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The Gelfand-Tsetlin and the Feigin–Fourier–Littelmann–Vinberg polytopes for the 
Grassmannians are defined, from the perspective of representation theory, to 
parametrize certain bases for highest weight irreducible modules. These polytopes 
are Newton-Okounkov bodies for the Grassmannian and, in particular, the GT 
polytope is an example of a string polytope. The polytopes admit a combinatorial 
description as the Stanley’s order and chain polytopes of a certain poset, as 
shown by Ardila, Bliem and Salazar. We prove that these polytopes occur among 
matching field polytopes. Moreover, we show that they are related by a sequence 
of combinatorial mutations that passes only through matching field polytopes. As 
a result, we obtain a family of matching fields that give rise to toric degenerations 
for the Grassmannians. Moreover, all polytopes in the family are Newton-Okounkov 
bodies for the Grassmannians.
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1. Introduction

We study the Gelfand-Tsetlin (GT) and Feigin-Fourier-Littelmann-Vinberg (FFLV) polytopes. The GT 
polytope was introduced in [23], in the context of representation theory, to parametrize a basis for the 
irreducible representation V (λ) for the Lie algebra sln(C), with highest dominant integral weight λ. The 
FFLV polytope was introduced in [21], proving a conjecture of Vinberg [39], and parametrizes a different 
basis for V (λ). The lattice points of each polytope parametrize the respective bases for V (λ). So it is 
immediate, from the perspective of representation theory, that these two polytopes have the same number 
of lattice points. Fourier asked whether there was a combinatorial reason for this [5, Question 1.1] and Ardila, 
Bliem and Salazar gave a positive answer to this question by constructing the GT and FFLV polytopes as 
the order and chain polytopes, respectively, of certain marked posets. Combinatorial techniques have proved 
successful in understanding GT polytopes [2,3]. In this paper, we study the GT and FFLV polytopes through 
the lens of matching fields and combinatorial mutations that naturally arise from toric degenerations of the 
Grassmannian Gr(k, n).

A toric degeneration of Gr(k, n) is a flat family over A1
C such that the fiber over 0 is a toric variety 

and all other fibers are isomorphic to Gr(k, n). There are many different approaches to constructing toric 
degenerations for the Grassmannian. These constructions arise from: representation theory through the 
use of standard monomial theory [26,27,29,30], combinatorics via tropical geometry [9,12,25,32,35], and 
algebraic geometry via Newton-Okounkov bodies [4,17,25,34].

Two well-known families of toric degenerations are the Gelfand-Tsetlin (GT) [31, Chapter 14] and the 
Feigin-Fourier-Littelmann-Vinberg (FFLV) degenerations [20]. The polytopes associated to the toric fibers 
of these toric degenerations are the GT and FFLV polytopes respectively. These polytopes are normal [2,19]
and arise as from toric degenerations of the same variety, hence they have the same Ehrhart polynomial. 
This result is proved combinatorially in [5] by showing the order and chain polytopes of marked posets have 
the same Ehrhart polynomials. In this paper, we realize the GT polytopes as matching field polytopes, which 
serve as the base case for the construction of a sequence of polytopes with the same Ehrhart polynomial, 
see Section 3.3.

Matching fields are combinatorial objects introduced by Sturmfels and Zelevinsky in the study of Newton 
polytopes of certain products of maximal minors [38], see Section 2.2. More recently, they have been shown to 
give rise to toric degenerations of Grassmannians [11,12,32], partial flag varieties [14,15] and their Richardson 
varieties [7,8,13]. Each matching field gives rise to a valuation on the Plücker algebra. We say that matching 
field gives rise to a toric degeneration if the valuation makes the Plücker coordinates into a Khovanskii 
basis [25]. In this case, the matching field polytope is a Newton-Okounkov body for the Grassmannian, see 
Remark 2.19.

Each matching field Λ additionally gives rise to a polytope PΛ ⊆ Rk×n. These polytopes are called 
matching field polytopes for the Grassmannian [11,15] or simply matching field polytopes. If a matching 
field gives rise to a toric degeneration then the projective toric variety associated to the polytope PΛ is 
the toric variety that appears as the fiber over 0 in the corresponding toric degeneration. It turns out 
that properties of the matching field polytope can guarantee whether the matching field gives rise to a 
toric degeneration. In particular, by [15, Theorem 1], if PΛ is combinatorial mutation equivalent to the GT 
polytope, then Λ gives rise to a toric degeneration.

A combinatorial mutation is a certain kind of piece-wise linear map, see Section 2.1. Mutations were 
originally introduced by Akhtar, Coates, Galkin, Kasprzyk in [1] to study mirror partners of 3-dimensional 
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Fano manifolds. Such mutations are defined as certain birational transformations of Laurent polynomials. 
A mutation of a Laurent polynomial induces a combinatorial mutation of its Newton polytope. In this 
paper, we define a combinatorial mutation in terms of its action on the dual polytope, see also [11,15]. 
Recently, mutations have been shown to relate: Newton-Okounkov bodies associated to adjacent prime 
cones of tropicalizations [17]; families of polytopes for the flag variety [22,24]; and families of matching field 
polytopes [11,15]. In this paper, we describe the GT and FFLV polytopes for Grassmannians in terms of 
matching fields and show the following:

Theorem (Theorem 3.11). There exist a sequence of combinatorial mutations taking the GT polytope to the 
FFLV polytope such that all intermediate polytopes are matching field polytopes.

In particular, we show that the FFLV polytope for the Grassmannian is a matching field polytope, see 
Theorem 3.5, and as a result we have that all the matching fields, associated to the intermediate matching 
field polytopes, give rise to toric degenerations.

Outline. In Section 2, we fix our notation and recall preliminary definitions and results for: combinatorial 
mutations in Section 2.1; matching fields and their polytopes in Section 2.2; polytopes associated to posets 
in Section 2.3; and toric degenerations on Grassmannians in Section 2.4, which includes a review of Gröbner 
degeneration and Khovanskii bases. The main results from the preliminaries are: Theorem 2.15, the GT 
polytope is a matching field polytope; and Theorem 2.20, mutation equivalence preserves the property of a 
matching field giving rise to a toric degeneration.

In Section 3, we study FFLV polytopes for the Grassmannians using matching field polytopes. In Sec-
tion 3.1, we consider the case Gr(3, n) and show that the FFLV polytopes are given by matching fields, see 
Example 2.8. In Section 3.2, we define the FFLV matching field, see Definition 3.3, and show that its poly-
tope coincides with the FFLV polytope, see Theorem 3.5. In Section 3.3, we define a sequence of matching 
fields that are used in the proof of the main result Theorem 3.11, in Section 3.4. To prove the result, we 
construct a sequence of mutations between the FFLV and GT polytopes for the Grassmannian, through the 
matching field polytopes defined in Section 3.3.

Acknowledgment. During this project, O.C. was an overseas researcher under Postdoctoral Fellowship of 
Japan Society for the Promotion of Science (JSPS). O.C. and F.M. were supported by the grants G0F5921N 
(Odysseus programme) and G023721N from the Research Foundation - Flanders (FWO). F.M. was partially 
supported by the UiT Aurora project MASCOT and the grant iBOF/23/064 from the KU Leuven. A.H. was 
partially supported by JSPS Fostering Joint International Research (B) 21KK0043 and JSPS Grant-in-Aid 
for Scientific Research (C) 20K03513.

2. Preliminaries

In this section, we review all preliminaries required for subsequent sections. We review combinatorial 
mutations [1] from the M -lattice perspective via piece-wise linear maps [24]; matching fields, their polytopes, 
and the toric degenerations they induce [11,12,15,32]; and the polytopes associated to a poset [36]. In 
particular, we fix our notation and highlight important examples.

