
Glob Change Biol. 2023;30:e17078.	 ﻿	   | 1 of 13
https://doi.org/10.1111/gcb.17078

wileyonlinelibrary.com/journal/gcb

Received: 26 September 2023 | Revised: 9 November 2023 | Accepted: 12 November 2023
DOI: 10.1111/gcb.17078  

T E C H N I C A L  A D V A N C E

Deep learning to extract the meteorological by-catch of wildlife 
cameras

Jamie Alison1  |   Stephanie Payne2  |   Jake M. Alexander3  |   Anne D. Bjorkman4,5  |   
Vincent Ralph Clark6  |   Onalenna Gwate6  |   Maria Huntsaar7,8 |   Evelin Iseli3  |   
Jonathan Lenoir9  |   Hjalte Mads Rosenstand Mann1,10  |   Sandy-Lynn Steenhuisen2  |   
Toke Thomas Høye1,10

1Department of Ecoscience, Aarhus 
University, Aarhus, Denmark
2Afromontane Research Unit and 
Department of Plant Sciences, University 
of the Free State, Bloemfontein, South 
Africa
3Institute of Integrative Biology, ETH 
Zurich, Zurich, Switzerland
4Department of Biological and 
Environmental Sciences, University of 
Gothenburg, Gothenburg, Sweden
5Gothenburg Global Biodiversity Centre, 
Gothenburg, Sweden
6Afromontane Research Unit and 
Department of Geography, University of 
the Free State, Bloemfontein, South Africa
7Arctic Biology Department, The 
University Centre in Svalbard (UNIS), 
Longyearbyen, Norway
8Department of Arctic and Marine 
Biology, The Arctic University of Norway 
(UiT), Tromsø, Norway
9UMR CNRS 7058 “Ecologie et 
Dynamique des Systèmes Anthropisés” 
(EDYSAN), Université de Picardie Jules 
Verne, Amiens, France
10Arctic Research Centre, Aarhus 
University, Aarhus, Denmark

Correspondence
Jamie Alison, Department of Ecoscience, 
Aarhus University, Aarhus, Denmark.
Email: jalison@ecos.au.dk

Funding information
Department of Science and Innovation, 
South Africa, Grant/Award Number: DSI/
CON 0000/2021; Innovationsfonden, 
Grant/Award Number: 0156-00022B; 
Schweizerischer Nationalfonds zur 

Abstract
Microclimate—proximal climatic variation at scales of metres and minutes—can exac-
erbate or mitigate the impacts of climate change on biodiversity. However, most mi-
croclimate studies are temperature centric, and do not consider meteorological factors 
such as sunshine, hail and snow. Meanwhile, remote cameras have become a primary 
tool to monitor wild plants and animals, even at micro-scales, and deep learning tools 
rapidly convert images into ecological data. However, deep learning applications for 
wildlife imagery have focused exclusively on living subjects. Here, we identify an over-
looked opportunity to extract latent, ecologically relevant meteorological information. 
We produce an annotated image dataset of micrometeorological conditions across 49 
wildlife cameras in South Africa's Maloti-Drakensberg and the Swiss Alps. We train en-
semble deep learning models to classify conditions as overcast, sunshine, hail or snow. 
We achieve 91.7% accuracy on test cameras not seen during training. Furthermore, we 
show how effective accuracy is raised to 96% by disregarding 14.1% of classifications 
where ensemble member models did not reach a consensus. For two-class weather clas-
sification (overcast vs. sunshine) in a novel location in Svalbard, Norway, we achieve 
79.3% accuracy (93.9% consensus accuracy), outperforming a benchmark model from 
the computer vision literature (75.5% accuracy). Our model rapidly classifies sunshine, 
snow and hail in almost 2 million unlabelled images. Resulting micrometeorological 
data illustrated common seasonal patterns of summer hailstorms and autumn snow-
falls across mountains in the northern and southern hemispheres. However, daily pat-
terns of sunshine and shade diverged between sites, impacting daily temperature cycles. 
Crucially, we leverage micrometeorological data to demonstrate that (1) experimental 
warming using open-top chambers shortens early snow events in autumn, and (2) image-
derived sunshine marginally outperforms sensor-derived temperature when predicting 
bumblebee foraging. These methods generate novel micrometeorological variables in 
synchrony with biological recordings, enabling new insights from an increasingly global 
network of wildlife cameras.
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1  |  INTRODUC TION

Climate change is redistributing species in space and time, with 
profound impacts on ecosystem function and human wellbeing 
(Pecl et  al.,  2017). While biodiversity impacts of climate change 
are usually reported at coarse spatial resolutions across large spa-
tial extents (Lenoir et al., 2020), species often respond to climate at 
much finer scales (Lembrechts et al., 2019; Maclean & Early, 2023; 
Potter et  al.,  2013). Furthermore, studies of the biodiversity im-
pacts of climate change are traditionally temperature centric (Antão 
et al., 2020). As the study of microclimate has expanded, this tem-
perature centricity has remained (Maclean et al., 2021), due in part 
to the availability of inexpensive and easy-to-use temperature log-
gers (Lembrechts et al., 2020). Still, non-temperature aspects of cli-
mate and meteorology have profound, fine-scale impacts on species 
and communities. Solar radiation (i.e. sunshine) not only underpins 
ambient temperature, but also directly impacts plant growth and 
animal behaviour (Möhl et al., 2020; Roales et al., 2013; Valladares 
et al., 2016). Furthermore, snow cover severely constrains the onset 
of plants' growing and flowering seasons (Möhl et al., 2022), impact-
ing plant–pollinator interactions (Gillespie et  al.,  2016; Gillespie & 
Cooper,  2022). Hail receives very little attention in ecological re-
search, yet presents a direct physical threat that can devastate poorly 
adapted plant species (Fernandes et al., 2011). As the frequency of 
extreme weather events increases (IPCC, 2023), it is vital that sensor 
networks capture not only temperature, but also a range of other 
fine-scale meteorological variables.

Meanwhile, novel technology is revolutionizing the monitoring 
of ecological communities, generating data with unprecedented 
temporal continuity and resolution (August et  al.,  2015; Besson 
et  al.,  2022). Wildlife cameras—in situ autonomous cameras that 
record wildlife—are particularly promising. Camera traps are an 
established method to monitor large animals (Burton et al., 2015), 
but wildlife cameras are now regularly deployed to study small 
mammals and birds (Ortmann & Johnson, 2021), insects and other 
arthropods (Høye et al., 2021) and plants (Katal et al., 2022). For 
vegetation, the ‘PhenoCam’ approach has gained traction, cap-
turing community-level characteristics such as plant productivity 
(Brown et  al.,  2016). However, the volume of images from wild-
life cameras has proven difficult to manage, so algorithms are 
being developed to automatically extract ecological data (Høye 
et al., 2021; Tuia et al., 2022). Deep learning models are a preva-
lent family of algorithms used to detect, classify and track animals 
in images (Norouzzadeh et al., 2018). For plants, algorithms can be 
trained to flag phenological events such as the onset of budburst 

or flowering (Katal et al., 2022), or to detect and track individual 
flowers (Mann et al., 2022).

The consistency of image-based monitoring allows for incidental 
recording of non-target biota, known as ‘by-catch’. For example, a cam-
era trap network intended to study the Eurasian lynx in the Swiss Jura 
mountains has proven useful to explore habitat use by wild boar and 
roe deer (Wevers et al., 2021). However, it is increasingly recognized 
that wildlife cameras also capture non-target abiotic information, in-
cluding meteorological conditions not easily captured with alternative 
sensors (Hofmeester et al., 2020). Furthermore, capturing both biotic 
and abiotic data with a single sensor ensures that they are measured 
simultaneously, at equivalent spatial and temporal scales. Several stud-
ies have manually extracted the presence, cover or depth of snow in 
ecological imagery (Lumbrazo et al., 2022). Furthermore, some stud-
ies automate the quantification of snow in PhenoCam images (Caparó 
Bellido & Rundquist, 2021; Julitta et al., 2014), or the classification of 
frost (Noh et  al.,  2021). Many computer vision studies have trained 
models to classify weather phenomena in domains outside of wildlife 
cameras (Ibrahim et al., 2019; Jacobs et al., 2009; Lu et al., 2014, 2017; 
Xiao et al., 2021). However, such models have not been tested in eco-
logical contexts, and the use of a single, efficient classifier to simulta-
neously detect sunshine and frozen precipitation in wildlife images has 
not been explored.

