
) = ind(Γ𝐴) and 𝑚(Γ

(𝑡)
𝐴
) = 𝑚(𝐴).

(iii) Γ(𝑡)
𝐴
is strongly nonnegative.

Proof.

(i) This part is clear.
(ii) Let (𝐧, 𝑛) = (𝑛1, … , 𝑛𝑟, 𝑛) ∈ Γ

(𝑡)
𝐴

and (𝐦,𝑚) = (𝑚1, … ,𝑚𝑟,𝑚) ∈ Γ𝐴. Then, we can choose
elements 𝑓1, … , 𝑓𝑡 ∈ [𝐴]𝑛 such that 𝜈(𝑓𝑖) = 𝐧 and the classes 𝑓1, … , 𝑓𝑡 are linearly indepen-
dent over 𝕜 in 𝐾𝐧 ∩ [𝐴]𝑛∕𝐾+𝐧 ∩ [𝐴]𝑛. Similarly, let g ∈ [𝐴]𝑚 such that 𝜈(g) = 𝐦.
By contradiction, suppose that the classes of g𝑓1, … , g𝑓𝑡 ∈ [𝐴]𝑛+𝑚 are 𝕜-linearly depen-

dent in

𝐾𝐧+𝐦 ∩ [𝐴]𝑛+𝑚∕𝐾
+
𝐧+𝐦 ∩ [𝐴]𝑛+𝑚.

Thus, there exist 𝑎1 … , 𝑎𝑡 ∈ 𝕜 such that 𝜈(𝑎1g𝑓1 +⋯ + 𝑎𝑡g𝑓𝑡) > 𝐧 +𝐦, which implies that
𝜈(𝑎1𝑓1 +⋯ + 𝑎𝑡𝑓𝑡) > 𝐧. But, the last inequality 𝜈(𝑎1𝑓1 +⋯ + 𝑎𝑡𝑓𝑡) > 𝐧 yields the contra-
diction 𝑎1𝑓1 +⋯ + 𝑎𝑡𝑓𝑡 = 0 ∈ 𝐾𝐧 ∩ [𝐴]𝑛∕𝐾

+
𝐧 ∩ [𝐴]𝑛. So, as required we have (𝐧 +𝐦, 𝑛 +

𝑚) ∈ Γ
(𝑡)
𝐴
.

Finally, Lemma 3.9 implies that Δ(Γ(𝑡)
𝐴
) = Δ(Γ𝐴), ind(Γ

(𝑡)
𝐴
) = ind(Γ𝐴), and 𝑚(Γ

(𝑡)
𝐴
) =

𝑚(Γ𝐴). Also, notice that𝑚(Γ𝐴) = 𝑚(𝐴).
(iii) Since Γ(𝑡)

𝐴
⊂ Γ𝐴, it is enough to show that Γ𝐴 is strongly nonnegative. By definition, there is

a graded 𝕜-algebra 𝐵 ⊂ 𝑅[𝑡] of integral type such that 𝐴 ⊂ 𝐵. Consider the semigroup

Γ𝐵 ∶=
{
(𝐧, 𝑛) ∈ ℤ𝑟 × ℕ ∣ 𝐾𝐧 ∩ [𝐵]𝑛∕𝐾

+
𝐧 ∩ [𝐵]𝑛 ≠ 0

}
determined by 𝐵. After possibly extending 𝐵 by a bigger algebra of integral type, we can
assume that 𝐺(Γ𝐵) = ℤ𝑟+1 (see [21, Lemma 2.29]). Since 𝐵 is a finitely generated module
over a standard graded 𝕜-algebra and dim(𝐵) ⩽ 𝑟 + 1, it follows that dim𝕜([𝐵]𝑛) becomes
a polynomial of degree bounded by 𝑟 for 𝑛 ≫ 0. So, [21, Theorem 1.18] implies that Γ𝐵 is
strongly nonnegative, and since Γ𝐴 ⊂ Γ𝐵, the result follows. □

The following theorem deals with the asymptotic behavior of the growth of 𝐴. The semigroup
Γ𝐴 is given by

Γ𝐴 = Γ
(1)
𝐴
=

{
(𝜈(𝑎), 𝑛) ∈ ℤ𝑟 × ℕ ∣ 0 ≠ 𝑎 ∈ [𝐴]𝑛

}
,

and we call it the valued semigroup of the graded 𝕜-algebra 𝐴. To simplify notation, we denote
Δ(Γ𝐴) and ind(Γ𝐴) by Δ(𝐴) and ind(𝐴), respectively.

Theorem 3.11. Assume Setup 3.7, set𝑚 = 𝑚(𝐴) and let 𝑑 = dim(𝐴) and 𝓁𝐴 be as in Equation 4.
Then,

lim
𝑛→∞

dim𝕜 ([𝐴]𝑛𝑚)

𝑛𝑑−1
= 𝓁𝐴 ⋅

Vol𝑑−1(Δ(𝐴))

ind(𝐴)
,
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MULTIGRADED ALGEBRAS ANDMULTIGRADED LINEAR SERIES 15 of 38

and we have the equality

(𝑑 − 1)! ⋅ lim
𝑛→∞

dim𝕜 ([𝐴]𝑛𝑚)

𝑛𝑑−1
= lim

𝑝→∞

𝑒(𝐴𝑝𝑚)

𝑝𝑑−1
.

Proof. For any 𝑝 > 0 and 𝑡 > 0, we consider the semigroup

Γ
(𝑡)

𝐴𝑝𝑚
=

{
(𝐧, 𝑛) ∈ ℤ𝑟 × ℕ ∣

(
𝐾𝐧 ∩

[
𝐴𝑝𝑚

]
𝑛
∕𝐾+𝐧 ∩

[
𝐴𝑝𝑚

]
𝑛

)
⩾ 𝑡

}
;

these semigroups play the same role for 𝐴𝑝𝑚 than the semigroups in Equation (3) for 𝐴.
By using the inclusions

𝑛 ⋆
[
Γ(𝑡)
𝐴

]
𝑝𝑚
⊂

[
Γ(𝑡)
𝐴𝑝𝑚

]
𝑛𝑝𝑚

⊂
[
Γ(𝑡)
𝐴

]
𝑛𝑝𝑚

(6)

and Theorem 2.2, we can choose 𝑝 ≫ 0 such that

dimℝ

(
Δ

(
Γ
(𝑡)

𝐴𝑝𝑚

))
= dimℝ

(
Δ
(
Γ
(𝑡)
𝐴

))
.

From Theorem 2.5, by possibly making 𝑝 larger, we can assume that dim(𝐴𝑝𝑚) = 𝑑. After regrad-
ing 𝐴𝑝𝑚 and considering the standard graded 𝕜-algebra 𝐴𝑝𝑚, we obtain the existence of a
polynomial 𝑄𝑝𝑚(𝑛) of degree 𝑑 − 1 such that dim𝕜([𝐴𝑝𝑚]𝑛𝑝𝑚) = 𝑄𝑝𝑚(𝑛) for 𝑛 ≫ 0 (see, e.g., [3,
Theorem 4.1.3]). Similarly to Equation 5, we have the equality

dim𝕜

([
𝐴𝑝𝑚

]
𝑛𝑝𝑚

)
=

𝓁
𝐴𝑝𝑚∑
𝑡=1

#

[
Γ
(𝑡)

𝐴𝑝𝑚

]
𝑛𝑝𝑚

. (7)

From the inclusion Γ(𝑡)
𝐴𝑝𝑚
⊂ Γ𝐴𝑝𝑚

, it then necessarily follows that the growth of #[Γ𝐴𝑝𝑚]𝑛𝑝𝑚 is

asymptotically a polynomial of degree 𝑑 − 1. So, by applying Theorem 2.1 to the semigroup Γ𝐴𝑝𝑚 ,
we obtain

dimℝ (Δ(𝐴)) = dimℝ

(
Δ
(
Γ𝐴𝑝𝑚

))
= 𝑑 − 1.

From Proposition 3.10, we also have Δ(Γ(𝑡)
𝐴
) = Δ(𝐴), ind(Γ(𝑡)

𝐴
) = ind(𝐴), and𝑚(Γ(𝑡)

𝐴
) = 𝑚(𝐴) = 𝑚

for all 1 ⩽ 𝑡 ⩽ 𝓁𝐴. Therefore, by using Equation 5, Proposition 3.10, and Theorem 2.1, we obtain
the equality

lim
𝑛→∞

dim𝕜 ([𝐴]𝑛𝑚)

𝑛𝑑−1
= 𝓁𝐴 ⋅

Vol𝑑−1(Δ(𝐴))

ind(𝐴)
.

So, the first statement of the theorem holds.
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16 of 38 CID-RUIZ et al.

From Equation 6 and Theorem 2.2, for any 𝜀 > 0, we can choose 𝑝 ≫ 0 such that

lim
𝑛→∞

#
[
Γ(𝑡)
𝐴

]
𝑛𝑚

𝑛𝑑−1
− 𝜀 ⩽ lim

𝑛→∞

#

[
Γ(𝑡)
𝐴𝑝𝑚

]
𝑛𝑝𝑚

𝑛𝑑−1𝑝𝑑−1
⩽ lim
𝑛→∞

#
[
Γ(𝑡)
𝐴

]
𝑛𝑚

𝑛𝑑−1

for all 𝑡. Finally, by Equation (7), we obtain

lim
𝑛→∞

dim𝕜 ([𝐴]𝑛𝑚)

𝑛𝑑−1
= lim
𝑝→∞

1

𝑝𝑑−1

⎛⎜⎜⎜⎜⎝
lim
𝑛→∞

dim𝕜

([
𝐴𝑝𝑚

]
𝑛𝑝𝑚

)
𝑛𝑑−1

⎞⎟⎟⎟⎟⎠
=

1

(𝑑 − 1)!
lim
𝑝→∞

𝑒(𝐴𝑝𝑚)

𝑝𝑑−1
,

which gives the second claimed equality. □

3.2 Valuations with bounded leaves

In this subsection, we show that the valuations used in Section 3.1 can always be constructed.
Here, we continue using Setup 3.7. We start with the following lemma that will allow us construct
a valuation on Quot(𝑅).

Lemma 3.12. There exists a regular local ring (𝑆,𝔪, 𝕜′) such that 𝑅 ⊂ 𝑆, Quot(𝑆) = Quot(𝑅) and
the residue field 𝕜′ = 𝑆∕𝔪 is finite over 𝕜.

Proof. From [32, Proposition 07PJ ] and [32, Definition 07P7 ], we have

Reg(𝑅) =
{
𝔭 ∈ Spec(𝑅) ∣ 𝑅𝔭 is a regular local ring

}
is an open subset of Spec(𝑅). As𝑅 is a domain, Reg(𝑅) is nonempty. Thenwe can choose 0 ≠ g ∈ 𝑅

such that Spec(𝑅g ) ⊂ Reg(𝑅). Let 𝔪 ⊂ Spec(𝑅g ) be a maximal ideal of 𝑅g . Therefore, by setting
𝑆 = (𝑅g )𝔪, the result follows. □

FromLemma 3.12, fix a regular local ring (𝑆,𝔪, 𝕜′) such that𝑅 ⊂ 𝑆, Quot(𝑆) = Quot(𝑅) and the
residue field 𝕜′ = 𝑆∕𝔪 is finite over 𝕜. Let 𝑟 = dim(𝑆) = trdeg𝕜(Quot(𝑅)), and choose 𝑦1, … , 𝑦𝑟 ⊂
𝔪 a regular system of parameters for 𝑆. Let 𝑏1, … , 𝑏𝑟 be rationally independent real numbers with
𝑏𝑖 ⩾ 1 for every 1 ⩽ 𝑖 ⩽ 𝑟. Since 𝑆 is a regular local ring and Quot(𝑆) = Quot(𝑅), we can construct
a valuation 𝜔 on Quot(𝑅) with values in ℝ by setting

𝜔
(
𝑦
𝑛1
1

⋯ 𝑦𝑛𝑟𝑟
)
= 𝑛1𝑏1 +⋯ + 𝑛𝑟𝑏𝑟 ∈ ℝ

for every (𝑛1, … , 𝑛𝑑) ∈ ℕ𝑟, and 𝜔(𝛾) = 0 if 𝛾 ∈ 𝑆 has nonzero residue in 𝕜′ = 𝑆∕𝔪. Let
(𝑉𝜔,𝔪𝜔, 𝕜𝜔) be the valuation ring of 𝜔 in Quot(𝑅). Notice that 𝑉𝜔 dominates 𝑆 and we have
the equality 𝕜𝜔 = 𝕜′. Since 𝑏1, … , 𝑏𝑟 are rationally independent, we can define a function 𝜑 ∶
Quot(𝑅) → ℤ𝑟 determined by 𝜑(𝑓) = (𝑛1, … , 𝑛𝑟) if 𝑓 ∈ Quot(𝑅) and 𝜔(𝑓) = 𝑛1𝑏1 +⋯ + 𝑛𝑟𝑏𝑟. As
in Remark 3.8, we now fix the order on ℤ𝑟 that is determined by the linear function 𝑙 ∶ ℤ𝑟 →
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MULTIGRADED ALGEBRAS ANDMULTIGRADED LINEAR SERIES 17 of 38

ℝ, (𝑛1, … , 𝑛𝑟) ↦ 𝑛1𝑏1 +⋯ + 𝑛𝑟𝑏𝑟. Therefore, we obtain the valuation 𝜈 ∶ Quot(𝑅) → ℤ𝑟, 𝑓 ↦
𝜑(𝑓) for which the proposition below is valid.

