
Neurocomputing 593 (2024) 127810

A
0

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

pNNCLR: Stochastic pseudo neighborhoods for contrastive learning based
unsupervised representation learning problems
Momojit Biswas a, Himanshu Buckchash b,∗, Dilip K. Prasad b

a Jadavpur University, Kolkata, India
b Department of Computer Science, UiT The Arctic University of Norway, Tromso, Norway

A R T I C L E I N F O

Communicated by X. Gao

Keywords:
Self supervised learning
Deep learning
Image classification
Contrastive learning
Pseudo nearest neighbors

A B S T R A C T

Nearest neighbor (NN) sampling provides more semantic variations than predefined transformations for self-
supervised learning (SSL) based image recognition problems. However, its performance is restricted by the
quality of the support set, which holds positive samples for the contrastive loss. In this work, we show that
the quality of the support set plays a crucial role in any nearest neighbor based method for SSL. We then
provide a refined baseline (pNNCLR) to the nearest neighbor based SSL approach (NNCLR). To this end, we
introduce pseudo nearest neighbors (pNN) to control the quality of the support set, wherein, rather than
sampling the nearest neighbors, we sample in the vicinity of hard nearest neighbors by varying the magnitude
of the resultant vector and employing a stochastic sampling strategy to improve the performance. Additionally,
to stabilize the effects of uncertainty in NN-based learning, we employ a smooth-weight-update approach for
training the proposed network. Evaluation of the proposed method on multiple public image recognition and
medical image recognition datasets shows that it performs up to 8 percent better than the baseline nearest
neighbor method, and is comparable to other previously proposed SSL methods. The code is available at
https://github.com/mb16biswas/pnnclr.
1. Introduction

Deep learning is rapidly revolutionizing almost every sector of our
society. Off-the-shelf models are being used for feature/representation
extraction, and standard models are being fine-tuned for their ap-
plication to specific problems [1]. To train such models, efficient
representation learning methods are required [2]. SSL or represen-
tation learning provides the backbone networks for many computer
vision related tasks such as object detection, segmentation, image
or video recognition, etc. [3]. Recent developments like NNCLR [4],
SimSiam [5], Decoupled contrastive learning [2], CLIP [6], CAEs [7],
are good examples of powerful feature extractors, and all employ
some standard backbone network like ResNet [8] or EfficientNet [9].
Labeling the data is a costly operation, on the other hand, the main
advantage of SSL models is their ability to learn better generic rep-
resentations from the unlabeled data [10]. Foundational works like
SimCLR [10] and SimSiam [5] have established that SSL models with
slight finetuning (as low as 1% of the labeled data) can outperform
their counterpart supervised models. Another advantage of SSL models
is that they provide task-agnostic models which can easily be adapted
using transfer learning to multiple kinds of downstream tasks (the tasks
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which are specialized cases of a larger generic task also known as the
pretext task) [11].

Earlier models like the non-contrastive models (RotNet [11], Jig-
saw [12]) used intelligently designed pretext tasks for providing the
self-supervisory signal to the learning algorithm. These signals were
based on some independent tasks like verifying the correct rotation
[11], the correct sequence of frames [13], or the correct placement of
tiles [12]. Recently, another branch of SSL methods, called contrastive
learning (CL), has shown promising progress [10]. With better loss
functions and image augmentations, these models have now exceeded
the non-contrastive models. These contrastive learning based methods
work by pushing closer the similar-looking (positive) samples and
pushing apart non-similar class (negative) samples, without actually
knowing the classes of these samples. However, recently, it was shown
that the positives generated using augmentations are not very semanti-
cally diverse [4]. To overcome this, it was suggested to use the nearest
neighbors of the anchors (the samples whose positive is to be found),
since this leads to better representations by learning from non-trivial
positive samples [4]. However, in our experiments and analysis with
NNCLR [4], we found that the quality of the support set plays a crucial
role in learning better representations. At the beginning of training, the
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probability of finding a good nearest neighbor is low, and this can affect
the overall learning in the SSL model. Based on these observations,
this work presents stochastic pseudo nearest neighbors and the learning
framework — pNNCLR.

The main objective of contrastive SSL methods is to employ a
strategy or function, 𝑓 , to arrange the latent space in such a way that
imilar class samples appear closer (attraction property) than distinct
lass samples (repulsion property) in the latent space. Nearest neighbor
ased methods try to amplify the diversity in the attraction process.
he source of this diversity is the process of sampling the positives in
he form of nearest neighbors and not augmented views. However, this
mplification of diversity introduces a trade-off between the attraction
nd repulsion properties. Because, if the quality of the support set
s low or the chosen nearest neighbors are incorrect (Section 3.3), 𝑓
ay negatively impact the main objective by reducing the intended

ttraction and repulsion properties. To improve this trade-off, indepen-
ent of the support set quality, we hypothesize modifying 𝑓 such that
he diversity in the attraction process is amplified favorably, i.e., the
ositive samples retain the semantic variations and, at the same time,
re not unfavorably distinct from the anchor point. We accomplish this
y reducing the magnitude of the resultant vector in the direction of the
earest neighbor by a factor. Although, this controls the diversification
n the attraction process, however, it reduces the semantic quality.
o avoid this, a stochastic prior is imposed during the sampling of
ositives. This allows the expansion of uncertainty to increase the
emantic information. As a consequence of these adaptations, the posi-
ives become more semantically diverse and related to the anchor point,
hereby, helping in learning better representations by the model. We
lso found that by employing a smooth-weight-updation approach, the
ffects of uncertainty, introduced by nearest neighbor based learning,
an be stabilized to a significant extent.

The SimCLR [10] method has served as the main motivation for dif-
erent self supervised learning methods such as NNCLR [4], DCLR [2],
imSiam [5], MoCo [14], and also to the proposed pNNCLR method. All
hese methods share the same Siamese network architecture. However,
ach new method has added an improvement to the SimCLR methods.
NCLR [4] added the idea of using nearest neighbors in order to

ncrease the semantic variations to achieve better learning. In the
ame lines, the proposed pNNCLR method overcomes the challenges
f NNCLR [4] method by adding the idea of pseudo nearest neighbors
nd stochastic sampling in nearest neighbor based contrastive learning
ethods.

We tested the proposed ideas and found that they significantly
mprove the performance of the proposed method over our baseline,
NCLR [4], on image recognition tasks. Following this, we also tested it

or the medical datasets and found a favorable performance. Following
re the main contributions of this work:

• We studied the suitability of nearest neighbor based semantic
information enrichment in contrastive learning. This led us to
the observation that a pseudo nearest neighbor approach may
work better than a hard nearest neighbor approach. Following
this, we introduced stochastic pseudo nearest neighbors (pNN) to
control the quality of the positive samples in contrastive learning
based SSL methods. To the best of our knowledge, we are the
first to introduce a pseudo nearest neighbor based self-supervised
learning approach in the family of contrastive learning based
self-supervised learning methods. It significantly improved the
performance of the proposed pNNCLR method.

• We theoretically proved that the nearest neighbor based ap-
proaches are highly sensitive in the beginning phase of training
and may therefore reach a sub-optimal performance. Using this
motivation, we developed the pseudo nearest neighbor sampling
(pNN). We further improved our pNN approach by incorporating
2

the idea of stochasticity in the pseudo nearest neighbors.
• We showed that a smooth-weight-updation approach in nearest
neighbor based contrastive learning methods is highly useful in
controlling the uncertainty in sampling. Using this, we proposed
our contrastive learning based method called pNNCLR, which
significantly improves over our baseline NNCLR [4] method.

• We performed comprehensive experiments and ablation studies to
empirically verify the superiority of our contribution over medical
as well as non-medical datasets.

The remainder of the paper is organized as follows. Section 2
presents the related literature on representation learning methods.
Section 3 presents the details of our baseline and the proposed method.
Section 4 presents the implementation details, evaluation, and compar-
ison of the results on different datasets. After this, the conclusion and
appendix are presented.

2. Related work

Representation learning methods have underpinned some of the
recent highly successful pretrained networks and amazing feats of AI
— GPT 3 [15], CLIP [6], SAM [16], ChatGPT [17], SEER [18]. These
representation learning methods are mainly trained in a self-supervised
manner. A couple of years earlier, self-supervised approaches were
dominated by non-contrastive methods or by pretext task based meth-
ods (Context prediction [19], Jigsaw [12], RotNet [11], Low-rank
embedding [20], Multigraph weight learning [21]). However, the trend
is shifting as the current best self-supervised methods are all based on
some form of contrastive learning approach (SBCL [22], DINO [23]).
Our baseline, NNCLR [4], is one such contrastive learning based
method that employs nearest neighbor sampling. In this literature
review, we cover the developments in SSL from the perspective of both
— non-contrastive and contrastive — self-supervised methods. Table 1
provides a consolidated view of the literature.