2.1. Combinatorial mutations of lattice polytopes

Throughout this section, we consider the vector space Rd equipped with the standard inner-product 
〈·, ·〉 : Rd ×Rd → R. We will define combinatorial mutations of a lattice polytope following [1,11,15].
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Fig. 1. The combinatorial mutation in Example 2.3.

Definition 2.1. Fix a primitive lattice point w ∈ Zd and a lattice polytope F ⊆ w⊥. We define the tropical 
map with data w and F as

ϕw,F : Rd → Rd, x �→ x− xminw

where xmin = min{〈x, f〉 : f ∈ F}. Given a lattice polytope P ⊆ Rd, if Q := ϕw,F (P ) is lattice polytope then 
we say that Q is a combinatorial mutation of P . We say that two lattice polytopes are mutation equivalent
if there exists a sequence of mutations from one to the other.

The tropical map ϕw,F is a piece-wise linear map. Moreover, for each region of linearity, the map is given 
by a unimodular map x �→ x − 〈f, x〉w for some vertex f ∈ F .

Remark 2.2. Throughout the paper we consider lattice polytopes contained in Rd. That is a polytope whose 
vertices lie in the lattice Zd ⊆ Rd. From the perspective of toric geometry, this lattice is the M -lattice of 
characters of the torus, as opposed to its dual lattice N of one-parameter subgroups. The tropical map in 
Definition 2.1 is a map ϕw,F : MR → MR where w ∈ M and F ⊆ NR. So tropical maps act on the moment 
polytope P of a toric variety whose fan is given by the inner normal fan of P .

Example 2.3. Let w = (1, 1) ∈ R2 and F = Conv{(0, 0), (1, −1)} ⊆ w⊥. Let H = 〈w〉 ⊆ R2 be the line 
spanned by w. The tropical map ϕw,F is a piecewise shear given by

ϕw,F (x, y) =
{

(y, 2y − x) if y ≥ x,

(x, y) otherwise.

Consider the plane hexagon P ⊆ R2 given by

P = Conv{(1, 0), (0, 1), (1, 1), (−1, 0), (0,−1), (−1,−1)}.

The hexagon P and its image under the tropical map are shown in Fig. 1. From the diagram, we see that 
ϕw,F fixes all points below the line H and acts as a shear above H. In particular, the image is a lattice 
polygon so ϕw,F defines a combinatorial mutation of P .

Given a lattice polytope P ⊆ Rd, its Ehrhart polynomial EP (t) ∈ Q[t] is the function satisfying EP (n) =
|nP ∩Zd| for all n ∈ Z≥0. See [6,16] for more details. Combinatorial mutation preserves properties of lattice 
polytopes. In particular, we have the following.

Proposition 2.4 ([1, Proposition 4]). If two lattice polytopes are mutation equivalent then they have the same 
Ehrhart polynomial.
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2.2. Matching fields and their polytopes

A matching field is a combinatorial object that has been used to successfully parametrise families of toric 
degenerations of Grassmannians. Here, we describe matching fields and their polytopes.

Given integers 1 ≤ k < n, a matching field for the Grassmannian Gr(k, n) is a map Λ:
([n]

k

)
→ Sk which 

sends each k-subset I ⊆ [n] to a permutation Λ(I) ∈ Sk. The permutation induces an order on the elements 
of I = {i1 < · · · < ik} given by the tuple (iΛ(I)(1), iΛ(I)(2), . . . , iΛ(I)(k)), which we call a tuple of Λ. The set 
of all tuples determine a matching field uniquely. Therefore, we may define a matching field by its tuples 
and we identify Λ with its collection of tuples. The entries of a tuple are commonly written vertically in a 
tableau.

Fix k < n and a matching field Λ for Gr(k, n). We denote by {ei,j ∈ Rk×n : i ∈ [k], j ∈ [n]} the set of 
standard basis vectors. The matching field Λ gives rise to a lattice polytope given by

PΛ = Conv
{
vΛ,J̃ :=

k∑
i=1

ei,ji : J = (j1, j2, . . . , jk) ∈ Λ
}

⊆ Rk×n

where Λ is taken as a collection of tuples and J̃ is the underlying set of the tuple J . Often, when the matching 
field is clear, we will write vI for the point vΛ,I , for each subset I ⊆ [n]. Since each point vI is a 0/1-vector 
containing exactly k ones, it follows that the vertices of PΛ are given by V (PΛ) =

{
vI : I ∈

([n]
k

)}
. By abuse 

of notation, we will identify the tuples of Λ with the vertices of PΛ.

Definition 2.5. Fix k < n and let M = (mi,j) ∈ Rk×n be a weight matrix. We say that M is generic if 
for each J = {j1 < · · · < jk} ∈

([n]
k

)
the minimum M̂(J) := min

{∑k
i=1 mi,jσ(i) : σ ∈ Sk

}
is achieved by 

a unique permutation σJ ∈ Sk. The matching field induced by M is ΛM , which is defined by J �→ σJ . A 
matching field Λ for Gr(k, n) is coherent if Λ = ΛM for some generic weight matrix M ∈ Rk×n.

Example 2.6 (Diagonal matching field). Fix k < n. The diagonal matching field is the matching field D(k, n)
which sends each k-subset to the identity permutation. The tuples of D(k, n) are (i1 < i2 < · · · < ik) and 
so the vertices of the matching field polytope PD(k,n) are given by e1,i1 + e2,i2 + · · · + ek,ik ∈ Rk×n. The 
matching field D(k, n) is coherent since it is induced by the generic weight matrix MD given by (MD)1,j = 0
for j ∈ [n] and (MD)i,j = (n − j)ni−2 for each i ∈ {2, . . . , n} and j ∈ [n]. For example, for Gr(3, 6) this 
weight matrix is given by

MD =
[ 0 0 0 0 0 0

5 4 3 2 1 0
30 24 18 12 6 0

]
.

Note that, not all matching fields are coherent.

Example 2.7 (A non-coherent matching field). The matching field Λ = {12, 23, 31}, given as a collection 
of tuples, is not coherent. Assume by contradiction that Λ is induced by some weight matrix

M =
[
a b c
d e f

]
∈ R2×3.

Since 12 is a tuple, we have that a + e < b + d. Similarly, 23 is a tuple so we have b + f < c + e. These 
inequalities give a + f < c + d. However, the tuple 31 implies that c + d < a + f , a contradiction.

We recall the following family of matching fields which have been studied in the context of toric degen-
erations [11,32].
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Example 2.8 (Block-diagonal matching field). Fix k < n. The block-diagonal matching field Λ is the matching 
field induced by the weight matrix

MΛ =

⎡⎣0 0 0 . . . 0
0 n− 1 n− 2 . . . 1
...

...
...

. . .
...

⎤⎦
where the third and subsequent rows are equal to those of MD. For each subset J = {j1 < · · · < jk}, the cor-
responding tuple of Λ is given by (j2, j1, j3, j4, . . . , jk) if 1 ∈ J , otherwise it is given by (j1, j2, j3, j4, . . . , jk)
if 1 /∈ J .

Remark 2.9. The block-diagonal matching fields have be studied in more generality. In [15], the authors study 
matching fields induced by a weight matrix obtained by permuting the second row of MD, see Example 2.6. 
In particular, all such matching fields polytopes are mutation equivalent to the GT polytope, hence each 
matching field gives rise to a toric degeneration of the Grassmannian. For our purposes, it suffices to consider 
the following weaker version of this result.

Theorem 2.10 ([11, Theorems 2 and 4]). Let Λ be the block diagonal matching field for Gr(k, n). The match-
ing field polytopes PΛ and PD are mutation equivalent. Moreover, the sequence of mutation may be chosen 
to pass only through matching field polytopes.

In this paper, we reinterpret this result in terms of order and chain polytopes associated to the Grass-
mannian poset for Grassmannian Gr(3, n), see Section 3.1.