Proposition 3.13. There is a valuation 𝜈 ∶ Quot(𝑅) → ℤ𝑟 that satisfies the following conditions.

(i) 𝜈(𝛼) = 0 for all 𝛼 ∈ 𝕜 ⊂ Quot(𝑅).
(ii) 𝜈 is faithful.
(iii) 𝜈 has leaves of bounded dimension.

4 MULTIGRADED ALGEBRAS OF ALMOST INTEGRAL TYPE

Here, we define and study a volume function for multigraded algebras of almost integral type
(see Equation 9), and we relate this function to certain global Newton–Okounkov bodies. In [25],
similar volume functions have been considered for the case of multigraded linear series in an
irreducible projective variety over an algebraically closed field. First, for the sake of completeness,
we recall the notion of mixed multiplicities for the well-studied case of standard multigraded
algebras, and we explain how this volume function encodes the mixed multiplicities.

Remark 4.1. Let 𝕜 be a field and 𝐴 be a standard ℕ𝑠-graded 𝕜-algebra (i.e., it is finitely generated
over 𝕜 by elements of degree 𝐞𝑖 for 1 ⩽ 𝑖 ⩽ 𝑠). Suppose that𝐴 is a domain and set 𝑑 = dim(𝐴). Let
𝑃𝐴(𝐧) = 𝑃𝐴(𝑛1, … , 𝑛𝑠) be themultigraded Hilbert polynomial of𝐴 (see, e.g., [18, Theorem 4.1], [6,
Theorem 3.4]). Then, the degree of 𝑃𝐴 is equal to 𝑞 = 𝑑 − 𝑠 and 𝑃𝐴(𝐧) = dim𝕜([𝐴]𝐧) for all𝐧 ∈ ℕ𝑠
such that 𝐧 ≫ 𝟎. Furthermore, if we write

𝑃𝐴(𝐧) =
∑

𝑑1,…,𝑑𝑠⩾0

𝑒(𝑑1, … , 𝑑𝑠)

(
𝑛1 + 𝑑1
𝑑1

)
⋯

(
𝑛𝑠 + 𝑑𝑠
𝑑𝑠

)
,

then 0 ⩽ 𝑒(𝑑1, … , 𝑑𝑠) ∈ ℤ for all 𝑑1 +⋯ + 𝑑𝑠 = 𝑞. For 𝐝 = (𝑑1, … , 𝑑𝑠) with |𝐝| = 𝑞, we say that
𝑒(𝐝; 𝐴) ∶= 𝑒(𝑑1, … , 𝑑𝑠)

is themixed multiplicity of 𝐴 of type 𝐝. We define a function

𝐹𝐴(𝐧) ∶= lim
𝑛→∞

dim𝕜 ([𝐴]𝑛𝐧)

𝑛𝑞
= lim
𝑛→∞

dim𝕜

(
[𝐴](𝑛𝑛1,…,𝑛𝑛𝑠)

)
𝑛𝑞

.

For all 𝐧 ∈ ℤ𝑠+, we have 𝐹𝐴(𝐧) = 𝐺𝐴(𝐧) where 𝐺𝐴(𝐧) is the homogeneous polynomial

𝐺𝐴(𝐧) ∶=
∑
|𝐝|=𝑞

1

𝐝!
𝑒(𝐝; 𝐴) 𝐧𝐝 =

∑
𝑑1+⋯+𝑑𝑠=𝑞

𝑒(𝑑1, … , 𝑑𝑠; 𝐴)

𝑑1!⋯𝑑𝑠!
𝑛
𝑑1
1

⋯𝑛𝑑𝑠𝑠 .

So, the function 𝐹𝐴(𝐧) encodes the mixed multiplicities of 𝐴.

Let 𝕜 be a field and 𝑅 be a 𝕜-domain. We introduce new variables 𝑡1, … , 𝑡𝑠 over 𝑅 and con-
sider 𝑅[𝑡1, … , 𝑡𝑠] as a standard ℕ𝑠-graded polynomial ring where deg(𝑡𝑖) = 𝐞𝑖 ∈ ℕ𝑠. We have the
following definition.
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18 of 38 CID-RUIZ et al.

Definition 4.2.

(i) An ℕ𝑠-graded 𝕜-algebra 𝐴 =
⨁
𝐧∈ℕ𝑠 [𝐴]𝐧 ⊂ 𝑅[𝑡1, … , 𝑡𝑠] is called of integral type if 𝐴 is finitely

generated over 𝕜 and is a finitemodule over the subalgebra generated by [𝐴]𝐞1 , [𝐴]𝐞2 , … , [𝐴]𝐞𝑠 .
(ii) An ℕ𝑠-graded 𝕜-algebra 𝐴 =

⨁
𝐧∈ℕ𝑠 [𝐴]𝐧 ⊂ 𝑅[𝑡1, … , 𝑡𝑠] is called of almost integral type if 𝐴 ⊂

𝐵 ⊂ 𝑅[𝑡1, … , 𝑡𝑠], where 𝐵 is an ℕ𝑠-graded algebra of integral type.

The following setup is used throughout the rest of this section.

Setup 4.3. Let 𝕜 be a field and 𝑅 be a 𝕜-domain. Let 𝐴 ⊂ 𝑅[𝑡1, … , 𝑡𝑠] be an ℕ𝑠-graded 𝕜-algebra of
almost integral type. Set 𝑑 = dim(𝐴) and 𝑞 = 𝑑 − 𝑠. We assume that [𝐴]𝐞𝑖 ≠ 0 for all 1 ⩽ 𝑖 ⩽ 𝑠.

Let 𝐧 = (𝑛1, … , 𝑛𝑠) ∈ ℤ𝑠+. We consider the graded 𝕜-algebra

𝐴(𝐧) ∶=

∞⨁
𝑛=0

[𝐴]𝑛𝐧. (8)

By definition, 𝐴(𝐧) is a graded 𝕜-algebra of almost integral type with a canonical inclusion
𝐴(𝐧) ↪ 𝑅[𝑡] into a standard graded polynomial ring 𝑅[𝑡]. Denote by 𝐴(0) ⊂ Quot(𝐴) the subfield
of fractions of multihomogeneous elements with the same degree, that is,

𝐴(0) ∶=
{
𝑥

𝑦
∈ Quot(𝐴) ∣ 𝑥, 𝑦 ∈ 𝐴multihomogeneous elements with 𝑦 ≠ 0 and deg(𝑥)=deg(𝑦)

}
.

Let 0 ≠ 𝑓𝑖 ∈ [𝐴]𝐞𝑖 for each 1 ⩽ 𝑖 ⩽ 𝑠. Since Quot(𝐴) = 𝐴(0)(𝑓1, … , 𝑓𝑠) with 𝑓1, … , 𝑓𝑠 transcen-
dental elements over 𝐴(0), Theorem 2.5 yields that dim(𝐴) = 𝑠 + trdeg𝕜(𝐴(0)). In the same
way, Quot(𝐴(𝐧)) = 𝐴(0)(𝑓

𝑛1
1

⋯𝑓𝑛𝑠𝑠 ) with 𝑓
𝑛1
1

⋯𝑓𝑛𝑠𝑠 transcendental over 𝐴(0), and Theorem 2.5
yields that dim(𝐴(𝐧)) = 1 + trdeg𝕜(𝐴(0)). It follows that dim(𝐴(𝐧)) = dim(𝐴) − 𝑠 + 1 = 𝑑 − 𝑠 +
1. Therefore, for 𝐧 ∈ ℤ𝑠+, Theorem 3.11 applied to the algebra 𝐴(𝐧) gives a well-defined
function

𝐹𝐴(𝐧) ∶= lim
𝑛→∞

dim𝕜 ([𝐴]𝑛𝐧)

𝑛𝑞
(9)

with 𝑞 = 𝑑 − 𝑠. We say that 𝐹𝐴(𝐧) is the volume function of the ℕ𝑠-graded 𝕜-algebra 𝐴.
The following simple example shows that, for an arbitrary algebra of almost integral type 𝐴,

𝐹𝐴(𝐧) may not coincide with a polynomial (also, see [11, §7]). So, in general, we do not have a
suitable extension of Remark 4.1.

Example 4.4. Let 𝑅 = 𝕜[𝑥] be a polynomial ring and consider 𝑅[𝑡1, 𝑡2]. Let 𝛼(𝑛1, 𝑛2) =⌈2√𝑛2
1
+ 𝑛2

2
⌉, where ⌈𝛽⌉ denotes the ceiling function of a real number 𝛽 ∈ ℝ. We define the

family of vector spaces

[𝐴](𝑛1,𝑛2) =
⎛⎜⎜⎝
2(𝑛1+𝑛2)⨁
𝑗=𝛼(𝑛1,𝑛2)

𝕜 ⋅ 𝑥𝑗
⎞⎟⎟⎠𝑡𝑛11 𝑡𝑛22 ⊂ [𝑅[𝑡1, 𝑡2]](𝑛1,𝑛2)
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MULTIGRADED ALGEBRAS ANDMULTIGRADED LINEAR SERIES 19 of 38

over 𝕜. Then, 𝐴 =
⨁
(𝑛1,𝑛2)∈ℕ

2[𝐴](𝑛1,𝑛2) ⊂ 𝑅[𝑡1, 𝑡2] is naturally an ℕ
2-graded 𝕜-algebra. Since 𝐴 ⊂

𝐵 with 𝐵 = 𝕜[𝑥𝑡1, 𝑥2𝑡1, 𝑥𝑡2, 𝑥2𝑡2], it follows that 𝐴 is an ℕ2-graded 𝕜-algebra of almost integral
type. However, in this case, the corresponding function 𝐹𝐴(𝑛1, 𝑛2) is equal to

𝐹𝐴(𝑛1, 𝑛2) = lim𝑛→∞

dim𝕜

(
[𝐴](𝑛𝑛1,𝑛𝑛2)

)
𝑛

= lim
𝑛→∞

2(𝑛𝑛1 + 𝑛𝑛2) − 𝛼(𝑛𝑛1, 𝑛𝑛2) + 1

𝑛

= 2(𝑛1 + 𝑛2) − 2
√
𝑛2
1
+ 𝑛2

2
.

Therefore, in this case, 𝐹𝐴(𝑛1, 𝑛2) is not a polynomial function.

4.1 Global Newton–Okounkov bodies

Here, we study the function 𝐹𝐴(𝐧) for an arbitrary algebra of almost integral type and we relate
it to the construction of certain “global Newton-Okounkov bodies.” We continue using Setup 4.3.
Since we may assume that 𝑅 is finitely generated over 𝕜 (see Remark 3.4), we fix a valuation
𝜈 ∶ Quot(𝑅) → ℤ𝑟 that satisfies the conditions of Proposition 3.13; in particular, 𝜈 has leaves
of bounded dimension. By using the fixed valuation 𝜈 ∶ Quot(𝑅) → ℤ𝑟, we make the following
construction.