Working with wildlife imagery from matching experimental 
sites in mountains in the northern (Switzerland; CH) and southern 
(South Africa; ZA) hemispheres, we train ensemble deep learning 
models to detect micrometeorological conditions of sunshine, 
hail and snow. Our objectives are as follows: (1) Build a dataset 
and train deep learning classifiers to derive micrometeorological 
conditions in images; (2) evaluate different models, data-splitting 
and ensemble approaches to maximize performance with out-of-
sample (same sites, different cameras) and out-of-distribution (dif-
ferent sites, different cameras) test datasets; and (3) demonstrate 
the application of image-derived micrometeorological variables 
for ecological research. For this last objective, we classify condi-
tions in almost 2 million unlabelled images in CH and ZA. Then we 
(i) use snow in ZA images to determine the effects of experimental 
warming on snow melt, and (ii) use sunshine in CH images to ex-
plore the relative importance of sunshine and ambient tempera-
ture for bumblebees foraging at high elevations. Our approach 
efficiently attaches micrometeorological data to remote biodi-
versity observations. This is particularly useful for biodiversity 
monitoring in mountains, which are characterized by high levels of 
endemism, complex topography and microclimatic heterogeneity 
(Spehn & Körner, 2005).
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2  |  METHODS

2.1  |  Study area

Imaging was carried out over 49 1 × 1 m montane grassland plots 
across four replicated experimental field sites. In the Calanda mas-
sif in the Alps in Switzerland (CH), 24 plots were imaged from June 
2021 to October 2021, of which eight were located at a low el-
evation site (46.869266° N 9.490098° E; 1440 m elevation) and 12 
were located at a high-elevation site (46.887824° N 9.489510° E; 
2000 m). In the Sentinel region of the Maloti-Drakensberg in 
South Africa (ZA), 25 subplots were imaged from November 2021 
to April 2022, of which five were located at a low elevation site 
(28.679532° S 28.894816° E; 2200 m) and 20 were located at a 
high-elevation site (28.754951° S 28.866981° E; 3060 m). The 
grassland plots we imaged comprised native vegetation, but half of 
the plots additionally had small plant specimens, of species typical 
of lower elevations, introduced within them. Half of the high site 
plots in ZA were also exposed to open-top chamber (OTC) warm-
ing of approximately 2°C.

2.2  |  Sensor deployment

A Wingscapes TimelapseCam Pro camera (with LED flash) was 
mounted on a steel frame over each plot, ca. 62 cm from the 
ground, pointing towards the ground. Each camera captured an 
area of ca. 30 × 17 cm. All cameras were ‘continuous’, recording 
images day and night at 5-min intervals, except for 16 ‘focused’ 
cameras in CH which recorded at 1-min intervals between 12.00–
15.00 and 01.00–03.00 (Alison et al., 2022). Each camera required 
eight AA lithium batteries and a 128 GB SD card, replaced approxi-
mately every 2 months.

All cameras were equipped with on-board temperature sensors, 
recording temperature at ca. 62 cm above ground with every photo-
graph (either at 5- or 1-min intervals depending on the camera). At 
the high-elevation sites, we also deployed TMS4 microclimate log-
gers to record temperature every 15 min at −8, 0 and 15 cm above 
ground. We deployed loggers in blocks of six, with three blocks at 
the CH high site and one block at the ZA high site. Each block in-
cluded two loggers in vegetated plots with OTC warming, two in 
vegetated plots without warming and one each in bare soil plots with 
and without OTC warming. Loggers were not targeted to the same 
plots as cameras, though some of the same plots were sampled by 
coincidence.

2.3  |  Image labelling

We sorted a total of 8953 images into four classes based on mi-
crometeorological conditions: overcast, sunshine, hail or snow 
(Figure 1; further details in Appendix S1). First, to generate train-
ing data representing the entire recording period, we labelled a 

systematic sample of 6205 images. We sampled one image per hour 
in both ZA and CH, cycling through the continuous cameras. In CH, 
we included an additional one image per hour cycling through all 
focused cameras (5 h per day). The systematic sample yielded 1320 
sunshine, 110 snow, 39 hail and 4736 overcast images. Second, to 
generate adequate training data and improve detection of snow and 
hail, we took a strategic sample of 2748 images that was informed 
by the systematic sample. The strategic sampling protocol had three 
tiers, such that the rarest meteorological events were sampled more 
intensively (i.e. oversampled; Table S1). The strategic sample yielded 
an additional set of 266 sunshine, 923 snow, 803 hail and 756 over-
cast images. CH images were labelled by JA, and ZA images by SP, 
using VGG Image Annotator (VIA v2.0.11; https://​www.​robots.​ox.​
ac.​uk/​~​vgg/​softw​are/​via/​).

2.4  |  Model training

We trained convolutional neural networks (CNNs) to classify condi-
tions in images as overcast, sunshine, hail or snow using the Keras 
python library (Chollet,  2015). Specifically, we fine-tuned the 
MobileNet network (Howard et al., 2017) pretrained on ImageNet 
(Russakovsky et al., 2015), representing a lightweight and efficient 
family of CNNs that has been shown to perform well for image clas-
sification in ecology (Besson et al., 2022; Schneider et al., 2022). 
To adapt the model to predict just four classes, we removed the 
top layer of the network and added a custom softmax activation 
layer with a flattened input. Training images were rescaled to 
224 × 224 px and put through an augmentation pipeline to reduce 
overfitting. Augmentation involved random vertical or horizontal 
flipping and up to 45° random rotation in any direction. Following 
preliminary tests, we trained the entire network in two stages using 
the Adam optimizer and a batch size of 128. First, we trained for 
five epochs specifying a learning rate of 0.001, to bring models rap-
idly towards a solution. Second, we trained the entire network for 
up to 200 epochs, specifying a learning rate of 0.0001. The change 
in learning rate allowed models to reach an optimal solution while 
minimizing spurious fluctuations in validation loss. Appendix  S2 
gives a primer on CNN parameters and concepts.

2.5  |  Model validation

We used model validation with early stopping to minimize overfit-
ting to the training data. We stopped training if validation perfor-
mance did not improve for 30 epochs and saved the model from the 
epoch with the best validation performance (concepts explained in 
Appendix S2). To account for variance related to data splitting for 
validation, we used cross-validation. Specifically, we carried out a 
fivefold cross-validation in which each of five mutually exclusive data 
folds is iteratively treated as the validation dataset (e.g. Figure S1, 
inner validation loop). Additionally, we compared two data-splitting 
methods: ‘Cis’ and ‘Trans’ (Beery et al., 2018, 2020). Cis validation 
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involves random splitting of images from all cameras. Trans valida-
tion splits cameras rather than images, such that images from one 
camera are always constrained to a single fold (Figure S1). With the 
Cis validation method, the effective size of the training set is larger, 
because more camera positions are seen during training. However, 
the Trans validation method ensures that images from the same 
camera are not represented in both training and validation data. For 
both Cis and Trans validation, folds were stratified with respect to 
the four study sites (Wieczorek et al., 2022).

2.6  |  Model aggregation

We produced ensembles of sets of five ‘member models’, represent-
ing the five iterations of each fivefold validation loop, in a procedure 
called cross-validation aggregation (crogging; Barrow & Crone, 2013; 
see Appendix  S3 for further details). The crogging procedure pro-
duces ensemble models in which each observation contributes to both 
model training (in all but one member model) and model validation 

by early stopping (in one member model). Averaging across models 
which use distinct data folds for validation can improve generaliza-
tion performance and model stability (Barrow & Crone, 2016; Krogh & 
Vedelsby, 1994). Ensemble models were produced under both Cis and 
Trans validation methods. For each fivefold validation loop, five Cis 
member models and five Trans member models were aggregated into 
ensembles by unweighted averaging of output softmax probabilities.

2.7  |  Model testing and deployment

We aimed for models that would transfer to (1) novel camera posi-
tions within our sites and (2) novel sites with a similar recording pro-
tocol. To test transferability to novel positions within our sites, each 
fivefold validation loop was nested within an outer sixfold test loop 
(e.g. Figure S1). In other words, we used a nested cross-validation or 
‘double-cross’ to obtain a robust and unbiased measure of model gen-
eralization (Cawley & Talbot, 2010). We randomly split 49 cameras 
into six folds that were stratified across the four sites (Wieczorek 

F I G U R E  1 Examples of the four classes of micrometeorological conditions in two representative high-elevation plots in Switzerland (CH) 
and South Africa (ZA). Total numbers of labelled images (n) are shown across classes and regions (including high and low elevation sites). The 
breakdown of labels across the systematic sample (n1) and the strategic sample (n2) is also shown, as is the representation of each condition 
within the systematic sample for a given region (pct).
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    |  5 of 13ALISON et al.

et al., 2022). During each test loop iteration, one of sixfold was with-
held as a test dataset. We compared model accuracy and macro-
F1 (the mean of class F1 scores) following Equations  1–4 where: 
TP = true positives; TN = true negatives; FP = false positives; FN = false 
negatives; Pr = class precision; and Re = class recall. Class F1 scores 
represent class-level performance, and macro-F1 represents overall 
model performance while accounting for class imbalance.