2.1. Non-contrastive SSL methods

In the context of self-supervised learning, a pretext task refers to a
puzzle or sub-task that is solved by the SSL model. The objective is
to learn the underlying structure of the data by deriving a supervision
signal from the sub-task in an unsupervised manner, i.e., without
relying on any labeled data [19]. Doersch et al. explored spatial context
as a supervision signal for training visual representations [19]. Their
approach involved dividing a region in image into 9 patches, then
sampling pairs from these patches and training the model to predict
the relative position of a patch given another patch from the pair. They
achieved unsupervised object discovery and improved performance on
object detection tasks. Zhang et al. used cross channel color space
prediction as a pretext task [24,26]. They used a CNN to predict ab
color space from L channel of the CIE Lab* color space. It was found
that colorization could be a useful option for learning representations
for vision tasks. Pathak et al. also used context information for their
inpainting pretext task by forcing their context encoding CNN to predict
the missing region in an input image [25]. Although predicting the
entire region is an under constrained task, however, their approach
produced strong image representations. Another line of work (Shuffle
learn [13], Sequence sorting [33], Sustained order verification [34],
Odd one out [35]), used frame order prediction as the pretext task.
These models learned meaningful image representations for vision
tasks. However, it was not as strong as the representations learned by
other pretext tasks, like context prediction or spatial rearrangement.
Noroozi et al. proposed an even more challenging pretext task of
sorting all nine pieces of a Jigsaw puzzle [12]. They also suggested
several shortcut prevention approaches as they emphasized — ‘‘A good
self-supervised task is neither simple nor ambiguous’’. Gidaris et al.
proposed a simple rotation prediction as the pretext task for CNNs [11].

The objective was to predict the angle of rotation from 0, 90, 180,



Neurocomputing 593 (2024) 127810M. Biswas et al.
Table 1
A consolidated literature review is presented for both — contrastive and non-contrastive SSL methods. Note that most of the backbones are CNN based.

Author Year Method Contrastive Backbone Approach/Pretext-task

Doersch et al.
[19]

2015 SpatialContext ✗ VGG Predicting spatial context of a patch in relation
to another patch in a spatially consistent
array of nine patches.

Zhang et al. [24] 2016 CCEncoder ✗ In-house, VGG Cross channel prediction using
auto-encoder network.

Pathak et al.
[25]

2016 ContextEncoder ✗ AlexNet Inpainting of missing patch using context
auto-encoders with channelwise
fully-connected layers.

Misra et al. [13] 2016 ShuffleAndLearn ✗ SiameseAlexNet Ordering of frames with sequence
binary verification.

Noroozi et al.
[12]

2016 ContextFreeNet-
work

✗ SiameseAlexNet Rearrangement of shuffled Jigsaw puzzle like
sub-images.

Zhang et al. [26] 2017 SplitBrainAu-
toEncoder

✗ Channelwise
AlexNet

Correct prediction of rearranged incomplete
input channels.

Gidaris et al.
[11]

2018 RotNet ✗ AlexNet Correct prediction of rotated images.

Oord et al. [27] 2018 CPC ✓ ResNet-v2–101 Using contrastive predictive coding in PixelCNN
auto-regressive recurrent neural networks
for prediction of output embedding vectors.

Caron et al. [28] 2020 SwAV ✓ ResNet-50 Instead of pairwise contrastive loss, an online
clustering of multiple views of same image is
performed to learn the features
and cluster assignments.

Chen et al. [29] 2020 iGPT-XL ✗ GPT-2 BERT Auto-regressive prediction of pixels
using transformers.

Chen et al. [10] 2020 SimCLR ✓ ResNet-50 A simple approach based on contrastive loss,
non-linearity layer, augmentations and
large batch sizes.

He et al. [14] 2020 MoCo ✓ ResNet-50 An online dictionary approach for contrastive
learning using memory bank and
momentum contrast.

Grill et al. [30] 2020 BYOL ✓ ResNet-50 Does not use negative pairs for contrastive loss
while using momentum contrast.

Chen et al. [5] 2021 SimSiam ✓ ResNet-50 Uses a simple Siamese network without negative
pairs, large batch size, momentum contrast.

Caron et al. [23] 2021 DINO ✓ ViT-S/16 Contrastive learning on vision transformers
using a codistillation approach.

Goyal et al. [18] 2021 SEER ✓ RegNet-Y SwAV method is used to train large SSL model
on very large dataset in the wild.

Dwibedi et al.
[4]

2021 NNCLR ✓ ResNet-50 Uses a nearest neighbor approach to increase the
semantic variation during learning.

Xie et al. [31] 2022 SimMIM ✗ ViT-B Correct prediction of patch level masked
images using transformers.

Yeh et al. [2] 2022 Decoupled CLR ✓ ResNet-50 Remove the positive term from the denominator
of the InfoNCE loss to reduce the
positive–negative-coupling.

Zhang et al. [32] 2023 ADCLR ✓ ViT-S/16 Transformer based approach for dense contrastive
learning by balancing global and
patch-level losses.

Hou et al. [22] 2023 SBCL ✓ ResNet-50 A hierarchical online clustering like SwAV to
balance the emphasis between head class
and long-tailed class.
270 degrees. Rotation turned out to be a simple yet powerful SSL
strategy since it does not leave any easily detectable low-level visual
shortcut for trivial feature learning. Chen et al. adapted a GPT-2 scale
transformer model from Masked Language Modeling (MLM) to Masked
Image Modeling (MIM) on pixels of down-scaled images [29]. Objective
of the pretext task was to auto-regressively predict the masked pixels
in the transformer output in a BERT-like sense. Following the same
line, Zhou et al. introduced an online visual tokenizer for MIM [36].
They showed that better semantics could be learned by simultaneously
training the tokenizer with the MIM transformer through knowledge
distillation. Xie et al. simplified the previous transformer based masked
prediction pretext task methods by dropping blockwise masking and
3

tokenization [31]. Their model achieved competitive results with just
linear probing.

2.2. Contrastive SSL methods

Although, pretext based methods achieved good representations,
however, Misra et al. showed that they all followed a covariant style of
modeling [37]. Misra et al. advocated the superiority of an invariant
style of modeling over a covariant. Their work sits between non-
contrastive and contrastive SSL methods. The main contribution is the
noise contrastive estimation formulation which involves the generation
of positive and negative pairs using the Jigsaw objective [12]. Con-
trastive SSL methods differ in their approach by including the pretext
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task in the model architecture itself in the form of augmentations.
Additionally, the model objective changes from equivariance (where
the model tries to adjust itself according to the variation in input) to
invariance (where the model ignores the changes in the input in order
to become agnostic to those transformations). To be specific, the SSL
supervision signal is derived by enforcing the equivalence of multiple
views of the same input image [10]. One such initial work by Oord
et al. proposed Contrastive Predictive Coding (CPC) for unsupervised
representation learning [27]. They applied noise contrastive loss (NCL)
over future predictions in latent space of auto-regressive models for
speech, text, and images. An important aspect of their NCL formulation
was inclusion of negative samples. Later it was picked up and improved
by Chen et al. [10]. They proposed a simple contrastive learning
approach in which they emphasized on compositions in data augmen-
tation, role of non-linear transformations in top layers, and larger batch
size. He et al. proposed the idea of dictionary look-up by maintaining
a dictionary of encoded keys as negatives for contrastive learning [14].
This allowed keeping a larger set than the batch size as negatives.
Similar to He et al. Girll et al. proposed online and target network based
contrastive learning where the target network avoids direct gradient
flow and takes updates from the online network [30]. They also showed
that the setup does not require negative samples for training the net-
work. To reduce the overall computation in contrastive SSL methods,
Caron et al. proposed to avoid pairwise comparisons by employing
online clustering of the representations and by enforcing consistency in
cluster assignments of representations corresponding to different views
of the same sample [28]. Chen et al. refined the contrastive SSL aspects
of previous works [5]. They trained a Siamese network with contrastive
loss but without negative sample pairs and without large batch sizes.
They avoided trivial solutions and attained competitive performance by
avoiding gradient propagation in one of the branches of the Siamese
network. Caron et al. proposed a self-supervised knowledge distillation
approach called DINO [23]. They showed that vision transformers learn
better semantic segmentation and k-NN features than CNNs. Goyal
t al. validated the contemporary contrastive SSL approaches in the
ild by training with one billion random images [18]. Yeh et al.
roposed decoupling the positive samples from the denominator of
he InfoNCE contrastive loss to remove the negative–positive-coupling
ffect in contrastive SSL methods [2]. Zhang et al. introduced query
atches for contrasting in addition to global contrasting [32]. Nearest
eighbor based methods like [4,22] emphasized increasing semantic
ariation by sampling the nearest neighbors in the latent space. The
roposed work is similar in spirit to the nearest neighbor sampling
ased works.

. Method

In this section, we first formalize the representation learning prob-
em. After this, the NNCLR approach is described, and finally, we
resent the details of the proposed method.