2.3. Order and chain polytopes

In this section, we recall the definitions of two polytopes associated to a poset by Stanley [36], and recall 
the description of their vertices in terms of basic properties of posets.

Definition 2.11. Fix a finite poset Π = {p1, . . . , pd}. We define the two polytopes

O(Π) = {x ∈ Rd : xi ≤ xj if pi < pj and 0 ≤ xi ≤ 1 for all i, j ∈ [d]},

C(Π) = {x ∈ Rd : xi1 + · · · + xis ≤ 1 if pi1 < · · · < pis and 0 ≤ xi for all i ∈ [d]}

called the order polytope and chain polytope, respectively.

The vertices of the order and chain polytopes can be described in terms of the properties of the underlying 
poset. Let (Π, <) be a poset. A subset A ⊆ Π is an anti-chain if any pair of elements of A are incomparable. 
A subset F ⊆ Π is called a filter if for any p ∈ F and q ∈ Π such that p < q, we have that q ∈ F . We note 
that the empty set is both an anti-chain and a filter.

Proposition 2.12 ([36, Corollary 1.3 and Theorem 2.2]). Let Π = {p1, . . . , pd} be a finite poset. The vertices 
of O(Π) are in bijection with the filters of Π. Each filter F ⊆ Π corresponds to the vertex χF = (x1, . . . , xd)
the characteristic vector of F where xi = 1 if pi ∈ F and xi = 0 if pi /∈ F . The vertices of the chain polytope 
C(Π) are the characteristic vectors of the anti-chains of Π.

In particular, O(Π) and C(Π) are 0/1-polytopes. Observe that for any filter F ⊆ Π, the set of elements 
A(F ) = minF := {x ∈ F : y ≮ x for all y ∈ F} is an anti-chain. It is straightforward to show that the map 
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Fig. 2. The Hasse diagram Q3,7 in Example 2.14. The shaded elements form a filter. The squares are the anti-chain of minimal 
elements of the filter.

F �→ A(F ) is a bijection between filters and anti-chains. This means that O(Π) and C(Π) have the same 
number of vertices. Moreover, the polytopes O(Π) and C(Π) have the same Ehrhart polynomial [36].

In this paper, we consider the polytopes associated to the Grassmannian poset, which we describe in the 
following important definition.

Definition 2.13 (Grassmannian poset). Fix k < n. Let Qk,n = {(i, j) ∈ Z2 : 1 ≤ i ≤ k, 1 ≤ j ≤ n − k} be a 
set of pairs of integers. We define a partial order on Qk,n given by

(a, b) < (c, d) ⇐⇒ a ≤ c and b ≤ d.

Example 2.14. The Hasse diagram for the poset Q3,7 is shown in Fig. 2. The vertices of the order polytope 
O(Q3,7) are in bijection with the filters of Q3,7. For example, the filter F = {(3, 2), (3, 3), (3, 4), (2, 4), (1, 4)}, 
the set of shaded elements in the figure, gives rise to the vertex χF which is the characteristic vector of F . 
Each filter can be identified by its corresponding anti-chain minF . For this example, minF = {(3, 2), (1, 4)}, 
which are the square elements in the figure.

It is well known that the order polytope O(Qk,n) of the Grassmannian poset is unimodularly equivalent to 
the matching field polytope PD for the diagonal matching field. The original result, due to Kogan and Miller 
[26,28], describes these polytopes in terms of Gelfand-Tsetlin patterns. So we call the polytope O(Qk,n) the 
GT polytope (Gelfand-Tsetlin polytope) for the Grassmannian and identify it with the diagonal matching 
field polytope PD.

Theorem 2.15. Fix k < n. The order polytope of the Grassmannian poset O(Qk,n) is unimodularly equivalent 
to the matching field polytope PD for the diagonal matching field.

2.4. Toric degenerations of Grassmannians

In this section, we show how coherent matching fields give rise to toric degenerations of the Grassmanni-
ans. Throughout, we fix k < n, a generic weight matrix M ∈ Rk×n and the coherent matching field Λ = ΛM

induced by M , see Definition 2.5.

Grassmannians. The Grassmannian Gr(k, n) is the space of k-dimensional linear subspaces of Cn. The 
Plücker embedding realizes Gr(k, n) as a projective variety given by the image of the map

φ : Gr(k, n) → P (nk)−1, rowspan

⎛⎝x1,1 . . . x1,n
...

. . .
...

⎞⎠ �→ (det(XI))I∈([n]
k )
xk,1 . . . xk,n
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where X = (xi,j) is a k × n matrix and XI is the k × k submatrix consisting of the columns indexed by 

I ⊆ [n] := {1, 2, . . . , n}. We identify Gr(k, n) with its image under φ. So Gr(k, n) is a subvariety of P (nk)−1

given by the vanishing locus of the ideal Gk,n ⊆ C[PI ]I∈([n]
k ). Explicitly, Gk,n is the kernel of the polynomial 

map

φ∗ : C[PI ]I∈([n]
k ) → C[xi,j ]i∈[k],j∈[n], PI �→ det(XI)

where X = (xi,j) is a k × n matrix of variables and XI is the submatrix of X as above. We call Gk,n the 
Plücker ideal of the Grassmannian and each maximal minor det(XI) a Plücker form. The ring generated 
by the Plücker forms is called the Plücker algebra.

Gröbner degenerations. The theory of Gröbner fans, introduced by Mora and Robbiano [33], is one of the 
main tools in commutative algebra to degenerate polynomial ideals into toric ideals. Let w = (w1, . . . , wn) ∈
Rn be a weight vector for the polynomial ring R = C[x1, . . . , xn]. For each polynomial f =

∑
u∈Nn cux

u ∈ R, 
its weight with respect to w is given by w(f) = min{u ·w : cu 
= 0} and its initial form with respect to w is

inw(f) =
∑

u∈Nn

u·w=w(f)

cux
u.

For each ideal I ⊆ R associated to a variety X ⊆ Cn we define its initial ideal with respect to w as 
inw(I) = 〈inw(f) : f ∈ I〉. For each weight w, we obtain a flat family over A1

C whose fibers are given by the 
ideals

It =
〈
t−w(f)f(tw1x1, t

w2x2, . . . , t
wnxn) : f ∈ I

〉
for each t 
= 0 and I0 = inw(I). In particular, if inw(I) is a toric ideal, i.e. a binomial prime ideal, then we 
obtain a toric degeneration of X. See [10] for a more general family of Gröbner degenerations.

Khovanskii bases. Let {f1, . . . , fs} ⊆ R = C[x1, . . . , xn] be a collection of polynomials and w ∈ Rn a weight 
vector for R. Let A = C[f1, . . . , fs] ⊆ R be a subalgebra of R. We define the initial algebra of A to be

inw(A) = C[inw(f) : f ∈ A]

which is the subalgebra generated by the initial terms of elements of A. In general, we have C[inw(f1), . . . ,
inw(fs)] ⊆ inw(A). If equality holds, {f1, . . . , fs} is called a Khovanskii basis for A.

Remark 2.16. Khovanskii bases are defined in greater generality for certain rings equipped with discrete 
valuations [25]. In this case the ring A is equipped with the natural valuation induced by the weight w
[15]. We note that, in the literature, Khovanskii bases have been known by many different names including 
SAGBI bases, canonical bases and subalgebra bases.

We define the ideal I ⊆ S = C[y1, . . . , ys] to be the kernel of the map S → R where yi �→ fi. For 
each weight vector w ∈ Rn we define the induced weight vector ŵ ∈ Rs for the ring S given by ŵ =
(w(f1), w(f2), . . . , w(fs)). The following result gives the connection between Khovanskii bases and toric 
degenerations.