To test model transferability to novel sites, we trained two pro-
duction models by incorporating the test data for training and valida-
tion. Specifically, we trained a sixfold Trans ensemble and a sixfold Cis 
ensemble. Novel site performance was then tested using images from 
Svalbard, Norway. In a separate study of pollination of Silene acau-
lis, six plots in Bjørndalen (78.21660° N 15.33280° E; 40 m elevation) 
were imaged at 1-min intervals in June and July 2020 using the same 
imaging methods. However, some images were cropped slightly to 
zoom in on S. acaulis during annotation. The first 11 images of every 
hour of every day were labelled for sunshine (n = 957) and overcast 
(n = 6222) conditions by MH. To compare model performance with 
an existing benchmark, we also classified the Svalbard images using 
a two-class weather classification model published by Lu et al. (2014, 
2017, https://​jiaya.​me/​proje​cts/​weath​ercla​ssify/​​index.​htm) and de-
ployed in MatLab (The MathWorks Inc.,  2023). Data, models and 
code to train and deploy deep learning models are openly available 
on Zenodo at https://​doi.​org/​10.​5281/​zenodo.​10137731.

Finally, we deployed our production Trans ensemble model 
to predict micrometeorological conditions across the full set of 
1,934,044 images taken across all four sites in CH and ZA. We 

validated our time series of micrometeorological conditions against 
temperature data from TMS4 loggers (Wild et al., 2019). We then an-
alysed micrometeorological conditions to explore (1) effects of OTC 
warmed and unwarmed treatments on snow cover in ZA, and (2) 
effects of sensor-derived temperature and image-derived sunshine 
on Bombus visitation to Trifolium pratense in CH (using data previ-
ously published by Alison et al., 2022). For (2), we calculated the day-
time degree days recorded by on-board temperature sensors (sum 
of mean daily temperatures above 0°C) and sunshine days (sum of 
mean daily proportional sunshine) during flowering of each inflores-
cence. We compared AIC of linear models predicting ln(number of 
visits) of each inflorescence. Furthermore, to investigate mismatch in 
the microclimatic niches of T. pratense and its primary pollinators, we 
calculated mean temperature and proportional sunshine within an 
hour either side of each Bombus flower visit. This was overlaid on the 
distribution of temperature and sunshine during daytime hours in 
which 32 T. pratense inflorescences were flowering. Statistical analy-
ses were carried out using R (R Core Team, 2023).

3  |  RESULTS AND DISCUSSION

Wildlife cameras capture details about species' abiotic environ-
ments, and not just their behaviours, life cycles and interactions 
(Hofmeester et al., 2020). We find that conditions such as sunshine, 
snow and hail can be readily and automatically extracted from wild-
life imagery. Furthermore, we show how such micrometeorological 
data are complementary to sensor-derived temperature data.

3.1  |  Model performance

Ensemble models were highly transferable to novel camera posi-
tions, consistently achieving higher accuracy and macro-F1 than 
member models (Table 1). Ensemble models also outperformed full 
models, which used all data for training and none for validation, by 
around 1%. Beyond performance benefits, member models within a 
given ensemble disagree on 13%–14% of predictions (Table 1) and 

(1)Accuracy =
TP + TN

TP + FP + TN + FN
.

(2)Pr =
TP

TP + FP
.

(3)Re =
TP

TP + FN
.

(4)Class F1 = 2
Pr × Re

Pr + Re
.

TA B L E  1 Mean (±SD) performance of full models (n = 6), ensemble models (n = 6) and member models (n = 5 × 6 = 30) in classification of 
micrometeorological conditions in out-of-sample test images (same sites, different cameras).

Validation split method Model type Macro-F1 (%) Accuracy (%)
Consensus accuracy 
(%)

Rate of consensus 
(%)

Cis Ensemble 89.25 (2.02) 91.63 (1.96) 95.89 (1.69) 87.13 (1.92)

Member 88.02 (1.59) 90.72 (1.67)

Trans Ensemble 88.82 (3.33) 91.70 (2.02) 96.00 (1.55) 85.90 (3.33)

Member 87.22 (3.02) 90.41 (2.13)

None Full 88.00 (2.61) 90.94 (2.21)

Note: Performance metrics include macro-F1, accuracy and consensus accuracy for ensemble models. Ensemble models are compared to member 
models under two validation data split methods: ‘Cis’ and ‘Trans’ (see Figure S1). The consensus accuracy of ensemble models is the accuracy of 
predictions on which all five member models agree. Rate of consensus is the percentage of test images for which all five member models agree. 
Maxima for macro-F1, accuracy and concensus accuracy are displayed in bold.

 13652486, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17078 by A

rctic U
niversity of N

orw
ay - U

IT
 T

rom
so, W

iley O
nline L

ibrary on [06/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://jiaya.me/projects/weatherclassify/index.htm
https://doi.org/10.5281/zenodo.10137731


6 of 13  |     ALISON et al.

this disagreement forms a useful measure of uncertainty; by omit-
ting non-consensus predictions as uncertain, we raised the effec-
tive accuracy of our most accurate ensemble to 96%. Differences 
between models trained using the Cis and Trans validation meth-
ods were negligible, while cross-validation revealed considerable 
variation when models of the same type were trained and tested 
on different folds of the data (Table 1, see Appendix S3 for further 
discussion on validation approaches and ensembling). Our models 
classified overcast and sunshine conditions more successfully than 
snow or hail (Figure 2; Figure S2), perhaps reflecting the oversam-
pling of snow and hail events. Our ensemble model based on a Trans 
validation method misclassified 29% of hail images as overcast, 12% 
of sunshine as overcast and 3% of overcast as sunshine (Figure 2). 
The apparent bias of the model towards overcast conditions could 
relate not only to the high variability of that class, but also the over-
representation of overcast images in the training data.

The real-world utility of deep learning models hinges on generaliza-
tion performance, including transferability to novel sites and conditions. 
When classifying images of S. acaulis across six cameras from a totally 
independent site in Svalbard, Norway, ensemble models using Cis and 
Trans validation methods distinguished sunshine from overcast condi-
tions with 79.3% and 72.8% accuracy respectively (model F1: 70.9% 
and 65.0%). Our best model thus outperformed a benchmark model for 
two-class weather classification, trained on 10,000 images from a vari-
ety of outdoor contexts (Lu et al., 2014, 2017), which achieved 75.5% 
accuracy on Svalbard images. Furthermore, omitting non-consensus 
predictions as uncertain, we raised the effective accuracy to 94% and 
88.4% respectively. Contrary to expectations, when classifying images 
from Svalbard, ensemble models based on the Cis validation method 
outperformed those based on the Trans method. This suggests that 
the reduced overfitting of the Trans ensemble was offset by the re-
duction in training data seen by each member model. Still, the reported 

generalization performance is impressive given that the out-of-
distribution images came from a site >1000 km away, at >1000 m lower 
elevation, with different height and width compared to training images. 
For detection of sunshine in images, our models show clear potential to 
generalize to novel sites with a similar recording protocol.

3.2  |  Extensive prediction of 
micrometeorological data

We predicted micrometeorological conditions in almost 2 million im-
ages across CH and ZA sites. Those images were classified by a mem-
ber model in around 20 h on an Intel Xeon E5-2697A v4 processor with 
8 CPUs @ ~2.6 GHz. Much faster times would be expected if using a 
GPU. A consensus prediction emerged for 87.7% of images, and these 
predictions were averaged across cameras over time to generate 
seasonal (Figure  3) and diel (Figure  4) micrometeorological profiles. 
Seasonal profiles revealed a common seasonal pattern of summer hail-
storms and autumn snow across mountains in the northern and south-
ern hemispheres (Figure 3). As expected, during the day there was a 
striking match between image-derived sunshine and sensor-derived 
temperatures (Figure  3). However, nighttime temperatures also ap-
peared warmer following periods of high daytime cloud cover (i.e. low 
sunshine before nightfall; Figure 3), as expected under longwave cloud 
forcing (Ramanathan et al., 1989). Furthermore, diel sunshine profiles 
revealed that the ZA high-elevation site was characterized by morning 
sunshine and afternoon shade, with subtle impacts on the diel tem-
perature profile (Figure 4). Such insights would be difficult to obtain 
without using the meteorological by-catch of wildlife cameras.

3.3  |  Effects of experimental warming on 
snow melt

We found clear impacts of OTCs on the prevalence and duration of 
snow cover (Figure 5). During the first (and longest) recorded snow-
fall, the snow melted completely after around 2.5 days in warmed 
plots. This contrasted with unwarmed plots, where snow persisted 
for up to 4 days (Figure 5). Beyond temporal variation, we also cap-
tured fine-scale spatial variation in retention of snow cover—espe-
cially among warmed plots (Figure 5a). Sensor-derived temperatures 
showed evidence of warming within OTCs, especially during pro-
longed sunshine, which probably contributed to advanced snow 
melt. However, snow was often less prevalent across warmed plots 
even immediately after snowfall (Figure 5). This suggests that OTCs 
also intercept a fraction of falling snow, which could delay snowpack 
formation.