Definition 4.5. Let Γ𝐴 be the valued semigroup of the ℕ𝑠-graded algebra 𝐴:

Γ𝐴 ∶=
{
(𝜈(𝑎),𝐦) ∈ ℤ𝑟 × ℕ𝑠 ∣ 0 ≠ 𝑎 ∈ [𝐴]𝐦

}
.

We define Δ(𝐴) = Con(Γ𝐴) ⊂ ℝ𝑟 × ℝ𝑠⩾0 to be the closed convex cone generated by Γ𝐴 and we call
it the global Newton–Okounkov body of 𝐴.

Remark 4.6. By abusing notation and following [25], although Δ(𝐴) is actually a cone, we call
Δ(𝐴) the global Newton–Okounkov body.

We consider the following diagram:

where 𝜋1 ∶ ℝ𝑟 × ℝ𝑠⩾0 → ℝ
𝑟 and 𝜋2 ∶ ℝ𝑟 × ℝ𝑠⩾0 → ℝ

𝑠
⩾0
denote the natural projections. We denote

the fiber of the global Newton–Okounkov body Δ(𝐴) over 𝑥 ∈ ℝ𝑠
⩾0
by Δ(𝐴)𝑥 ∶= Δ(𝐴) ∩ 𝜋−12 (𝑥).

Since𝐴 is a domain and [𝐴]𝐞𝑖 ≠ 0 for all 1 ⩽ 𝑖 ⩽ 𝑠, it follows that𝑚(𝐴
(𝐧)) = 1 and Δ(𝐴(𝐧)) ⊂ ℝ𝑟 ×

{1} ⊂ ℝ𝑟 × ℝ⩾0. The following theorem describes the Newton–Okounkov bodies of the graded 𝕜-
algebra 𝐴(𝐧) (see Equation 8).
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20 of 38 CID-RUIZ et al.

Theorem 4.7. Assume Setup 4.3. The fiber Δ(𝐴)𝐧 of the global Newton–Okounkov body Δ(𝐴) ⊂
ℝ𝑟 × ℝ𝑠

⩾0
coincides with the Newton–Okounkov body Δ(𝐴(𝐧)) for each 𝐧 ∈ ℤ𝑠+, that is:

𝜋1(Δ(𝐴)𝐧) × {1} = 𝜋1
(
Δ(𝐴) ∩ 𝜋−12 (𝐧)

)
× {1} = Δ(𝐴(𝐧)) ⊂ ℝ𝑟 × {1}.

For the proof of Theorem 4.7, it is convenient to use the following well-known result.

Lemma 4.8. Let 𝑆 ⊂ ℤ𝑟 × ℕ be a strongly nonnegative semigroup. The Newton–Okounkov body
Δ(𝑆) can be computed as

Δ(𝑆) =
{(
𝐧

𝑛
,𝑚

)
∈ ℝ𝑟 × ℝ⩾0 ∣ (𝐧, 𝑛𝑚) ∈ 𝑆 for all 𝑛 > 0

}
,

where𝑚 = 𝑚(𝑆).

Proof of Theorem 4.7. Fix a vector 𝐧 ∈ ℤ𝑠+ of positive integers. The statement follows from the fact
that the valued semigroup of 𝐴(𝐧) is given by

Γ𝐴(𝐧) =
{
(𝐦, 𝑛) ∈ ℤ𝑟 × ℕ ∣ (𝐦, 𝑛𝐧) ∈ Γ𝐴

}
.

Hence, by Lemma 4.8, we have that

Δ(𝐴(𝐧)) =
{(
𝐦

𝑛
, 1

)
∈ ℝ𝑟 × ℝ⩾0 ∣ (𝐦, 𝑛𝐧) ∈ Γ𝐴 for all 𝑛 > 0

}
= 𝜋1

({(
𝐦

𝑛
,𝐧

)
∈ ℝ𝑟 × ℝ𝑠

⩾0
∣ (𝐦, 𝑛𝐧) ∈ Γ𝐴 for all 𝑛 > 0

})
× {1}

= 𝜋1
(
Δ(𝐴) ∩ 𝜋−12 (𝐧)

)
× {1}

= 𝜋1(Δ(𝐴)𝐧) × {1},

which completes the proof. □

The following lemma provides a required uniformity result for the algebras 𝐴(𝐧).

Lemma 4.9. Let 𝐧 ∈ ℤ𝑠+ and𝐦 ∈ ℤ
𝑠
+. Then, one has ind(𝐴

(𝐧)) = ind(𝐴(𝐦)) and 𝓁𝐴(𝐧) = 𝓁𝐴(𝐦) .

Proof. For each 𝑛 ⩾ 0, we have a canonical multiplication map[
𝐴(𝐧)

]
𝑛
⊗𝕜

[
𝐴(𝐦)

]
𝑛
→

[
𝐴(𝐧+𝐦)

]
𝑛
, 𝑎 ⊗𝕜 𝑎

′ ↦ 𝑎𝑎′.

Then, by proceeding similarly to Proposition 3.10, we obtain that ind(𝐴(𝐧)) ⩾ ind(𝐴(𝐧+𝐦)) and
𝓁𝐴(𝐧) ⩽ 𝓁𝐴(𝐧+𝐦) .
Take 𝑘 > 0 big enough such that (𝑘 − 1) ⋅ 𝐧 > 𝐦. As above, by considering the multiplication

maps [𝐴(𝐧+𝐦)]𝑛 ⊗𝕜 [𝐴((𝑘−1)⋅𝐧−𝐦)]𝑛 → [𝐴(𝑘⋅𝐧)]𝑛, we get ind(𝐴(𝐧+𝐦)) ⩾ ind(𝐴(𝑘⋅𝐧)) and 𝓁𝐴(𝐧+𝐦) ⩽
𝓁𝐴(𝑘⋅𝐧) . Since ind(𝐴(𝐧)) = ind(𝐴(𝑘⋅𝐧)) and 𝓁𝐴(𝐧) = 𝓁𝐴(𝑘⋅𝐧) , it follows that ind(𝐴(𝐧)) = ind(𝐴(𝐧+𝐦))
and 𝓁𝐴(𝐧) = 𝓁𝐴(𝐧+𝐦) .
Symmetrically, we also have that ind(𝐴(𝐦)) = ind(𝐴(𝐧+𝐦)) and 𝓁𝐴(𝐦) = 𝓁𝐴(𝐧+𝐦) . □
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MULTIGRADED ALGEBRAS ANDMULTIGRADED LINEAR SERIES 21 of 38

Definition 4.10. By using Lemma 4.9, we set:

(i) ind(𝐴) be the index of 𝐴 that is the constant value of ind(𝐴(𝐧)) for all 𝐧 ∈ ℤ𝑠+.
(ii) 𝓁𝐴 be the maximal dimension of leaves of 𝐴 that is the constant value of 𝓁𝐴(𝐧) for all 𝐧 ∈ ℤ𝑠+.

The corollary below gives an important characterization of the volume function of 𝐴 in terms
of the global Newton–Okounkov body Δ(𝐴).

Corollary 4.11. AssumeSetup 4.3. There exists a unique continuous homogeneous function of degree
𝑞 extending the volume function 𝐹𝐴(𝐧) defined in Equation (9) to the positive orthant ℝ𝑠⩾0. This
function is given by

𝐹𝐴 ∶ ℝ
𝑠
⩾0 → ℝ, 𝑥 ↦ 𝓁𝐴 ⋅

Vol𝑞(Δ(𝐴)𝑥)

ind(𝐴)
.

Moreover, the function 𝐹𝐴 is log-concave:

𝐹𝐴(𝑥 + 𝑦)
1
𝑞 ⩾ 𝐹𝐴(𝑥)

1
𝑞 + 𝐹𝐴(𝑦)

1
𝑞 for all 𝑥, 𝑦 ∈ ℝ𝑠

⩾0.

Proof. By combining Theorem 3.11, Theorem 4.7, and Lemma 4.9, it follows that 𝐹𝐴 ∶ ℝ𝑠⩾0 →

ℝ, 𝑥 ↦ 𝓁𝐴 ⋅
Vol𝑞(Δ(𝐴)𝑥)

ind(𝐴)
extends the function 𝐹𝐴(𝐧) defined in Equation (9) for all 𝐧 ∈ ℤ𝑠+.

Now, the homogeneity follows from the fact that Δ(𝐴)𝜆⋅𝑥 = 𝜆 ⋅ Δ(𝐴)𝑥. Since Δ(𝐴) is convex,
we have Δ(𝐴)𝑥 + Δ(𝐴)𝑦 ⊂ Δ(𝐴)𝑥+𝑦 and hence the log-concavity follows from Brunn–Minkowski
inequalities for the volume of convex bodies. □

As our next example shows, in general, Corollary 4.11 is the most general statement about
volume function 𝐹𝐴 for some multigraded algebra 𝐴.

Example 4.12 (Every concave function is a volume function). Let 𝑅 = 𝕜[𝑢] be a polynomial
ring and consider the polynomial ring 𝑅[𝑡1, … , 𝑡𝑠]. Let further 𝑓 ∶ ℝ𝑠⩾0 → ℝ⩾0 be any nonnega-
tive, homogeneous of degree 1, concave function. We define a family of vector spaces indexed by
𝐧 ∈ ℕ𝑠:

[𝐴]𝐧 =

( ⨁
0⩽𝑖⩽𝑓(𝐧)

𝕜 ⋅ 𝑢𝑖
)
𝐭𝐧 ⊂ [𝑅[𝑡1, … , 𝑡𝑠]]𝐧.

The algebra 𝐴𝑓 ∶=
⨁
𝐧∈ℕ𝑠 [𝐴]𝐧 ⊂ 𝑅[𝑡1, … , 𝑡𝑠] is naturally an ℕ𝑠-graded algebra. Since 𝑓 is con-

cave and homogeneous, the global Newton–Okounkov body Δ(𝐴𝑓) of 𝐴𝑓 is a cone in ℝ𝑠+1
given by:

Δ(𝐴𝑓) =
{
(𝑦, 𝑥) ∈ ℝ × ℝ𝑠

⩾0 ∣ 0 ⩽ 𝑦 ⩽ 𝑓(𝑥)
}
.

In particular, we get 𝐹𝐴𝑓(𝑥) = 𝑓(𝑥), for any 𝑥 ∈ ℝ
𝑠
⩾0
.

However, in some cases, one can say more about function 𝐹𝐴(𝑥). Let 𝐶 ⊂ ℝ𝑠 be a convex
cone and consider a family {Δ𝑥}𝑥∈𝐶 of convex bodies of dimension 𝑞 parameterized by 𝐶. We
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22 of 38 CID-RUIZ et al.

say that {Δ𝑥}𝑥∈𝐶 is linear if Δ𝜆1𝑥+𝜆2𝑦 = 𝜆1Δ𝑥 + 𝜆2Δ𝑦 for any 𝑥, 𝑦 ∈ 𝐶 and 𝜆1, 𝜆2 > 0. According
to Minkowski’s theorem (see Theorem 2.3), the volume of a linear family of convex bodies is a
homogeneous polynomial. Thus, we obtain the following proposition.

Proposition 4.13. Assume that the fibers of the global Newton–Okounkov body form a linear family
of convex bodies. Then the function 𝐹𝐴(𝑥) is a homogeneous polynomial of degree 𝑞.

Proof. Since

𝐹𝐴(𝑥) = 𝓁𝐴 ⋅
Vol𝑞(Δ(𝐴)𝑥)

ind(𝐴)
,

the statement of the proposition follows from Minkowski’s theorem and the fact that Δ𝑥 =
𝑥1Δ𝐞1 +⋯ + 𝑥𝑠Δ𝐞𝑠 for all 𝑥 = (𝑥1, … , 𝑥𝑠) ∈ ℝ

𝑠
⩾0
. □

Another important case is when the global Newton–Okounkov body is a polyhedral cone. In
this case, the multiplicity function is a piecewise polynomial with respect to some fan supported
on the positive orthant.

Proposition 4.14. Assume that the global Newton–Okounkov bodyΔ(𝐴) is a polyhedral cone. Then
there exists a fan Σ supported on ℝ𝑠

⩾0
such that the function 𝐹𝐴(𝑥) is polynomial at each cone of Σ.

Proof. Indeed, by [22, Proposition 4.1], for any polyhedral cone 𝐶 ⊂ ℝ𝑞 × ℝ𝑠 with 𝜋2(𝐶) = ℝ𝑠⩾0,
the family {𝐶 ∩ 𝜋−1

2
(𝑥)}𝑥∈𝐶 of polytopes is piecewise linear with respect to some fan Σ supported

on ℝ𝑠
⩾0
. Therefore, the proposition follows from Minkowski’s theorem. □

Example 4.15. Let 𝑅 = 𝕜[𝑢] be a polynomial ring and consider the polynomial ring 𝑅[𝑡1, 𝑡2].
Let 𝑓∶ ℝ2

⩾0
→ ℝ be a function defined by 𝑓(𝑥1, 𝑥2) = min(𝑥1, 𝑥2). We define a family of vector

spaces:

[𝐴](𝑛1,𝑛2) =
⎛⎜⎜⎝
𝑓(𝑛1,𝑛2)⨁
𝑖=0

𝕜𝑢𝑖
⎞⎟⎟⎠𝑡𝑛11 𝑡𝑛22 ⊂ [𝑅[𝑡1, 𝑡2]](𝑛1,𝑛2).

The algebra 𝐴 =
⨁
(𝑛1,𝑛2)∈ℕ

2 ⊂ 𝑅[𝑡1, 𝑡2] is naturally an ℕ2-graded algebra. The global Newton–
Okounkov body of 𝐴 is a cone 𝐶 in ℝ3 generated by vectors (1, 0, 0), (0, 1, 0), (1, 1, 1) and, as in
Example 4.12, 𝐹𝐴(𝑥1, 𝑥2) = 𝑓(𝑥1, 𝑥2) = min(𝑥1, 𝑥2).

5 MULTIGRADED ALGEBRAS OF ALMOST INTEGRAL TYPE
WITH DECOMPOSABLE GRADING

In this section, we introduce and study the notion of mixed multiplicities for certain multi-
graded algebras of almost integral type. We treat a family of algebras that we call algebras with
decomposable grading. Our approach is inspired by the methods used in [7, 8, 11].
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MULTIGRADED ALGEBRAS ANDMULTIGRADED LINEAR SERIES 23 of 38

Definition 5.1. An ℕ𝑠-graded algebra 𝐴 is said to have a decomposable grading if we have the
equality

[𝐴](𝑛1,𝑛2,…,𝑛𝑠) = [𝐴]𝑛1𝐞1 ⋅ [𝐴]𝑛2𝐞2 ⋅ ⋯ ⋅ [𝐴]𝑛𝑠𝐞𝑠

for all (𝑛1, 𝑛2, … , 𝑛𝑠) ∈ ℕ𝑠.

We now proceed to define themixedmultiplicities of amultigraded algebra𝐴 of almost integral
type with decomposable grading. Here, we extend Remark 4.1: our approach relies on showing
that the corresponding function 𝐹𝐴(𝐧) coincides with a polynomial 𝐺𝐴(𝐧)when 𝐧 ∈ ℤ𝑠+. We use
this polynomial to define the mixed multiplicities of 𝐴. For the rest of this section, we use the
following setting.

Setup 5.2. Let 𝕜 be a field and 𝑅 be a 𝕜-domain. Let 𝐴 ⊂ 𝑅[𝑡1, … , 𝑡𝑠] be an ℕ𝑠-graded 𝕜-algebra of
almost integral type with decomposable grading. Set 𝑑 = dim(𝐴) and 𝑞 = 𝑑 − 𝑠. We assume that
[𝐴]𝐞𝑖 ≠ 0 for all 1 ⩽ 𝑖 ⩽ 𝑠.

For each 𝑝 ⩾ 1, let

𝐴[𝑝] ∶= 𝕜
[
[𝐴]𝑝𝐞1 , … , [𝐴]𝑝𝐞𝑠

]
⊂ 𝐴

be the ℕ𝑠-graded algebra generated by [𝐴]𝑝𝐞1 , … , [𝐴]𝑝𝐞𝑠 , and denote by 𝐴[𝑝] ∶=
⨁
𝐧∈ℕ𝑠 [𝐴[𝑝]]𝑝𝐧

the standard ℕ𝑠-graded algebra obtained by regrading 𝐴[𝑝]. For 𝑝 ≫ 0, Theorem 2.5 and the fact
that 𝐴 has a decomposable grading imply that dim(𝐴[𝑝]) = 𝑑. Then, by Remark 4.1, the function
𝐹𝐴[𝑝]

(𝐧) coincides with the homogeneous polynomial

𝐺𝐴[𝑝]
(𝐧) =

∑
|𝐝|=𝑞

1

𝐝!
𝑒
(
𝐝;𝐴[𝑝]

)
𝐧𝐝 (10)

for all 𝐧 ∈ ℤ𝑠+, where 𝑞 = 𝑑 − 𝑠 and 𝑒(𝐝; 𝐴[𝑝]) denotes the mixed multiplicity of 𝐴[𝑝] of type 𝐝 ∈
ℕ𝑠.
For each 𝑎 ⩾ 1, we consider the 𝑎-truncation 𝐺[𝑎](𝐴) ∶= 𝕜[∪𝑠

𝑖=1
∪𝑎
𝑗=1
[𝐴]𝑗𝐞𝑖 ] ⊂ 𝐴 of 𝐴 that is

the subalgebra generated by the graded components [𝐴]𝑗𝐞𝑖 with 1 ⩽ 𝑖 ⩽ 𝑠, 1 ⩽ 𝑗 ⩽ 𝑎. The next
proposition says that the 𝑎-truncations can be used to approximate 𝐹𝐴(𝐧).

Proposition 5.3. Assume Setup 5.2. For each 𝐧 = (𝑛1, … , 𝑛𝑠) ∈ ℤ𝑠+, we have the equality

𝐹𝐴(𝐧) = lim
𝑎→∞

𝐹𝐺[𝑎](𝐴)(𝐧).

Proof. Fix 𝐧 = (𝑛1, … , 𝑛𝑠) ∈ ℤ𝑠+. To simplify notation, set 𝐶 = 𝐴
(𝐧) and 𝐷𝑎 = (𝐺[𝑎](𝐴))(𝐧). Note

that 𝐹𝐴(𝐧) = lim𝑛→∞
dim𝕜([𝐶]𝑛)

𝑛𝑞
and 𝐹𝐺[𝑎](𝐴)(𝐧) = lim𝑛→∞

dim𝕜([𝐷
𝑎]𝑛)

𝑛𝑞
. By following the same steps

as in Section 3.1, we can define strongly nonnegative semigroups

Γ
(𝑡)
𝐶
⊂ ℕ𝑟+1 and Γ

(𝑡)
𝐷𝑎
⊂ ℕ𝑟+1,
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24 of 38 CID-RUIZ et al.

such that dim𝕜([𝐶]𝑛) =
∑𝓁𝐶
𝑡=1
#[Γ

(𝑡)
𝐶
]𝑛 and dim𝕜([𝐷𝑎]𝑛) =

∑𝓁𝐷𝑎
𝑡=1
#[Γ

(𝑡)
𝐷𝑎
]𝑛. Consider the integer

𝑎′ = ⌊𝑎∕max{𝑛1, … , 𝑛𝑠}⌋ (where ⌊𝛽⌋ denotes the floor function of 𝛽 ∈ ℝ) and the inclusions
𝑛 ⋆

[
Γ
(𝑡)
𝐶

]
𝑎′
⊂

[
Γ
(𝑡)
𝐷𝑎

]
𝑛𝑎′
⊂

[
Γ
(𝑡)
𝐶

]
𝑛𝑎′
.

Then, Theorem 2.2 implies that

lim
𝑎→∞

⎛⎜⎜⎜⎝ lim𝑛→∞
#
[
Γ(𝑡)
𝐷𝑎

]
𝑛

𝑛𝑞

⎞⎟⎟⎟⎠ = lim𝑛→∞
#
[
Γ(𝑡)
𝐶

]
𝑛

𝑛𝑞
,

and so, the result follows. □

The following proposition deals with the case when 𝐴 is also a finitely generated 𝕜-algebra.

Proposition 5.4. Assume Setup 5.2 with 𝐴 being finitely generated over 𝕜. For each 𝐧 =
(𝑛1, … , 𝑛𝑠) ∈ ℤ

𝑠
+, we have the equality

𝐹𝐴(𝐧) = lim
𝑝→∞

𝐹𝐴[𝑝]
(𝐧)

𝑝𝑞
.

Proof. Fix 𝐧 = (𝑛1, … , 𝑛𝑠) ∈ ℤ𝑠+. We define the graded 𝕜-algebra

𝐵 ∶=

∞⨁
𝑛=0

[𝐴]
𝑛1
𝑛𝐞1

⋅ [𝐴]𝑛2𝑛𝐞2 ⋅ ⋯ ⋅ [𝐴]𝑛𝑠𝑛𝐞𝑠 .

For each 𝑝 ⩾ 1, let 𝐶𝑝 be the graded 𝕜-algebra

𝐶𝑝 ∶=
(
𝐴[𝑝]

)(𝐧)
=

∞⨁
𝑛=0

[
𝐴[𝑝]

]
𝑛𝑝𝐧
=

∞⨁
𝑛=0

[𝐴]
𝑛𝑛1
𝑝𝐞1

⋅ [𝐴]𝑛𝑛2𝑝𝐞2 ⋅ ⋯ ⋅ [𝐴]𝑛𝑛𝑠𝑝𝐞𝑠 .

Once again, we can define strongly nonnegative semigroups Γ(𝑡)
𝐵
⊂ ℕ𝑟+1 and Γ(𝑡)

𝐶𝑝
⊂ ℕ𝑟+1 such that

dim𝕜([𝐵]𝑛) =
∑𝓁𝐵
𝑡=1
#[Γ

(𝑡)
𝐵
]𝑛 and dim𝕜([𝐶𝑝]𝑛) =

∑𝓁𝐶𝑝
𝑡=1
#[Γ

(𝑡)
𝐶𝑝
]𝑛.

Since ([𝐵]𝑝)𝑛 = [𝐶𝑝]𝑛 ⊂ [𝐵]𝑛𝑝, we obtain the corresponding inclusions

𝑛 ⋆
[
Γ
(𝑡)
𝐵

]
𝑝
⊂

[
Γ
(𝑡)
𝐶𝑝

]
𝑛
⊂

[
Γ
(𝑡)
𝐵

]
𝑛𝑝
.

By Theorem 2.2, it follows that

lim
𝑝→∞

⎛⎜⎜⎜⎝
1

𝑝𝑞
lim
𝑛→∞

#
[
Γ
(𝑡)
𝐶𝑝

]
𝑛

𝑛𝑞

⎞⎟⎟⎟⎠ = lim𝑛→∞
#
[
Γ
(𝑡)
𝐵

]
𝑛

𝑛𝑞
.

As a consequence, we get lim𝑝→∞
𝐹𝐴[𝑝]

(𝐧)

𝑝𝑞
= lim𝑛→∞

dim𝕜([𝐵]𝑛)

𝑛𝑞
. To finish the proof, it remains to

show the equality 𝐹𝐴(𝐧) = lim𝑛→∞
dim𝕜([𝐵]𝑛)

𝑛𝑞
.
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As𝐴 has a decomposable grading, the algebras𝐴(𝐞1), … , 𝐴(𝐞𝑠) are also finitely generated over 𝕜.
Hence, by [15, Lemma 13.10], we can choose ℎ > 0 such that

[𝐴]𝑛ℎ𝐧 = [𝐴]𝑛𝑛1ℎ𝐞1 ⋅ [𝐴]𝑛𝑛2ℎ𝐞2 ⋅ ⋯ ⋅ [𝐴]𝑛𝑛𝑠ℎ𝐞𝑠 = [𝐴]
𝑛1
𝑛ℎ𝐞1

⋅ [𝐴]𝑛2
𝑛ℎ𝐞2

⋅ ⋯ ⋅ [𝐴]𝑛𝑠
𝑛ℎ𝐞𝑠

= [𝐵]𝑛ℎ

for all 𝑛 ⩾ 0. We then obtain

𝐹𝐴(𝐧) = lim𝑛→∞

dim𝕜 ([𝐴]𝑛ℎ𝐧)

𝑛𝑞ℎ𝑞
= lim
𝑛→∞

dim𝕜 ([𝐵]𝑛ℎ)

𝑛𝑞ℎ𝑞
= lim
𝑛→∞

dim𝕜 ([𝐵]𝑛)

𝑛𝑞
.