Theorem 2.17 ([37, Theorem 11.4]). Fix f1, . . . , fs ∈ R. Assume that w is generic, i.e. each initial form 
inw(fi) is a monomial. Then f1, . . . , fs is a Khovanskii basis for the algebra they generate if and only if 
inŵ(I) = ker(S → R : yi �→ inw(fi)).
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We combine the above theorem with the definition of a coherent matching field for the Grassmannian to 
obtain the following.

Corollary 2.18. Let Λ be a coherent matching field induced by the weight M ∈ Rk×n. The Plücker forms 
det(XI) form a Khovanskii basis for the Plücker algebra if and only if the matching field gives rise to a 
toric degeneration in

M̂
(Gk,n) = ker(C[PI ] → C[xi,j ] : PI �→ inM (det(XI)).

For any coherent matching field Λ, the kernel of the monomial map in the above corollary is called the 
matching field ideal, denoted IΛ. By [37, Theorem 11.3], it is always the case that in

M̂
(Gk,n) ⊆ IΛ.

Remark 2.19. Following [15, Section 2.4], we note that the polytopes of matching fields that give rise to toric 
degenerations are Newton-Okounkov bodies for the Grassmannian. The valuation on the Plücker algebra is 
derived from the weight w inducing the matching field.

The matching field polytopes PΛ are normal [15, Proposition 3], and we have the following.

Theorem 2.20 ([15, Theorem 1]). Let Λ be a coherent matching field for the Grassmannian. If the match-
ing field polytope PΛ is mutation equivalent to the Gelfand-Tsetlin polytope, then Λ gives rise to a toric 
degeneration of the Grassmannian.

In the following section, we construct the FFLV polytope for the Grassmannian as a matching field 
polytope. We will show that this polytope is mutation equivalent to the GT polytope by a sequence of 
mutations that passes only through matching field polytopes. So, by Theorem 2.20, we obtain a family of 
toric degenerations of the Grassmannian. By Corollary 2.18, for each such toric degeneration, we obtain a 
weight vector such that the Plücker forms are a Khovanskii basis for the Plücker algebra.

3. FFLV polytopes for Grassmannians

In this section, we recall that the order and chain polytopes for the Grassmannian poset are matching 
field polytopes. We will prove that they are related by a sequence of mutations that passes only through 
matching field polytopes. We begin by fixing out notation for the section and describing connections between 
the Grassmannian poset and the Gelfand-Tsetlin and Feigin–Fourier–Littelmann–Vinberg polytopes, which 
are usually defined for flag varieties.

Throughout, fix k < n. The Grassmannian Gr(k, n) admits a toric degeneration to the toric variety 
associated to the diagonal matching field [31]. The corresponding toric ideal is a Hibi ideal. That is, the 
ideal is generated by binomials of the form PσPτ − Pσ∧τPσ∨τ where σ and τ are incomparable elements of 
a certain distributive lattice L. By Birkhoff’s Representation Theorem, the lattice L is determined by its 
poset of join irreducible elements. For the Grassmannian, this poset is precisely Qk,n, see Definition 2.13. 
Recall that the order polytope O(Qk,n) is naturally unimodularly equivalent to the polytope PD of the 
diagonal matching field, see Theorem 2.15.

The diagonal matching field gives rise to a toric degeneration of the flag variety Fln embedded in a 
product of Grassmannians [31]. The resulting projective toric variety is naturally the toric variety associated 
to the diagonal matching field polytope for the flag variety [15]. This polytope can also be described as a 
Gelfand-Tsetlin polytope GT(λ) where λ = (0, 1, 2, . . . , n − 1). The polytope GT(λ) is the order polytope 
of a marked poset [5, Section 4.1], see Fig. 3. Observe that the order polytope of the Grassmannian poset 
O(Qk,n) is equal to the GT polytope GT(λ(k, n)) where λ(k, n) := (0, . . . , 0, 1, . . . , 1) is the vector that 
contains k zeros and (n − k) ones. We define this polytope to be the GT polytope of the Grassmannian.

The Feigin–Fourier–Littelmann–Vinberg polytopes FFLV(λ) for the flag variety are given by the chain 
polytope of the same marked poset [5]. Following the above discussion of the GT polytope for the Grass-
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Fig. 3. The Hasse diagrams for the posets associated to the flag variety (left) and the Grassmannian (right).

mannian, we naturally define the FFLV polytope for the Grassmannian to be the chain polytope of the 
Grassmannian poset C(Qk,n).

3.1. The Grassmannian Gr(3, n)

In this section, we focus on the case of Grassmannian Gr(3, n). We provide a new interpretation of the 
FFLV polytope as a block diagonal matching field polytope, see Example 2.8. Note that block diagonal 
matching fields are very well studied, and so we can use this interpretation to give an alternative proof of 
our main result, Theorem 3.11, in this setting.

Theorem 3.1. Let B be a block diagonal matching field. The FFLV polytope for Gr(3, n) is unimodularly 
equivalent to the polytope PB.

Proof. We begin by relabeling the elements of the poset Q3,n as zi+2 := (1, i), yi+2 := (2, i) and xi+2 := (3, i)
for each i ∈ {1, 2, . . . , n −3}. Note, with this notation, the elements of the poset are {xi, yi, zi : 3 ≤ i ≤ n −1}. 
The anti-chains of Qk,n are the sets:

• The empty set ∅,
• All singletons {xi}, {yi} and {zi} with 3 ≤ i ≤ n − 1,
• Two-subsets {xi, yj}, {xi, zj} and {yi, zj} where 3 ≤ i < j ≤ n − 1,
• Three-subsets {xi, yj , z�} where 3 ≤ i < j < � ≤ n − 1.

Recall that the tuples of the block diagonal matching field B are (i, 1, j) where 1 < i < j ≤ n and (i, j, �)
where 2 ≤ i < j < � < n. We identify each triples with the corresponding vertex of the matching field 
polytope PB ⊂ R3×n. Explicitly, we fix a basis for R3×n given by E = {xi, yi, zi : 1 ≤ i ≤ n}. A tuple 
(i, j, �) ∈ [n]3 is identified with the corresponding point in R3×n, which is xi+yj+z�. We define the subspace 
R3×(n−3) ⊆ R3×n as the span of F = {xi, yi, zi : 3 ≤ i ≤ n − 1}.

We proceed to show that the FFLV polytope and PB are unimodularly equivalent by considering a 
projection of the matching field polytope. Consider the projection map

Π : R3×n → R3×(n−3)
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Table 1
Vertices of PB under the projection Π in the proof 
of Theorem 3.1.
v ∈ PB Π(v) Conditions
(2, 1, i) zi 3 ≤ i ≤ n − 1
(2, 1, n) 0
(i, 1, j) xi + zj 3 ≤ i < j ≤ n − 1
(i, 1, n) xi 3 ≤ i ≤ n − 1
(2, i, j) yi + zj 3 ≤ i < j ≤ n − 1
(2, i, n) yi 3 ≤ i ≤ n − 1
(i, j, �) xi + yj + z� 3 ≤ i < j < � ≤ n − 1
(i, j, n) xi + yj 3 ≤ i < j ≤ n − 1

defined by its action on the basis E by fixing F and sending all elements in E\F to zero. The image of each 
vertex of PB under Π is shown in Table 1.

The projection Π sends the vertices of PB to the vertices of the FFLV polytope, which are the points 
corresponding to the anti-chains of the poset. Therefore, the image of PB under Π is the FFLV polytope. 
Since the vertices of PB avoid the basis vectors x1, xn, y2, yn, z1 and z2 in E, the projection Π gives rise to 
a unimodular equivalence of polytopes. �

Recall that the block diagonal matching field polytopes are mutation equivalent to the GT polytope 
by Theorem 2.10. By Theorem 3.1, the FFLV polytope is unimodularly equivalent to the block diagonal 
matching field polytope for Gr(3, n), which gives us the following result.