.1. Problem

Representation learning aims to learn a model which can map
ts inputs to corresponding vectors in such a way that for any two
losely related inputs, their vectorial representations are also close,
nd far away for any two unrelated or distinctly related inputs. For
given dataset  having images 𝑥𝑖|𝑖 ∈ [1, 𝑁], we wish to learn a

homomorphism, model 𝜃 parameterized by 𝜃, such that for any three
inputs 𝑥𝑖, 𝑥𝑗 and 𝑥𝑘, 𝜃 gives three corresponding vectors 𝒖𝑖, 𝒖𝑗 , and
𝒖𝑘 respectively, such that the following condition holds:

𝑑𝑥(𝑥𝑖, 𝑥𝑗 ) ⋆ 𝑑𝑥(𝑥𝑖, 𝑥𝑘) ⇔ 𝑑𝑣(𝒖𝑖, 𝒖𝑗 ) ⋆ 𝑑𝑣(𝒖𝑖, 𝒖𝑘), (1)

where, 𝑑𝑥 and 𝑑𝑣 represent the distance function in image and vector
4

spaces respectively, and ⋆ is any relational operator like ≪. t
Fig. 1. Model diagrams of NNCLR and pNNCLR methods. The cross sign in pNNCLR
denotes stop-gradient operation. 𝑓 (⋅) is the backbone encoder network. aug(𝑥𝑖) is a
random transformation function that generates a new view for 𝑥𝑖. pNN(⋅) is the proposed
pseudo nearest neighbor sampling function.

3.2. NNCLR

Contrastive learning methods like SimCLR [10] or BYOL [30] train
by generating two augmented views 𝑣1, 𝑣2 for the same input 𝑥𝑖. During
the loss calculation, embeddings corresponding to 𝑣1, 𝑣2 are treated as
positives, whereas embeddings corresponding to all other 𝑥𝑗 |𝑗 ≠ 𝑖 are
reated as negatives to 𝑣1, 𝑣2. A variant of InforNCE loss [27] like

𝑆𝑖𝑚𝐶𝐿𝑅
𝑖 = − log

exp (𝑧𝑖 ⋅ 𝑧+𝑖 ∕𝜏)
∑𝑛
𝑘=1 exp (𝑧𝑖 ⋅ 𝑧

+
𝑘 ∕𝜏)

, (2)

is used, where 𝑧𝑖 is the embedding or the vector corresponding to
he view 𝑣1, 𝑧+𝑖 is the positive pair of 𝑧𝑖. The set, 𝑧+𝑘 |𝑘 ∈ [1, 𝑛], denotes
ll embeddings in the mini-batch (with size 𝑛), including the positive
+
𝑖 and negatives 𝑧−𝑘 |𝑘 ≠ 𝑖. 𝜏 denotes the softmax temperature. The
peration, 𝒖 ⋅ 𝒗 in Eq. (2), represents a similarity function, generally
dot product of the normalized vectors 𝒖, 𝒗 or their cosine similarity.
NCLR improves this approach by replacing 𝑧𝑖 with its nearest neigh-
or, NN(𝑧𝑖), as shown in Fig. 1(a). The nearest neighbor is found from
support set 𝑄, which is maintained by inserting the current batch

tems and removing the oldest batch items from it in a first-in-first-out
anner for every training iteration. Using NN(𝑧𝑖), NNCLR loss function

or 𝑥𝑖 ∈ batch{𝑥𝑘|1 ≤ 𝑘 ≤ 𝑛} becomes:

𝑁𝑁𝐶𝐿𝑅
𝑖 = − log

exp (NN(𝑧𝑖) ⋅ 𝑧+𝑖 ∕𝜏)
∑𝑛
𝑘=1 exp (NN(𝑧𝑖) ⋅ 𝑧

+
𝑘 ∕𝜏)

. (3)

.3. pNNCLR

Although the intuition of semantic variability behind NNCLR has
hown promising results compared to other recent developments in
ontrastive learning methods [4], however, NNCLR achieves this at a
ost, since the probability of finding a hard nearest neighbor, from the
upport set 𝑄, belonging to the same class is quite low (∼ 50%) at the
eginning of training (details in Appendix A). I.e., if class(⋅) denotes the
lass membership function, the approximate (since it depends on the
upport set size) maximal probability, 𝑃 [class(NN(𝑧𝑖)) = class(𝑧𝑖)], that
he nearest neighbor belongs to the same class as 𝑧𝑖 or 𝑥𝑖 is around 50%
details in Appendix A), which means there is a 50% chance that the
earest neighbor is from a different class. This reduces the inter-class
ariation of the representations, leading to a decline in performance.
his was also seen in the NNCLR method’s loss plots (Fig. 2). NNCLR

ncurs a higher loss in the beginning of training.
If we carefully investigate the intuition behind NNCLR, we will

ind that it is trying to increase the semantic variability between
he two views 𝑣1, 𝑣2. However, by doing so, it is also dispersing
he intra-class representations to have a larger mean deviation. These
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Fig. 2. Loss plots of NNCLR and pNNCLR methods on Tiny-imagenet and STL-10 datasets. Note, NNCLR incurs a higher loss right from the beginning of training.
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wo ideas are inversely related. To overcome this trade-off, this work
roposes to use soft or pseudo nearest neighbor function, pNN(⋅),
n place of NN(⋅), to perform better irrespective of the probability
[class(NN(𝑧𝑖)) = class(𝑧𝑖)]. The proposed method is called, pNNCLR,
seudo/probabilistic nearest neighbor CLR (Fig. 1(b)). Function pNN(⋅),
orks by sampling a point 𝑧′′𝑖 in the direction of the vector ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑧𝑖 NN(𝑧𝑖)

uch that the resultant vector ⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑧𝑖 𝑧′′𝑖 has a shorter magnitude than
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑖 NN(𝑧𝑖). This shortness is controlled by a scalar hyperparameter 𝛼 ∈
0, 1) as:
′′
𝑖 ← 𝑧𝑖 + (1 − 𝛼)(pNN(𝑧𝑖) − 𝑧𝑖). (4)

While the probability 𝑃 [class(NN(𝑧𝑖)) = class(𝑧𝑖)] improves by using
′′
𝑖 over 𝑧𝑖, some semantic variability is lost. To dilute this effect, we
ound that we can stochastically resample in the vicinity of 𝑧′′𝑖 . This is
one by using a Gaussian prior with mean 𝑧′′𝑖 and standard deviation
hich is a fraction, 𝛽, of ‖

⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑧𝑖 𝑧′′𝑖 ‖, where ‖ ⋅ ‖ denotes magnitude of a
ector. This is shown in Eq. (5).
′
𝑖 ∼  (𝑧′′𝑖 , 𝛽‖

⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑧𝑖 𝑧
′′
𝑖 ‖), (5)

here,  stands for a normal distribution, and 𝛽 ∈ (0, 1) is a scalar
onstant. Due to higher uncertainty in NN based approach, we slow
own the weight updation process of the encoder network 𝑓 ′(⋅), shown
n Fig. 1(b), by stopping the gradient flow in non pNN(⋅) branch
also called the target branch [30]). Providing a smoother updation of
eights by using following:

𝑓 ′ ← 𝜆𝜃𝑓 ′ + (1 − 𝜆)𝜃𝑓 , (6)

here, 𝜃 stands for network parameters, 𝑓 is the online network, 𝑓 ′ is
he target network, 𝜆 ∈ (0, 1) is a constant that controls the effect of

over 𝑓 ′. By replacing the nearest neighbor function in Eq. (3), we
btain the loss for pNNCLR, as:

𝑝𝑁𝑁𝐶𝐿𝑅
𝑖 = − log

exp (pNN(𝑧𝑖) ⋅ 𝑧+𝑖 ∕𝜏)
∑𝑛
𝑘=1 exp (pNN(𝑧𝑖) ⋅ 𝑧

+
𝑘 ∕𝜏)

, (7)

using this, the loss for the entire mini-batch, 𝑏, of size 𝑁𝑏 becomes:

𝑝𝑁𝑁𝐶𝐿𝑅𝑏 = 1
𝑁𝑏

𝑁𝑏
∑

𝑖=1
𝑝𝑁𝑁𝐶𝐿𝑅𝑖 . (8)

The total loss, 𝑝𝑁𝑁𝐶𝐿𝑅, is a symmetrized loss obtained by swaping
he views 𝑣1, 𝑣2 in Eq. (8), as:
𝑝𝑁𝑁𝐶𝐿𝑅 = 𝑝𝑁𝑁𝐶𝐿𝑅𝑏 (𝑣1, 𝑣2) + 𝑝𝑁𝑁𝐶𝐿𝑅𝑏 (𝑣2, 𝑣1). (9)

. Experiments

This section first describes the experimental arrangement. Next, the
mplementation and dataset related details are presented. After this, the
esults of the proposed pNNCLR approach are compared with the recent
ethods for SSL for the linear evaluation task. Towards the end, some

blations, discussion on results, and future directions are presented.
5

.1. Implementation details

We have used the batch size of 64, and 10000 as the size of the
upport set. The embedding size was kept at 2048. The optimizer was
dam, and the learning rate was set to 0.001. The images for every
ataset were resized to 96 × 96. ResNet-50 [8] was used as the base
ncoder network. The final prediction layer of ResNet was removed,
nd a Global average pooling was used for flattening, followed by two
ense layers having 2048 nodes, and a batch norm was present between
hese two dense layers as shown in Fig. 3, encoder network. During
esting, the encoder was frozen after the fine-tuning, and an additional
ense layer having the softmax activation was used for classification
linear probing), as shown in Fig. 3, classification network. Five non-
edical datasets (STL-10, Cifar-10,100, Tiny-imagenet, Pascal-VOC)

nd three medical datasets (Blood-MNIST, PCAM, Path-MNIST) were
sed for evaluation and comparison purposes. Details of these datasets
nd their splitting strategy for training and testing purposes is provided
n the next section. Top-1 accuracy was the metric used for all our
xperiments unless stated otherwise.