Few studies have reported effects of OTCs on snow cover in 
autumn. Several studies have reported effects on snow depth in 
winter and snow melt in spring, although observations are often in-
frequent or anecdotal (Bokhorst et al., 2013; Wipf & Rixen, 2010). 
Heavy snows are known to accumulate in OTCs over winter, increas-
ing snow depth and insulating plants and soil (Hollister et al., 2023; 

F I G U R E  2 Confusion matrix of predicted micrometeorological 
conditions across 8953 images. Six ensemble deep learning models 
were used to classify images in six distinct folds of hold-out test 
cameras in a cross-validation process. Data splitting for validation 
of these models was done using the Trans validation method (see 
text and Figure S1 for explanation).
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    |  7 of 13ALISON et al.

F I G U R E  3 Sunshine (yellow), hail (black) and snow (blue) detected in images throughout summer solstice (top pair), early autumn (middle 
pair) and late autumn (bottom pair) across two mountain sites. Distinct time series from the northern hemisphere (top of each pair) and 
the southern hemisphere (bottom of each pair) are aligned based on summer solstice dates of 21 June 2021 in Switzerland (CH) and 21 
December in South Africa (ZA). Conditions were classified in all images from continuous cameras at the two high-elevation sites, using a 
deep learning ensemble trained using the full set of 8953 labelled images. Data are displayed with a resolution of 1.2 h (20 time slices per 
day). We also present mean air temperatures from on-board sensors on cameras, measuring air temperature every 5 min at 62 cm above 
ground (red lines), and TMS4 loggers, measuring air temperature every 15 min at 15 cm above ground (dark red lines). Data in the grey box 
(bottom-right) are more closely explored in Figure 5.
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Rixen et al., 2022); the resulting winter warming of OTCs often ex-
ceeds their spring and summer warming effects (Aerts et al., 2004; 
Bjorkman et  al.,  2015). Such snow accumulation leads to unpre-
dictable effects of OTCs on snow melt; it may remain unchanged, 

be delayed by a week or be advanced by several weeks (Aerts 
et al., 2004; Marion et al., 1997; Wipf & Rixen, 2010). Here we show 
that in early autumn, experimental warming can reduce the duration 
of snow cover—although this may partly result from interception of 
snowfall by OTCs. Furthermore, we demonstrate how to efficiently 
quantify persistence of snow at high spatiotemporal resolutions. 
This is a vital contribution given the impacts of snow cover on plant 
and soil ecosystem processes (Möhl et al., 2022), and the prevalence 
of OTCs in climate change research (Bjorkman et al., 2015; Hollister 
et al., 2023; Rixen et al., 2022).

3.4  |  Effects of sunshine on bumblebee foraging

Sunshine is a vital factor affecting the activity of flower visiting insects, 
especially in alpine environments (Bergman et al., 1996). Our data dem-
onstrate not only how sunshine drives fluctuations in ambient tempera-
ture at our site (Figure 3), but also the cumulative daytime temperatures 
experienced by individual T. pratense inflorescences (Figure 6a). We also 
observe a strong effect of sunshine exposure on the number of Bombus 
foraging visits to each inflorescence (Figure 6b), probably partly medi-
ated by ambient temperatures. However, we found that sunshine days 
marginally outperformed degree days when predicting the number of 
Bombus visits to an inflorescence (ΔAIC = −0.98). As such, we suggest 
that sunshine also has direct effects on Bombus foraging activity. For ex-
ample, solar radiation can directly raise thoracic temperatures of bees, 
relieving a major constraint on flight behaviour (Corbet et al., 1993).

We overlaid the density of Bombus foraging events with the density 
of flowering T. pratense on a two-dimensional surface of sunshine and 
temperature. Even though Bombus visits are contingent on the pres-
ence of flowering T. pratense, we found evidence of microclimatic and 
micrometeorological mismatch. Trifolium pratense inflorescences were 

F I G U R E  4 Average diel profiles of image-derived sunshine 
(yellow shading and grey lines) across high-elevation sites in 
Switzerland (CH, dashed lines) and South Africa (ZA, solid lines) 
for 120 days following summer solstice. We also present mean air 
temperatures from on-board sensors on cameras, measuring air 
temperature every 5 min at 62 cm above ground (red lines). Data are 
displayed with a resolution of 0.1 h (240 time slices per day). The 
ZA site is characterized by early morning sunshine and afternoon 
shade. Sunshine was classified using a deep learning ensemble 
trained using the full set of 8953 labelled images.

F I G U R E  5 (a) Duration of snow, derived from images, across unwarmed plots and open-top chamber (OTC) warmed plots at the high-
elevation site in South Africa. Boxes capture the median and interquartile range, while whiskers capture the range of the data. Three 
cameras failed before the snows and are excluded here. (b) Proportion of snow over time across unwarmed (dark blue) and warmed (light 
blue) plots. Snow events were often shortened or dampened within OTCs. Furthermore, during periods of sunshine (yellow), temperature 
spikes recorded by TMS4 loggers were more intense in warmed plots (dashed red line) than unwarmed plots (solid red line). Small 
proportions of snow images were misclassified as hail (black), and this was often due to fog. Weather conditions were classified using a deep 
learning ensemble trained using the full set of 8953 labelled images.
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most available at ~10°C with little or no sunshine, with a secondary peak 
at ~21°C during constant sunshine (Figure 6c). However, Bombus forag-
ing events were completely absent below 10°C, and disproportionately 
prevalent during intermittent sunshine or extremely warm tempera-
tures. Camera-based monitoring, with automated extraction of meteo-
rological by-catch, allows us to quantify the constraints and preferences 
of species at unprecedented spatial and temporal resolutions.

3.5  |  Applications and future development

Micrometeorological variables extracted from images are highly com-
plementary to those recorded by affordable microclimatic sensors. 
Unlike temperature and moisture, solar radiation is expensive and 
difficult to measure at high temporal resolution (Roales et al., 2013). 
Furthermore, cameras are perhaps the only in-field sensors that can 
record the prevalence of snow (Caparó Bellido & Rundquist, 2021) and 
hail at fine spatiotemporal resolutions. Crucially, the impacts of sun-
shine, snow and hail on the abundance and phenology of wild species 
are significant, but rarely explored and poorly understood (Fernandes 
et  al.,  2011; Möhl et  al.,  2020, 2022; Valladares et  al.,  2016). 
Furthermore, cameras can capture variation in micrometeorology 

and organismal activity at very small spatial scales. This creates op-
portunities to study fine-scale microclimatic refugia, such as areas 
protected from sunshine or snow, which may be vital for species per-
sistence in extreme environments (von Oppen et al., 2022). Cameras 
also record continuously at high temporal resolution, allowing the 
analysis of phenological mismatches not only across days of the year, 
but also hours of the day (Alison et al., 2022). Finally, cameras gener-
ate biological and meteorological data that are tethered in both space 
and time. This is a particularly useful property to explore behavioural 
adaptations to micrometeorological conditions.

Previous studies have automated the extraction of snow-covered 
regions of phenocam images (Caparó Bellido & Rundquist,  2021; 
Julitta et al., 2014). Our approach of classifying entire images is sim-
pler, and thus broader in application. Our model rapidly identifies 
not only images with snow, but also those with sunshine or hail. 
Unlike previous models, ours is shown to perform well on images 
from novel camera placements and even a distant site in Svalbard. 
Above all, we present a dataset and methods to train future mod-
els that will be even more transferable. Future work should focus 
on the assembly of larger training datasets, representing a greater 
diversity of backgrounds, conditions and wildlife camera domains. 
There is potential for deep learning models to extract hydrological 

F I G U R E  6 (a) The cumulative daytime temperatures experienced by Trifolium pratense inflorescences, derived from temperature sensors, 
are highly positively correlated with sunshine exposure, derived from images. (b) Sunshine exposure of an inflorescence increases the 
number of recorded Bombus foraging events. The pink line represents a linear model that effectively predicts the natural log of the number 
of Bombus foraging events based on the number of days of sunshine received by an inflorescence. (c) Microclimatic and micrometeorological 
niche overlap between flowering Trifolium pratense (pink) and Bombus bee pollinators (black contour lines derived from black crosses). The 
density of flowering T. pratense is representative of the underlying distributions of image-derived sunshine and sensor-derived temperature, 
which are strongly bimodal. In contrast, Bombus visits are more concentrated during intermediate sunshine or extremely warm temperatures. 
Image crops corresponding to three Bombus foraging events are shown above the plot.
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information from images, for example rainfall or even rare cryogenic 
processes (Grab et  al.,  2021). Presenting future models with con-
textual information, for example the location, time or temperature 
during image capture, could improve accuracy across a wide range of 
meteorological conditions (Terry et al., 2020). Still, we show that an 
existing model, trained on diverse and independent outdoor images, 
distinguished sunny and overcast images from wildlife cameras with 
surprising accuracy (Lu et al., 2014, 2017). As such, the roll-out of 
new and existing weather classification models to extract meteoro-
logical by-catch from phenocams for vegetation (Brown et al., 2016) 
or camera traps for large animals (Hofmeester et al., 2020) is a very 
exciting prospect. The extraction of latent meteorological infor-
mation from existing wildlife camera network datasets, containing 
millions of labelled organisms (Norouzzadeh et al., 2018), could gen-
erate new insights into the ecology of a huge variety of animal and 
plant species worldwide.