So, the proof of the proposition is complete. □

The next theorem contains the main result of this section. It shows that 𝐹𝐴(𝐧) is a polynomial
like function when 𝐴 has a decomposable grading.

Theorem 5.5. Assume Setup 5.2. Then, there exists a homogeneous polynomial 𝐺𝐴(𝐧) ∈
ℝ[𝑛1, … , 𝑛𝑠] of degree 𝑞 with nonnegative real coefficients such that

𝐹𝐴(𝐧) = 𝐺𝐴(𝐧) for all 𝐧 ∈ ℤ𝑠+.

Additionally, we have

𝐺𝐴(𝐧) = lim
𝑝→∞

𝐺𝐴[𝑝]
(𝐧)

𝑝𝑞
= sup
𝑝∈ℤ+

𝐺𝐴[𝑝]
(𝐧)

𝑝𝑞
for all 𝐧 ∈ ℤ𝑠+.

Proof. Fix 𝐧 = (𝑛1, … , 𝑛𝑠) ∈ ℤ𝑠+. For any 𝑎 ⩾ 1 and 𝑝 ⩾ 1, we have the following inequalities:

lim
𝑝→∞

𝐹𝐵𝑎[𝑝]
(𝐧)

𝑝𝑞
⩽ lim
𝑝→∞

𝐹𝐴[𝑝]
(𝐧)

𝑝𝑞
⩽ 𝐹𝐴(𝐧),

where 𝐵𝑎 = 𝐺[𝑎](𝐴). Therefore, by combining Proposition 5.3 and Proposition 5.4, we obtain the
equalities

𝐹𝐴(𝐧) = lim
𝑝→∞

𝐹𝐴[𝑝]
(𝐧)

𝑝𝑞
= sup
𝑝∈ℤ+

𝐹𝐴[𝑝]
(𝐧)

𝑝𝑞
.

From Remark 4.1, the function 𝐹𝐴[𝑝]
(𝐧) coincides with the polynomial 𝐺𝐴[𝑝] (𝐧) =∑|𝐝|=𝑞 1𝐝! 𝑒(𝐝; 𝐴[𝑝])𝐧𝐝 in Equation 10 for all 𝐧 ∈ ℤ𝑠+. It then necessarily follows that, for all

𝐧 ∈ ℤ𝑠+, 𝐹𝐴(𝐧) = 𝐺𝐴(𝐧) where 𝐺𝐴(𝐧) ∈ ℝ[𝑛1, … , 𝑛𝑠] is the polynomial

𝐺𝐴(𝐧) = lim
𝑝→∞

𝐺𝐴[𝑝]
(𝐧)

𝑝𝑞
=

∑
|𝐝|=𝑞

(
lim
𝑝→∞

𝑒
(
𝐝;𝐴[𝑝]

)
𝑝𝑞

)
𝐧𝐝

𝐝!

= sup
𝑝∈ℤ+

𝐺𝐴[𝑝]
(𝐧)

𝑝𝑞
=

∑
|𝐝|=𝑞

(
sup
𝑝∈ℤ+

𝑒
(
𝐝;𝐴[𝑝]

)
𝑝𝑞

)
𝐧𝐝

𝐝!

(11)

(see, e.g., [11, Lemma 3.2]). So, the result of the theorem follows. □

Below we have an example of a family of algebras with decomposable grading.
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26 of 38 CID-RUIZ et al.

Example 5.6. Let 𝐺 be a complex semisimple group and let 𝐵 ⊂ 𝐺 be a Borel subgroup with a
character lattice𝑀. Denote by 𝐴 the Cox ring of 𝐺∕𝐵, that is,

𝐴 =
⨁

𝐿∈Pic(𝐺∕𝐵)
H0(𝐺∕𝐵, 𝐿),

with a product induced by the natural maps:

H0(𝐺∕𝐵, 𝐿1) ⊗H0(𝐺∕𝐵, 𝐿2) → H0(𝐺∕𝐵, 𝐿1 ⊗ 𝐿2).

The Cox ring 𝐴 is naturally an algebra graded by the Picard group Pic(𝐺∕𝐵) of the flag variety
𝐺∕𝐵. By Borel’s theorem, Pic(𝐺∕𝐵) is isomorphic to𝑀, for a character 𝜆 ∈ 𝑀, we will denote by
𝐿𝜆 ∈ Pic(𝐺∕𝐵) the corresponding line bundle. Moreover, by Borel–Weil theorem, one has

H0(𝐺∕𝐵, 𝐿𝜆) =

{
𝑉𝜆 if 𝜆 is a dominant weight
0 otherwise.

Therefore, the Cox ring 𝐴 of 𝐺∕𝐵 is given by

𝐴 =
⨁
𝜆∈Λ+

𝑉𝜆,

where Λ+ is the positive Weyl chamber, that is, the direct sum is over dominant weights.
The product maps [𝐴]𝜆 ⊗ [𝐴]𝜇 → [𝐴]𝜆+𝜇 can be described in the following way. The tensor

product [𝐴]𝜆 ⊗ [𝐴]𝜇 = 𝑉𝜆 ⊗ 𝑉𝜇 decomposes into a direct sum of irreducible representations of
𝐺with𝑉𝜆+𝜇 appearingwithmultiplicity one. Then themultiplicationmap [𝐴]𝜆 ⊗ [𝐴]𝜇 → [𝐴]𝜆+𝜇
is the projection on 𝑉𝜆+𝜇 in the above decomposition. In particular, we have

[𝐴]∑𝑛𝑖𝜔𝑖 = [𝐴]𝑛1𝜔1 ⋅ ⋯ ⋅ [𝐴]𝑛𝑠𝜔𝑠 ,

where (𝑛1, … , 𝑛𝑠) ∈ ℕ𝑠 and𝜔1, … , 𝜔𝑠 are fundamental weights of𝐺. Therefore, the Cox ring𝐴 has
decomposable grading, and by Theorem 5.5, the volume function 𝐹𝐴 is a polynomial.
Finally, the global Newton–Okounkov body of 𝐴 has a nice description. By [20], there exists a

valuation 𝜈 on𝐴 such that for any dominant weight 𝜆, the Newton–Okounkov bodyΔ(𝐴(𝜆)) is the
string polytope 𝑆𝑡𝜆. Therefore, the global Newton–Okounkov body Δ(𝐴) is the weighted string
cone, which is, in particular, a polyhedral cone ([1, 26]).
Note that, in general, string polytopes 𝑆𝑡𝜆 provide only piecewise linear family of polytopes

on the positive Weyl chamber. So, a priory by Proposition 4.14, the function 𝐹𝐴 is only piece-
wise polynomial with respect to some fan decomposition of the positive Weyl chamber. However,
using virtual polytopes, one can construct a linear family of virtual string polytopes that makes the
polynomiality of 𝐹𝐴 evident. See [19, Section 10] for more details.

With Theorem 5.5 in hand, we are now able to define the mixed multiplicities of 𝐴.

Definition 5.7. Assume Setup 5.2 and let 𝐺𝐴(𝐧) be as in Theorem 5.5. Write

𝐺𝐴(𝐧) =
∑
|𝐝|=𝑞

1

𝐝!
𝑒(𝐝; 𝐴) 𝐧𝐝.
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For each 𝐝 = (𝑑1, … , 𝑑𝑠) ∈ ℕ𝑠 with |𝐝| = 𝑞, we define the nonnegative real number 𝑒(𝐝; 𝐴) ⩾ 0 to
be themixed multiplicity of type 𝐝 of 𝐴.

The next straightforward corollary shows that the mixed multiplicities 𝑒(𝐝; 𝐴) of 𝐴 can be
expressed as a limit that depends on themultiplicities 𝑒(𝐝; 𝐴[𝑝]) of the standardmultigraded alge-
bras 𝐴[𝑝]. It can be seen as an extension into a multigraded setting of the Fujita approximation
theorem for graded algebras given in [21, Theorem 2.35].

Corollary 5.8. Assume Setup 5.2. Then, the following equalities hold:

𝑒(𝐝; 𝐴) = lim
𝑝→∞

𝑒
(
𝐝;𝐴[𝑝]

)
𝑝𝑞

= sup
𝑝∈ℤ+

𝑒
(
𝐝;𝐴[𝑝]

)
𝑝𝑞

.

Proof. It follows directly from Equation 11. □

Finally, we provide a complete characterization for the positivity of the mixed multiplicities of
a multigraded algebra of almost integral type with decomposable grading. This result is a direct
consequence of Corollary 5.8 and the general criterion of [5].
Following the notation of [5], for an ℕ𝑠-graded algebra 𝑇 and for each subset𝔍 = {𝑗1, … , 𝑗𝑘} ⊆

{1, … , 𝑠} denote by 𝑇(𝔍) the ℕ𝑘-graded 𝕜-algebra given by

𝑇(𝔍) ∶=
⨁

𝑖1⩾0,…,𝑖𝑠⩾0
𝑖𝑗=0 if 𝑗∉𝔍

[𝑇](𝑖1,…,𝑖𝑠) ⊂ 𝑇.

We obtain a full characterization for the positivity of themixedmultiplicities 𝑒(𝐝, 𝐴) of𝐴 in terms
of the dimensions dim(𝐴(𝔍)).

Theorem 5.9. Assume Setup 5.2. Let 𝐝 = (𝑑1, … , 𝑑𝑠) ∈ ℕ𝑠 such that |𝐝| = 𝑞. Then, 𝑒(𝐝, 𝐴) > 0 if
and only if for each𝔍 = {𝑗1, … , 𝑗𝑘} ⊆ {1, … , 𝑠}, the inequality

𝑑𝑗1 +⋯ + 𝑑𝑗𝑘 ⩽ dim
(
𝐴(𝔍)

)
− 𝑘

holds.

Proof. For each 𝑝 ⩾ 1, [5, Theorem B] characterizes the positivity of the mixed multiplicities of
the standard ℕ𝑠-graded algebra 𝐴[𝑝], namely:

𝑒
(
𝐝;𝐴[𝑝]

)
> 0 ⟺ 𝑑𝑗1 +⋯ + 𝑑𝑗𝑘 ⩽ dim

((
𝐴[𝑝]

)
(𝔍)

)
− 𝑘 for each 𝔍 = {𝑗1, … , 𝑗𝑘} ⊆ {1, … , 𝑠}.

Since 𝐴 is an algebra with decomposable grading, by Theorem 2.5, we can choose 𝑝 big enough
such that

dim
(
𝐴(𝔍)

)
= dim

((
𝐴[𝑝]

)
(𝔍)

)
for all𝔍 = {𝑗1, … , 𝑗𝑘} ⊆ {1, … , 𝑠}. Therefore, the result follows from Corollary 5.8. □
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6 APPLICATION TO GRADED FAMILIES OF IDEALS

In this section, we apply the results of Section 5 to the case of graded families of ideals and we
recover some results from [7, 8, 11]. We also obtain a characterization for the positivity of mixed
multiplicities of certain graded families of ideals. First, we recall the notion of mixed multiplic-
ities introduced by Bhattacharya in [2] for the case of ideals, and extended for (not necessarily
Noetherian) graded families of ideals in [8].
Let 𝕜 be a field and 𝑅 be a finitely generated positively graded 𝕜-domain. We denote the

graded irrelevant ideal of 𝑅 by𝔪 = [𝑅]+ =
⨁∞
𝑛=1[𝑅]𝑛 ⊂ 𝑅. Assume that 𝑅 has positive dimension

𝑑 = dim(𝑅) > 0.