.2. Datasets

TL-10. It is a standard dataset derived from Imagenet [38] for devel-
ping self-supervised learning algorithms. It has 100000 unlabeled and
3000 labeled images from 10 classes (like bird, cat, truck) [39]. All
odels reported here, were trained for 100 epochs on this dataset.

ifar-10 and Cifar-100. Each of these datasets consists of 60000 im-
ges [40]. Cifar-10 consists of 10 classes, whereas Cifar-100 consists of
00 classes. General class labels are bird, dog, ship, horse, truck, etc.

iny-imagenet. This dataset contains 120000 images from 200 classes
41].

ascal-VOC. This dataset contains 20 classes like vehicles, airplanes,
nimals, etc. It contains approximately 3000 images.

lood-MNIST and Path-MNIST. Both of these datasets belong to a large
ollection of biomedical images [42]. Blood-MNIST has approximately
7000 images belonging to 8 classes from blood cell microscopy. Path-
NIST has 9 classes having approximately 100000 images of Colon

athology.

CAM or PatchCamelyon. It is a binary image classification dataset [43]
aving approximately 327000 images extracted from histopathologic
cans of lymph node sections to indicate the presence of metastatic
issue.

Features learned from STL-10 were used to apply transfer learning
o other datasets. Approximately ∼ 2% of the images were used for ap-
lying transfer learning using a linear layer on the pretrained encoder
odel.
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Fig. 3. Proposed pNNCLR architecture details considering Cifar-100 as the downstream task. Left, architecture for contrastive SSL training. Right, linear probing adaptation on
Cifar-100 dataset.
Table 2
Results are shown for Top-1 accuracy (↑) on the non-medical datasets on the image recognition task. For each dataset, best
method is marked in bold, second best is underlined.

Method STL-10 Cifar-10 Cifar-100 Tiny-imagenet Pascal-VOC Mean (Top-1 acc.)

Baseline (NNCLR [4]) 0.7548 0.9441 0.7763 0.3929 – 0.7170
MoCo v2 [14] 0.8355 0.9411 0.7804 0.4651 0.4900 0.7555
BYOL [30] 0.8044 0.9456 0.7882 0.4577 – 0.7489
SimCLR [10] 0.7974 0.9428 0.7812 0.4660 – 0.7468
SimSiam [5] 0.8067 0.9418 0.7811 0.3284 – 0.7145
DINO [23] 0.8200 0.9459 0.7809 0.3161 – 0.7157
Decoupled CLR [2] 0.8343 0.9498 0.7812 0.4245 – 0.7474
Proposed method (pNNCLR) 0.8413 0.9582 0.7885 0.4856 0.5066 0.7684
4.3. Results

To evaluate the performance of the proposed method, it is compared
with very competitive recent benchmarked self-supervised learning
works. The results are presented in Tables 2 and 3 for five non-medical
and three medical type of datasets, respectively. Our baseline work is
the NNCLR method [4], which was published in ICCV 2021. NNCLR
extends SimCLR [10] by introducing the idea of sampling the nearest
neighbor instead of the other view, in the latent space. MoCo [14] and
BYOL [30] are momentum contrast based approaches for contrastive
learning, and appeared in CVPR 2020 and NeurIPS 2020 respectively.
SimCLR [10] is the baseline approach of NNCLR, and was published
in PMLR 2020. SimSiam [5] further extended SimCLR by showing that
even without using the negative samples, good performance could be
achieved in SSL. It was published in CVPR 2021. DINO [23] is a vision
transformer based method and was published in ICCV 2021. Decoupled
CLR [2] removed the positive-loss terms from the denominator of
the InfoNCE loss [27] and proposed a simple CL method which was
published in ECCV 2022.

We have used Top-1, Top-3, Top-5, F1-score and Recall as the met-
rics for performance evaluation of the proposed method in comparison
to other works on eight different datasets as explained in the previous
paragraph. Furthermore, accuracy plots and T-SNE plots are also shown
to provide a more diverse understanding of the performance of the
proposed method. Now, in the following paragraphs, we provide an
analysis of the results.

Table 2 presents the results for non-medical datasets using Top-1
accuracy metric. It can be seen that the proposed method, pNNCLR,
achieved the highest Top-1 accuracy for each of the datasets among
all methods. It surpassed the baseline, NNCLR, by a maximum ∼
8% on STL-10 and Tiny-imagenet datasets, and by ∼ 4% on average
over all other datasets. The second best performance was attained by
MoCo [14], which is ∼ 1% less than pNNCLR, on average. Whereas,
a more recently proposed method, called DCLR [2], also performed
comparably with the second best method MoCo [14], achieving a
superior performance on Cifar-10 and Cifar-100 datasets.

Table 3 presents the results for medical datasets using Top-1 ac-
curacy metric. For the Blood-MNIST dataset, MoCo [14] attained the
best results with an accuracy of 89.06% while the proposed pNNCLR
6

method lagged behind by ∼ 2%; however, the proposed pNNCLR
Table 3
Results are shown for Top-1 accuracy on the medical datasets on the image recognition
task. For each dataset, best method is marked in bold, second best is underlined.

Method Blood-MNIST PCAM Path-MNIST Mean (Top-1 acc.)

Baseline (NNCLR [4]) 0.7969 0.8849 0.8292 0.8370
MoCo v2 [14] 0.8906 0.9180 0.8562 0.8882
BYOL [30] 0.8516 0.8868 0.8365 0.8583
SimCLR [10] 0.8594 0.8951 0.8552 0.8699
SimSiam [5] 0.8594 0.8397 0.7917 0.8302
DINO [23] 0.7500 0.7824 0.7698 0.7674
Decoupled CLR [2] 0.8281 0.8884 0.8615 0.8593
Proposed method (pNNCLR) 0.8672 0.9025 0.8708 0.8801

method performed ∼ 7% better than the baseline NNCLR [4] and ∼
4% better than DCLR [2], a more recent variant of SimCLR [10].
On the PCAM dataset, again the best performance was attained by
MoCo [14] while pNNCLR lagged behind by only ∼ 1%, however, the
proposed pNNCLR method did attain the second best performance. On
the Path-MNIST dataset, pNNCLR attained the best results while the
second best performance was attained Decoupled CLR [2] method. On
average, pNNCLR lagged behind by the best performance by less than
1% while surpassing the baseline NNCLR by ∼ 4%. Overall, no method
had a clear winning. Both MoCo [14] and proposed pNNCLR performed
comparatively, while pNNCLR completely surpassed the performance of
baseline NNCLR [4] on all three medical datasets.

Table 4 presents the results for non-medical and medical datasets
combined, using Top-5 accuracy metric. It can be seen that the pro-
posed pNNCLR method achieves best Top-5 accuracy on all datasets
among all methods. For STL-10 dataset, pNNCLR’s performance is com-
parable to the MoCo [14], DINO [23], and DCLR [2] methods. How-
ever, pNNCLR achieves notably better performance on Cifar-10 and
Cifar-100 datasets than its close competitors MoCo [14] and DCLR [2].
On Tiny-imagenet dataset, proposed pNNCLR method achieved ∼ 6%
superior performance than the baseline NNCLR [4] method. On Blood-
MNIST dataset, DCLR [2], MoCo [14] and the proposed pNNCLR
methods achieved 100% Top-5 accuracy, whereas, on Path-MNIST
dataset, SimCLR [10] and proposed pNNCLR achieved 100% Top-5
accuracy. The PCAM dataset was not included in Top-5 performance
comparison because it is a binary dataset and Top-5 metric cannot be
evaluated for it.
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Table 4
Results are shown for Top-5 accuracy on all datasets on the image recognition task. For each dataset, best method is marked
in bold. PCAM dataset is not included since it is a binary classification dataset.