AUTHOR CONTRIBUTIONS
Jamie Alison: Conceptualization; data curation; formal analysis; 
investigation; methodology; project administration; software; vali-
dation; visualization; writing – original draft; writing – review and 
editing. Stephanie Payne: Conceptualization; data curation; meth-
odology; project administration; resources; validation; writing – re-
view and editing. Jake M. Alexander: Funding acquisition; project 
administration; supervision; writing – review and editing. Anne D. 
Bjorkman: Funding acquisition; writing – review and editing. Vincent 
Ralph Clark: Project administration; resources; supervision; writ-
ing – review and editing. Onalenna Gwate: Project administration; 
writing – review and editing. Maria Huntsaar: Data curation; valida-
tion; writing – review and editing. Evelin Iseli: Data curation; pro-
ject administration; writing – review and editing. Jonathan Lenoir: 
Conceptualization; funding acquisition; writing – review and editing. 
Hjalte Mads Rosenstand Mann: Methodology; software; writing – 
review and editing. Sandy-Lynn Steenhuisen: Conceptualization; 
project administration; resources; supervision; writing – review and 
editing. Toke Thomas Høye: Conceptualization; funding acquisition; 
project administration; resources; supervision; writing – review and 
editing.

ACKNO​WLE​DG E​MENTS
This research was funded through the 2019–2020 BiodivERsA 
joint call for research proposals, under the BiodivClim ERA-Net 
COFUND programme, with the funding organizations Innovation 
Fund Denmark (grant no. 0156-00022B), the Department of 
Science and Innovation Republic of South Africa (grant no. DSI/CON 
0000/2021), the Research Council of Norway, the Swiss National 
Science Foundation (grant no. 20BD21_193809), the Swedish 
Research Council for Environment, Agricultural Sciences and Spatial 
Planning and the German Research Foundation. Collection of im-
ages in Svalbard was supported by The Olav Thon Foundation, The 
Nansen Fund and its associated funds, and field support from Simen 
Hjelle and Pernille Bronken Eidesen. We thank Carsten Elie Frigaard 
for access to computational resources for model training.

CONFLIC T OF INTERE S T S TATEMENT
The authors have no conflict of interest to declare.

DATA AVAIL ABILIT Y S TATEMENT
Data, models, and code to train and deploy deep learning models 
are openly available on Zenodo at https://​doi.​org/​10.​5281/​zenodo.​
10137731. Pollinator data is available from Figshare at https://​doi.​
org/​10.​6084/​m9.​figsh​are.​20129​951.​v1.

ORCID
Jamie Alison   https://orcid.org/0000-0002-6787-6192 
Stephanie Payne   https://orcid.org/0000-0002-1493-1506 
Jake M. Alexander   https://orcid.org/0000-0003-2226-7913 
Anne D. Bjorkman   https://orcid.org/0000-0003-2174-7800 
Vincent Ralph Clark   https://orcid.org/0000-0001-5058-0742 
Onalenna Gwate   https://orcid.org/0000-0003-0237-4316 
Evelin Iseli   https://orcid.org/0000-0002-1586-8203 
Jonathan Lenoir   https://orcid.org/0000-0003-0638-9582 
Hjalte Mads Rosenstand Mann   https://orcid.
org/0000-0002-4768-4767 
Sandy-Lynn Steenhuisen   https://orcid.
org/0000-0002-6128-0654 
Toke Thomas Høye   https://orcid.org/0000-0001-5387-3284 

R E FE R E N C E S
Aerts, R., Cornelissen, J. H. C., Dorrepaal, E., Van Logtestijn, R. S. P., & 

Callaghan, T. V. (2004). Effects of experimentally imposed climate 
scenarios on flowering phenology and flower production of subarc-
tic bog species. Global Change Biology, 10(9), 1599–1609. https://​
doi.​org/​10.​1111/j.​1365-​2486.​2004.​00815.​x

Alison, J., Alexander, J. M., Zeugin, N. D., Dupont, Y. L., Iseli, E., Mann, H. 
M. R., & Høye, T. T. (2022). Moths complement bumblebee pollination 
of red clover: A case for day-and-night insect surveillance. Biology 
Letters, 18, 20220187. https://​doi.​org/​10.​1098/​rsbl.​2022.​0187

Antão, L. H., Bates, A. E., Blowes, S. A., Waldock, C., Supp, S. R., Magurran, 
A. E., Dornelas, M., & Schipper, A. M. (2020). Temperature-related 
biodiversity change across temperate marine and terrestrial sys-
tems. Nature Ecology & Evolution, 4(7), 927–933. https://​doi.​org/​10.​
1038/​s4155​9-​020-​1185-​7

August, T., Harvey, M., Lightfoot, P., Kilbey, D., Papadopoulos, T., & 
Jepson, P. (2015). Emerging technologies for biological recording. 
Biological Journal of the Linnean Society, 115(3), 731–749. https://​doi.​
org/​10.​1111/​bij.​12534​

Barrow, D. K., & Crone, S. F. (2013). Crogging (cross-validation aggrega-
tion) for forecasting—A novel algorithm of neural network ensem-
bles on time series subsamples. Proceedings of the International Joint 
Conference on Neural Networks. https://​doi.​org/​10.​1109/​IJCNN.​
2013.​6706740

Barrow, D. K., & Crone, S. F. (2016). Cross-validation aggregation for 
combining autoregressive neural network forecasts. International 
Journal of Forecasting, 32(4), 1120–1137. https://​doi.​org/​10.​1016/j.​
ijfor​ecast.​2015.​12.​011

Beery, S., Liu, Y., Morris, D., Piavis, J., Kapoor, A., Meister, M., Joshi, 
N., & Perona, P. (2020). Synthetic examples improve generaliza-
tion for rare classes. Proceedings—2020 IEEE Winter Conference on 
Applications of Computer Vision, WACV 2020, pp. 852–862. https://​
doi.​org/​10.​1109/​WACV4​5572.​2020.​9093570

Beery, S., Van Horn, G., & Perona, P. (2018). Recognition in Terra Incognita. 
Lecture Notes in Computer Science (Including Subseries Lecture Notes in 

 13652486, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17078 by A

rctic U
niversity of N

orw
ay - U

IT
 T

rom
so, W

iley O
nline L

ibrary on [06/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.5281/zenodo.10137731
https://doi.org/10.5281/zenodo.10137731
https://doi.org/10.6084/m9.figshare.20129951.v1
https://doi.org/10.6084/m9.figshare.20129951.v1
https://orcid.org/0000-0002-6787-6192
https://orcid.org/0000-0002-6787-6192
https://orcid.org/0000-0002-1493-1506
https://orcid.org/0000-0002-1493-1506
https://orcid.org/0000-0003-2226-7913
https://orcid.org/0000-0003-2226-7913
https://orcid.org/0000-0003-2174-7800
https://orcid.org/0000-0003-2174-7800
https://orcid.org/0000-0001-5058-0742
https://orcid.org/0000-0001-5058-0742
https://orcid.org/0000-0003-0237-4316
https://orcid.org/0000-0003-0237-4316
https://orcid.org/0000-0002-1586-8203
https://orcid.org/0000-0002-1586-8203
https://orcid.org/0000-0003-0638-9582
https://orcid.org/0000-0003-0638-9582
https://orcid.org/0000-0002-4768-4767
https://orcid.org/0000-0002-4768-4767
https://orcid.org/0000-0002-4768-4767
https://orcid.org/0000-0002-6128-0654
https://orcid.org/0000-0002-6128-0654
https://orcid.org/0000-0002-6128-0654
https://orcid.org/0000-0001-5387-3284
https://orcid.org/0000-0001-5387-3284
https://doi.org/10.1111/j.1365-2486.2004.00815.x
https://doi.org/10.1111/j.1365-2486.2004.00815.x
https://doi.org/10.1098/rsbl.2022.0187
https://doi.org/10.1038/s41559-020-1185-7
https://doi.org/10.1038/s41559-020-1185-7
https://doi.org/10.1111/bij.12534
https://doi.org/10.1111/bij.12534
https://doi.org/10.1109/IJCNN.2013.6706740
https://doi.org/10.1109/IJCNN.2013.6706740
https://doi.org/10.1016/j.ijforecast.2015.12.011
https://doi.org/10.1016/j.ijforecast.2015.12.011
https://doi.org/10.1109/WACV45572.2020.9093570
https://doi.org/10.1109/WACV45572.2020.9093570


    |  11 of 13ALISON et al.