Remark 6.1. Let 𝐼, 𝐽1, … , 𝐽𝑠 be nonzero homogeneous ideals in 𝑅 such that 𝐼 is𝔪-primary. Then,
for 𝑛0 ≫ 0 and𝐧 = (𝑛1, … , 𝑛𝑠) ≫ 𝟎, the Bhattacharya function dim𝕜(𝐼𝑛0𝐽

𝑛1
1

⋯ 𝐽𝑛𝑠𝑠 ∕𝐼
𝑛0+1𝐽

𝑛1
1

⋯ 𝐽𝑛𝑠𝑠 )
coincides with a polynomial of total degree 𝑑 − 1 whose homogeneous term in degree 𝑑 − 1 can
be written as

𝐵(𝐼;𝐽1,…,𝐽𝑠)(𝑛0, 𝑛1, … , 𝑛𝑠) ∶=
∑

(𝑑0,𝐝)=(𝑑0,𝑑1,…,𝑑𝑠)∈ℕ
𝑠

𝑑0+|𝐝|=𝑑−1
𝑒(𝑑0,𝐝)(𝐼 ∣ 𝐽1, … , 𝐽𝑠)

𝑑0!𝑑1!⋯𝑑𝑠!
𝑛
𝑑0
0
𝑛
𝑑1
1

⋯ , 𝑛𝑑𝑠𝑠 .

Using standard techniques (see [7, proof of Lemma 4.2]), one may show that for each 𝑛0 ∈ ℕ and
𝐧 = (𝑛1, … , 𝑛𝑠) ∈ ℕ

𝑠, the limit

lim
𝑛→∞

dim𝕜
(
𝐽
𝑛𝑛1
1

⋯ 𝐽𝑛𝑛𝑠𝑠 ∕𝐼
𝑛𝑛0𝐽

𝑛𝑛1
1

⋯ 𝐽𝑛𝑛𝑠𝑠
)

𝑛𝑑

exists and coincides with the following polynomial:

𝐺(𝐼;𝐽1,…,𝐽𝑠)(𝑛0, 𝑛1, … , 𝑛𝑠) ∶=
∑

(𝑑0,𝐝)∈ℕ
𝑠+1,𝑑0+|𝐝|=𝑑−1

𝑒(𝑑0,𝐝)(𝐼 ∣ 𝐽1, … , 𝐽𝑠)

(𝑑0 + 1)!𝑑1!⋯𝑑𝑠!
𝑛
𝑑0+1

0
𝑛
𝑑1
1

⋯𝑛𝑑𝑠𝑠 .

The numbers 𝑒(𝑑0,𝐝)(𝐼 ∣ 𝐽1, … , 𝐽𝑠) are nonnegative integers called the mixed multiplicities of
𝐽1, … , 𝐽𝑠 with respect to 𝐼.

A sequence of ideals 𝕀 = {𝐼𝑛}𝑛∈ℕ is a graded family if 𝐼0 = 𝑅 and 𝐼𝑖𝐼𝑗 ⊆ 𝐼𝑖+𝑗 for every 𝑖, 𝑗 ∈ ℕ.
The graded family is Noetherian if the corresponding Rees algebra 𝑅[𝕀𝑡] =

⨁
𝑛∈ℕ 𝐼𝑛𝑡

𝑛 ⊆ 𝑅[𝑡] is
Noetherian. The graded family is 𝔪-primary when each 𝐼𝑛 is 𝔪-primary, and it is a filtration
when 𝐼𝑛+1 ⊆ 𝐼𝑛 for every𝑛 ∈ ℕ. For a homogeneous ideal 𝐽 ⊂ 𝑅, we denotemaxdeg(𝐽) ∶= max{𝑗 ∣
[𝐽 ⊗𝑅 𝑅∕𝔪]𝑗 ≠ 0}, that is, the maximum degree of a minimal set of homogeneous generators
of 𝐽.
Throughout this section, we assume the following setup.

Setup 6.2. Let 𝕜 be a field and𝑅 be a finitely generated positively graded 𝕜-domain. Let 𝕀 = {𝐼𝑛}𝑛∈ℕ
be a (not necessarily Noetherian) graded family of 𝔪-primary homogeneous ideals in 𝑅. Let
𝕁(1) = {𝐽(1)𝑛}𝑛∈ℕ,…, 𝕁(𝑠) = {𝐽(𝑠)𝑛}𝑛∈ℕ be (not necessarily Noetherian) graded families of nonzero
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homogeneous ideals in 𝑅. We assume that there exists 𝛽 ∈ ℕ satisfying

maxdeg(𝐽(𝑖)𝑛) ⩽ 𝛽𝑛 for all 1 ⩽ 𝑖 ⩽ 𝑠 and 𝑛 ∈ ℕ. (12)

Remark 6.3. The condition Equation (12) is automatically satisfied in the case of 𝔪-primary
graded families of ideals. Similar assumptions to the one in Equation (12) have been considered
in previous works regarding limits of graded families of ideals [10, Theorem 6.1], [7, 8].

To extend the discussions of Remark 6.1, we need to study the following function:

𝐹(𝕀;𝕁(1),…,𝕁(𝑠))(𝑛0, 𝐧) ∶= lim
𝑛→∞

dim𝕜

(
𝐽(1)𝑛𝑛1 ⋯ 𝐽(𝑠)𝑛𝑛𝑠∕𝐼𝑛𝑛0𝐽(1)𝑛𝑛1 ⋯ 𝐽(𝑠)𝑛𝑛𝑠

)
𝑛𝑑

(13)

for all 𝑛0 ∈ ℕ+ and 𝐧 = (𝑛1, … , 𝑛𝑠) ∈ ℕ𝑠+. For a vector 𝐧 = (𝑛1, … , 𝑛𝑠) ∈ ℕ
𝑠, we abbreviate 𝐉𝐧 =

𝐽(1)𝑛1 ⋯ 𝐽(𝑠)𝑛𝑠 . By [7, Lemma 3.9], there exists 𝑐 > 𝛽 such that

𝔪𝑐(𝑛0+|𝐧|) ∩ 𝐉𝐧 = 𝔪𝑐(𝑛0+|𝐧|) ∩ 𝐼𝑛0𝐉𝐧
for all 𝑛0 ∈ ℕ and 𝐧 = (𝑛1, … , 𝑛𝑠) ∈ ℕ𝑠. Then, we have the equality

𝐹(𝕀;𝕁(1),…,𝕁(𝑠))(𝑛0, 𝐧) ∶= lim𝑛→∞
dim𝕜

(
𝐉𝑛𝐧∕

(
𝔪𝑐𝑛(𝑛0+|𝐧|)+1 ∩ 𝐉𝑛𝐧))/𝑛𝑑

− lim
𝑛→∞

dim𝕜

(
𝐼𝑛𝑛0𝐉𝑛𝐧∕

(
𝔪𝑐𝑛(𝑛0+|𝐧|)+1 ∩ 𝐼𝑛𝑛0𝐉𝑛𝐧

))/
𝑛𝑑

(14)

for all 𝑛0 ∈ ℕ and 𝐧 = (𝑛1, … , 𝑛𝑠) ∈ ℕ𝑠. We consider the multi-Rees algebras

(𝕀, 𝕁(1), … , 𝕁(𝑠)) ∶=
⨁

𝑛0∈ℕ,𝐧∈ℕ
𝑠

𝐼𝑛0𝐉𝐧𝑡
𝑛0
0
𝐭𝐧 and (ℜ, 𝕁(1), … , 𝕁(𝑠)) ∶=

⨁
𝑛0∈ℕ,𝐧∈ℕ

𝑠

𝐉𝐧𝑡
𝑛0
0
𝐭𝐧,

where 𝐭𝐧 = 𝑡𝑛1
1

⋯ 𝑡𝑛𝑠𝑠 and ℜ is the trivial filtration of identity ideals, that is, ℜ = {ℜ𝑛}𝑛∈ℕ with
ℜ𝑛 = 𝑅. We have the corresponding ℕ𝑠+1-graded subalgebras

𝐴 ∶=
⨁

𝑛0∈ℕ,𝐧∈ℕ
𝑠

⎛⎜⎜⎝
𝑐(𝑛0+|𝐧|)⨁
𝑘=0

[
𝐼𝑛0𝐉𝐧

]
𝑘

⎞⎟⎟⎠𝑡𝑛00 𝐭𝐧 ⊂ (𝕀, 𝕁(1), … , 𝕁(𝑠))

and

𝐵 ∶=
⨁

𝑛0∈ℕ,𝐧∈ℕ
𝑠

⎛⎜⎜⎝
𝑐(𝑛0+|𝐧|)⨁
𝑘=0

[𝐉𝐧]𝑘

⎞⎟⎟⎠𝑡𝑛00 𝐭𝐧 ⊂ (ℜ, 𝕁(1), … , 𝕁(𝑠)).

Notice that both 𝐴 and 𝐵 are of almost integral type and have decomposable gradings. Since
dim(𝐴) = dim(𝐵) = 𝑑 + 𝑠 + 1, we can rewrite Equation (14) in terms of the volume functions of
𝐴 and 𝐵 (see Equation 9), that is

𝐹(𝕀;𝕁(1),…,𝕁(𝑠))(𝑛0, 𝐧) = 𝐹𝐵(𝑛0, 𝐧) − 𝐹𝐴(𝑛0, 𝐧). (15)
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Therefore, as a simple consequence of Theorem 5.5, we obtain the following result, which extends
Remark 6.1 and allows us to define mixed multiplicities for graded families of ideals.

Theorem 6.4. Assume Setup 6.2. Then, there exists a homogeneous polynomial
𝐺(𝕀;𝕁(1),…,𝕁(𝑠))(𝑛0, 𝐧) ∈ ℝ[𝑛0, 𝑛1, … , 𝑛𝑠] of degree 𝑑 with nonnegative real coefficients such that

𝐹(𝕀;𝕁(1),…,𝕁(𝑠))(𝑛0, 𝐧) = 𝐺(𝕀;𝕁(1),…,𝕁(𝑠))(𝑛0, 𝐧) for all 𝑛0 ∈ ℤ+, 𝐧 ∈ ℤ
𝑠
+,

where 𝐹(𝕀;𝕁(1),…,𝕁(𝑠))(𝑛0, 𝐧) is the function in Equation (13). Additionally, we have

𝐺(𝕀;𝕁(1),…,𝕁(𝑠))(𝑛0, 𝐧) = lim
𝑝→∞

𝐺(𝐼𝑝;𝐽(1)𝑝,…,𝐽(𝑠)𝑝)(𝑛0, 𝐧)

𝑝𝑑
for all 𝑛0 ∈ ℤ+, 𝐧 ∈ ℤ

𝑠
+,

where 𝐺(𝐼𝑝;𝐽(1)𝑝,…,𝐽(𝑠)𝑝)(𝑛0, 𝐧) is the corresponding polynomial of the ideals 𝐼𝑝, 𝐽(1)𝑝, … , 𝐽(𝑠)𝑝 (as in
Remark 6.1).

Proof. By using the equality Equation (15), the result follows by applying Theorem 5.5 to the ℕ𝑠+1-
graded algebras of almost integral type 𝐴 and 𝐵 that have decomposable grading. □

As a consequence of Theorem 6.4, we have the following definition.

Definition 6.5. Assume Setup 6.2 and let 𝐺(𝕀;𝕁(1),…,𝕁(𝑠))(𝑛0, 𝐧) be as in Theorem 6.4. Write

𝐺(𝕀;𝕁(1),…,𝕁(𝑠))(𝑛0, 𝐧) =
∑

(𝑑0,𝐝)∈ℕ
𝑠+1,𝑑0+|𝐝|=𝑑−1

𝑒(𝑑0,𝐝)(𝕀 ∣ 𝕁(1), … , 𝕁(𝑠))

(𝑑0 + 1)!𝑑1!⋯𝑑𝑠!
𝑛
𝑑0+1

0
𝐧𝐝.

The numbers 𝑒(𝑑0,𝐝)(𝕀 ∣ 𝕁(1), … , 𝕁(𝑠)) are nonnegative integers called the mixed multiplicities of
𝕁(1), … , 𝕁(𝑠) with respect to 𝕀.

The following result recovers the “Volume=Multiplicity formula” for the mixed multiplicities
of graded families of ideals (see [7, 8]).

Corollary 6.6. Assume Setup 6.2. Then, the following equalities hold:

𝑒(𝑑0,𝐝)(𝕀 ∣ 𝕁(1), … , 𝕁(𝑠)) = lim
𝑝→∞

𝑒(𝑑0,𝐝)(𝐼𝑝 ∣ 𝐽(1)𝑝, … , 𝐽(𝑠)𝑝)

𝑝𝑑
.

Proof. It follows from Theorem 6.4 and Remark 6.1. □

6.1 Positivity for graded families of equally generated ideals

Here, we restrict to the following graded families of ideals and we provide a criterion for the
positivity of their mixed multiplicities.
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Setup 6.7. Assume Setup 6.2. Let 𝕄 be the filtration 𝕄 ∶= {𝔪𝑛}𝑛∈ℕ. For each 1 ⩽ 𝑖 ⩽ 𝑠, assume
that there is an integer ℎ𝑖 ⩾ 1 such that the ideal 𝐽(𝑖)𝑛 is generated in degree 𝑛ℎ𝑖 for all 𝑛 ∈ ℕ,
that is,

𝐽(𝑖)𝑛 =
(
[𝐽(𝑖)𝑛]𝑛ℎ𝑖

)
for all 𝑛 ∈ ℕ.

Our focus is on characterizing the positivity of themixedmultiplicities 𝑒(𝑑0,𝐝)(𝕄 ∣ 𝕁(1), … , 𝕁(𝑠)).
We define the following ℕ𝑠+1-graded 𝕜-algebra

𝑇 ∶=
⨁

𝑛0,…,𝑛𝑠∈ℕ

𝔪𝑛0𝐽(1)𝑛1 ⋯ 𝐽(𝑠)𝑛𝑠

/
𝔪𝑛0+1𝐽(1)𝑛1 ⋯ 𝐽(𝑠)𝑛𝑠 . (16)

Since each ideal 𝐽(𝑖)𝑛𝑖 is generated in degree𝑛𝑖ℎ𝑖 , byNakayama’s lemma,we get the isomorphism

𝑇 ≅
⨁

𝑛0,…,𝑛𝑠∈ℕ

[𝔪𝑛0]𝑛0

[
𝐽(1)𝑛1

]
𝑛1ℎ1

⋯
[
𝐽(𝑠)𝑛𝑠

]
𝑛𝑠ℎ𝑠

⊂ (𝕄, 𝕁(1), … , 𝕁(𝑠)).

As a consequence, we obtain that 𝑇 is a 𝕜-domain of almost integral type with decom-
posable grading, and so, by Theorem 5.5 and Definition 5.7, we can consider its mixed
multiplicities 𝑒(𝑑0, 𝐝; 𝑇) for 𝑑0 ∈ ℕ, 𝐝 ∈ ℕ𝑠. We have that dim(𝑇) = dim(𝑅) + 𝑠. The following
proposition shows that the mixed multiplicities of 𝑇 coincide with the mixed multiplicities 𝑒(𝑑0,𝐝)
(𝕄 ∣ 𝕁(1), … , 𝕁(𝑠)).

Proposition 6.8. For each 𝑑0 ∈ ℕ, 𝐝 ∈ ℕ𝑠 with 𝑑0 + |𝐝| = 𝑑 − 1, we have the equality
𝑒(𝑑0,𝐝)(𝕄 ∣ 𝕁(1), … , 𝕁(𝑠)) = 𝑒(𝑑0, 𝐝; 𝑇).

Proof. For each 𝑝 ⩾ 1, we define the following standard ℕ𝑠+1-graded algebra

𝐶𝑝 =
⨁

𝑛0,𝑛1,…,𝑛𝑠∈ℕ
𝑠+1

[
𝕜
[
[𝑇]𝐞0 , [𝑇]𝑝𝐞1 , … , [𝑇]𝑝𝐞𝑠

]]
(𝑛0,𝑛1𝑝,…,𝑛𝑠𝑝)

(i.e., the regrading of the algebra generated by the graded parts [𝑇]𝐞0 , [𝑇]𝑝𝐞1 , … , [𝑇]𝑝𝐞𝑠 ). Notice that
the polynomial 𝐺𝐶𝑝 of 𝐶𝑝 (see Remark 4.1) equals the polynomial 𝐵(𝔪;𝐽(1)𝑝,…,𝐽(𝑠)𝑝) corresponding
to the ideals𝔪 and 𝐽(1)𝑝, … , 𝐽(𝑠)𝑝 (see Remark 6.1), that is,

𝐺𝐶𝑝(𝑛0, 𝐧) = 𝐵(𝔪;𝐽(1)𝑝,…,𝐽(𝑠)𝑝)(𝑛0, 𝐧).

Hence, 𝑒(𝑑0, 𝐝; 𝐶𝑝) = 𝑒(𝑑0,𝐝)(𝔪 ∣ 𝐽(1)𝑝, … , 𝐽(𝑠)𝑝).
Since the following polynomials are equal:

𝐺𝐶𝑝(𝑝𝑛0, 𝐧) = 𝐺𝑇[𝑝] (𝑛0, 𝐧),

by comparing the coefficients, we obtain 𝑒(𝑑0, 𝐝; 𝑇[𝑝]) = 𝑝𝑑0𝑒(𝑑0, 𝐝; 𝐶𝑝) (recall that 𝑇[𝑝] denotes
the regrading of the algebra generated by the graded parts [𝑇]𝑝𝐞0 , [𝑇]𝑝𝐞1 , … , [𝑇]𝑝𝐞𝑠 ). Similarly, we
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32 of 38 CID-RUIZ et al.

have the equality of polynomials

𝐺(𝔪;𝐽(1)𝑝,…,𝐽(𝑠)𝑝)(𝑝𝑛0, 𝐧) = 𝐺(𝔪𝑝;𝐽(1)𝑝,…,𝐽(𝑠)𝑝)(𝑛0, 𝐧) (see Remark 6.1),

which implies 𝑒(𝑑0,𝐝)(𝔪
𝑝 ∣ 𝐽(1)𝑝, … , 𝐽(𝑠)𝑝) = 𝑝

𝑑0+1𝑒(𝑑0,𝐝)(𝔪 ∣ 𝐽(1)𝑝, … , 𝐽(𝑠)𝑝).
By combining the above equalities with Corollary 5.8 and Corollary 6.6, we get

𝑒(𝑑0,𝐝)(𝕄 ∣ 𝕁(1), … , 𝕁(𝑠)) = lim
𝑝→∞

𝑒(𝑑0,𝐝)(𝔪
𝑝 ∣ 𝐽(1)𝑝, … , 𝐽(𝑠)𝑝)

𝑝𝑑

= lim
𝑝→∞

𝑒(𝑑0,𝐝)(𝔪 ∣ 𝐽(1)𝑝, … , 𝐽(𝑠)𝑝)

𝑝𝑑−1−𝑑0

= lim
𝑝→∞

𝑒(𝑑0, 𝐝; 𝐶
𝑝)

𝑝𝑑−1−𝑑0

= lim
𝑝→∞

𝑒
(
𝑑0, 𝐝; 𝑇[𝑝]

)
𝑝𝑑−1

= 𝑒(𝑑0, 𝐝; 𝑇).

Therefore, the result follows. □

The analytic spread of an ideal 𝐼 ⊂ 𝑅 is given by 𝓁(𝐼) ∶= dim((𝐼)∕𝔪(𝐼)), where (𝐼)

denotes the Rees algebra of 𝐼. When the ideal 𝐼 = (𝑓1, … , 𝑓𝑒) ⊂ 𝑅 is generated by homoge-
neous elements of the same degree, one has that (𝐼)∕𝔪(𝐼) ≅ 𝕜[𝑓1, … , 𝑓𝑒] and so 𝓁(𝐼) =
dim(𝕜[𝑓1, … , 𝑓𝑒]). The following positivity criterion extends the result of [5, Theorem 4.4]. It
characterizes the positivity of the mixed multiplicities 𝑒(𝑑0,𝐝)(𝕄 ∣ 𝕁(1), … , 𝕁(𝑠)).

Theorem 6.9. Assume Setup 6.7. Let 𝑑0 ∈ ℕ, 𝐝 ∈ ℕ𝑠 such that 𝑑0 + |𝐝| = 𝑑 − 1. Then,
𝑒(𝑑0,𝐝)(𝕄 ∣ 𝕁(1), … , 𝕁(𝑠)) > 0

if and only if for all 𝑝 ≫ 0 and𝔍 = {𝑗1, … , 𝑗𝑘} ⊆ {1, … , 𝑠} the inequality

𝑑𝑗1 +⋯ + 𝑑𝑗𝑘 ⩽ 𝓁
(
𝐽(𝑗1)𝑝⋯ 𝐽(𝑗𝑘)𝑝

)
− 1

holds.

Proof. Byusing Proposition 6.8 andCorollary 5.8, to show 𝑒(𝑑0,𝐝)(𝕄 ∣ 𝕁(1), … , 𝕁(𝑠)) > 0, it is enough
to show that for 𝑝 ≫ 0, one has

𝑒(𝑑0,𝐝)
(
𝔪 ∣ 𝐽(𝑗1)𝑝, … , 𝐽(𝑗𝑘)𝑝

)
= 𝑒

(
𝑑0, 𝐝; 𝑇[𝑝]

)
> 0.

For any 𝑝 > 0, [5, Theorem 4.4] implies that the inequality 𝑒(𝑑0,𝐝)(𝔪 ∣ 𝐽(𝑗1)𝑝, … , 𝐽(𝑗𝑘)𝑝) > 0
is equivalent to the condition of having 𝑑𝑗1 +⋯ + 𝑑𝑗𝑘 ⩽ 𝓁(𝐽(𝑗1)𝑝⋯ 𝐽(𝑗𝑘)𝑝) − 1 for all 𝔍 =
{𝑗1, … , 𝑗𝑘} ⊆ {1, … , 𝑠}. So, the result follows. □
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6.2 Positivity for mixed volumes of convex bodies

In this subsection, by exploiting the known close relation betweenmixedmultiplicities andmixed
volumes (see [7, 33]), we provide a positivity criteria for mixed volumes. Following the notation
of [7], we use the setup below.

Setup 6.10. Let 𝐊 = (𝐾1, … , 𝐾𝑠) be a sequence of convex bodies in ℝ𝑑
⩾0
. Let 𝕜 be a

field, 𝑅 be the polynomial ring 𝑅 = 𝕜[𝑥1, … , 𝑥𝑑+1], and 𝔪 = (𝑥1, … , 𝑥𝑑+1). Let 𝜋1 ∶ ℝ𝑑+1 →
ℝ𝑑, (𝛼1, … , 𝛼𝑑, 𝛼𝑑+1) ↦ (𝛼1, … , 𝛼𝑑) be the projection into the first 𝑑 factors. Let𝜋 ∶ ℝ𝑑+1 → ℝ the
linear map 𝜋 ∶ ℝ𝑑+1 → ℝ, (𝛼1, … , 𝛼𝑑, 𝛼𝑑+1) ↦ 𝛼1 +⋯ + 𝛼𝑑 + 𝛼𝑑+1. For 1 ⩽ 𝑖 ⩽ 𝑠, choose ℎ𝑖 ∈ ℕ
a positive integer such that 𝐾𝑖 ⊂ 𝜋1(𝜋−1(ℎ𝑖) ∩ ℝ𝑑+1⩾0

). The corresponding homogenization of 𝐾𝑖
(with respect to ℎ𝑖) is defined as the convex body

𝐾𝑖 ∶= (𝐾𝑖 × ℝ) ∩ 𝜋
−1(ℎ𝑖) ⊂ ℝ

𝑑+1
⩾0
.

Let 𝐶𝐾𝑖 be the corresponding cone 𝐶𝐾𝑖 ∶= Cone(𝐾𝑖). Consider the semigroup 𝑆𝐾𝑖 ⊂ ℕ
𝑑+1 given

by

𝑆𝐾𝑖 ∶= 𝐶𝐾𝑖 ∩ ℕ
𝑑+1 ∩

(
∞⋃
𝑘=1

𝜋−1(𝑘ℎ𝑖)

)
.

We consider the (not necessarily Noetherian) graded family of monomial ideals

𝕁(𝑖) ∶= {𝐽(𝑖)𝑛}𝑛∈ℕ, where 𝐽(𝑖)𝑛 ∶=
(
𝐱𝐦 ∣ 𝐦 ∈ 𝑆𝐾𝑖 and |𝐦| = 𝑛ℎ𝑖) ⊂ 𝑅.

Let𝕄 be the filtration𝕄 ∶= {𝔪𝑛}𝑛∈ℕ.

As a direct consequence of our previous developments, we recover a classical criterion for the
positivity of mixed volumes (see [31, Theorem 5.1.8]).

Theorem 6.11. Assume Setup 6.10. Let 𝐝 ∈ ℕ𝑠 such that |𝐝| = 𝑑. Then, MV𝑑(𝐊𝐝) > 0 if and only
if for each𝔍 = {𝑗1, … , 𝑗𝑘} ⊆ {1, … , 𝑠} the inequality

𝑑𝑗1 +⋯ + 𝑑𝑗𝑘 ⩽ dimℝ

(
𝑘∑
𝑖=1

𝐾𝑗𝑖

)

holds.

Proof. From [7, Theorem 5.4], we have that MV𝑑(𝐊𝐝) = 𝑒(0,𝐝)(𝕄 ∣ 𝕁(1), … , 𝕁(𝑠)). Hence, Theo-
rem 6.9 implies that MV𝑑(𝐊𝐝) > 0 if and only if for all 𝑝 ≫ 0 and 𝔍 = {𝑗1, … , 𝑗𝑘} ⊆ {1, … , 𝑠}, the
inequality

𝑑𝑗1 +⋯ + 𝑑𝑗𝑘 ⩽ 𝓁
(
𝐽(𝑗1)𝑝⋯ 𝐽(𝑗𝑘)𝑝

)
− 1
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34 of 38 CID-RUIZ et al.

holds. For each ideal 𝐽(𝑗1)𝑝⋯ 𝐽(𝑗𝑘)𝑝, there corresponds the convex body

𝐾
(
𝐽(𝑗1)𝑝⋯ 𝐽(𝑗𝑘)𝑝

)
∶= 𝜋1

(
conv

{
𝐦 ∈ ℕ𝑑+1 ∣ 𝐱𝐦 ∈

[
𝐽(𝑗1)𝑝⋯ 𝐽(𝑗𝑘)𝑝

]
𝑝ℎ𝑗1+⋯+𝑝ℎ𝑗𝑘

})
⊂ ℝ𝑑

⩾0.

Notice that 𝓁(𝐽(𝑗1)𝑝⋯ 𝐽(𝑗𝑘)𝑝) − 1 = dimℝ(𝐾(𝐽(𝑗1)𝑝⋯ 𝐽(𝑗𝑘)𝑝)). For 𝑝 ≫ 0, one obtains the
equality dimℝ(𝐾(𝐽(𝑗1)𝑝⋯ 𝐽(𝑗𝑘)𝑝)) = dimℝ(

∑𝑘
𝑖=1 𝐾𝑗𝑖 ), as the convex bodies 𝐾(𝐽(𝑗1)𝑝⋯ 𝐽(𝑗𝑘)𝑝)

approximate the Minkowski sum
∑𝑘
𝑖=1 𝐾𝑗𝑖 . Therefore, the proof of the theorem is complete. □

7 MULTIGRADED LINEAR SERIES

In this section, we apply our main results from the previous sections to the case of multigraded
linear series. Here, we extend the results of [25] on the multigraded linear series. Our main
improvement is the fact that we deal with valuations with leaves of bounded dimension instead
of restricting to valuations with only one-dimensional leaves. Furthermore, with the family of
multigraded linear series with decomposable grading, we provide an interesting family for which
the volume function is a polynomial.
Following the notation of [17], we say that 𝑋 is a variety over a field 𝕜 if 𝑋 is a reduced and

irreducible separated scheme of finite type over 𝕜.
Throughout this section, the following setup is used.

Setup 7.1. Let 𝕜 be a field and 𝑋 be a proper variety over 𝕜. Let𝐷1,… , 𝐷𝑠 be a sequence of Cartier
divisors on 𝑋.

We consider the section ring of the divisors 𝐷1,… , 𝐷𝑠, which given by

(𝐷1, … , 𝐷𝑠) ∶=
⨁

(𝑛1,…,𝑛𝑠)∈ℕ
𝑠

H0(𝑋,(𝑛1𝐷1 +⋯ + 𝑛𝑠𝐷𝑠)).

Notice that (𝐷1, … , 𝐷𝑠) is by construction an ℕ𝑠-graded 𝕜-algebra. To simplify notation, for any
𝐧 = (𝑛1, … , 𝑛𝑠) ∈ ℕ

𝑠, we denote the divisor 𝑛1𝐷1 +⋯ + 𝑛𝑠𝐷𝑠 by

𝐧𝐷 ∶= 𝑛1𝐷1 +⋯ + 𝑛𝑠𝐷𝑠.

The following basic result shows that the section ring of𝐷1,… , 𝐷𝑠 is anℕ𝑠-graded algebra of almost
integral type (in the sense of Definition 4.2). For the single graded case, see [21, Theorem 3.7].

Proposition 7.2. (𝐷1, … , 𝐷𝑠) is an ℕ𝑠-graded algebra of almost integral type.

Proof. First, by Chow’s lemma (see, e.g. [15, Theorem 13.100] or [17, Exercise II.4.10]), there exists
a proper birational morphism 𝜋 ∶ 𝑋′ → 𝑋 where 𝑋′ is a normal projective variety over 𝕜. Since
for all𝐧 ∈ ℕ𝑠, we haveH0(𝑋,(𝐧𝐷)) ↪ H0(𝑋′, 𝜋∗(𝐧𝐷)), it suffices to assume that𝑋 is a normal
projective variety over 𝕜, and we do so.
We can find a very ample divisor 𝐻 on 𝑋 such that 𝐷𝑖 ⩽ 𝐻, and so, (𝐧𝐷) ⊆ (|𝐧|𝐻) for all

𝐧 ∈ ℕ𝑠 (see, e.g., [24, Example 1.2.10] and [21, Theorem 3.9]). From the fact that the section ring
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(𝐻) =
⨁∞
𝑛=0H

0(𝑋,(𝑛𝐻)) is of integral type (see [17, Exercise II.5.14]), we obtain that
(𝐷1, … , 𝐷𝑠) is an ℕ𝑠-graded algebra of almost integral type. □

Here, we study multigraded linear series as defined below.

Definition 7.3. A multigraded linear series associated to the divisors 𝐷1,… , 𝐷𝑠 is an ℕ𝑠-graded
𝕜-subalgebra𝑊 of the section ring (𝐷1, … , 𝐷𝑠).

Let 𝑊 ⊆ (𝐷1, … , 𝐷𝑠) be a multigraded linear series and suppose that [𝑊]𝐞𝑖 ≠ 0 for all 1 ⩽
𝑖 ⩽ 𝑠. By Proposition 7.2, it follows that 𝑊 is an ℕ𝑠-graded algebra of almost integral type. The
Kodaira–Itaka dimension of𝑊 is denoted and given by

𝜅(𝑊) ∶= dim(𝑊) − 𝑠,

where as before dim(𝑊) denotes the Krull dimension of the ℕ𝑠-graded algebra𝑊 of almost inte-
gral type. This value was the correct asymptotic for the volume function of an ℕ𝑠-graded algebra
of almost integral type (see Equation 9). Additionally, notice that this agrees with the definition
used in [10, Section 7] for the case of singly graded linear series. Following Definition 4.5, letΔ(𝑊)
be the global Newton–Okounkov body of𝑊. As in Definition 4.10, consider the integers ind(𝑊)
and 𝓁𝑊 .
Our main result regarding multigraded linear series is the theorem below, and it follows rather

easily from our previous developments.

Theorem 7.4. Assume Setup 7.1. Let𝑊 ⊂ (𝐷1, … , 𝐷𝑠) be a multigraded linear series and suppose
that [𝑊]𝐞𝑖 ≠ 0 for all 1 ⩽ 𝑖 ⩽ 𝑠. Then, the following statements hold.

(i) The volume function

𝐹𝑊(𝐧) ∶= lim
𝑛→∞

dim𝕜 ([𝑊]𝑛𝐧)

𝑛𝜅(𝑊)

of𝑊 is well defined for all 𝐧 ∈ ℤ𝑠+.
(ii) There exists a unique continuous function that is homogeneous of degree 𝜅(𝑊) and log-concave

and that extends the volume function𝐹𝑊(𝐧) of part (i) to the positive orthantℝ𝑠⩾0. This function
is given by

𝐹𝑊 ∶ ℝ
𝑠
⩾0 → ℝ, 𝑥 ↦ 𝓁𝑊 ⋅

Vol𝜅(𝑊)(Δ(𝑊)𝑥)

ind(𝑊)
.

(iii) If 𝑊 has a decomposable grading, then there exists a homogeneous polynomial 𝐺𝑊(𝐧) ∈
ℝ[𝑛1, … , 𝑛𝑠] of degree 𝜅(𝑊) with nonnegative real coefficients such that

𝐹𝑊(𝐧) = 𝐺𝑊(𝐧)

for all 𝐧 ∈ ℤ𝑠+.
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Proof.

(i) The function is obtained as in Equation (9).
(ii) It follows from Corollary 4.11.
(iii) It follows from Theorem 5.5. □

For a closed subscheme 𝑌 ⊂ ℙ𝑚1
𝕜
×𝕜⋯ ×𝕜 ℙ

𝑚𝑠
𝕜

of a multiprojective space over 𝕜, we can con-
sider themultidegrees of𝑌. These fundamental invariants go back to the work of van derWaerden
[34]. If 𝑆 is a standard ℕ𝑠-graded algebra that coincides with the multihomogeneous coordinate
ring of 𝑌, then for each 𝐝 ∈ ℕ𝑠 with |𝐝| = dim(𝑌), one way of defining the multidegree of 𝑌 of
type 𝐝 is by setting

deg(𝐝; 𝑌) ∶= 𝑒(𝐝; 𝑆).

The following theorem is an extension of [21, Theorem 3.3] to a multigraded setting. It expresses
the mixed multiplicities of a multigraded linear series with decomposable grading in terms of the
multidegrees of the image of the corresponding Kodaira rational maps.

Theorem 7.5. Assume Setup 7.1. Let 𝑊 ⊂ (𝐷1, … , 𝐷𝑠) be a multigraded linear series with
decomposable grading and suppose that [𝑊]𝐞𝑖 ≠ 0 for all 1 ⩽ 𝑖 ⩽ 𝑠. For each 𝑝 ⩾ 1, consider the
corresponding Kodaira rational map

Π[𝑊](𝑝,…,𝑝) ∶ 𝑋 ⤏ ℙ
dim𝕜([𝑊]𝑝𝐞1 )−1

𝕜
×𝕜⋯ ×𝕜 ℙ

dim𝕜([𝑊]𝑝𝐞𝑠 )−1

𝕜
.

Let𝑌[𝑊](𝑝,…,𝑝) be the closure of the image ofΠ[𝑊](𝑝,…,𝑝) . Then, for each 𝐝 = (𝑑1, … , 𝑑𝑠) ∈ ℕ
𝑠 with |𝐝| =

𝜅(𝑊), we have the following equalities:

𝑒(𝐝;𝑊) = lim
𝑝→∞

deg
(
𝐝; 𝑌[𝑊](𝑝,…,𝑝)

)
𝑝𝜅(𝑊)

= sup
𝑝∈ℤ+

deg
(
𝐝; 𝑌[𝑊](𝑝,…,𝑝)

)
𝑝𝜅(𝑊)

.

Proof. The result follows by applying Corollary 5.8 to the multigraded linear series𝑊 that has a
decomposable grading. □

Finally, below we have an example where the section ring has a decomposable grading.

Example 7.6. Let𝐶 be a smooth projective algebraic curve of genus g over an algebraically closed
field 𝕜. Let 𝐷1,… , 𝐷𝑠 be divisors on 𝐶 with deg(𝐷𝑖) ⩾ 2g + 1. Then, by [28, Theorem 6], the tensor
product map

H0(𝑋,(𝑛1𝐷1)) ⊗⋯⊗H0(𝑋,(𝑛𝑠𝐷𝑠)) → H0(𝑋,(𝑛1𝐷1 +⋯ + 𝑛𝑠𝐷𝑠))

is surjective. Hence, the multigraded linear series𝑊 = (𝐷1, … , 𝐷𝑠) has a decomposable grading
and by part (iii) of Theorem 7.4, the function 𝐹𝑊 is a homogeneous polynomial of degree 𝜅(𝑊).
Finally, we would like to remark that the conditions on 𝐶 and 𝐷1,… , 𝐷𝑠 can be relaxed slightly

by considering generalizations of Mumford’s theorem, see [4, 13, 16] for details.
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