Corollary 3.2. The GT polytope and FFLV polytope for Gr(3, n) are related by a sequence of combinatorial 
mutations that pass only through matching field polytopes.

3.2. FFLV matching field polytope for the Grassmannian Gr(k, n)

We now turn our attention to general Grassmannians Gr(k, n). A straightforward computation shows that 
Theorem 3.1 does not extend to Gr(4, 8), i.e. the chain polytope C(Qk,n) is not unimodularly equivalent to 
any block diagonal matching field polytope. Therefore, we define a new class of coherent matching fields 
that gives rise to the polytope C(Qk,n).

We note that FFLV polytopes have been studied from the perspective of Khovanskii bases and trop-
icalization [18]. However, in this section we give a concrete description of the polytope, i.e. an explicit 
description of its vertices, which is amenable to our methods for constructing combinatorial mutations in 
Section 3.4.

Throughout this section, we fix k < n. We define the k × n matrix Diag which gives rise to the diagonal 
matching field, see Example 2.6. The entries of Diag are given by (Diag)i,j = (i − 1)(n + 1 − j). We give an 
explicit formulation of a matrix that induces the FFLV matching field.

Definition 3.3. Let N ∈ N be a sufficiently large integer, for example N = n3 is sufficient. Let D = (di,j)
be the k × n matrix where di,j = N if i = j and di,j = 0 otherwise. We define

MFFLV = Diag −D.

The matrix MFFLV induces a matching field which we denote Bk,n. The requirement that ‘N is sufficiently 
large’ is equivalent to the condition that Bk,n is well-defined. We call Bk,n the FFLV matching field for 
Gr(k, n).

Before we state the result, let us first see an example of the matching field Bk,n.



12 O. Clarke et al. / Journal of Pure and Applied Algebra 228 (2024) 107637
Example 3.4. Let us consider the example for Gr(3, 7). The diagonal matching field is induced by the matrix

Diag =
[ 0 0 0 0 0 0 0

7 6 5 4 3 2 1
14 12 10 8 6 4 2

]
.

In this case we take N = 20, which is sufficiently large. We form the matrix D and subtract it from Diag
to obtain MFFLV

[ 0 0 0 0 0 0 0
7 6 5 4 3 2 1
14 12 10 8 6 4 2

]
−
[20 0 0 0 0 0 0

0 20 0 0 0 0 0
0 0 20 0 0 0 0

]
=
[−20 0 0 0 0 0 0

7 −14 5 4 3 2 1
14 12 −10 8 6 4 2

]
.

Suppose S = {s, t, u} ⊂ [7] where 1 ≤ s < t < u ≤ 7. The tableau representation of the tuples associated 
to S with respect to B3,6 is given by:

s

t

u

1
t

u

t

2
u

t

u

3

1
2
u

1
u

3

u

2
3

1
2
3

if s > 3; if s = 1, if s = 2, if s = 3; if s = 1, if s = 1, if s = 2, if s = 1,
t > 3; t > 3; t = 2, t = 3; t = 3; t = 2,

u > 3; u = 3.

For further details, see Section 2.2 or equivalently the image of the Plücker variable PS under the monomial 
map associated to B3,6 in Corollary 2.18. In general, for Gr(k, n), we form the tuple associated to S by 
putting each i with 1 ≤ i ≤ k in the i-th position and arranging the remaining entries in increasing order.

Theorem 3.5. The FFLV polytope for Gr(k, n) is unimodularly equivalent to the matching field polytope 
PBk,n

.

Proof. Let us consider the chain polytope C(Qk,n) of Qk,n whose vertices correspond to anti-chains. This 
polytope naturally lives in Rk×(n−k), which has a basis in bijection with the elements Qk,n. Let Y = {yi,j :
i ∈ [k], j ∈ [n − k]} be a basis for Rk×(n−k) and define a bijection between Y and Qk,n by

(i, j) ←→ yk+1−i,j .

We write the vertices of the chain polytope with respect to this bijection. So, the empty set corresponds to 
the zero vector; each singleton subset {(i, j)} corresponds to the vector yk+1−i,j ; an anti-chain {(i, j), (�, m)}
corresponds to the vector yk+1−i,j + yk+1−�,m; and so on. Observe that a pair of poset elements are incom-
parable if and only if the corresponding basis elements yi,j and yi′,j′ satisfy: i < i′ and j < j′, or i′ < i and 
j′ < j.

Since the matching field polytope PBk,n
naturally lives in Rk×n with basis {ei,j : i ∈ [k], j ∈ [n]}, we now 

define a projection

Π : Rk×n → Rk×(n−k) with ei,j �→
{

yi,j−k if k + 1 ≤ j ≤ n,
0 otherwise.

We show that Π induces a unimodular equivalence between PBk,n
and C(Qk,n). For each k-subset I = {i1 <

· · · < ik}, consider the corresponding tuple of the matching field Bk,n. The tuple is uniquely determined by 
the following criteria:
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• If ij ∈ [k], then it appears in position ij in the tuple,
• The entries ij that do not lie in [k], appear in increasing order in the tuple.

Under the map Π, the basis vectors ei,j where j ∈ [k], which correspond to the entries of the tuple that lie 
in [k], are sent to 0. The remaining entries of the tableau are mapped by ei,j �→ yi,j−k for k + 1 ≤ j ≤ n. 
Since the entries of the tuple that are not killed by Π appear in increasing order, it follows that the basis 
vectors that appear in Π(vI) correspond to pairwise incomparable elements of Qk,n, i.e. an anti-chain. So 
we have showed that each vertex vI is mapped to a vertex of the chain polytope. It remains to show that 
this map between vertices is injective.

By the above criteria for tuples of the matching field Bk,n, the subset I is uniquely determined by the 
entries that lie in {k + 1, . . . , n} and their position in the tuple. This is precisely the information given by 
the image of a vertex under the map Π. Therefore, the map Π restricts to a bijection between the vertices of 
PBk,n

and C(Qk,n). Since Π is a projection, it follows that these polytopes are unimodularly equivalent. �
3.3. Intermediate matching field polytopes

In this section, we construct the intermediate polytopes that appears in the sequence of mutations from 
the GT polytope to the FFLV polytope in the proof of Theorem 3.11. We proceed by introducing a sequence 
of coherent matching fields that interpolates between the diagonal matching field and the FFLV matching 
field. As an outline of the construction: we first define a sequence of triples S(k, n), we use these triples to 
define a sequence of weight matrices M(k, n), and we then show that the weight matrices induce the desired 
matching fields B(k, n).

Remark 3.6. In the construction below, we give an alternative description of a weight matrix that induces 
the FFLV matching field. We note that the weight matrix MFFLV simplifies the proof of Theorem 3.5
because the defining criteria for the tuples of the matching field immediately follow from MFFLV, see the 
proof of Theorem 3.5 and Example 3.4. However, the definition below is amenable to the construction of 
combinatorial mutations because the intermediate matching fields are defined inductively by permuting the 
entries of the weight matrices.

Throughout this section, fix k < n. Recall D the diagonal matching field for Gr(k, n) induced by the 
generic weight matrix MD, see Example 2.6. Observe that MD has the property that, for any i ∈ [k−1], the 
difference between any pair of entries in row i is less than the difference between any two distinct entries in 
row i + 1. Therefore, any row-wise permutation of the matrix MD induces a coherent matching field.

We inductively define a finite sequence S(k, n) of triples (pi, �i, qi) ∈ [n]3 with i ≥ 0 as follows. We define 
(p0, �0, q0) = (k + 1, k, n). Given (pi, �i, qi) for some i ≥ 0, then (pi+1, �i+1, qi+1) is given by:

• (pi, �i, qi + 1) if qi < n,
• (pi, �i + 1, k + 1) if qi = n and �i < pi − 1,
• (pi − 1, 1, k + 1) if pi > 2, �i = pi − 1 and qi = n.

The sequence terminates at the triple (2, 1, n).
For example if k = 3 and n = 6 then the sequence of triples is given by

(436, 314, 315, 316, 324, 325, 326, 214, 215, 216).

We inductively define a finite sequence M(k, n) = (M0, M1, . . . ) of weight matrices with one weight 
matrix for each entry of S(k, n). The first weight matrix in the sequence is M0 = MD. See Example 2.6. 
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Assume that we have defined the weight matrix Mi−1 for some i ≥ 1. Then the weight matrix Mi is obtained 
from Mi−1 by swapping the entries (Mi−1)�i+1,pi

and (Mi−1)�i+1,qi .

Example 3.7. For (k, n) = (3, 6) the first few weight matrices in the sequence M(3, 6) are:

MD =
[ 0 0 0 0 0 0

5 4 3 2 1 0
30 24 18 12 6 0

]
,

⎡⎣ 0 0 0 0 0 0
5 4 2 3 1 0
30 24 18 12 6 0

⎤⎦ ,
⎡⎣ 0 0 0 0 0 0

5 4 1 3 2 0
30 24 18 12 6 0

⎤⎦ ,
⎡⎣ 0 0 0 0 0 0

5 4 0 3 2 1
30 24 18 12 6 0

⎤⎦ ,
⎡⎣ 0 0 0 0 0 0

5 4 0 3 2 1
30 24 12 18 6 0

⎤⎦ ,
⎡⎣ 0 0 0 0 0 0

5 4 0 3 2 1
30 24 6 18 12 0

⎤⎦ , . . .
where the swapped entries are shown in boxes.

Each weight matrix Mi induces a coherent matching field, which we write as B(k, n)i. The polytope 
corresponding to the matching field B(k, n)i is denoted P (k, n)i ⊆ Rk×n. The tuples that define the matching 
field can be inductively described as follows:

Proposition 3.8. Fix k < n and i ∈ {1, . . . , #S(k, n)} and write (p, �, q) for the triple (pi, �i, qi). Then the 
matching field B(k, n)i is given by the tuples

B(k, n)i = {(j1, . . . , jk) ∈ B(k, n)i−1 : j� 
= p or j�+1 
= q}

∪ {(j1, . . . , j�−1, q, p, j�+1, . . . , jk) : (j1, . . . , jk) ∈ B(k, n)i−1, j� = p and j�+1 = q}.

In other words, the tuples of B(k, n)i are obtained from B(k, n)i−1 by swapping the positions of p and q if 
they appear in positions � and � + 1.

Proof. Let M be any matrix whose entries are row-wise equal to MD. Let J = {j1 < · · · < jk} ⊆ [n] be 
a k-subset and consider the Plücker form PJ ∈ C[xs,t]s∈[k],t∈[n]. Suppose that the initial term of PJ with 
respect to M is given by c 

∏k
s=1 xs,js for some c ∈ {+1, −1}.

Claim 1. For each s ∈ [k], we have that Ms,js = min{M1,j1 , M2,j2 , . . . , Ms,js}.

Proof. We proceed by induction on k. If k = 1 then the claim holds trivially. For the inductive step, it 
suffices to show the claim for s = k. Suppose that Ms′,js′ = min{M1,j1 , M2,j2 , . . . , Mk,jk} for some s′ 
= k. 
By the definition of MD, we have Mk,jk − Ms′,js′ ≥ nk−2. Let {j′1, . . . , j′k−1} = {j1, . . . , jk}\js′ . By the 
definition of MD, we have that Mt,j′t ≤ (n − 1)nt−2 for each t ∈ {2, . . . , k− 1} and M1,j′1 = 0. We have that 
c′xs′,js′

∏k−1
t=1 xt,j′t is a term of PJ for some c′ ∈ {+1, −1}. The weight of this term with respect to M is 

given by

Ms′,js′ +
k−1∑
t=1

Mt,j′t ≤ Ms,js +
k−1∑
t=2

(n− 1)nt−2 = Ms,js + nk−2 − (n− 1) < Mk,jk .

Therefore, the initial term of PJ is not c 
∏k

s=1 xs,js , a contradiction, and we have shown the claim. �
Let (j1, . . . , jk) ∈ B(k, n)i−1 be a tuple. Note that the only difference between the matrices M(k, n)i−1

and M(k, n)i is in row � +1. So, by Claim 1, we have that the tuples corresponding to (j1, . . . , jk) in B(k, n)i
and in B(k, n)i−1 coincide from position � + 2 to position k.
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Claim 2. We have that (M(k, n)i−1)�+1,p−(M(k, n)i−1)�+1,q = n�−1, in particular this difference is as small 
as possible in row � + 1 of M(k, n)i−1.

Proof. We imagine that the matrix M(k, n)i−1 is obtained from MD by a sequence of swaps among its 
entries. Note that it suffices to consider only the swaps that occur in row � +1. Each such swap is associated 
to an element of S(k, n)j where �j = � and the subsequence of such elements is given by

(k, �, k + 1), (k, �, k + 2), . . . , (k, �, n), (k − 1, �, k + 1), . . . , (k − 1, �, n), . . . , (� + 1, �, n).

For ease of notation, we write down the entries of row � +1 of the weight matrices divided by n�−1, so for MD

this gives (n −1, n −2, . . . , 1, 0). Consider the effect of applying the swaps defined by (k, �, k+1), . . . , (k, �, n)
to MD. Each swap interchanges the entry in column k with the next smallest entry in that row. As a result, 
the second row of M(k, n)j where S(k, n)j = (k, �, n) is given by (n − 1, n − 2, . . . , n −k+1, 0, n −k, n −k−
1, . . . , 2, 1). Similarly, for each s ∈ {1, . . . , k−�}, the second row of M(k, n)j where S(k, n)j = (k−s +1, �, n)
is given by (n − 1, n − 2, . . . , n − k + s, s − 1, s − 2, . . . , 0, n − k + s − 1, n − k + s − 2, . . . , s), and each swap 
interchanges an element with the next smallest entry in the same row. This concludes the proof of the 
claim. �

By Claim 2, we have that (j1, . . . , jk) is a tuple of B(k, n)i if either j�+1 
= p or j�+1 
= q. On the other 
hand, if j� = p and j�+1 = q then we have that the corresponding entries of M(k, n)i are swapped. And so 
the corresponding tuple is obtained by swapping the position of p and q in the tuple. This concludes the 
proof of the lemma. �
Notation. Whenever k and n are fixed, we omit them from the notation of S(k, n), M(k, n), B(k, n) and 
P (k, n) and write S, M , B and P , respectively.

We give an explicit description of the tuples that define Bi as follows.

Lemma 3.9. Let J = {j1 < · · · < jk} ⊆ [n] be a k-subset. Construct the tuple T (i)J = (t1, . . . , tk) whose 
entries are the elements J satisfying the following conditions:

• If j ∈ J ∩ {pi + 1, . . . , k} then tj = j,
• If js = pi ∈ J for some s ≤ �i and js+d ≤ qi where d ≥ 1 is the smallest value such that js+d ≥ k + 1

then t�i+1 = js,
• If js = pi ∈ J for some s ≤ �i and js+1 > qi where d ≥ 1 is the smallest value such that js+d ≥ k + 1

then t�i = js,
• The entries of T (i)J not listed above are in ascending order.

Then the tuples of Bi are exactly T (i) :=
{
T (i)J : J ∈

([n]
k

)}
.

Proof. For ease of notation, we use the term conditions to refer to the conditions satisfied by the tuple in 
the statement of the lemma. The proof follows by induction on i ∈ {1, . . . , #S}. Suppose i = 1 and fix a 
k-subset J ⊆ [n]. We have Si = (k, 1, k + 1) so the set {pi + 1, . . . , k} is empty and there are no elements of 
T (i)J determined by the first condition. Consider the second and the third conditions. If we have js = pi and 
s ≤ �i then it follows that j1 = k. If j2 ≤ qi then j2 = k + 1 and so t2 = j1 = k. In this case, the remaining 
entries of T (i)J are listed in ascending order so we have T (i)J = (j2, j1, j3, . . . , jk) = (k + 1, k, j3, . . . , jk). 
Otherwise if j2 > qi then it follows that j2 > k + 1 and T (i)J = (j1, j2, . . . , jk) is given in ascending order. 
By Proposition 3.8, we have that T (1) coincides with the tuples of B1.
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For the inductive step, fix some i ≥ 1 and assume that the tuples of Bi coincide with T (i). By Proposi-
tion 3.8, the matching field Bi+1 is obtained by swapping the positions of pi+1 and qi+1 within all tuples 
of Bi for which pi+1 appears in position �i+1 and qi+1 in position �i+1 + 1. Let J = {j1 < · · · < jk} be a 
k-subset of [n]. Suppose that T (i)J 
= T (i +1)J . We proceed by taking cases on pi, �i and qi which determine 
Si+1.

Case 1. Assume that qi < n and so Si+1 = (pi, �i, qi + 1). It follows that js = pi for some s ≤ �i. Let d ≥ 1
be the smallest value such that js+d /∈ {pi +1, . . . , k}. Since T (i)J 
= T (i +1)J , it follows that js+r = qi +1. 
By the inductive hypothesis, we have that T (i)J is a tuple of Bi. Within T (i)J , we have that pi appears in 
position �i. By an easy inductive argument using the definition of the matching fields Ba where 1 ≤ a ≤ i, 
it follows that js+r appears in position �i + 1 in T (i)J . In the tuple T (i + 1)J we have that the positions of 
pi and qi + 1 are swapped, which concludes this case.

Case 2. Assume that qi = n and �i < pi − 1 and so Si+1 = (pi, �i + 1, k + 1). It follows that js = pi for some 
s ≤ �i. Let d ≥ 1 be the smallest value such that js+d /∈ {pi + 1, . . . , k}. Since T (i)J 
= T (i + 1)J , it follows 
that js+d = k+1. By a simple inductive argument, it is easy to see that the position of pi in T (i)J is �i +1. 
Therefore, the position of k+1 in T (i)J is �i +2. On the other hand, the position of pi in T (i +1)J is �i +2
and the position of k + 1 is �i + 1. Since these are the only entries of the tuples which are different, we are 
done with this case.

Case 3. Assume that qi = n and �i = pi − 1 and so Si+1 = (pi − 1, 1, k + 1) where pi > 2. It follows that 
j1 = pi−1. Let d ≥ 1 be the smallest value such that jd /∈ {pi, . . . , k}. Since T (i)J 
= T (i +1)J we have that 
jd = k + 1. We see that pi − 1 appears in position 1 in T (i)J and, by a straightforward inductive argument, 
that jd appears in position 2. In T (i + 1)J , we have that pi − 1 appears in position 2 and jd appears in 
position 1. Since these are the only entries of the tuples which are different, we are done with this case.

In each case we have shown that the tuples in T (i) which do not appear in T (i + 1) are exactly those 
which contain pi in position �i and qi in position �i +1. We have also shown that swapping these two entries 
gives a tuple in T (i + 1) and so we are done. �

Let s = #S − 1 be the index of the last entry in the sequence S. In the following result, we show 
that the matching fields Bk,n (see Definition 3.3) and Bs, induced by the weight matrices MFFLV and Ms

respectively, are the same.

Proposition 3.10. Let s = #S − 1. The matching fields induced by the weight matrices MFFLV and Ms

are equal. In particular, their induced weight vectors lie in the same top-dimensional cone of the tropical 
Grassmannian.

Proof. The explicit description of the matching field associated to Ms is given in Lemma 3.9. In particular, 
for any subset J = {j1 < · · · < jk}, the corresponding tuple is given by T (s)J = (t1, . . . , tk) where tj = j

for each j ∈ {1, . . . , k} and the remaining elements of T (s)J are in ascending order. This tuple is identical 
to the tuple induced by the weight matrix MFFLV. �
3.4. Mutation equivalence of FFLV and GT matching field polytopes

In this section, we show that the FFLV and GT matching field polytopes are mutation equivalent.

Theorem 3.11. The GT polytope and the FFLV polytope for Gr(k, n) are connected by a sequence of com-
binatorial mutations. Moreover, the intermediate polytopes can be taken to be matching field polytopes, and 
each is a Newton-Okounkov body for the Grassmannian.
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Remark 3.12. In recent work [22], the authors exhibit mutation equivalence for various Newton-Okounkov 
bodies for the full flag variety. We note that the main difference is that our main result, Theorem 3.11, gives 
a sequence of mutations passing only through matching field polytopes. Each such polytope arises from a 
different valuation on the Plücker algebra that make the Plücker forms a Khovanskii basis for the Plücker 
algebra. In particular, we have an explicit description of all intermediate polytopes in terms of matching 
field polytopes.

We recall from Section 3.3 the sequence of triples S = S(k, n), the weight matrices M = M(k, n) and 
matching fields B = B(k, n). For each i ∈ {1, . . . , #S}, we have the triple Si = (pi, qi, �i) ∈ [n]3, the 
weight matrix Mi ∈ Rk×n and the matching field Bi. To prove Theorem 3.11, we construct a combinatorial 
mutation which takes the polytope Pi−1 associated to Bi−1 to the polytope Pi associated to Bi for each 
i ∈ {1, . . . , #S}. We begin by defining a tropical map.

Definition 3.13. Fix k < n and i ∈ {1, . . . , #S}. For the following definitions we recall that Si = (pi, �i, qi) ∈
[n]3 is a triple of natural numbers. We define wi ∈ Rk×n to be the matrix given by

wi
s,t =

⎧⎪⎪⎨⎪⎪⎩
1 if (s, t) ∈ {(�i, qi), (�i + 1, pi)},
−1 if (s, t) ∈ {(�i, pi), (�i + 1, qi)},
0 otherwise.

We define the matrix f i ∈ Rk×n by

f i
s,t =

⎧⎪⎪⎨⎪⎪⎩
−1 if s = �i and t ∈ {pi, qi, qi + 1, . . . , n},
1 if s = �i + 1 and t ≥ qi + 1,
0 otherwise.

It is convenient to view wi and f i as matrices

wi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pi qi

1 0 · · · 0 0 0 · · · 0 0 0 · · · 0
...

. . . 0
. . . 0

. . .

�i 0 · · · 0 −1 0 · · · 0 1 0 · · · 0

�i + 1 0 · · · 0 1 0 · · · 0 −1 0 · · · 0
...

. . . 0
. . . 0

. . .

k 0 · · · 0 0 0 · · · 0 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

f i =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pi qi

1 0 · · · 0 0 0 · · · 0 0 0 · · · 0
...

. . . 0
. . . 0

. . .

�i 0 · · · 0 −1 0 · · · 0 −1 −1 · · · −1

�i + 1 0 · · · 0 0 0 · · · 0 0 1 · · · 1
...

. . . 0
. . . 0

. . .

k 0 · · · 0 0 0 · · · 0 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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By the above depiction, it is clear that f i ∈ (wi)⊥. So, we define the tropical map ϕi := ϕwi,F where 
F = Conv{0, f i}.

We show that the tropical map ϕi defines a combinatorial mutation between the polytopes Pi−1 and 
Pi for each i ∈ {1, . . . , #S}. In the following sections, unless otherwise stated, we will fix k < n and 
i ∈ {1, . . . , #S}.

Lemma 3.14. Let J = {j1 < · · · < jk} ⊆ [n] be a k-subset. Let js ∈ J denote the element that appears in 
position �i in the tuple corresponding to J in Bi. Let d ≥ 1 be the smallest value such that js+d ≥ k + 1. 
The inner product of f i with the vertex vi−1

J ∈ V (Pi−1) is

〈f i, vi−1
J 〉 =

⎧⎪⎪⎨⎪⎪⎩
−1 if js = pi and js+d = qi,

1 if pi < js < qi < js+d or js < pi < qi < js+d,

0 otherwise.

The inner product of f i with the vertex viJ ∈ V (Pi) is

〈f i, viJ〉 =

⎧⎪⎪⎨⎪⎪⎩
−1 if js = qi and js+d = pi,

1 if pi < js < qi < js+d or js < pi < qi < js+d,

0 otherwise.

Proof. First consider the polytope Pi−1. By Lemma 3.9, we have that js+d appears in position �i +1 in the 
tuple associated to J . Suppose that js = pi. If js+d = qi then the inner product of vi−1

J with f i is −1. If 
js+d 
= qi, then by Lemma 3.9, it follows that js+d > qi and so the inner product of vi−1

J with f i is 0. Now 
suppose that js 
= pi. Since js < js+d, the inner products in the statement of the lemma follow immediately.

Next consider the polytope Pi. By definition, the tuples of Bi are obtained from Bi−1 by swapping pi
and qi if they appear in positions �i and �i + 1 respectively. However this does not affect the inner product 
of such tuples with f i. And so the analogous result holds for Pi. �
Lemma 3.15. Suppose that vI , vJ ∈ V (Pi) are vertices such that 〈f i, vI〉 = 1 and 〈f i, vJ 〉 = −1. Then there 
exist vertices vI′ , vJ ′ ∈ V (Pi) ∩ (f i)⊥ such that vI + vJ = vI′ + vJ ′ . The same also holds for Pi−1.

Proof. We first focus on the polytope Pi. Since i is fixed and we will not consider the polytope Pi−1 until 
we focus on the other case, we will omit i from the notation of the polytope Pi, vector f i, and natural 
number pi, �i and qi to avoid confusion with certain elements of subsets. We will write T (I) for the tuple 
T (i)I associated to the set I. We write I = {i1 < · · · < ik} and J = {j1 < · · · < jk} for the two k-subsets 
of [n].

Since 〈f, vJ〉 = −1, by Lemma 3.14, we have that T (J)� = q, that is the entry of T (J) in position � is q
and T (J)�+1 = p. Suppose that T (I)� = is for some s. By Lemma 3.9, we have that T (I)�+1 = is+d where 
d ≥ 1 is the smallest value such that is+d ≥ k + 1. Since 〈f, vI〉 = 1, by Lemma 3.14, we have that is+d > q

and either: is < p; or p < is < q. We define the sets

I ′ = {T (I)1, . . . , T (I)�, T (J)�+1, . . . , T (J)k} and J ′ = {T (J)1, . . . , T (J)�, T (I)�+1, . . . , T (I)k}. (1)

We will show that the entries above within each set are distinct and that the order of the entries in T (I ′)
and T (J ′) coincide with the order above.

Note that for any i ∈ I ∩ {p + 1, . . . , k} we have that T (I)i = i and similarly for J . Since p < �, we 
have that none of T (I)1, . . . , T (I)� or T (J)1, . . . , T (J)� lie in {p + 1, . . . , k}. So, without loss of generality, 
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we may assume that I ∩ {p + 1, . . . , k} = ∅ and J ∩ {p + 1, . . . , k} = ∅. Since p /∈ I we have that T (I) is in 
ascending order and all entries of T (J) except p are in ascending order.

Consider the set J ′. Since T (J)� = q < is+d = T (I)�+1 it follows that the entries of J ′ are distinct. 
Moreover the entries of tuple T (J ′) are exactly in the order shown in the definition of J ′.

Next consider the set I ′. If is < p then it follows that T (I)� = is < p = T (J)�+1 < T (J)�+2 and so 
all the entries in I ′ are distinct and T (I ′) is in the order given in (1) in the definition of I ′. On the other 
hand, if p < is < q then note that T (I)� = is < q = T (J)� < T (J)�+2. Since p does not lie in I, it follows 
that all entries of I ′ are distinct. Moreover, is < q, so by Lemma 3.9, it follows that the entries of T (I) are 
ordered as in the definition of I ′. As a result we have shown that vI + vJ = vI′ + vJ ′ . Since T (J ′)� = q and 
T (J ′)� > q, we see that 〈f, vJ ′〉 = 0 and so it follows that 〈f, vJ ′〉 = 0 and we are done for the polytope Pi.

We now consider the polytope Pi−1. For this case, we will omit the i − 1 from the polytope Pi−1 and 
write T (I) for the tuple T (i − 1)I . Note that, as in the previous case, we write f for the vector f i and omit 
the i from pi, �i and qi.

Since 〈f, vJ〉 = −1, we have that T (J)� = p and T (J)�+1 = q. Suppose that T (I)� = is for some s. By 
Lemma 3.9, we have that T (I)�+1 = is+d where d ≥ 1 is the smallest value such that is+d ≥ k + 1. Since 
〈f, vI〉 = 1, by Lemma 3.14, we have that is+d > q and either: is < p; or p < is < q. We define the sets

I ′ = {T (I)1, . . . , T (I)�, T (J)�+1, . . . , T (J)k} and J ′ = {T (J)1, . . . , T (J)�, T (I)�+1, . . . , T (I)k}. (2)

We will now show that the entries above within each set are distinct and that the order of the entries in 
T (I ′) and T (J ′) coincide with the order above.

Note that for any i ∈ I ∩ {p + 1, . . . , k} we have that T (I)i = i and similarly for J . Since p < �, we have 
that none of T (I)1, . . . , T (I)� or T (J)1, . . . , T (J)� lie in {p + 1, . . . , k}. So, without loss of generality, we 
may assume that I ∩ {p + 1, . . . , k} = ∅ and J ∩ {p + 1, . . . , k} = ∅. So we have that the entries of T (I) and 
T (J) are in ascending order.

For the set J ′, since T (J)� = p < q < is+d = T (I)�+1, it follows that the entries of J ′ are distinct and 
moreover the entries of tuple T (J ′) are exactly in the order shown above in (2) in the definition of J ′. 
Similarly for the set I ′, we have that T (I)� = is < q = T (J)�+1 and so the entries of I ′ above are distinct 
and the tuple T (I ′) is identical to the order shown above. So, we have shown that vI + vJ = vI′ + vJ ′ . Since 
T (I ′)� = is 
= p and is < q, and T (I ′)� > q, we see that 〈f, vI′〉 = 0 and so it follows that 〈f, vJ ′〉 = 0. 
Therefore we are done for the polytope Pi−1 and the proof is complete. �

We are now ready to prove our main result.

Proof of Theorem 3.11. By Lemma 3.14, we have that ϕi(V (Pi−1)) = V (Pi). The second part of 
Lemma 3.15, implies that ϕi(Pi−1) ⊆ Pi. So see this, take any point ϕi(x) ∈ ϕi(Pi−1). We have 
x =

∑
v∈V (Pi−1) αvv for some αv ∈ R≥0 such that 

∑
v αv = 1. By the second part of Lemma 3.15, we 

can rewrite this expression for x so that it is supported on vertices which have non-negative or non-positive 
inner product with f i. Since ϕi acts linearly on each half-space defined by (f i)⊥, it follows that ϕi(x) lies 
in Pi. The first part of Lemma 3.15 implies that ϕi(Pi−1) ⊇ Pi. To see this, apply the above argument to 
the tropical map (ϕi)−1 = ϕ−w,F where F = Conv{0, f}. This completes the proof. �
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