Artificial Intelligence and Lecture Notes in Bioinformatics), 11220 LNCS, 
pp. 472–489. https://​doi.​org/​10.​1007/​978-​3-​030-​01270​-​0_​28

Bergman, P., Molau, U., & Holmgren, B. (1996). Micrometeorological im-
pacts on insect activity and plant reproductive success in an alpine 
environment, Swedish Lapland. Arctic and Alpine Research, 28(2), 
196–202. https://​doi.​org/​10.​2307/​1551760

Besson, M., Alison, J., Bjerge, K., Gorochowski, T. E., Høye, T. T., Jucker, 
T., Mann, H. M. R., & Clements, C. F. (2022). Towards the fully au-
tomated monitoring of ecological communities. Ecology Letters, 
25(12), 2753–2775. https://​doi.​org/​10.​1111/​ele.​14123​

Bjorkman, A. D., Elmendorf, S. C., Beamish, A. L., Vellend, M., & Henry, G. 
H. R. (2015). Contrasting effects of warming and increased snow-
fall on Arctic tundra plant phenology over the past two decades. 
Global Change Biology, 21(12), 4651–4661. https://​doi.​org/​10.​1111/​
gcb.​13051​

Bokhorst, S., Huiskes, A., Aerts, R., Convey, P., Cooper, E. J., Dalen, L., 
Erschbamer, B., Gudmundsson, J., Hofgaard, A., Hollister, R. D., 
Johnstone, J., Jónsdóttir, I. S., Lebouvier, M., Van de Vijver, B., 
Wahren, C. H., & Dorrepaal, E. (2013). Variable temperature effects 
of open top chambers at polar and alpine sites explained by irradi-
ance and snow depth. Global Change Biology, 19(1), 64–74. https://​
doi.​org/​10.​1111/​gcb.​12028​

Brown, T. B., Hultine, K. R., Steltzer, H., Denny, E. G., Denslow, M. W., 
Granados, J., Henderson, S., Moore, D., Nagai, S., SanClements, M., 
Sánchez-Azofeifa, A., Sonnentag, O., Tazik, D., & Richardson, A. D. 
(2016). Using phenocams to monitor our changing earth: Toward a 
global phenocam network. Frontiers in Ecology and the Environment, 
14(2), 84–93. https://​doi.​org/​10.​1002/​fee.​1222

Burton, A. C., Neilson, E., Moreira, D., Ladle, A., Steenweg, R., Fisher, J. 
T., Bayne, E., & Boutin, S. (2015). Wildlife camera trapping: A review 
and recommendations for linking surveys to ecological processes. 
Journal of Applied Ecology, 52(3), 675–685. https://​doi.​org/​10.​1111/​
1365-​2664.​12432​

Caparó Bellido, A., & Rundquist, B. C. (2021). Semi-automatic fractional 
snow cover monitoring from near-surface remote sensing in grass-
land. Remote Sensing, 13(11), Article 11. https://​doi.​org/​10.​3390/​
rs131​12045​

Cawley, G. C., & Talbot, N. L. C. (2010). On over-fitting in model selection 
and subsequent selection bias in performance evaluation. Journal of 
Machine Learning Research, 11, 2079–2107.

Chollet, F. (2015). Keras [computer software]. https://​keras.​io
Corbet, S. A., Fussell, M., Ake, R., Fraser, A., Gunson, C., Savage, A., & 

Smith, K. (1993). Temperature and the pollinating activity of so-
cial bees. Ecological Entomology, 18(1), 17–30. https://​doi.​org/​10.​
1111/j.​1365-​2311.​1993.​tb010​75.​x

Fernandes, G. W., Oki, Y., Sanchez-Azofeifa, A., Faccion, G., & Amaro-
Arruda, H. C. (2011). Hail impact on leaves and endophytes of 
the endemic threatened Coccoloba cereifera (Polygonaceae). Plant 
Ecology, 212(10), 1687–1697. https://​doi.​org/​10.​1007/​s1125​
8-​011-​9941-​z

Gillespie, M. A. K., Baggesen, N., & Cooper, E. J. (2016). High Arctic flow-
ering phenology and plant–pollinator interactions in response to 
delayed snow melt and simulated warming. Environmental Research 
Letters, 11(11), 115006. https://​doi.​org/​10.​1088/​1748-​9326/​11/​
11/​115006

Gillespie, M. A. K., & Cooper, E. J. (2022). The seasonal dynamics of a high 
Arctic plant–visitor network: Temporal observations and responses 
to delayed snow melt. Arctic Science, 8(3), 786–803. https://​doi.​
org/​10.​1139/​as-​2020-​0056

Grab, S., Knight, J., Mol, L., Botha, T., Carbutt, C., & Woodborne, S. 
(2021). Periglacial landforms in the high Drakensberg, southern 
Africa: Morphogenetic associations with rock weathering rinds 
and shrub growth patterns. Geografiska Annaler: Series A, Physical 
Geography, 103(3), 199–222. https://​doi.​org/​10.​1080/​04353​676.​
2020.​1856625

Hofmeester, T. R., Young, S., Juthberg, S., Singh, N. J., Widemo, F., 
Andrén, H., Linnell, J. D. C., & Cromsigt, J. P. G. M. (2020). Using 
by-catch data from wildlife surveys to quantify climatic parameters 
and timing of phenology for plants and animals using camera traps. 
Remote Sensing in Ecology and Conservation, 6(2), 129–140. https://​
doi.​org/​10.​1002/​rse2.​136

Hollister, R. D., Elphinstone, C., Henry, G. H. R., Bjorkman, A. D., & 
Klanderud, K. (2023). A review of open top chamber (OTC) perfor-
mance across the ITEX network. Arctic Science, 9(2), 1–14.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, 
T., Andreetto, M., & Adam, H. (2017). MobileNets: Efficient con-
volutional neural networks for Mobile vision applications. arXiv, 
http://​arxiv.​org/​abs/​1704.​04861​

Høye, T. T., Ärje, J., Bjerge, K., Hansen, O. L. P., Iosifidis, A., Leese, F., Mann, 
H. M. R., Meissner, K., Melvad, C., & Raitoharju, J. (2021). Deep 
learning and computer vision will transform entomology. Proceedings 
of the National Academy of Sciences of the United States of America, 
118(2), 1–10. https://​doi.​org/​10.​1073/​PNAS.​20025​45117​

Ibrahim, M. R., Haworth, J., & Cheng, T. (2019). WeatherNet: 
Recognising weather and visual conditions from street-level im-
ages using deep residual learning. ISPRS International Journal of 
Geo-Information, 8(12), Article 12. https://​doi.​org/​10.​3390/​ijgi8​
120549

Intergovernmental Panel on Climate Change (Ed.). (2023). Weather and 
climate extreme events in a changing climate. In Climate change 
2021—The physical science basis: Working Group I Contribution to the 
Sixth Assessment Report of the Intergovernmental Panel on Climate 
Change (pp. 1513–1766). Cambridge University Press. https://​doi.​
org/​10.​1017/​97810​09157​896.​013

Jacobs, N., Burgin, W., Fridrich, N., Abrams, A., Miskell, K., Braswell, B. 
H., Richardson, A. D., & Pless, R. (2009). The global network of out-
door webcams: Properties and applications. Proceedings of the 17th 
ACM SIGSPATIAL International Conference on Advances in Geographic 
Information Systems, pp. 111–120. https://​doi.​org/​10.​1145/​16537​
71.​1653789

Julitta, T., Cremonese, E., Migliavacca, M., Colombo, R., Galvagno, M., 
Siniscalco, C., Rossini, M., Fava, F., Cogliati, S., Morra di Cella, U., 
& Menzel, A. (2014). Using digital camera images to analyse snow-
melt and phenology of a subalpine grassland. Agricultural and Forest 
Meteorology, 198–199, 116–125. https://​doi.​org/​10.​1016/j.​agrfo​
rmet.​2014.​08.​007

Katal, N., Rzanny, M., Mäder, P., & Wäldchen, J. (2022). Deep learning 
in plant phenological research: A systematic literature review. 
Frontiers in Plant Science, 13, 805738. https://​doi.​org/​10.​3389/​fpls.​
2022.​805738

Krogh, A., & Vedelsby, J. (1994). Neural network ensembles, cross valida-
tion, and active learning. Advances in Neural Information Processing 
Systems, 7, 231–238.