Method STL-10 Cifar-10 Cifar-100 Tiny-imagenet Blood-MNIST Path-MNIST

Baseline (NNCLR) [4] 0.9905 0.9890 0.9405 0.6559 0.9921 0.9979
MoCo v2 [14] 0.9917 0.9887 0.9439 0.7000 1.0000 0.9979
BYOL [30] 0.9912 0.9892 0.9503 0.6955 0.9843 0.9979
SimCLR [10] 0.9911 0.9889 0.9445 0.7006 0.9921 1.0000
SimSiam [5] 0.9913 0.9888 0.9445 0.6164 0.9743 0.9947
DINO [23] 0.9915 0.9893 0.9443 0.6089 0.9843 0.9927
Decoupled CLR [2] 0.9917 0.9897 0.9445 0.6752 1.0000 0.9989
Proposed method (pNNCLR) 0.9918 0.9908 0.9506 0.7126 1.0000 1.0000
Table 5
Results are shown for Top-3 accuracy on all datasets on the image recognition task. For each dataset, best method is marked
in bold. Since Cifar-100 and Tiny-imagenet datasets have 100 or more classes, therefore, Top-10 accuracy is reported for them.

Method STL-10 Cifar-10 Cifar-100 Tiny-imagenet Blood-MNIST Path-MNIST

Baseline (NNCLR) [4] 0.9527 0.9700 0.9826 0.7573 0.9765 0.9822
MoCo v2 [14] 0.9702 0.9689 0.9854 0.7918 0.9531 0.9854
BYOL [30] 0.9635 0.9706 0.9906 0.7883 0.9531 0.9760
SimCLR [10] 0.9620 0.9695 0.9859 0.7922 0.9609 0.9875
SimSiam [5] 0.9640 0.9691 0.9858 0.7264 0.9531 0.9843
DINO [23] 0.9669 0.9707 0.9857 0.7205 0.9296 0.9583
Decoupled CLR [2] 0.9699 0.9722 0.9859 0.7724 0.9765 0.9854
Proposed method (pNNCLR) 0.9715 0.9755 0.9908 0.8016 0.9687 0.9833
Table 6
Results are shown for F1-score on all datasets on the image recognition task. For each dataset, best method is marked in bold.

Method STL-10 Cifar-10 Cifar-100 Tiny-imagenet Blood-MNIST PCAM Path-MNIST

Baseline (NNCLR) [4] 0.7553 0.9400 0.7919 0.3857 0.7932 0.9115 0.8275
MoCo v2 [14] 0.8356 0.9370 0.7962 0.4677 0.8786 0.9501 0.8517
BYOL [30] 0.8046 0.9414 0.8045 0.4593 0.8558 0.9137 0.8366
SimCLR [10] 0.7977 0.9387 0.7971 0.4688 0.8492 0.9234 0.8454
SimSiam [5] 0.8069 0.9377 0.7970 0.3124 0.8367 0.8588 0.8014
DINO [23] 0.8202 0.9417 0.7967 0.2984 0.7196 0.7920 0.7543
Decoupled CLR [2] 0.8344 0.9455 0.7971 0.4216 0.8180 0.9156 0.8598
Proposed method (pNNCLR) 0.8413 0.9537 0.8048 0.4910 0.8561 0.9321 0.8572
Table 7
Results are shown for Recall on all datasets on the image recognition task. For each dataset, best method is marked in bold.

Method STL-10 Cifar-10 Cifar-100 Tiny-imagenet Blood-MNIST PCAM Path-MNIST

Baseline (NNCLR) [4] 0.7673 0.9625 0.8206 0.3604 0.7109 0.8918 0.7802
MoCo v2 [14] 0.8957 0.9573 0.8294 0.4864 0.8281 0.9070 0.8187
BYOL [30] 0.8462 0.9651 0.8461 0.4735 0.7734 0.8845 0.8135
SimCLR [10] 0.8351 0.9602 0.8311 0.4879 0.8125 0.8998 0.8166
SimSiam [5] 0.8498 0.9585 0.8309 0.2478 0.7991 0.8228 0.7385
DINO [23] 0.8710 0.9656 0.8304 0.2264 0.6250 0.7914 0.6708
Decoupled CLR [2] 0.8938 0.9723 0.8311 0.4155 0.7890 0.8734 0.8312
Proposed method (pNNCLR) 0.9049 0.9868 0.8467 0.5221 0.8125 0.9280 0.8270
Table 5 presents the results for non-medical and medical datasets
ombined, using Top-3 accuracy metric. Proposed pNNCLR method
chieved best accuracy on STL-10 dataset, surpassing the baseline
NCLR [4] by ∼ 2%. The proposed pNNCLR method achieved the best
erformance on Cifar-10, Cifar-100 and Tiny-imagenet datasets as well;
xceeding the baseline NNCLR [4] by ∼ 5% on Tiny-imagenet dataset.
n the Blood-MNIST dataset, DCLR [2] method performed best sur-
assing the proposed pNNCLR method by ∼ 1%, however, the pNNCLR
ethod achieved the second best Top-3 accuracy score. SimCLR [10]

chieved best performance on the Path-MNIST dataset, however, its
core was comparable with MoCo [14] and DCLR [2] methods. Overall,
he proposed pNNCLR method achieved better performance than base-
ine NNCLR [4] on all datasets. However, pNNCLR performed better
or non-medical datasets than medical datasets. The PCAM dataset was
ot included in Top-3 performance comparison because it is a binary
ataset and Top-3 metric cannot be evaluated for it.

Table 6 presents the results for non-medical and medical datasets
ombined, using F1-score. F1-score is a common metric for evaluation
odel’s performance. The proposed method achieved ∼ 10% better per-

ormance than the baseline NNCLR [4] on STL-10 and Tiny-imagenet
7

Fig. 4. T-sne plot of the representations learned by the proposed pNNCLR method on
the PatchCamelyon (PCAM) medical dataset.

datasets. The proposed method achieved best performance on STL-10,
Cifar-10, Cifar-100 and Tiny-imagenet datasets, while MoCo [14] and
DCLR [2] showing comparative performance. On Blood-MNIST and
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Fig. 5. Top-1 accuracy plots of the baseline NNCLR and proposed pNNCLR methods on Tiny-imagenet and STL-10 datasets.
Fig. 6. T-sne plot of the representations learned by the baseline NNCLR and proposed pNNCLR methods on the Blood-MNIST medical dataset.
Fig. 7. T-sne plot of the representations learned by the baseline NNCLR and proposed pNNCLR methods on the Path-MNIST medical dataset.
CAM datasets, MoCo [14] achieved best performance. However, on
ath-MNIST medical dataset, the proposed pNNCLR method achieved
est performance exceeding the baseline NNCLR [4] by ∼ 3%.

Table 7 presents the results for non-medical and medical datasets
combined, using Recall score. It can be seen that the recall score
of the proposed pNNCLR method is quite high in comparison to the
baseline NNCLR [4] and it is the best among all methods on all
four non-medical datasets. On the Blood-MNIST dataset, MoCo [14]
performs best by attaining a Recall value of 0.8281, while, SimCLR [10]
and the proposed pNNCLR method achieved a comparable value of
0.8125. The proposed pNNCLR method performed best for the PCAM
dataset attaining a Recall value of 0.9280. However, DCLR [2] method
performed best on the Path-MNIST dataset attaining a Recall score of
0.8312, followed by a Recall score of 0.8270 attained by the proposed
pNNCLR method. Overall, there was no clear winning method for the
8

medical datasets, however, the proposed pNNCLR method performed
quite competitively to other best performing methods like MoCo [14]
and DCLR [2].

Next, we present the accuracy and T-SNE embedding plots to further
analyze the performance of methods in comparison to the proposed
pNNCLR method. Fig. 4 presents a low dimensional view of the rep-
resentations learned by the proposed pNNCLR method on the PCAM
dataset for the binary classification of the presence of metastatic tis-
sues in lymph node scans. Although, pNNCLR achieved an accuracy
of 90.25%, it can be noted that the two classes are separated from
each other, however, there is some overlap of samples, which suggests
that these could have created the misclassification for the proposed
pNNCLR method. Fig. 5 shows the Top-1 accuracy plots of the proposed
pNNCLR method vs. the baseline NNCLR [4], on the Tiny-imagenet and
STL-10 datasets. It can be noted that the proposed pNNCLR method
attains comparatively better performance than the baseline NNCLR [4]

method, right from the beginning phase of training, on both of the
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datasets. A possible cause for this behavior can be found in the basic
arguments on relaxing the hard-nearest-neighbors due to the presence
of higher uncertainty for nearest-neighbor based algorithms while they
begin to train using the self-supervised loss. The same is also explained
in the Section 3.3. While, for both NNCLR [4] and the proposed
pNNCLR methods, the performance saturates asymptotically, pNNCLR
attains a much better Top-1 performance than NNCLR [4]. Fig. 6
presents a low-dimensional view of the representations learned by the
baseline NNCLR and the proposed pNNCLR methods for the Blood-
MNIST datasets. This helps in having an approximate idea on how
separable the representations learned by the methods are. We can see in
Fig. 6(b), the representations learned by the proposed pNNCLR method
are a bit more resolved and separately located than the representations
of baseline NNCLR [4] method. Especially, for the class 1, 2, 4, the
proposed pNNCLR method resolves better than the baseline NNCLR [4]
method. Fig. 7 presents the T-SNE plots for the baseline NNCLR [4] and
the proposed pNNCLR methods on the Path-MNIST medical dataset.
It can be noted that the proposed pNNCLR methods does a better
job on spreading the class representations towards outside than the
baseline [4] method. Also, class 2 is better resolved by the pNNCLR
method than NNCLR [4]. Also, the distance between the class 4 and 7
is higher in Fig. 7(b) than in Fig. 7(a).

Overall, these quantitative and qualitative results indicate that the
proposed pNNCLR method performs notably better than the baseline
NNCLR [4] method on all non-medical and medical datasets. The
features learned by the proposed pNNCLR method were better resolved
than the baseline NNCLR [4] method. An interesting result was that
the proposed pNNCLR method performed much better than the other
compared SSL methods on the non-medical datasets. While, for the
medical datasets, there was no clearly winning method and the pro-
posed pNNCLR method performed quite comparatively to other SSL
methods on the medical datasets. MoCo [14] and DCLR [2] methods
gave a strong competition to the proposed pNNCLR method. These
methods performed comparably better than the rest of the SSL methods
on both non-medical and medical datasets.

4.4. Ablations

This section presents the behavior or the change in behavior of
the baseline NNCLR [4] and the proposed pNNCLR methods when
the key training hyperparameters were varied. The ablation study was
performed with the STL-10 and Tiny-imagenet datasets. In the first
ablation, we examined the effect of each proposed modification to
the baseline NNCLR [4] method. The results corresponding to these
variations is reported in the Table 8 corresponding to the baseline
NNCLR [4] and the proposed pNNCLR methods. Before discussing the
results, we want to define the expansions of key modifications —
swu denotes smooth weight updation, pNN denotes pseudo nearest
neighbor sampling, and noise denotes the operation of stochastic sam-
pling by adding noise. Referencing to the Table 8, modifying baseline
NNCLR [4] with swu, improved the accuracy by ∼ 7% on STL-10 and
by ∼ 8% on Tiny-imagenet datasets. Modifying baseline NNCLR [4]
with (swu+pNN), improved the accuracy further by ∼ 1% to 83.86%
in STL-10 and 48.42% in Tiny-imagenet datasets. Modifying baseline
NNCLR [4] with (swu+pNN+noise) further improved the accuracy to
84.13% on the STL-10 dataset and to 48.56% on Tiny-imagenet dataset.
These results show that swu significantly stabilizes the uncertainty
in the learning process, while the pseudo nearest neighbor sampling
strategy provides better performance than the hard nearest neighbor
sampling.

Table 9 presents variation in the hyperparameters 𝛼 — the pseudo
ampling control hyperparameter, and 𝛽 — the noise control hyperpa-
ameter, on the STL-10 and Tiny-imagenet datasets. A value of 0.10
rovided a better result over 𝛽 = 0.05 by improving the Top-1 accuracy
y ∼ 1%. Similarly, 𝛼 = 0.25 provided the best results for STL-10
9

ataset, however, for Tiny-imagenet dataset 𝛼 = 0.15 gave the best
Table 8
Effect of modifications in the baseline NNCLR method with smooth-weight-update
denoted as (swu), pseudo neighborhood as (pNN), and addition of noise in sampling.
Top-1 accuracy is reported for each experiment on the STL-10 and Tiny-imagenet
datasets.

Method STL-10 Tiny-imagenet

Baseline (NNCLR [4]) 0.7548 0.3929
pNNCLR (swu) 0.8257 0.4715
pNNCLR (swu + pNN) 0.8386 0.4842
pNNCLR (swu + pNN + noise) 0.8413 0.4856

Table 9
Variation in the hyperparameters (𝛽 and 𝛼) of the proposed pNN(⋅) (pseudo nearest
neighbor) sampling approach, is reported on the STL-10 and Tiny-imagenet datasets.

Top-1 accuracy (↑)

𝛽 STL-10 Tiny-imagenet

0.05 0.8376 0.4820
0.10 0.8413 0.4856

𝛼 STL-10 Tiny-imagenet

0.05 0.8286 0.4734
0.10 0.8295 0.4736
0.15 0.8321 0.4892
0.25 0.8386 0.4787

Table 10
Effect of using different embedding sizes on the baseline and the proposed method.
Top-1 accuracy is reported on the STL-10 and Tiny-imagenet datasets.

Embedding size STL-10 Tiny-imagenet

NNCLR [4] Proposed method NNCLR Proposed method

512 0.6061 0.7986 0.3345 0.4367
1024 0.6580 0.8143 0.3634 0.4598
2048 0.7548 0.8413 0.3929 0.4856
4096 0.7537 0.8429 0.3918 0.4886

Table 11
Effect of using different support-set or queue sizes. Top-1 accuracy is reported for the
baseline and the proposed method on STL-10 and Tiny-imagenet datasets.

Queue size STL-10 Tiny-imagenet

NNCLR [4] Proposed method NNCLR Proposed method

5000 0.7191 0.8329 0.3668 0.4434
10000 0.7548 0.8413 0.3929 0.4856
15000 0.7540 0.8407 0.3920 0.4812
20000 0.7555 0.8411 0.3927 0.4815

Table 12
Effect of using different batch sizes. Top-1 accuracy is reported for the baseline and
the proposed method on STL-10 and Tiny-imagenet datasets.

Batch size STL-10 Tiny-imagenet

NNCLR [4] Proposed method NNCLR Proposed method

16 0.7051 0.7916 0.3402 0.4271
32 0.7141 0.8178 0.3534 0.4437
64 0.7548 0.8413 0.3929 0.4856

results. Note that 𝛼 hyperparameter was ablated in the absence of 𝛽 to
monitor its sensitivity independently. A value of 𝛼 = 0.25 was chosen
for all experiments.

Tables 10–12, provide results of the ablation study on the em-
bedding size, support-set size and batch size. Comparing the baseline
NNCLR [4] method with the proposed pNNCLR method on STL-10 and
Tiny-imagenet datasets. Table 10 shows that the performance of the
proposed method increases as the embedding vector size increases from
512 to 4096, on the STL-10 dataset. On the other hand, the baseline
NNCLR [4] method’s performance maxes out at embedding size 2048.
Similarly, on the Tiny-imagenet dataset, the performance of the base-
line NNCLR [4] method maxes out at embedding size 2048, however,
the performance of the proposed pNNCLR method keeps improving as
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the embedding size grows. Motivated by these observations and to keep
a common ground for the baseline and the proposed methods, we used
2048 as the embedding size in all our experiments.

Table 11 shows the effect of varying the queue or the support-set
sizes on the proposed NNCLR [4] and the proposed pNNCLR methods.
On the STL-10 dataset, the performance of the proposed method maxes
out at a queue size of 10000. On the other hand, performance of the
baseline method maxes out at 20000; however, it is comparable to its
performance at 10000, and it drops at 15000. On the Tiny-imagenet
dataset, the baseline NNCLR [4] and the proposed pNNCLR methods
achieved the best performance at queue size 10000. Following these
observations, we took 10000 as the size of the support set in all our
experiments.

Table 12 presents the effect of varying the batch sizes for the
baseline NNCLR [4] and the proposed pNNCLR methods on STL-10
and Tiny-imagenet datasets. On STL-10 dataset, it can be seen that
the baseline NNCLR [4] method improves it performance linearly as
the batch size is doubled. The same pattern can be observed for the
proposed pNNCLR method which improves its performance from Top-
1 accuracy of 79.16% at batch size 16 to 84.13% at batch size 64.
On Tiny-imagenet dataset, a similar pattern is observed. Both, baseline
NNCLR [4] and the proposed pNNCLR methods improved their Top-1
accuracy linearly as the batch size was doubled from 16 to 32 to 64.
Overall, the ablation on batch size, shows that the proposed NNCLR [4]
and the baseline pNNCLR methods achieved their best performance at a
batch size of 64. Following this, 64 was used as the batch size in all our
experiments. In the next section, we try to extend our understanding
about the baseline NNCLR [4] and the proposed pNNCLR methods by
providing more qualitative analysis.

4.5. Trade-offs between model accuracy and complexity

From the results, it is clear that the proposed pNNCLR method
improves the accuracy upon the baselines NNCLR [4] and SimCLR [10].
However, it does add a small overhead to the computational cost. In this
section, we analyze the complexity vs. accuracy of the proposed and the
baseline methods. As the baseline and the proposed method share some
common components, we can assume a common complexity for them.
Such as, the encoder/model complexity 𝐶𝑚𝑜𝑑𝑒𝑙 denotes the operations in
the forward pass, including the execution of encoders along with linear
layers and view generation. 𝐶𝑁𝑁(𝑧), which is a common operation
in NNCLR and pNNCLR, denotes the complexity of the operation of
finding the nearest neighbor of 𝑧. 𝐶𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛, denotes the complexity of
the aggregation operations of aggregating the gradients in the NNCLR
or SimCLR method, or the weight updates in the pNNCLR in the non-
gradient target branch. Note both — aggregation in NNCLR and weight
updates in pNNCLR — bear the same time complexity, therefore, they
are both denoted with 𝐶𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛. The time complexity of backpropa-
gation through the encoder/model, 𝐶𝑏𝑎𝑐𝑘𝑝𝑟𝑜𝑝, is also same for NNCLR
and pNNCLR. Using these, the time complexity for the NNCLR method
for one iteration comes out to be:

𝐶𝑁𝑁𝐶𝐿𝑅 = 𝐶𝑚𝑜𝑑𝑒𝑙 + 𝐶𝑁𝑁(𝑧) + 2 × 𝐶𝑏𝑎𝑐𝑘𝑝𝑟𝑜𝑝 + 𝐶𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛. (10)

𝐶𝑝𝑁𝑁𝐶𝐿𝑅 = 𝐶𝑚𝑜𝑑𝑒𝑙 + 𝑂(1) + 𝐶𝑁𝑁(𝑧) + 𝐶𝑏𝑎𝑐𝑘𝑝𝑟𝑜𝑝 + 𝐶𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛. (11)

Eq. (11) provides the time complexity of the pNNCLR method for
one iteration. From Eq. (10) and (11), we deduce that pNNCLR’s pNN(⋅)
operation (using Eq. (4) and (5)) incurs a very small 𝑂(1) cost over
NNCLR’s NN(⋅) operation. However, it lowers the complexity by a factor
of 𝐶𝑏𝑎𝑐𝑘𝑝𝑟𝑜𝑝 where 𝐶𝑏𝑎𝑐𝑘𝑝𝑟𝑜𝑝 ≫ 𝑂(1). Hence, the overall complexity of the
proposed pNNCLR method is lower than that of the baseline NNCLR
method. In our experiments, we found that one epoch of SimCLR
method takes around 65.875 s, one epoch of NNCLR method takes
around 67.714 s, while one epoch of the proposed pNNCLR method
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takes around 84.857 s time. A possible reason for the longer running
time of the pNNCLR method is that the weight update in pNNCLR
method uses an unparallelized or non-vectorized implementation.

Thus, we observe that the proposed pNNCLR method delivers im-
proved performance compared to the baseline NNCLR method while
maintaining a similar or even slightly reduced complexity.

4.6. On the inconsistency of performance among baselines

In the literature, NNCLR [4] has been shown to perform better than
SimCLR [10], however, in our experiments (Tables 2, 4 and 6), for
some datasets, SimCLR has shown better performance than NNCLR.
To investigate this issue, we repeated our experiments multiple times
by training both SimCLR and NNCLR baselines for over 100 epochs,
the results are reported in Table 13. A reduction in the difference
between the mean accuracy of both methods was observed. On the
STL-10 dataset, SimCLR performed better than NNCLR by ∼ 0.5%
whereas NNCLR performed ∼ 1% better than SimCLR on the Tiny-
imagenet dataset. These results indicated that NNCLR performs better
than SimCLR when the classification problem has larger number of
classes (such as ∼ 200 in Tiny-imagenet dataset).

4.7. Image retrieval task

We were interested in seeing the generic understanding capabilities
of our self-supervised trained models. For this purpose, we designed an
information retrieval task where we do not use the finetuning, rather
we used the SSL trained models before any finetuning. The image
retrieval task was composed of two image sets: the query set and the
retrieval set. A query set was created by randomly choosing 5 images
from the test set of a dataset. The retrieval set was created by randomly
choosing 100 images from the train set of the corresponding dataset.
For each query image, we asked the model to chose five images (which
the model thinks are the most nearest ones to the query image) from
the corresponding retrieval set, and then rank them in order of their
closeness in the latent space w.r.t. the query image. The model runs a k-
nearest neighbor algorithm for finding the first five nearest neighbors of
the query image among all the images in the retrieval set using a fixed
distance measure. The distance measure could be like Mean Squared
Error (MSE) or KL-divergence.

Fig. 8 shows the results of image retrieval task for three query
images on STL-10 and Tiny-imagenet datasets for baseline NNCLR [4]
and the proposed pNNCLR methods. On STL-10 dataset, first query is
about a small airplane. The retrieved results show that both baseline
NNCLR [4] and proposed pNNCLR methods have a good understanding
of objects, however, baseline NNCLR [4] fails to retrieve the exact same
kind of plane in the top five retrievals. On the other hand, the proposed
pNNCLR method retrieves the same model of airplane in its fifth
retrieval. For the second query on a small bird, both methods fail to
locate same kind of bird in their first retrieval. However, in comparison
to the baseline NNCLR [4] method, the proposed pNNCLR method
retrieves more such images that look and have similar size as the query
image. For the third query on deer, both method perform equally well.
On the Tiny-imagenet dataset, the first query is about some kind of
lizard. It can be seen that both method retrieve good matching images,
however, the retrievals done by the proposed pNNCLR method look
more similar to the query image than the baseline NNCLR [4] method.
The second query image is about a frog. Both methods do a good job by
retrieving frog like objects in all five of their retrievals. However, the
retrievals made by the proposed pNNCLR method look slightly better
than the baseline NNCLR [4] method. The last query image is about
some alligator. Again, it could be noticed that the images retrieved by
the proposed pNNCLR method have more similar view point and shape
as the query image than the baseline NNCLR [4] method. Overall, both
methods did a good job on image retrieval task, however, the proposed

pNNCLR method showed a slightly better performance.
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Fig. 8. The two sub-figures show the performance of the baseline NNCLR and proposed pNNCLR methods on image retrieval task for STL-10 and Tiny-imagenet datasets. There
are three query images in the leftmost column for each dataset. For each query image there are two rows of retrieved images. The top row corresponds to baseline NNCLR and the
bottom row corresponds to proposed pNNCLR method. The retrieved images in each row are ordered (from left to right) in their increasing retrieval rank, i.e., the model thinks
that the one on the left is more closer to query image than the one on the right.
Table 13
Proposed pNNCLR is compared with the baseline NNCLR method using various metrics such as Top-1, F1-score, Recall and Top-5 accuracy for
the STL-10 and Tiny-imagenet datasets in the image recognition task. Each experiment was repeated three times for each method, and their
mean and standard deviation are reported.

Method Experiment# STL-10 Tiny-imagenet

Top-1 F1-score Recall Top-5 Top-1 F1-score Recall Top-5

1 0.7972 0.8063 0.8221 0.9954 0.4252 0.4527 0.4616 0.7619
2 0.7881 0.7972 0.7909 0.9971 0.3924 0.4257 0.4238 0.7483

SimCLR 3 0.7885 0.7971 0.7899 0.9917 0.4116 0.4395 0.4404 0.7539
Mean 0.7913 0.8002 0.8010 0.9947 0.4097 0.4393 0.4419 0.7547
Std Dev 0.0051 0.0052 0.0183 0.0027 0.164 0.0135 0.0189 0.0068

1 0.7896 0.7783 0.7891 0.9907 0.4354 0.4184 0.4212 0.7572
2 0.7844 0.7713 0.7814 0.9929 0.4197 0.4066 0.3929 0.7366

NNCLR 3 0.7846 0.7721 0.7829 0.9904 0.4036 0.3920 0.3914 0.7366
Mean 0.7862 0.7739 0.7845 0.9913 0.4196 0.4057 0.4018 0.7435
Std Dev 0.0029 0.0038 0.0040 0.0013 0.0158 0.0132 0.0167 0.0119

1 0.8404 0.8397 0.9029 0.9919 0.4827 0.4835 0.5112 0.7971
2 0.8412 0.8412 0.9192 0.9929 0.4735 0.4771 0.4900 0.7810

pNNCLR 3 0.8435 0.8443 0.9086 0.9927 0.4810 0.4807 0.4956 0.7966
Mean 0.8417 0.8417 0.9102 0.9925 0.4791 0.4804 0.4989 0.7916
Std Dev 0.0015 0.0023 0.0082 0.0005 0.0048 0.0031 0.0109 0.0091
Table 14
Baseline NNCLR [4] and the proposed method are compared for randomly selected five query images on a nearest neighbor based image
retrieval task on the STL-10 and Tiny-imagenet datasets. The nearest neighbors are found using two different metrics corresponding to the same
query image, i.e., MSE and KL divergence.

STL-10

Query image Mean squared error (MSE) KL divergence

NNCLR [4] Proposed method NNCLR Proposed method

1 0.0620 0.0460 429.0289 352.0296
2 0.0663 0.0455 518.1351 367.1804
3 0.0629 0.0385 430.6262 333.5937
4 0.0594 0.0413 469.5992 306.8343
5 0.0485 0.0374 367.4638 330.1322

Tiny-imagenet

Query image Mean squared error (MSE) KL divergence

NNCLR Proposed method NNCLR Proposed method

1 0.0954 0.0452 850.0895 287.7035
2 0.0874 0.0488 693.1914 355.6485
3 0.1003 0.0452 778.6684 281.6701
4 0.0902 0.0506 778.2897 287.0299
5 0.1232 0.0479 1034.672 309.4056
We also did some quantitative experiments on the image retrieval
task as shown by Table 14. Here, we report the MSE and KL-divergence
scores corresponding to randomly chosen five query images (from the
test set) and their corresponding immediate nearest neighbors (from
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the retrieval set). The results are reported for the baseline NNCLR [4]
and the proposed pNNCLR methods on STL-10 and Tiny-imagenet
datasets. On STL-10 dataset, for all query images (form 1 to 5), the
proposed pNNCLR method gives better MSE performance than the
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baseline NNCLR [4] method by attaining a mean score of ∼ 0.02.
Furthermore, the proposed pNNCLR method gives better KL-divergence
score than the baseline NNCLR [4] method by a mean margin of ∼
100. On the Tiny-imagenet dataset, a similar observation can be made,
where the proposed pNNCLR method attains better MSE performance
than the baseline NNCLR [4] method by an average margin of ∼ 0.05,
and a better KL-divergence performance by a mean margin of ∼ 500.
These results show that the proposed pNNCLR method significantly
outperformed the baseline pNNCLR [4] method on the image retrieval
tasks.

4.8. Future directions

In our experiments, we noticed that the size of the support set affects
the performance of the SSL method. This has also been observed by
other researchers. Conversely, it entails that we need to explore the role
of nearest neighbors or pseudo nearest neighbors in other types of SSL
methods. We hypothesize that the performance of other SSL methods
may benefit from increased diversification of the semantic information.
We can also move in the direction of improving the quality of nearest
neighbors or the support set as it directly affects the learning in the SSL
model. We can also experiment with how effective the features learned
by different SSL methods are on the medical image segmentation task.
We can also explore the effect of model agnostic variance regularization
functions in NNCLR or pNNCLR [44].

5. Conclusion

In this paper, we studied the problem of contrastive self-supervised
learning. We covered the development of the field from non-contrastive
methods to contrastive methods. It was found that the nearest neighbor
sampling based methods were good at increasing semantic variations
during unsupervised SSL learning. However, the shortcomings of these
methods were also discussed. Further, we proposed pNNCLR, a pseudo
nearest neighbor based contrastive learning method, to overcome the
weakness of the widely used NNCLR method. We showed how the
choice of nearest neighbors in the support set can affect the quality of
the learned representations. To avoid this, pNNCLR introduced the use
of pseudo nearest neighbors (pNN) with stochastic sampling. Further,
a smooth weight updation strategy was also used to stabilize the
uncertainty in the learning process. The proposed modifications and
multiple recent SSL methods were evaluated on different medical and
non-medical standard datasets. Various ablations were performed to
fine-tune the hyperparameters. The experiments show that the pro-
posed sampling strategy performs significantly better than the baseline
NNCLR approach while competing favorably against the other recent
SSL methods.
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Appendix A. Same class nearest neighbor probability calculation

Suppose, the dataset  on which we are training our SSL network
contains classes 𝑐1, 𝑐2,… , 𝑐𝑁𝑐 , where 𝑁𝑐 is the number of classes. Each
class 𝑐𝑖 has𝑁𝑒 number of items, i.e., we assume that we have a balanced
dataset. When choosing a nearest neighbor NN(𝑥𝑖) or NN(𝑧𝑖) for a view
of the input 𝑥𝑖, from randomly formed support set 𝑄 with cardinality
𝑁𝑞 , the approximate maximal probability, 𝑃 [𝜓] or 𝑃 [class(NN(𝑧𝑖)) =
class(𝑧𝑖)], can be calculated as follows. Here, 𝑧𝑖 is the corresponding
embedding of one of the views of 𝑥𝑖. We assume that every individual
item 𝑥 ∈  has an equal probability of being randomly selected for
forming the support set 𝑄. Then, 𝑃 [𝜓] can be defined as:

𝑃 [𝜓] = 𝑃 [A ∩ B] = 𝑃 [A|B] ⋅ 𝑃 [B]

here, A ∶ class(NN(𝑧𝑖)) = class(𝑧𝑖), if 𝑃 [B] = 1

B ∶ |

|

|

{𝑞𝑖|𝑞𝑖 ∈ 𝑄 and class(𝑞𝑖) = class(𝑧𝑖)}
|

|

|

≥ 1,

(A.1)

here |⋅| denotes the set cardinality. In other words, 𝑃 [𝜓] is the
robability of the nearest neighbor function NN(⋅) choosing the correct
lass. If

(⋅
⋅

)

denotes the binomial coefficient, the probability of the
upport set 𝑄 getting at least one item from the correct class, 𝑃 [B],
hen items in 𝑄 are randomly picked from  with an equal probability,
ecomes:

[B] = 1 − 𝑃 [ B ]. (A.2)

𝑃 [ B ] =

(

(𝑁𝑐 − 1)𝑁𝑒
𝑁𝑞

)

(

𝑁𝑐𝑁𝑒
𝑁𝑞

) . (A.3)

using (A.3) in (A.2), we get

𝑃 [B] = 1 −

(

(𝑁𝑐 − 1)𝑁𝑒
𝑁𝑞

)

(

𝑁𝑐𝑁𝑒
𝑁𝑞

)

= 1 −
(𝑁𝑐𝑁𝑒 −𝑁𝑒)!(𝑁𝑐𝑁𝑒 −𝑁𝑞)!
(𝑁𝑐𝑁𝑒 −𝑁𝑒 −𝑁𝑞)!(𝑁𝑐𝑁𝑒)!

= 1 −
𝑁𝑐𝑁𝑒 −𝑁𝑞

𝑁𝑐𝑁𝑒
⋅
𝑁𝑐𝑁𝑒 − 1 −𝑁𝑞

𝑁𝑐𝑁𝑒 − 1
⋯
𝑁𝑐𝑁𝑒 −𝑁𝑒 + 1 −𝑁𝑞

𝑁𝑐𝑁𝑒 −𝑁𝑒 + 1
.

(A.4)

𝑁𝑐𝑁𝑒 −𝑁𝑞

𝑁𝑐𝑁𝑒
⋅
𝑁𝑐𝑁𝑒 − 1 −𝑁𝑞

𝑁𝑐𝑁𝑒 − 1
⋯

𝑁𝑐𝑁𝑒 −𝑁𝑒 + 1 −𝑁𝑞

𝑁𝑐𝑁𝑒 −𝑁𝑒 + 1
<
(𝑁𝑐𝑁𝑒 −𝑁𝑞

𝑁𝑐𝑁𝑒

)𝑁𝑒
. (A.5)

𝑁𝑐𝑁𝑒 −𝑁𝑞

𝑁𝑐𝑁𝑒
⋅
𝑁𝑐𝑁𝑒 − 1 −𝑁𝑞

𝑁𝑐𝑁𝑒 − 1
⋯

𝑁𝑐𝑁𝑒 −𝑁𝑒 + 1 −𝑁𝑞

𝑁𝑐𝑁𝑒 −𝑁𝑒 + 1
>
(𝑁𝑐𝑁𝑒 −𝑁𝑒 + 1 −𝑁𝑞

𝑁𝑐𝑁𝑒 −𝑁𝑒 + 1

)𝑁𝑒
. (A.6)

Using Eq. (A.4), Eq. (A.5) and (A.6), we get a lower and upper
ound on 𝑃 [B] as:

−
(𝑁𝑐𝑁𝑒 −𝑁𝑞

𝑁𝑐𝑁𝑒

)𝑁𝑒
< 𝑃 [B] < 1 −

(𝑁𝑐𝑁𝑒 −𝑁𝑒 + 1 −𝑁𝑞

𝑁𝑐𝑁𝑒 −𝑁𝑒 + 1

)𝑁𝑒
. (A.7)

Now, let us consider two scenarios, both with a fixed value of
𝑁𝑞 = 10000. First, when we have a very large dataset where 𝑁𝑐 = 1000
and 𝑁 = 1000, we get 𝑃 [B] ≃ 0.9999, using Eq. (A.7). Second, when
𝑒
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we have a relatively smaller dataset where 𝑁𝑐 = 100 and 𝑁𝑒 = 100,
or 𝑁𝑐 = 10 and 𝑁𝑒 = 1000, we get 𝑃 [B] ≃ 1, using Eq. (A.7). Hence,
he probability 𝑃 [B] stays ≃ 1 for both smaller as well as larger size
atasets. This changes Eq. (A.1) as:

[𝜓] = 𝑃 [class(NN(𝑧𝑖)) = class(𝑧𝑖)] = 𝑃 [A], (A.8)

hich implies that the maximal probability, 𝑃 [𝜓], is proportionate to
he probability of choosing the correct class, which in turn depends
n the quality of the representations learned by the model 𝜃 . As we

know that 𝜃 is randomly initialized and stays quite random for the
starting epochs, the probability of choosing the correct class becomes
𝑃 [𝜓] ≃ 0.5, which is as good as a random selection.
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