Lembrechts, J. J., Aalto, J., Ashcroft, M. B., De Frenne, P., Kopecký, M., 
Lenoir, J., Luoto, M., Maclean, I. M. D., Roupsard, O., Fuentes-Lillo, 
E., García, R. A., Pellissier, L., Pitteloud, C., Alatalo, J. M., Smith, S. 
W., Björk, R. G., Muffler, L., Ratier Backes, A., Cesarz, S., … Nijs, I. 
(2020). SoilTemp: A global database of near-surface temperature. 
Global Change Biology, 26(11), 6616–6629. https://​doi.​org/​10.​1111/​
gcb.​15123​

Lembrechts, J. J., Lenoir, J., Roth, N., Hattab, T., Milbau, A., Haider, S., 
Pellissier, L., Pauchard, A., Ratier Backes, A., Dimarco, R. D., Nuñez, 
M. A., Aalto, J., & Nijs, I. (2019). Comparing temperature data 
sources for use in species distribution models: From in-situ logging 
to remote sensing. Global Ecology and Biogeography, 28(11), 1578–
1596. https://​doi.​org/​10.​1111/​geb.​12974​

Lenoir, J., Bertrand, R., Comte, L., Bourgeaud, L., Hattab, T., Murienne, 
J., & Grenouillet, G. (2020). Species better track climate warming 
in the oceans than on land. Nature Ecology & Evolution, 4(8), 1044–
1059. https://​doi.​org/​10.​1038/​s4155​9-​020-​1198-​2

 13652486, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17078 by A

rctic U
niversity of N

orw
ay - U

IT
 T

rom
so, W

iley O
nline L

ibrary on [06/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1007/978-3-030-01270-0_28
https://doi.org/10.2307/1551760
https://doi.org/10.1111/ele.14123
https://doi.org/10.1111/gcb.13051
https://doi.org/10.1111/gcb.13051
https://doi.org/10.1111/gcb.12028
https://doi.org/10.1111/gcb.12028
https://doi.org/10.1002/fee.1222
https://doi.org/10.1111/1365-2664.12432
https://doi.org/10.1111/1365-2664.12432
https://doi.org/10.3390/rs13112045
https://doi.org/10.3390/rs13112045
https://keras.io
https://doi.org/10.1111/j.1365-2311.1993.tb01075.x
https://doi.org/10.1111/j.1365-2311.1993.tb01075.x
https://doi.org/10.1007/s11258-011-9941-z
https://doi.org/10.1007/s11258-011-9941-z
https://doi.org/10.1088/1748-9326/11/11/115006
https://doi.org/10.1088/1748-9326/11/11/115006
https://doi.org/10.1139/as-2020-0056
https://doi.org/10.1139/as-2020-0056
https://doi.org/10.1080/04353676.2020.1856625
https://doi.org/10.1080/04353676.2020.1856625
https://doi.org/10.1002/rse2.136
https://doi.org/10.1002/rse2.136
http://arxiv.org/abs/1704.04861
https://doi.org/10.1073/PNAS.2002545117
https://doi.org/10.3390/ijgi8120549
https://doi.org/10.3390/ijgi8120549
https://doi.org/10.1017/9781009157896.013
https://doi.org/10.1017/9781009157896.013
https://doi.org/10.1145/1653771.1653789
https://doi.org/10.1145/1653771.1653789
https://doi.org/10.1016/j.agrformet.2014.08.007
https://doi.org/10.1016/j.agrformet.2014.08.007
https://doi.org/10.3389/fpls.2022.805738
https://doi.org/10.3389/fpls.2022.805738
https://doi.org/10.1111/gcb.15123
https://doi.org/10.1111/gcb.15123
https://doi.org/10.1111/geb.12974
https://doi.org/10.1038/s41559-020-1198-2


12 of 13  |     ALISON et al.

Lu, C., Lin, D., Jia, J., & Tang, C.-K. (2014). Two-class weather classification. 
2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 
3718–3725. https://​doi.​org/​10.​1109/​CVPR.​2014.​475

Lu, C., Lin, D., Jia, J., & Tang, C.-K. (2017). Two-class weather classifica-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 
39(12), 2510–2524. https://​doi.​org/​10.​1109/​TPAMI.​2016.​2640295

Lumbrazo, C., Bennett, A., Currier, W. R., Nijssen, B., & Lundquist, J. 
(2022). Evaluating multiple canopy-snow unloading parameteriza-
tions in SUMMA with time-lapse photography characterized by cit-
izen scientists. Water Resources Research, 58(6), e2021WR030852. 
https://​doi.​org/​10.​1029/​2021W​R030852

Maclean, I. M. D., Duffy, J. P., Haesen, S., Govaert, S., De Frenne, P., 
Vanneste, T., Lenoir, J., Lembrechts, J. J., Rhodes, M. W., & Van 
Meerbeek, K. (2021). On the measurement of microclimate. 
Methods in Ecology and Evolution, 12(8), 1397–1410. https://​doi.​org/​
10.​1111/​2041-​210X.​13627​

Maclean, I. M. D., & Early, R. (2023). Macroclimate data overestimate range 
shifts of plants in response to climate change. Nature Climate Change, 
13(5), 484–490. https://​doi.​org/​10.​1038/​s4155​8-​023-​01650​-​3

Mann, H. M. R., Iosifidis, A., Jepsen, J. U., Welker, J. M., Loonen, M. J. J. 
E., & Høye, T. T. (2022). Automatic flower detection and phenology 
monitoring using time-lapse cameras and deep learning. Remote 
Sensing in Ecology and Conservation, 1–13, 765–777. https://​doi.​org/​
10.​1002/​rse2.​275

Marion, G. M., Henry, G. H. R., Freckman, D. W., Johnstone, J., Jones, G., 
Jones, M. H., Lévesque, E., Molau, U., Mølgaard, P., Parsons, A. N., 
Svoboda, J., & Virginia, R. A. (1997). Open-top designs for manipu-
lating field temperature in high-latitude ecosystems. Global Change 
Biology, 3(Suppl. 1), 20–32. https://​doi.​org/​10.​1111/j.​1365-​2486.​
1997.​gcb136.​x

Möhl, P., Hiltbrunner, E., & Körner, C. (2020). Halving sunlight reveals 
no carbon limitation of aboveground biomass production in alpine 
grassland. Global Change Biology, 26(3), 1857–1872. https://​doi.​org/​
10.​1111/​gcb.​14949​

Möhl, P., von Büren, R. S., & Hiltbrunner, E. (2022). Growth of alpine 
grassland will start and stop earlier under climate warming. Nature 
Communications, 13(1), Article 1. https://​doi.​org/​10.​1038/​s4146​7-​
022-​35194​-​5

Noh, I., Doh, H.-W., Kim, S.-O., Kim, S.-H., Shin, S., & Lee, S.-J. (2021). 
Machine learning-based hourly frost-prediction system optimized 
for orchards using automatic weather station and digital camera 
image data. Atmosphere, 12(7), Article 7. https://​doi.​org/​10.​3390/​
atmos​12070846

Norouzzadeh, M. S., Nguyen, A., Kosmala, M., Swanson, A., Palmer, M. S., 
Packer, C., & Clune, J. (2018). Automatically identifying, counting, 
and describing wild animals in camera-trap images with deep learn-
ing. Proceedings of the National Academy of Sciences of the United 
States of America, 115(25), E5716–E5725. https://​doi.​org/​10.​1073/​
pnas.​17193​67115​

Ortmann, C. R., & Johnson, S. D. (2021). How reliable are motion-
triggered camera traps for detecting small mammals and birds in 
ecological studies? Journal of Zoology, 313(3), 202–207. https://​doi.​
org/​10.​1111/​jzo.​12849​

Pecl, G. T., Araújo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T. C., Chen, 
I.-C., Clark, T. D., Colwell, R. K., Danielsen, F., Evengård, B., Falconi, 
L., Ferrier, S., Frusher, S., Garcia, R. A., Griffis, R. B., Hobday, A. 
J., Janion-Scheepers, C., Jarzyna, M. A., Jennings, S., … Williams, 
S. E. (2017). Biodiversity redistribution under climate change: 
Impacts on ecosystems and human well-being. Science, 355(6332), 
eaai9214. https://​doi.​org/​10.​1126/​scien​ce.​aai9214

Potter, K. A., Arthur Woods, H., & Pincebourde, S. (2013). Microclimatic 
challenges in global change biology. Global Change Biology, 19(10), 
2932–2939. https://​doi.​org/​10.​1111/​gcb.​12257​

R Core Team. (2023). R: A language and environment for statistical comput-
ing [computer software]. R Foundation for Statistical Computing.

Ramanathan, A. V., Cess, R. D., Harrison, E. F., Minnis, P., Barkstrom, 
B. R., Ahmad, E., Hartmann, D., Science, S., Series, N., Jan, N., 
Ramanathan, V., Cess, R. D., Harrison, E. F., Minnis, P., Barikstrom, 
B. R., Ahmad, E., & Hartmann, D. (1989). Cloud-radiative forcing 
and climate: Results from the earth radiation budget experiment. 
Science, 243(4887), 57–63.

Rixen, C., Høye, T. T., Macek, P., Aerts, R., Alatalo, J. M., Jill, T., Arnold, 
P. A., Barrio, I. C., Bjerke, J. W., Björkman, M. P., Blok, D., Blume-
werry, G., Boike, J., Bokhorst, S., Carbognani, M., Christiansen, C. 
T., Convey, P., Cooper, E. J., Cornelissen, J. H. C., … Zong, S. (2022). 
Winters are changing: Snow effects on Arctic and alpine tundra 
ecosystems. Arctic Science, 8(February), 572–608.

Roales, J., Durán, J., Bechtold, H. A., Groffman, P. M., & Rosi-Marshall, 
E. J. (2013). High resolution measurement of light in terrestrial 
ecosystems using photodegrading dyes. PLoS ONE, 8(9), e75715. 
https://​doi.​org/​10.​1371/​journ​al.​pone.​0075715

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, 
Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., & Fei-Fei, 
L. (2015). ImageNet large scale visual recognition challenge. 
International Journal of Computer Vision, 115(3), 211–252. https://​
doi.​org/​10.​1007/​s1126​3-​015-​0816-​y

Schneider, S., Taylor, G. W., Kremer, S. C., Burgess, P., McGroarty, J., 
Mitsui, K., Zhuang, A., deWaard, J. R., & Fryxell, J. M. (2022). Bulk 
arthropod abundance, biomass and diversity estimation using deep 
learning for computer vision. Methods in Ecology and Evolution, 
13(2), 346–357. https://​doi.​org/​10.​1111/​2041-​210X.​13769​

Spehn, E. M., & Körner, C. (2005). A global assessment of mountain bio-
diversity and its function. In U. M. Huber, H. K. M. Bugmann, & M. 
A. Reasoner (Eds.), Global change and mountain regions: An overview 
of current knowledge (pp. 393–400). Springer Netherlands. https://​
doi.​org/​10.​1007/​1-​4020-​3508-​X_​39

Terry, J. C. D., Roy, H. E., & August, T. A. (2020). Thinking like a naturalist: 
Enhancing computer vision of citizen science images by harnessing 
contextual data. Methods in Ecology and Evolution, 11(2), 303–315. 
https://​doi.​org/​10.​1111/​2041-​210X.​13335​

The MathWorks Inc. (2023). MATLAB Version: 23.2.0.2409890 (R2023b) 
Update 3 [computer software].

Tuia, D., Kellenberger, B., Beery, S., Costelloe, B. R., Zuffi, S., Risse, B., 
Mathis, A., Mathis, M. W., van Langevelde, F., Burghardt, T., Kays, 
R., Klinck, H., Wikelski, M., Couzin, I. D., van Horn, G., Crofoot, M. 
C., Stewart, C. V., & Berger-Wolf, T. (2022). Perspectives in machine 
learning for wildlife conservation. Nature Communications, 13(1), 
1–15. https://​doi.​org/​10.​1038/​s4146​7-​022-​27980​-​y

Valladares, F., Laanisto, L., Niinemets, Ü., & Zavala, M. A. (2016). 
Shedding light on shade: Ecological perspectives of understorey 
plant life. Plant Ecology and Diversity, 9(3), 237–251. https://​doi.​org/​
10.​1080/​17550​874.​2016.​1210262

von Oppen, J., Assmann, J. J., Bjorkman, A. D., Treier, U. A., Elberling, B., 
Nabe-Nielsen, J., & Normand, S. (2022). Cross-scale regulation of 
seasonal microclimate by vegetation and snow in the Arctic tundra. 
Global Change Biology, 28(24), 7296–7312. https://​doi.​org/​10.​1111/​
gcb.​16426​

Wevers, J., Beenaerts, N., Casaer, J., Zimmermann, F., Artois, T., & 
Fattebert, J. (2021). Modelling species distribution from camera 
trap by-catch using a scale-optimized occupancy approach. Remote 
Sensing in Ecology and Conservation, 7(3), 534–549. https://​doi.​org/​
10.​1002/​rse2.​207

Wieczorek, J., Guerin, C., & McMahon, T. (2022). K-fold cross-validation 
for complex sample surveys. Stat, 11(1), e454. https://​doi.​org/​10.​
1002/​sta4.​454

Wild, J., Kopecký, M., Macek, M., Šanda, M., Jankovec, J., & Haase, T. 
(2019). Climate at ecologically relevant scales: A new temperature 
and soil moisture logger for long-term microclimate measurement. 
Agricultural and Forest Meteorology, 268, 40–47. https://​doi.​org/​10.​
1016/j.​agrfo​rmet.​2018.​12.​018

 13652486, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17078 by A

rctic U
niversity of N

orw
ay - U

IT
 T

rom
so, W

iley O
nline L

ibrary on [06/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1109/CVPR.2014.475
https://doi.org/10.1109/TPAMI.2016.2640295
https://doi.org/10.1029/2021WR030852
https://doi.org/10.1111/2041-210X.13627
https://doi.org/10.1111/2041-210X.13627
https://doi.org/10.1038/s41558-023-01650-3
https://doi.org/10.1002/rse2.275
https://doi.org/10.1002/rse2.275
https://doi.org/10.1111/j.1365-2486.1997.gcb136.x
https://doi.org/10.1111/j.1365-2486.1997.gcb136.x
https://doi.org/10.1111/gcb.14949
https://doi.org/10.1111/gcb.14949
https://doi.org/10.1038/s41467-022-35194-5
https://doi.org/10.1038/s41467-022-35194-5
https://doi.org/10.3390/atmos12070846
https://doi.org/10.3390/atmos12070846
https://doi.org/10.1073/pnas.1719367115
https://doi.org/10.1073/pnas.1719367115
https://doi.org/10.1111/jzo.12849
https://doi.org/10.1111/jzo.12849
https://doi.org/10.1126/science.aai9214
https://doi.org/10.1111/gcb.12257
https://doi.org/10.1371/journal.pone.0075715
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1111/2041-210X.13769
https://doi.org/10.1007/1-4020-3508-X_39
https://doi.org/10.1007/1-4020-3508-X_39
https://doi.org/10.1111/2041-210X.13335
https://doi.org/10.1038/s41467-022-27980-y
https://doi.org/10.1080/17550874.2016.1210262
https://doi.org/10.1080/17550874.2016.1210262
https://doi.org/10.1111/gcb.16426
https://doi.org/10.1111/gcb.16426
https://doi.org/10.1002/rse2.207
https://doi.org/10.1002/rse2.207
https://doi.org/10.1002/sta4.454
https://doi.org/10.1002/sta4.454
https://doi.org/10.1016/j.agrformet.2018.12.018
https://doi.org/10.1016/j.agrformet.2018.12.018


    |  13 of 13ALISON et al.

Wipf, S., & Rixen, C. (2010). A review of snow manipulation experiments 
in Arctic and alpine tundra ecosystems. Polar Research, 29(1), 95–
109. https://​doi.​org/​10.​1111/j.​1751-​8369.​2010.​00153.​x

Xiao, H., Zhang, F., Shen, Z., Wu, K., & Zhang, J. (2021). Classification 
of weather phenomenon from images by using deep convolutional 
neural network. Earth and Space Science, 8(5), e2020EA001604. 
https://​doi.​org/​10.​1029/​2020E​A001604

SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.

How to cite this article: Alison, J., Payne, S., Alexander, J. M., 
Bjorkman, A. D., Clark, V. R., Gwate, O., Huntsaar, M., Iseli, 
E., Lenoir, J., Mann, H. M. R., Steenhuisen, S.-L., & Høye, T. T. 
(2023). Deep learning to extract the meteorological by-catch 
of wildlife cameras. Global Change Biology, 30, e17078. 
https://doi.org/10.1111/gcb.17078

 13652486, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17078 by A

rctic U
niversity of N

orw
ay - U

IT
 T

rom
so, W

iley O
nline L

ibrary on [06/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1111/j.1751-8369.2010.00153.x
https://doi.org/10.1029/2020EA001604
https://doi.org/10.1111/gcb.17078

	Deep learning to extract the meteorological by-­catch of wildlife cameras
	Abstract
	1|INTRODUCTION
	2|METHODS
	2.1|Study area
	2.2|Sensor deployment
	2.3|Image labelling
	2.4|Model training
	2.5|Model validation
	2.6|Model aggregation
	2.7|Model testing and deployment

	3|RESULTS AND DISCUSSION
	3.1|Model performance
	3.2|Extensive prediction of micrometeorological data
	3.3|Effects of experimental warming on snow melt
	3.4|Effects of sunshine on bumblebee foraging
	3.5|Applications and future development

	AUTHOR CONTRIBUTIONS
	ACKNO​WLE​DGE​MENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES


