
S O F TWA R E NO T E

Tinned: A symbolic library for response theory and high-order
derivatives

Bin Gao

Hylleraas Centre for Quantum Molecular

Sciences, Department of Chemistry, UiT The

Arctic University of Norway, Tromsø, Norway

Correspondence

Bin Gao, Hylleraas Centre for Quantum

Molecular Sciences, Department of Chemistry,

UiT The Arctic University of Norway,

N–9037 Tromsø, Norway.

Email: bin.gao@uit.no

Funding information

Norges Forskningsråd; Sigma2, Grant/Award

Number: NN14654K

Abstract

A symbolic C++ library—Tinned—has been developed for symbolic differentiation

and manipulation in response theory. By recognizing different key building blocks in

the density matrix-based (Thorvaldsen et al., J. Chem. Phys. 2008, 129, 214108) and

coupled-cluster response theories, we have implemented their corresponding C++

symbolic classes, including but not limited to one- and two-electron operators,

exchange-correlation energy and potential, and coupled-cluster operator. Formulas

of response theory can be well expressed in terms of the symbolic classes in the

library Tinned. Their high-order perturbation-strength derivatives can be straightfor-

wardly computed and extracted afterwards for numerical evaluation. The library

Tinned will greatly facilitate the development work of response theory and may lead

to a unified framework for response theory at different levels of electronic structure

theory.

K E YWORD S

derivatives of exchange-correlation energy, derivatives of exchange-correlation potential,
response theory, symbolic computation, symbolic differentiation

INTRODUCTION

Ever since the pioneering work by Olsen and Jørgensen,1 response

theory has been a valuable tool for computations of various molecular

properties. Response functions and residues are two key quantities

for the determination of molecular properties in response theory cal-

culations. These calculations involve high-order derivatives with

respect to different applied perturbations from the level of the

response theory itself and down to a variety of integral evaluations.

Molecular response theory so far has been developed at different

levels of electronic structure theory,2 such as Hartree-Fock self-

consistent field (SCF) theory, Kohn–Sham (KS) density functional the-

ory, multiconfigurational SCF theory, coupled-cluster theory and

Møller–Plesset theory. In particular, the work by Thorvaldsen et al. 3

has made it possible to study properties of large molecules by using

the density matrix-based response theory.

Notice the complexity of response theory as well as its practical

implementation, it is definitely valuable that a scheme can automati-

cally calculate molecular properties of arbitrary order without code

reimplementation. In a recent work,4 Ringholm, Jonsson and Ruud

have presented a new scheme for implementing the density matrix-

based response theory 3 by using the technique of recursive program-

ming. This technique identifies all perturbed overlap, density and Fock

matrices in a recursive way from the lower order ones instead of

implementing codes order by order. Later on, Friese, Ringholm, Ruud

and their co-workers have extended the recursive approach to the

calculations of single residues at the level of density matrix-based

response theory.5,6

A stand-alone library named as OpenRSP 7 has been developed

by the author and collaborators based on the recursive programming

technique.4 The library OpenRSP is able to compute molecular prop-

erties of arbitrary order automatically at levels of Hartree-Fock and

Received: 30 January 2024 Revised: 17 April 2024 Accepted: 26 April 2024

DOI: 10.1002/jcc.27437

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2024 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.

2136 J Comput Chem. 2024;45:2136–2152.wileyonlinelibrary.com/journal/jcc

https://orcid.org/0000-0003-1092-7785
mailto:bin.gao@uit.no
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/jcc
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fjcc.27437&domain=pdf&date_stamp=2024-05-23

KS density functional theories. However, it is challenging to extend

this library to include response theory for other electronic-structure

theories, for example, the coupled cluster theory. One important rea-

son behind the challenge is because most parts of the library

OpenRSP are developed for the density matrix-based response theory

and cannot be reused for other theoretical levels.

It is interesting to note that the recursive programming tech-

nique 4 actually employs symbolic differentiation in an implicit way,

that is, it firstly identifies perturbed matrices rather than calculat-

ing them in a numerical manner. Obviously, one common and

important task for response theory is the symbolic differentiation

with respect to different perturbations regardless of the level of

electronic-structure theory. It reminds us that a more open-ended

and less error-prone library can be developed if one can explicitly

separate symbolic computations from numerical evaluations for

response theory—so that codes for symbolic computations can be

decoupled from the “monolithic” response theory codes and

reused for different electronic-structure theories without or with

little work.

There are an impressive number of computer algebra systems

(CAS) for symbolic calculations, such as Axiom, GiNaC, Maple, Mathe-

matica, Maxima, REDUCE and SymbolicC++, just name a few.

However, some of these CASes do not provide an application pro-

gramming interface so that it is impossible for a response theory

library to access the CAS facilities. There are also other issues to be

considered for the development and use of symbolic computations

for response theory, including but not limited to (i) commutative prop-

erty of quantum operators, (ii) elimination of response parameters

according to the k2nþ1 and k2nþ1,2nþ2 rules,8 (iii) derivatives are indeed

evaluated at zero perturbation strength and additional frequency

factor(s) should be taken care for the time differentiation operator,3

and (iv) various data types of numerical results evaluated from sym-

bolic expressions—for example, one may use tensors for response

functions and residues, and an array (or a vector) of matrices for dif-

ferentiated operators.

Therefore, it is impossible to directly use existing CASes for the

development of response theory. The objective of the current work is

to address the issues of symbolic computations in response theory

and to develop a stand-alone symbolic library, named as Tinned 9 that

is tuned for response theories at different theoretical levels. This

library is expected to become the cornerstone of a more open-ended

and unified framework for response theory development and

computations.

The remainder of this paper is organized as follows: we first give

a brief introduction to the quasi-energy formulation of response

theory, followed by a formal definition of perturbation-strength

derivatives, and key formulas for the density matrix-based 3 and

coupled-cluster 2,10 response theories. From these key formulas, we

can identify basic symbols and symbolic operations needed for

response theory. Next, their design and implementation in the

library Tinned will be discussed. In particular, we have also devel-

oped a flexible strategy for the (numerical) evaluation of

a (differentiated) symbolic expression.

Before making our final remarks, we illustrate the application of

the library Tinned by a few snippets to construct the derivative

of generalized energy in density matrix-based response theory and

the quasi-energy Lagrangian in coupled-cluster response theory, to

eliminate response parameters according to the ðk,nÞ rule,3 and finally

to find all (un)perturbed density matrices in the differentiated general-

ized energy.

THEORETICAL BACKGROUND

In this section, we will briefly summarize the quasi-energy formulation

at the levels of density matrix-based and coupled-cluster response

theories, from which we can recognize basic symbols for resp-

onse theory calculations.

In the framework of quasi-energy formulation, the key quantity

and starting point is the time-dependent quasi-energy QðtÞ 2

QðtÞ¼ hΦðtÞjĤðtÞ� i
∂

∂t
jΦðtÞi, ð1Þ

where ΦðtÞ is a phase-isolated state and satisfies 3

ĤðtÞ� i
∂

∂t

� �
ΦðtÞj i¼QðtÞ ΦðtÞj i: ð2Þ

The Hamiltonian ĤðtÞ¼ Ĥ0þ V̂ðtÞ with Ĥ0 being a time-independent

unperturbed Hamiltonian, and V̂ðtÞ a time-dependent operator repre-

senting different applied perturbations on the system.

The key point in the quasi-energy formulation is that we require

V̂ðtÞ to be time-periodic with a period T, and can be expressed in

terms of Fourier series 11

V̂ðtÞ¼
X
Â

εAðtÞÂ¼
X
Â

X
ωA

εωA exp �iωAtð Þ
" #

Â, ð3Þ

where εAðtÞ is a real-valued time-dependent perturbation strength of

a time-independent one-electron operator Â, and the sum in the

brackets ½� � � � is the Fourier series of εAðtÞ because it is also a time-

periodic function. The frequencies ωA can be expressed as an integer

times some fundamental frequency, as zAω0 (zA �ℤ) according to the

quasi-energy approach.3 The Fourier series should contain both fre-

quencies �ωA, and the complex Fourier coefficients εωA should satisfy

ε�ωA ¼ ε ∗
ωA

for εAðtÞ to be real-valued. By further requiring the hermiti-

city of the operator Â (Â
† ¼Â), we ensure V̂ðtÞ is Hermitian.

Due to the periodicity of V̂ðtÞ, the Hamiltonian Ĥ and the state

ΦðtÞj i also become time-periodic with the same period T. The time-

averaged quasi-energy can then be introduced 3

QðtÞf gT ¼
1
T

ðT
2

�T
2

QðtÞdt: ð4Þ

For exact states ΦðtÞ, the following variational condition holds 2

GAO 2137

 1096987x, 2024, 25, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcc.27437 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [07/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

δ QðtÞf gT ¼0, ð5Þ

from which and the time-averaged Hellmann–Feynmann theorem,2,3

molecular response functions can be determined as perturbation-

strength derivatives of the time-averaged quasi-energy 3,12,13

hhÂ; B̂1, � � � , B̂niiωB1
,��� ,ωBn

¼ dnþ1 QðtÞf gT
dεωAdεωB1

� � �dεωBn

�����
fεg¼0

, ð6Þ

where

ωA ¼�
Xn
j¼1

ωBj , ð7Þ

and fεg¼0 denotes the evaluation at zero perturbation

strength εωA ,εωB1
,…,εωBn

¼0.

For approximate states from the density matrix-based and

coupled-cluster theories, the time-averaged quasi-energy QðtÞf gT no

longer satisfies the variational condition (5) alone. To allow for uncon-

strained variations, one could use the so-called time-averaged quasi-

energy derivative Lagrangian 3 for the density matrix-based response

theory and the time-averaged Lagrangian 2 for the coupled-cluster

response theory, where QðtÞf gT becomes an integral part of the

formulation.

In the following subsections, we will first introduce a formal defi-

nition for the perturbation-strength derivatives, and then the key for-

mulas for the density matrix-based and coupled-cluster response

theories. Such a formal definition will make the formulas of response

theory in a more compact manner.

Last but not least, rules for elimination of response parame-

ters 3,4,8 and residues of response functions 2,3 are both of key impor-

tance. But they will not bring any new basic symbols for response

theory calculations, so we will focus on the response functions and its

nþ1 formulation in our current work.

Perturbation tuple and perturbation index chain

Hereinafter, we will use small letters a,b,c, � � � to denote the corre-

sponding Fourier coefficients (or perturbation strength) εωA ,εωB ,εωC , � � �
for the sake of simplicity. We define “a perturbation tuple” as an

ordered list of perturbation strength a,b,c, � � �, and additionally we

require that

1. identical perturbation strength (belong to a same operator Â and

with a same frequency ωA) should be consecutive, and

2. the order of a tuple determines the shape of its corresponding

derivatives (usually stored in a tensor).

In the current work, we represent a perturbation tuple in two ways,

either putting the perturbation strength a,b,c, � � � into a parentheses as

ða,b,c, � � � Þ, or in a more compact way abc� � �.
From the above definition, the following remarks are obvious:

1. The length of a perturbation tuple is the order of its corresponding

derivative;

2. Multiple instances of a same perturbation strength are allowed so

that ða,b,b,cÞ≠ ða,b,cÞ;
3. A tuple like ða,b,c,bÞ is illegal because the identical perturbation

strength b are not consecutive;

4. Tuples ða,b,cÞ≠ ða,c,bÞ, because they are in different order and

result into derivatives stored in tensors with different shapes.

For example, let a, b and c be the electric dipole, magnetic dipole

and geometrical perturbations. The shapes of derivative tensors

are ð3,3,3NÞ and ð3,3N,3Þ respectively for tuples ða,b,cÞ and

ða,c,bÞ, where N is the number of atoms.

To evaluate derivatives of a product, we will also introduce the “sub-
perturbation tuple” that is constructed

1. by choosing a few perturbation strength from another perturba-

tion tuple (named as “parent-perturbation tuple”), and
2. by following exactly the same order of the parent-perturbation

tuple.

For instance, the following perturbation tuples are the sub-perturba-

tion tuples of abc: ;, a, b, c, ab, ac, bc, abc, with two special cases—;
the empty tuple and abc itself. However, tuples like ba, ca and cb are

not the sub-perturbation tuples of abc, because they do not follow

the same order as abc.

It should be noted that derivatives with respect to the

empty tuple ; means zeroth-order derivative throughout the cur-

rent work.

The formulation and evaluation of derivatives (of a product) can

be further facilitated by using the conception of “perturbation index

chain”, which is a totally ordered set (or a chain) 14f1,…,ng with each

element pointing the position of its corresponding perturbation

strength appeared in a perturbation tuple b1� � �bn.
A special index chain is the empty set ;, which represents the

empty perturbation tuple and the zeroth-order derivative.

By considering the requirements on perturbation tuples, the fol-

lowing remarks are obvious:

1. The cardinality (denoted as j� � �j) of a perturbation index chain

equals to the length of its corresponding perturbation tuple, and

the order of the corresponding derivative.

2. Each perturbation index chain f1,…,ng has 2n sub-chains with the

same order of elements as the whole chain, and each sub-chain

corresponds to a sub-perturbation tuple of the parent-perturbation

tuple b1� � �bn.
3. Two special sub-chains are ; and f1,…,ng itself.

Throughout the current paper, we denote a sub-chain P of f1,…,ng as

P⊆ f1,…,ng. When the sub-chain P is not equal to f1,…,ng, it is called
“a proper sub-chain”, and is denoted as P⊊ f1,…,ng.

Except for sub-chains, another important topic related to the per-

turbation index chain is “a partition of a set”. Mathematically, a set

2138 GAO

 1096987x, 2024, 25, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcc.27437 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [07/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

partition π of a set (or a chain) f1,…,ng is a collection of k non-empty

and disjoint subsets (sub-chains) π1,…,πk of f1,…,ng, that is 15

πi ≠ ;, 1≤ i≤ k,

πi\πj ¼;, 1≤ i≠ j≤ k,

[k
i¼1πi ¼f1,…,ng,

minðπ1Þ< � � �< minðπkÞ,

8>>><>>>: ð8Þ

where a subset (sub-chain) πi (1≤ i≤ k) is often named as the ith block

of the set partition π. The last requirement in the above definition

means that the subsets (sub-chains) π1,…,πk are listed in increasing

order of their minimal elements, and alternatively, one can require a

decreasing order of their maximal elements.15

The set of all set partitions of a chain f1,…,ng with exactly

k (1≤ k ≤ n) blocks is denoted as Pf1,��� ,ng,k or simply Pn,k , and the num-

ber of such set partitions is

Pn,kj j ¼ n
k

n o
, ð9Þ

where n
k

� �
is the Stirling number of the second kind.15

Density matrix-based response theory

In the density matrix-based response theory, molecular response

functions can be determined from the time-averaged quasi-energy

derivative Lagrangian 3

~L
a ¼trf gT ~Q

a� ~λa~Y� ~ζa~Z, ð10Þ

where the superscript a on ~L and ~Q indicates the derivative with

respect to the perturbation strength a. The notation ¼trf gT denotes a

trace of matrix products on the right-hand side followed by an averaging

over a time period T of the applied perturbations. The tildes are, hereaf-

ter, to denote quantities at general perturbation strengths fεg (instead of

at zero perturbation strength), which are usually time dependent.

Other quantities on the right-hand side of Equation (10) are 3 the

quasi-energy derivative

~Q
a ¼ ~E

0,a� ~S
a ~W, ð11Þ

the time-dependent self-consistent-field (TDSCF) equation

~Y¼ ~F~D~S� ~S~D~F� ~S i
∂ ~D
∂t

 !
~S�1

2
i
∂~S
∂t

 !
~D~S�1

2
~S~D i

∂~S
∂t

 !
, ð12Þ

the idempotency constraint

~Z¼ ~D~S~D� ~D, ð13Þ

and the Lagrangian multipliers ~λa and ~ζa that take the following

ansatzes

~λa ¼ ~D
a~S~D� ~D~S~D

a
, ð14Þ

~ζa ¼ ~F
a ~D~S� ~F~D�1

2
i
∂~S
∂t

 !
~D� ~S i

∂ ~D
∂t

 !" #
~S
a

þ~S~D~F
a� ~S

a ~D~Fþ1
2
~D i

∂~S
∂t

 !
þ i

∂ ~D
∂t

 !
~S

" #
� ~F

a
:

ð15Þ

Right-hand side terms of the quasi-energy derivative (11) are the

generalized energy ~E, the overlap matrix ~S and the generalized

energy-weighted density matrix ~W, which reads 3

~W¼ ~D~F~Dþ1
2

i
∂ ~D
∂t

 !
~S~D�1

2
~D~S i

∂ ~D
∂t

 !
: ð16Þ

The first superscript on the generalized energy ~E indicates the order

of derivatives with respect to the density matrix ~D, and 3

~E
0,a ¼ ∂~E

∂εωA

¼trf gT ~h
aþ ~V

aþ ~T
aþ1

2
~G
γ,að~DÞ

� �
~Dþ ~E

0,a
xc ½~ρð~DÞ�þ ~h

a
nucþ ~vanuc,

ð17Þ

where ~h is the one-electron Hamiltonian, and ~V the time-periodic per-

turbation operators. The ~T matrix arises due to the use of perturba-

tion- and time-dependent basis sets f~χg, and is defined as

~Tκλ ¼�1
2

i
∂~χκ
∂t

����~χλ	

þ ~χκ i

∂~χλ
∂t

����	
� �
, ð18Þ

which is different from that of Reference 3, as we have collected the

imaginary number � i
2 and the time differentiation together so that

the ~T matrix here is Hermitian.

The operator ~G
γð~DÞ is the two-electron matrix with

scaled (scaling factor is γ) exchange 3

~G
γ

μνð~DÞ ¼P
κλ

~Dλκ ~gμνκλ� γ~gμλκν
� �

, ð19Þ

~gμνκλ ¼ Ð Ð ~χ ∗
μ ðr1Þ~χνðr1Þ

1
r12

~χ ∗
κ ðr2Þ~χλðr2Þdr1dr2: ð20Þ

Within the adiabatic approximation, the XC functional ~Exc½~ρð~DÞ�
depends on time only through the electron density and its Cartesian

gradient if using generalized gradient approximation and hybrid

functionals 16

~Exc½~ρð~DÞ� ¼
ð
~ϵxc½~ρðrÞ�dr, ð21Þ

where ~ϵxc½~ρðrÞ� is a local function of the XC energy density. The nota-

tion ~ρðrÞ represents a generalized density vector that collects the elec-

tron density ~nðrÞ and/or its Cartesian gradient r~nðrÞ 16

GAO 2139

 1096987x, 2024, 25, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcc.27437 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [07/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

~nðrÞ ¼trf gT ~ΩðrÞ~D, ð22Þ

r~nðrÞ ¼trf gT ½r~ΩðrÞ�~D, ð23Þ

where the overlap distribution ~ΩðrÞ is

~ΩμνðrÞ¼ ~χ ∗
μ ðrÞ~χνðrÞ: ð24Þ

The last two terms ~hnuc and ~vnuc in the generalized energy (17) are

respectively the nuclear repulsion energy and interaction between

perturbations and nuclei 11 that do not depend on the density

matrix ~D.

Finally, we have the generalized Fock matrix ~F, which can be com-

puted as the first derivative of the generalized energy ~E with respect

to the density matrix ~D,

~F¼ ~E
1,0 ¼ ∂~E

∂ ~D
T
¼ ~hþ ~Vþ ~Tþ ~G

γð~DÞþ ~Fxcð~ρÞ, ð25Þ

and ~Fxcð~ρÞ is the density functional derivative matrix 3,16

ð~FxcÞμνð~ρÞ¼
ð
δ~ϵxc½~ρðrÞ�

δρ

����
ρ¼~ρ

∂~ρ

∂ ~Dνμ

dr¼
ð
~vxc½~ρðrÞ�ð~ΩρÞμνðrÞdr, ð26Þ

where ~vxc½~ρðrÞ� is the XC potential, and ~ΩρðrÞ the generalized overlap

distribution 16 that collects the overlap distribution ~ΩðrÞ and its Carte-

sian gradient r~ΩðrÞ.
In the nþ1 formulation, the molecular response functions can be

computed as the nth order perturbation-strength derivatives of the

time-averaged quasi-energy derivative Lagrangian (10) and evaluated

at zero perturbation strength 3

hhÂ; B̂1,…, B̂niiωB1
,…,ωBn

¼ ~L
ab1 ���bn ���

fεg¼0
: ð27Þ

The key quantities to be solved for the computation of Equation (27)

are derivatives of the density matrix in the frequency domain Db1
ωB1

,

Db1b2
ωB1

ωB2
, …, Db1 ���bn

ωB1
���ωBn

, whose solutions can be obtained from the

TDSCF equation ~Y¼0 and the idempotency constraint ~Z¼0. Inter-

ested readers are referred to Reference 3 because there are no new

basic symbols from those solutions to be presented here.

From the above formulas for the determination of molecular

response functions, the following basic symbols and symbolic

operations can be identified for the density matrix-based response

theory:

1. Perturbations,

2. Electronic state, such as the (perturbed) density matrix,

3. One-electron like operators,

4. Two-electron like operators,

5. XC like energies and potentials,

6. Non-electron like functions, such as the nuclear repulsion energy
~hnuc and interaction between perturbations and nuclei ~vnuc,

7. i ∂∂t and the ~T matrix in Equation (18),

8. Symbolic differentiation, arithmetic and trace,

9. Symbolic removal and replacement, for example, used for solving

the derivatives of the density matrix in the frequency domain and

the computation of residues.3

Coupled-cluster response theory

In coupled-cluster response theory, molecular response functions

can be determined from the perturbation-strength derivatives of

the time average of the following quasi-energy Lagrangian 2,10

LðtÞ¼ he�T̂ðtÞĤðtÞeT̂ðtÞiþ
X

μλ˜μ
D
τ̂†μe

�T̂ðtÞ ĤðtÞ� i
∂

∂t

� �
eT̂ðtÞ

E
, ð28Þ

where notations hÂi and hÂiμ represent expectation values of an oper-

ator Â

hÂi ¼ HFh jÂ HFj i, ð29Þ

hÂiμ ¼ HFh jτ̂†μÂ HFj i, ð30Þ

with HFj i being the Hartree-Fock reference state. The time-depen-

dent cluster operator T̂ðtÞ is

T̂ðtÞ¼
X
ν

~tντ̂ν, ð31Þ

where the row vectors τ̂ and ~t contain respectively (commuting) exci-

tation operators and time-dependent coupled-cluster amplitudes. The

row vector ~λ is introduced as the Lagrangian multipliers.

Key quantites for evaluating response functions are the deriva-

tives of the coupled-cluster amplitudes tb1 ���bnωB1
���ωBn

and the Lagrangian

multipliers λb1 ���bnωB1
���ωBn

in the frequency domain. They can be solved

respectively from 10,17

∂

∂λbnþ1 ���bnþm
ω,μ

~L
b1 ���bnþm

���
fεg¼0

� �
¼0, ð32Þ

and

∂

∂tbnþ1 ���bnþm
ω,ν

~L
b1 ���bnþm

���
fεg¼0

� �
¼0, ð33Þ

where ~L
b1 ���bnþm

is the derivatives of the time average of the quasi-

energy Lagrangian (28)

~L
b1 ���bnþm ¼ ∂nþmfLðtÞgT

∂εωB1
� � �∂εωBnþm

: ð34Þ

2140 GAO

 1096987x, 2024, 25, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcc.27437 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [07/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

Therefore, all basic symbols for coupled-cluster response theory

can be recognized by analysing terms of the quasi-energy Lagrang-

ian (28) and their perturbation-strength derivatives. To facilitate our

following discussion, we introduce the “exponential map” from Lie

algebra 18

eadX ðYÞ ¼YþadXðYÞþ 1
2!

adXð Þ2ðYÞþ �� �

¼Yþ½X,Y�þ 1
2!
½X, ½X,Y��þ �� �

¼ eXYe�X ,

ð35Þ

where adXðYÞ¼ ½X,Y� is the adjoint map (or adjoint representation).18

By using the exponential map, we can rewrite the quasi-energy

Lagrangian (28) as

LðtÞ¼ head�T̂ðtÞ ðĤðtÞÞiþ
X
μ

~λμ head�T̂ðtÞ ðĤðtÞÞiμ� i
∂

∂t
~tμ

� �
, ð36Þ

from which we can easily recognize the following new basic symbols:

1. Coupled-cluster amplitudes ~t,

2. Lagrangian multipliers ~λ, and

3. Expectation values of the exponential map ead�T̂ðtÞ ðĤðtÞÞ.

Derivatives of the operator ead�T̂ðtÞ ðĤðtÞÞ can be determined as fol-

lows: we first note that the Hamiltonian ĤðtÞ has no more than two-

body interactions, so the expansion of ead�T̂ðtÞ ðĤðtÞÞ can be terminated

after fourfold commutators,19

ead�T̂ðtÞ ðĤðtÞÞ¼
X4
j¼0

1
j!

ad�T̂ðtÞ
 �j

ðĤðtÞÞ¼
X4
j¼0

ð�1Þj
j!

adT̂ðtÞ
 �j

ðĤðtÞÞ: ð37Þ

Secondly, due to the cluster operator T̂ω and its different derivatives

are commutative, we have for j>0,

adT̂
� �jðĤÞh ib1 ���bn

ω
¼ ad

T̂
ð0Þ

 �j
ðĤb1 ���bn

ω Þ

þ P
P ⊊ f1, ��� ,ng
Q¼f1, ��� ,ng�P

Pminðj, jQjÞ

k¼1

P
π � PQ,k

j!
ðj�kÞ!

Yj
q¼1

ad
T̂
bπq
ω

 �
ðĤbP

ω Þ,

ð38Þ

where the subscript ω indicates quantities in the frequency domain,

and PQ,k stands for all set partitions of the set Q with k blocks. The

notation πq represents the qth block of π, and πq ¼; when q> k. The

operator T̂
ð0Þ

is defined as

T̂
ð0Þ ¼

X
ν

tð0Þν τ̂ν, ð39Þ

with tð0Þ the optimized zeroth-order coupled-cluster amplitudes.

By using Equations (37) and (38), we can get

ead�T̂ðtÞ ðĤðtÞÞ
h ib1 ���bn

ω
¼ ead�T̂

ð0Þ ðĤb1 ���bn
ω Þ

þ P
P ⊊ f1, ��� ,ng
Q¼f1, ��� ,ng�P

Pminð4, jQjÞ

k¼1

P
π � PQ,k

P4
j¼k

ð�1Þj
ðj�kÞ!

Yj
q¼1

ad
T̂
bπq
ω

 �
ðĤbP

ω Þ

¼ ead�T̂
ð0Þ ðĤb1 ���bn

ω Þ

þ P
P ⊊ f1, ��� ,ng
Q¼f1, ��� ,ng�P

jQj≥4

P
π � PQ,4

Q4
q¼1

ad
T̂
bπq
ω

 �
ðĤbP

ω Þ

þP3
k¼1

P
P ⊊ f1, ��� ,ng
Q¼f1, ��� ,ng�P

jQj≥ k

P
π � PQ,k

ð�1Þkead�T̂
ð0Þ Qk

q¼1
ad

T̂
bπq
ω

 �
ðĤbP

ω Þ
 !

,

ð40Þ

where

T̂
bπq
ω ¼

X
ν

t
bπq
ω,ν τ̂ν: ð41Þ

SYMBOLIC COMPUTATIONS—DESIGN AND
IMPLEMENTATION FOR RESPONSE THEORY

All our implementation can be found in a new libray named as Tinned,9

which is built on a modified version of SymEngine library (available at

https://github.com/bingao/symengine). SymEngine 20 is a stan-

dalone fast C++ symbolic manipulation library, and is released under a

permissive open source license. Our modified version extends symbolic

differentiation to different matrix expressions, such as matrix addition,

matrix multiplication, trace and in particular, a class MatrixSymbol—

from which different electron operators can be derived.

Figure 1 illustrates relationships of classes implemented in

Tinned library and their base classes in SymEngine library by using

unified modeling language (UML) class diagram. To summarize, all

classes developed in Tinned library can be categorized into four

groups:

1. The class Perturbation derived from the class Symbol in

SymEngine,

2. Classes derived from the class FunctionWrapper to represent

scalar functions and functionals,

3. Classes derived from the class MatrixSymbol for electron opera-

tors, and

4. Different “visitor” classes for symbolic operations like symbolic

replacement and removal.

In the following subsections we will discuss these classes in detail,

including their design, implementation and application program-

ming interfaces (APIs)—especially those for symbolic

differentiation.

Symbolic arithmetic, differentiation and matrix
operations

Before presenting our implementation of different electron

operators, we will first describe various symbolic operations in

GAO 2141

 1096987x, 2024, 25, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcc.27437 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [07/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/bingao/symengine

SymEngine that are useful for response theory. In SymEngine,

all types of symbolic representations are derived from a

base class named as Basic, including mathematical symbols,

symbolic arithmetic, different mathematicl functions (like

trigonometric functions and exponential function), derivatives and

so forth.

F IGURE 1 Relationships of classes implemented in our Tinned library and their base classes in SymEngine library. Key member variables and
functions are highlighted for each class, which are essential for our design and the use of Tinned library. Notations þ, # and – respectively
represent public, protected and private members of a class. Types of class members–TemporumType, ExcContractionMap and
VxcContractionMap are defined in Tinned library and are described in sections of time differentiation i ∂∂t, and XC energy and potential. Other
types are from the C++ standard and SymEngine libraries. The former starts with std. The latter includes RCP (shared pointer), Basic (base
class for all types of symbolic representations), Number (base class for all types of numbers), Symbol (representing symbols or variables in
mathematics), multiset_basic (multiset of objects of type Basic) and vec_basic (vector of objects of type Basic).

2142 GAO

 1096987x, 2024, 25, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcc.27437 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [07/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

Matrix expressions and operations are different from scalar sym-

bolic ones. A class MatrixExpr (also derived from Basic) has been

introduced in SymEngine that serves as the base class for all matrix

expressions and operations, including but not limited to matrix

addition, matrix multiplication and trace. Built on top of SymEn-

gine library, we do not need to reinvent the wheel for different

symbolic operations. As aforementioned, we only need to imple-

ment symbolic differentiation for different matrix classes. In

SymEngine, the symbolic differentiation is realized by using the

visitor design pattern.21

In Figure 2, we illustrate the visitor pattern for symbolic differen-

tiation in SymEngine and Tinned libraries by using UML class diagram.

Every symbolic class derived from the class Basic has a member

function accept that takes an object “v” of the base class Visitor as

input—obviously, any object of a derived visitor class from Visitor

can also be the input. The function accept “dispatches” the object of

the current symbolic class to the visitor “v” by calling its member func-

tion visit as shown in Figure 2. The visitor object “v” can then per-

form appropriate operation on the object of the symbolic class.

The visitor design pattern is beneficial when new visitors need

to be implemented since no change will be made to symbolic classes.

But it can be troublesome when new symbolic classes are intro-

duced as they usually require new visit functions. The class

FunctionWrapper is special in SymEngine. Users can implement

their own classes by deriving from it and the member function dif-

f_impl will be invoked by the object of the visitor class DiffVi-

sitor for symbolic differentiation. As shown in Figures 1 and 2,

classes NonElecFunction (non-electron like functions), Compo-

siteFunction (composite functions) and ExchCorrEnergy (XC

energy) in Tinned library are all derived from the class

FunctionWrapper.

In our modified version of SymEngine library, we have also intro-

duced such a member function diff_impl for the class Matrix-

Symbol, which can be overridden by derived electron operator

classess for their symbolic differentiation.

As shown in Figure 1, derivatives can be readily extracted by

using the member function get_derivatives of most classes in

Tinned library. Exceptions, like the class ExchCorrEnergy, will be

explained separately in the following subsections.

Perturbations

The class Perturbation is derived from the class Symbol in

SymEngine to represent different perturbations, and objects of the

class Symbol are distinguished by their names as shown in Figure 1.

F IGURE 2 UML class diagram for the visitor design pattern of symbolic differentiation in SymEngine and Tinned libraries. Note that classes
FunctionWrapper and MatrixSymbol are further-derived classes of the class Basic.

GAO 2143

 1096987x, 2024, 25, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcc.27437 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [07/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

We have further introduced two additional members in the class

Perturbation: (i) an object of the class Number from SymEngine

for the frequency of a perturbation, and (ii) a set of integers starting

from 0 for components of the perturbation. Default values are 0 for

the frequency (a static perturbation) and an empty set for components

meaning all components will be considered.

The set of components can be useful if one is interested in spe-

cific components of a perturbation. For example, a set f0,2g means

only x and z components will be considered for an electric-field

perturbation.

In Tinned library, the class Perturbation is mostly used as

a variable that other operators and functions can be differenti-

ated with respect to. Although it is not depicted in Figure 1, clas-

ses NonElecFunction, OneElecOperator, TwoElecEnergy

and TwoElecOperator all have a member variable that

records their dependencies on different Perturbation objects

and corresponding maximum orders of differentiation.

Non-electron like functions and one-electron like
operators

Non-electron like functions and one-electron like operators are respec-

tively represented by classes NonElecFunction and OneElecOpera-

tor in Tinned. As shown in Figure 1, the former is derived from the class

FunctionWrapper and the latter from the class MatrixSymbol.

The procedure of the member function diff_impl is exactly

the same for both NonElecFunction and OneElecOperator.

In Figure 3, we illustrate the procedure of differentiation for the

class NonElecFunction by using UML sequence diagram. Taking

into account the perturbation dependencies, we have introduced a

type PertDependency in Tinned, which is a C++ std::map con-

tainer with each key-value pair as a Perturbation object and its

corresponding maximum order for differentiation.

Except for perturbation dependencies, both NonElecFunction and

OneElecOperator have a member variable derivatives_ holding

F IGURE 3 UML sequence diagram for the differentiation of the class NonElecFunction.

2144 GAO

 1096987x, 2024, 25, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcc.27437 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [07/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

derivatives with respect to perturbations. The variable deriva-

tives_ stores objects of the class Perturbation with respect to

which the instance of NonElecFunction or OneElecOperator

will be differentiated. A C++ std::multiset container is used for

storing these Perturbation objects, and equivalent objects are

allowed for differentiating as many times as occurrences of the object.

The use of std::multiset container guarantees that the variable

derivatives_ is a valid perturbation tuple.

When constructing an instance of NonElecFunction, the

default value for derivatives_ is an empty container “{}” — repre-

senting an undifferentiated instance as shown in Figure 3. When the

function diff_impl is called to perform differentiation with respect

to an object “s” of the type Symbol, the function find_depen-

dency will first be invoked to return the corresponding maximum

order of “s” for differentiation if it exists in the container of perturba-

tion dependencies, 0 otherwise.

For non-zero maximum order of differentiation, we further

check the number of occurrences of the object “s” in the member

variable derivatives_ and compare it with the maximum

order. For zero derivatives, a symbolic integer zero from

SymEngine will be returned from the function diff_impl. For

non-zero derivatives, a new instance of NonElecFunction will

be created and returned, which contains derivatives with the

object “s” appended.

Electronic state

Notice that response theory calculations can be performed at differ-

ent theoretical levels, which involve different quantities for the elec-

tronic state, such as density matrix, molecular orbital coefficients and

coupled-cluster amplitudes. So we have first implemented a base class

ElectronicState for all different concrete and derived electronic

state classes.

The class ElectronicState is derived from the class Matrix-

Symbol as shown in Figure 1. Derivatives with respect to perturba-

tions are stored in the member variable derivatives_, while

derived electronic state classes will implement their own member

function diff_impl for symbolic differentiation.

So far we have implemented derived classes OneElecDensity

and StateVector, respectively for one-electron spin-orbital density

matrix and coupled-cluster amplitudes. Their member function dif-

f_impl can be trivially implemented by returning a new OneElec-

Density or StateVectorinstance with the object “s” appended to

the member variable derivatives_.

Two-electron like operators and energy

From Equation (20), any two-electron like operator ~G can be viewed

as a tensor contraction of electron repulsion integrals (ERIs) ~g and

one-electron spin-orbital density matrix ~D

~Gð~DÞ¼ ~g � ~D, ð42Þ

and any two-electron like energy becomes

~E2el ¼ tr ~Gð~DinnerÞ~Douter

h i
¼ tr ~g � ~Dinner

 �
~Douter

h i
: ð43Þ

In Tinned, we have introduced classes TwoElecOperator and

TwoElecEnergy for the operator ~G and the energy ~E2el, respectively.

As shown in Figure 1, they are respectively derived from the class

MatrixSymbol and the class FunctionWrapper in SymEngine.

Member variables state_, inner_ and outer_ store the one-

electron spin-orbital density matrices ~D, ~Dinner and ~Douter, respectively.

Both TwoElecOperator and TwoElecEnergy also have member

variables dependencies_ and derivatives_ for perturbation

dependencies and derivatives of the ERIs ~g.

The differentiation of ~G and ~E2el with respect to a perturbation

“s” can be expressed as

∂ ~G
∂s

¼ ~gs � ~Dþ~g � ~D
s
, ð44Þ

∂~E2el
∂s

¼ tr ~gs � ~Dinner

 �
~Douter

h i
þ tr ~g � ~D

s
inner

 �
~Douter

h i
þtr ~g � ~Dinner

 �
~D
s
outer

h i
,

ð45Þ

from which their member function diff_impl can be developed as

the sum of those right-hand-side terms. Derivatives ~D
s
, ~D

s
inner and

~D
s
outer can be computed from the member function diff_impl of the

class OneElecDensity. Derivatives ~gs can be performed by following

the same procedure as that of the class NonElecFunction in Figure 3.

Furthermore, the following relationship 3 has been used to collect

equivalent terms for the differentiation of ~E2el,

tr ~g � ~Dinner

 �
~Douter

h i
¼ tr ~g � ~Douter

 �
~Dinner

h i
: ð46Þ

XC energy and potential

In practice, the XC functional energy and potential matrix are evalu-

ated by using numerical integration techniques 16

~Exc ≈
P
i
wi~ϵxc½~ρðriÞ�, ð47Þ

ð~FxcÞμν ≈
P
i
wi~vxc½~ρðriÞ�ð~ΩρÞμνðriÞ, ð48Þ

where wi 's and ri 's are grid weights and grid points.

In Tinned, we have implemented classes ExchCorrEnergy and

ExchCorrPotential to represent the XC functional energy and

potential matrix, respectively. As illustrated in Figure 1, their member

variables energy_ and potential_ are used to store the above

summand of ~Exc and ð~FxcÞμν, i.e.

GAO 2145

 1096987x, 2024, 25, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcc.27437 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [07/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

energy¼w~ϵxc½~ρðrÞ�, ð49Þ

potential ¼w~vxc½~ρðrÞ�~ΩρðrÞ¼w
∂~ϵxc½~ρðrÞ�
∂~ρðrÞ

~ΩρðrÞ, ð50Þ

where the subscript i is omitted, and ~ρðrÞ¼ tr ~ΩρðrÞ~D
h i

.

More explicitly, the grid weight w, the generalized overlap

distribution 16~ΩρðrÞ and the one-electron spin-orbital density matrix ~D

are respectively instances of the classes NonElecFunction, OneE-

lecOperator and ElectronicState. The generalized density vec-

tor ~ρðrÞ is simply the trace of product of ~ΩρðrÞ and ~D. The local

function of the XC energy density ~ϵxc½~ρðrÞ� and the XC potential

~vxc½~ρðrÞ� can be treated as composite functions of the generalized den-

sity vector ~ρðrÞ. We further use the class CompositeFunction in

Tinned for ~ϵxc½~ρðrÞ� and ~vxc½~ρðrÞ�, with the member variables order_

respectively as 0 and 1, and inner_ as the instance of ~ρðrÞ.
Next, we consider the implementation of the member function

diff_impl for ExchCorrEnergy and ExchCorrPotential. The

member variables energy_ and potential_ are respectively

expressed as multiplication and matrix multiplication in SymEngine.

Their derivatives with respect to a perturbation “s” can be performed

by using the corresponding differentiation functions in SymEngine,

and the only requisite we need to implement is the differentiation of

the class CompositeFunction. From the knowledge of derivatives

of the composition of two functions,22 we have

∂~ϵxc½~ρðrÞ�
∂s

¼ ∂~ϵxc½~ρðrÞ�
∂~ρðrÞ tr ~Ωs

ρðrÞ~D
h i

þ tr ~ΩρðrÞ~Ds
h i �

, ð51Þ

which can be represented as multiplication of a new instance of the

class CompositeFunction (with order_ increasing by 1) and the

derivative of the generalized density vector ~ρðrÞ. This differentiation

procedure has been implemented in the member function dif-

f_impl of the class CompositeFunction.

Results from the member functions diff_impl of ExchCorrE-

nergy and ExchCorrPotential are new instances of these two

classes with differentiated energy_ and potential_, respectively.

The general form of differentiated energy_ and potential_ can be

obtained by extending the well-known general Leibniz rule in calculus

to partial derivatives of the product of multiple functions

∂nenergy

∂b1� � �∂bn ¼wb1 ���bn ~ϵxc½~ρðrÞ�

þ P
P ⊊ f1, ��� ,ng
Q¼f1, ��� ,ng�P

wbP
PjQj
m¼1

∂m~ϵxc½~ρðrÞ�
∂~ρmðrÞ

X
π � PQ,m

Ym
j¼1

~ρbπj ðrÞ,
ð52Þ

∂npotential

∂b1� � �∂bn ¼ P
M ⊆ f1, ��� ,ng
P¼f1, ��� ,ng�M

wbP
∂~ϵxc½~ρðrÞ�
∂~ρðrÞ

~ΩbM
ρ ðrÞ

þ P
M ⊆ f1, ��� ,ng

P ⊆ f1, ��� ,ng�M
Q¼f1, ��� ,ng�M�P

wbP
PjQj
m¼1

∂mþ1~ϵxc½~ρðrÞ�
∂~ρmþ1ðrÞ

� P
π � PQ,m

Qm
j¼1

~ρbπj ðrÞ~ΩbM
ρ ðrÞ,

ð53Þ

where b1,…,bn are perturbations and

~ρbj1 ���bjk ðrÞ¼
X

P ⊆ fj1 ,…, jk g
Q¼fj1 ,…, jkg�P

~ΩbP
ρ ðrÞ~DbQ

: ð54Þ

Equations (52) and (53) contain all possible differentiated grid

weights, XC energy densities, generalized overlap distributions and

one-electron spin-orbital density matrices. They will become more

complicated for higher-order derivatives of energy_ and

potential_. As shown in Figure 1, one can use member functions

get_energy_map and get_potential_map to extract the sym-

bolic expression of Equations (52) and (53), and to convert them to types

ExcContractionMap and VxcContractionMap, respectively.

The type ExcContractionMap is a nested map. The key of the

outer map is wbP and the value is the innner map with key-value pair
∂m~ϵxc ½~ρðrÞ�
∂~ρmðrÞ ,

P
π � PQ,m

Qm
j¼1~ρ

bπj ðrÞ
n o

. The type VxcContractionMap is

also a nested map and the key of the outermost map is ~ΩbM
ρ ðrÞ and the

value is an object of the type ExcContractionMap containing cor-

responding wbP , ∂m~ϵxc ½~ρðrÞ�
∂~ρmðrÞ ,

P
π � PQ,m

Qm
j¼1~ρ

bπj ðrÞ
n on o

's.

Time differentiation i ∂∂t and
~T matrix

Derivatives of the time differentiated density matrix in the frequency

domain have been given in Reference 3, as

_D
b1 ���bn
ωB1

���ωBn
� i

∂ ~D
∂t

 !b1 ���bn
������
ε¼0

¼ωBND
b1 ���bn
ωB1

���ωBn
, ð55Þ

where

ωBN ¼ωB1 þ���þωBn : ð56Þ

Equation (55) is also valid for the time differentiated overlap matrix

i ∂
~S
∂t and the time differentiated basis function on ket i ∂~χ∂t

��� E
.

To find out the derivatives of ~T matrix, we first notice that

~χh j ¼ ~χ ∗ and i ∂~χ∂t

D ���¼ i ∂~χ∂t

 � ∗
so that we have the following expansions

~χh j¼ χð0Þ
� ��þP

ωB1

expð�iωB1 tÞεωB1
χb1�ωB1

D ���
þ1
2

X
ωB1

,ωB2

exp½�iðωB1 þωB2 Þt�εωB1
εωB2

χb1b2�ωB1
�ωB2

D ���þ���

þ 1
n!

X
ωB1

, ��� ,ωBn

expð�iωBN tÞεωB1
� � �εωBn

χb1 ���bn�ωB1
����ωBn

D ���þ��� ,

ð57Þ

and

i
∂~χ

∂t

	 ���� ¼P
ωB1

expð�iωB1 tÞεωB1
_χb1�ωB1

D ���
þ1
2

X
ωB1

,ωB2

exp½�iðωB1 þωB2 Þt�εωB1
εωB1

_χb1b2�ωB1
�ωB2

D ���þ���

þ 1
n!

X
ωB1

, ��� ,ωBn

expð�iωBN tÞεωB1
� � �εωBn

_χb1 ���bn�ωB1
����ωBn

D ���þ��� ,

ð58Þ

2146 GAO

 1096987x, 2024, 25, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcc.27437 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [07/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

and from which we can get

_χb1 ���bn�ωB1
����ωBn

D ���¼�ωBN χb1 ���bn�ωB1
����ωBn

D ���: ð59Þ

Let _~χ� i ∂~χ∂t, and by using the expansions of ~χj i and i ∂~χ∂t

��� E
, Equa-

tions (57)–(59) and the definition (18) of ~T matrix, we have

expð�iωBN tÞTb1 ���bn
ω,κλ ¼�1

2
_~χκ
��~χλ� �þ ~χκ _~χλ

��� �� �b1 ���bn ���
fεg¼0

¼�1
2

X
P ⊆ f1, ��� ,ng
Q¼f1, ��� ,ng�P

_~χ
bP
κ

���~χbQλD E
þ ~χbPκ

�� _~χbQλD Eh i���
fεg¼0

¼ expð�iωBN tÞ
P

P ⊆ f1, ��� ,ng
Q¼f1, ��� ,ng�P

ωBP �ωBQ

2
χbP�ω,κ

��χbQω,λD E
:

ð60Þ

By introducing

SbP jbQω,κλ ¼ χbP�ω,κ

��χbQω,λD E
� ~χbPκ

��~χbQλD E���
fεg¼0

, ð61Þ

we finally have

Tb1 ���bn
ω ¼

X
P ⊆ f1, ��� ,ng
Q¼f1, ��� ,ng�P

ωBP �ωBQ

2
SbP jbQω , ð62Þ

and obviously

SbQ jbPω ¼ SbP jbQω

 �†
, ð63Þ

can be used to simplify the numerical evaluation of Tb1 ���bn
ω .

In Tinned, we have developed classes TemporumOperator and

TemporumOverlap to represent the time differentiation i ∂∂t and
~T

matrix, respectively. As shown in Figure 1, an operator or a function

that the time differentiation acts on is stored in the member variable

target_ of the class TemporumOperator. Permitted types of the

variable target_ are ElectronicState, OneElecOperator and

NonElecFunction in the current version of Tinned.

The member variable type_ of the class TemporumOperator

indicates if the time differentiation acts on bra or ket, which will give

opposite signs of frequencies according to Equations (59) and (55).

The member function diff_impl can also be implemented by fol-

lowing Equations (55) and (59), that is, the differentiation of a Temporu-

mOperator object with respect to a perturbation “s” simply returns a

new TemporumOperator object whose target_ is the output of the

original target_'s member function diff_impl with “s” as input.
After differentiation, the sum of frequencies �ωBN , the time differ-

entiated operator or function and its derivatives can be obtained via

the class TemporumOperator's member functions get_frequency,

get_target and get_derivatives, respectively.

The implementation of ~T matrix relies on the class TemporumO-

perator. As shown in Figure 4, the key for representing ~T matrix is

the class TemporumOverlap's member variable braket_, which is a

matrix product of time differentiated basis functions on bra and ket.

We may symbolically represent braket_ as follows

braket¼ _~χ κ
� ��� _~χ λ

�� �
, ð64Þ

which is different from the definition (18) of ~T matrix. But its deriva-

tives with respect to different perturbations are exactly the same as

Equation (62) except for the factor 1
2.

Therefore, the member function diff_impl of the class Tem-

porumOverlap simply returns a new TemporumOverlap object

with the variable braket_ as the output of the differentiation of the

original braket_, which is clearly illustrated in Figure 4.

Notice that the differentiated result of braket_ is a sum of sev-

eral terms as shown in Equation (62). We have therefore implemented

two member functions get_frequency and get_derivatives for

the class TemporumOverlap, both of which take an “index” as input
as shown in Figure 1. The “index” informs which summand in

Equation (62) to be considered. The function get_frequency will

return
ωBP

�ωBQ

2 of the summand, while the function get_deriva-

tives will return derivatives on bra (bP) and ket (bQ) of the summand.

The number of summands can be straightforwardly got from the

member function size.

Cluster operator, Lagrangian multipliers and
exponential map

As shown in Figure 1, except for the class StateVector, we have

classes LagMultiplier, StateOperator, AdjointMap and

ExpAdjointHamiltonian implemented in Tinned library, respec-

tively for the Lagrangian multipliers ~λ, the cluster operator (31), the

adjoint map
Q

j ad~Xj

 �
ð~YÞ and the exponential map ead�T̂ ðĤbP Þ or

ead�T̂
Q jmax

j¼1 ad
T̂
bQj

 �
ðĤbP Þ

 �
with 1≤ jmax ≤3.

The implementation of the classes LagMultiplier and Sta-

teOperator is relatively simple by noticing their member functions

diff_impl's are similar to those of the classes StateVector and

TemporumOperator, respectively.

The classes AdjointMap and ExpAdjointHamiltonian are

developed for the exponential map ead�T̂ðtÞ ðĤðtÞÞ and its perturbation-

strength derivatives (40). In the current version of Tinned library, we

consider only the case that ~Xj 's and their derivatives are commutative

for the class AdjointMap. As shown in Figure 1, member functions

get_x and get_y of the class AdjointMap can be used to get ~Xj 's

and ~Y, while member functions get_state_operator and

get_hamiltonian of the class ExpAdjointHamiltonian can

return the operator T̂ and the “Hamiltonian” Ĥ
bP

or
Q jmax

j¼1 ad
T̂
bQj

 �
ðĤbP Þ.

Last but not least, the member functions diff_impl's of the

classes AdjointMap and ExpAdjointHamiltonian can be imple-

mented by noticing

Q
j

ad~Xj

 �
ð~YÞ

" #s
¼P

k
ad~X

s
k

 � Q
j≠ k

ad~Xj

 �
ð~YÞþQ

j
ad~Xj

 �
ð~YsÞ, ð65Þ

ead�T̂ ðĤbP Þ
h is

¼ ead�T̂ ðĤbP ,sÞ�ead�T̂ ad
T̂
s ðĤbP Þ

 �
, ð66Þ

GAO 2147

 1096987x, 2024, 25, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcc.27437 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [07/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

and

ead�T̂
Qjmax

j¼1
ad

T̂
bQj

 �
ðĤbP Þ

 !" #s

¼ ead�T̂
Qjmax

j¼1
ad

T̂
bQj

 �
ðĤbP Þ

" #s !
�ead�T̂ ad

T̂
s

 � Q1≤ jmax < 3

j¼1
ad

T̂
bQj

 �
ðĤbP Þ

 !

¼or ead�T̂
Qjmax

j¼1
ad

T̂
bQj

 �
ðĤbP Þ

" #s !
� ad

T̂
s

 � Qjmax¼3

j¼1
ad

T̂
bQj

 �
ðĤbP Þ,

ð67Þ

where “s” represents a perturbation.

Symbolic search, removal and replacement

In Tinned library, we currently have (i) FindAllVisitor,

(ii) RemoveVisitor and KeepVisitor, and (iii) ReplaceVisitor

respectively for symbolic search, removal and replacement.

The class FindAllVisitor can search a given symbol and all

its differentiated ones in a symbolic expression by comparing

objects' names, perturbation dependencies, arguments and so

forth while neglecting their derivatives. The class FindAllVisi-

tor will be useful, for example, when one needs to find all per-

turbed density matrices, coupled-cluster amplitudes and

Lagrangian multipliers.

F IGURE 4 UML sequence diagram for the construction and differentiation of the class TemporumOverlap.

2148 GAO

 1096987x, 2024, 25, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcc.27437 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [07/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

The classes RemoveVisitor and KeepVisitor remove sym-

bols from an expression. The former removes given symbols from the

expression, while the latter removes other symbols that do not match

given ones. Both RemoveVisitor and KeepVisitor treat an

operator (or a function) and its derivatives independently. These two

classes can be used for the elimination of response parameters in

response theory calculations.3,8

Finally, the class ReplaceVisitor is derived from the class

MSubsVisitor in SymEngine library and is used for symbolic

replacement of an expression. These two classes also consider an

operator (or a function) and its derivatives to be different. The class

ReplaceVisitor extends the symbolic replacement to include

operators and functions implemented in Tinned library, and can be

used for, for example, the construction of the right-hand side of the

linear response equation of the density matrix.3

Bridging symbolic computation and numerical
evaluation

So far we have described different classes developed in Tinned library,

which can facilitate the response theory programming and

TABLE 1 Helper functions in Tinned library to construct basic symbols for response theory computations, and to perform symbolic search,
removal and replacement.

Helper functions Description

make_perturbation(name,

frequency, components)

Construct a perturbation with the given name. Parameters frequency (default value: 0 for a

static perturbation) and components (default value: an empty set meaning all components will

be considered) are optional.

make_1el_density(name) Construct a one-electron spin-orbital density matrix ~D with the given name.

make_1el_operator(name,

dependencies)

Construct a one-electron operator with the given name. Parameter dependencies is optional

and specifies the perturbation dependencies of the operator. A perturbation-independent

operator will be created when the parameter dependencies is not given.

make_2el_energy(name, G) Construct a two-electron energy ~E2el ¼ tr ~Gð~DinnerÞ~Douter

h i
with the given name and two-electron

operator ~Gð~DinnerÞ (specified by the parameter G) so that ~Dinner ¼ ~Douter.

make_2el_operator(name, state,

dependencies)

Construct a two-electron operator ~Gð~DÞ¼ ~g
N ~D with the given name and density matrix

~D (specified by the parameter state). When the optional parameter dependencies is not

present, ~g will become perturbation independent.

make_xc_energy(name, state, Omega,

weight)

Construct XC energy ~Exc½~ρð~DÞ� ¼w~ϵxc½trTð~Ωρ
~DÞ� with the given name, ~D (specified by the

parameter state), ~Ωρ (the parameter Omega) and w (the parameter weight). If the optional

parameter weight is not given, a perturbation-independent one will be used.

make_xc_potential(name, state,

Omega, weight)

Construct XC potential ~Fxc½~ρð~DÞ�¼w~vxc½trTð~Ωρ
~DÞ�~Ωρ. Parameters are the same as those of the

helper function make_xc_energy.

make_nonel_function(name,

dependencies)

Construct a non-electron like function with the given name. Parameter dependencies is

optional and a perturbation-independent function will be returned if it is not given.

make_dt_operator(target, type) Construct i ∂∂ttarget
� �� or i ∂∂ttarget

�� �
according to the given type (TemporumType::Bra or

TemporumType::Ket, default value is the latter).

make_t_matrix(dependencies) Construct the ~T matrix. Parameter dependencies is optional and ~T will become perturbation

independent if it is absent.

make_state_vector(name) Construct a state vector with the given name, such as the coupled-cluster amplitude vector ~t.

make_lagrangian_multiplier(name) Construct a Lagrangian multiplier vector with the given name.

make_state_operator(name, state) Construct a state operator with the given name and state vector (the parameter state), such as

the coupled-cluster operator T̂ in Equation (31).

make_adjoint_map(name, x, y) Construct an adjoint map
Q

j ad~Xj

 �
ð~YÞ with the given name. Parameters x and y represent

respectively the vector of operators ~Xj 's and the operator ~Y.

make_eadj_hamiltonian(name,

operator, hamiltonian)

Construct an exponential map with the given name and in the form of ead�T̂ ðĤbP Þ or
ead�T̂

Q jmax
j¼1 ad

T̂
bQj

 �
ðĤbP Þ

 �
with 1≤ jmax ≤3. The operator T̂ is given by the parameter operator,

and Ĥ
bP

or
Q jmax

j¼1 ad
T̂
bQj

 �
ðĤbP Þ is given by the parameter hamiltonian.

find_all(x, symbol) Find a given symbol and all its differentiated ones in x.

keep_if(x, symbols) Keep given symbols in x while removing others.

remove_if(x, symbols) Remove given symbols from x.

replace(x, subs_dict) Replace some symbols by others (specified by the parameter subs_dict) in x.

GAO 2149

 1096987x, 2024, 25, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcc.27437 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [07/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

computations to a great extent. The last component to be addressed

is the numerical evaluation of a (differentiated) symbolic expression,

which can also be implemented by using the visitor design pattern.21

There are two issues to be resolved for the development of the

numerical evaluator. First, there are two different types of symbolic

expressions—scalar and matrix that require different numerical data

types. Secondly, users can choose various data types for numerical

results, for example, arrays, vectors, matrices, or any user defined

class. To greatly decouple symbolic and numerical computations, and

to be flexible over data types, we have developed two template visitor

classes in Tinned library: FunctionEvaluatorand OperatorEva-

luator. The former is used for evaluating scalar symbolic expressions

including the matrix trace, and the latter is for evaluating different

matrix expressions. Both of them require one template parameter

specified by users for the data type of numerical evaluation.

To use either of the two template visitor classes, one needs to

implement a derived class from the corresponding template class and

to provide dispatch functions for a few classes in SymEngine and

Tinned libraries. For further information, interested readers are

referred to Tinned library.9

One benefit of the above design is that the numerical evaluation is

almost performed outside the scope of Tinned library, and users will

have complete control of the evaluation procedure. For instance, users

can evaluate symbolic expressions sequentially or in parallel, and can

cache necessary data inside derived evaluation classes for later use.

Last but not least, data types of the evaluation are not necessarily

restricted to be numerical. Any C++ type can in principle be the data

type of the evaluation. In particular, one can still evaluate an expression

symbolically so that results are still in terms of symbols. This can be use-

ful for studying model systems where analytical solutions are available.

LIBRARY APIS AND EXAMPLES

In the above section, we have presented all classes in Tinned library

that can be used for the development of response theory. Moreover,

there is a corresponding helper function for each class as shown in

Table 1. Users are encouraged to use these helper functions for the

construction of basic symbols and for the symbolic search, removal

and replacement.

LISTING 1 Snippet for constructing eE0,a in Equation (17).

1 # i n c l u d e < u t i l i t y >
i n c l u d e < s t r i n g >

3 # i n c l u d e <symengine / d i c t . h>
i n c l u d e <symengine / c o n s t a n t s . h>

5 # i n c l u d e <symengine / add . h>
i n c l u d e <symengine / mul . h>

7 # i n c l u d e <symengine / m a t r i c e s / m a t r i x _ m u l . h>
i n c l u d e <symengine / m a t r i c e s / t r a c e . h>

9 # i n c l u d e " Tinned . hpp "
u s i n g namespace Tinned ;

11 auto a = m a k e _ p e r t u r b a t i o n (s t d : : s t r i n g (" a ")) ;
auto b = m a k e _ p e r t u r b a t i o n (s t d : : s t r i n g (" b ")) ;

13 auto c = m a k e _ p e r t u r b a t i o n (s t d : : s t r i n g (" c ")) ;
auto dependencies = PertDependency ({

15 s t d : : make_pair (a , 9 9) , s t d : : make_pair (b , 9 9) , s t d : : make_pair (c , 99)
}) ;

17 auto D = m a k e _ 1 e l _ d e n s i t y (s t d : : s t r i n g ("D")) ;
auto h = m a k e _ 1 e l _ o p e r a t o r (s t d : : s t r i n g (" h ") , dependencies) ;

19 auto V = m a k e _ 1 e l _ o p e r a t o r (s t d : : s t r i n g ("V") , dependencies) ;
auto T = m a k e _ t _ m a t r i x (dependencies) ;

21 auto E _ 2 e l = make_2el_energy (s t d : : s t r i n g ("G") , D, dependencies) ;
auto weight = m a k e _ n o n e l _ f u n c t i o n (s t d : : s t r i n g (" weight ")) ;

23 auto Omega = m a k e _ 1 e l _ o p e r a t o r (s t d : : s t r i n g ("Omega") , dependencies) ;
auto Exc = make_xc_energy (s t d : : s t r i n g (" Exc ") , D, Omega , weight) ;

25 auto hnuc = m a k e _ n o n e l _ f u n c t i o n (s t d : : s t r i n g (" hnuc ") , dependencies) ;
auto E = SymEngine : : add (SymEngine : : v e c _ b a s i c ({

27 SymEngine : : t r a c e (SymEngine : : m a t r i x _ m u l (SymEngine : : v e c _ b a s i c ({ h , D }))) ,
SymEngine : : t r a c e (SymEngine : : m a t r i x _ m u l (SymEngine : : v e c _ b a s i c ({ V , D }))) ,

29 SymEngine : : t r a c e (SymEngine : : m a t r i x _ m u l (SymEngine : : v e c _ b a s i c ({ T , D }))) ,
SymEngine : : d i v (E_2el , SymEngine : : two) ,

31 Exc ,
hnuc

33 })) ;
auto D_a = D−> d i f f (a) ;

35 auto E_a = E−> d i f f (a) ;
auto E_0a = r e m o v e _ i f (E_a , SymEngine : : s e t _ b a s i c ({ D_a })) ;

2150 GAO

 1096987x, 2024, 25, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcc.27437 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [07/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

In Listing 1, we illustrate how to construct the generalized energy

derivative ~E
0,a

in Equation (17) by using Tinned library. The snippet is

fairly self-explanatory and it strictly follows Equation (17) by creating

different terms of ~E
0,a

from lines 18 to 25. Lines 26–33 are used to

make the generalized energy ~E by using functions from SymEngine

library for symbolic addition (SymEngine::add) and

division (SymEngine::div) as well as matrix multiplication (SymEn-

gine::matrix_mul) and trace (SymEngine::trace).

Except for the class Perturbation, other classes in Tinned

library has a member function diff that can be called to perform dif-

ferentiation with respect to a given perturbation. So, we get ~D
a
and

∂
∂a
~E at lines 34 and 35. Finally, ~E

0,a
is obtained at line 36 by removing

~D
a
from ∂

∂a
~E according to Equation (17).

Next, we consider the construction of the coupled-cluster quasi-

energy Lagrangian (36) in Listing 2. One may note that the codes are

not mathematically correct to represent Equation (36). For example,

we create the Hamiltonian Ĥ as a one-electron operator at line 16,

but with dependencies on all declared perturbations. We also use

trace and multiplication instead of expectation value and dot product

at lines 24–28, because the first two operations do obey the “same”
rules of symbolic arithmetic and differentiation as their counterparts

in the context of the coupled-cluster response theory outlined in the

current work.

The third example is the use of ðk,nÞ rule 3,4 for density-matrix

based response theory computations. In Listing 3, we show the com-

putation of ð~E0,aÞ
bc

k,n with k¼ n¼1, in which terms containing

LISTING 2 Snippet for constructing the coupled-cluster quasi-energy Lagrangian (36).

i n c l u d e < u t i l i t y >
2 # i n c l u d e < s t r i n g >

i n c l u d e <symengine / d i c t . h>
4 # i n c l u d e <symengine / c o n s t a n t s . h>

i n c l u d e <symengine / add . h>
6 # i n c l u d e <symengine / mul . h>

i n c l u d e <symengine / m a t r i c e s / t r a c e . h>
8 # i n c l u d e " Tinned . hpp "

u s i n g namespace Tinned ;
10 auto a = m a k e _ p e r t u r b a t i o n (s t d : : s t r i n g (" a ")) ;

auto b = m a k e _ p e r t u r b a t i o n (s t d : : s t r i n g (" b ")) ;
12 auto c = m a k e _ p e r t u r b a t i o n (s t d : : s t r i n g (" c ")) ;

auto dependencies = PertDependency ({
14 s t d : : make_pair (a , 9 9) , s t d : : make_pair (b , 9 9) , s t d : : make_pair (c , 99)

}) ;
16 auto H = m a k e _ 1 e l _ o p e r a t o r (s t d : : s t r i n g ("H") , dependencies) ;

auto a m p l i t u d e s = m a k e _ s t a t e _ v e c t o r (s t d : : s t r i n g (" a m p l i t u d e s ")) ;
18 auto m u l t i p l i e r s = m a k e _ l a g r a n g i a n _ m u l t i p l i e r (s t d : : s t r i n g (" m u l t i p l i e r s ")) ;

auto T = m a k e _ s t a t e _ o p e r a t o r (s t d : : s t r i n g (" T ") , a m p l i t u d e s) ;
20 auto eadj_H = m a k e _ e a d j _ h a m i l t o n i a n (s t d : : s t r i n g (" e a d j (H) ") , T , H) ;

auto mu_eadj_H = m a k e _ e a d j _ h a m i l t o n i a n (s t d : : s t r i n g ("mu−e a d j (H) ") , T , H) ;
22 auto d t _ a m p l i t u d e s = make_dt_operator (a m p l i t u d e s) ;

auto L = SymEngine : : add (SymEngine : : v e c _ b a s i c ({
24 SymEngine : : t r a c e (eadj_H) ,

SymEngine : : mul (m u l t i p l i e r s , SymEngine : : t r a c e (mu_eadj_H)) ,
26 SymEngine : : mul (SymEngine : : v e c _ b a s i c ({

SymEngine : : minus_one , m u l t i p l i e r s , d t _ a m p l i t u d e s
28 }))

})) ;

LISTING 3 Snippet for constructing ðeE0,aÞbck,n with k¼ n¼1.

1 auto D_bc = (D−> d i f f (b))−> d i f f (c) ;
auto E_0a_bc = (E_0a−> d i f f (b))−> d i f f (c) ;

3 auto E_0a_kn = r e m o v e _ i f (E_0a_bc , SymEngine : : s e t _ b a s i c ({ D_bc })) ;

GAO 2151

 1096987x, 2024, 25, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcc.27437 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [07/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

perturbed density matrices at a higher order than k (involving the per-

turbation a) and n (perturbation a is not involved) will be removed,3,4

that is, terms containing ~D
bc

will be removed from ð~E0,aÞ
bc

as shown at

line 3 of the snippet.

Our last example is to find all (un)perturbed density matrices in

ð~E0,aÞ
bc

k,n (k¼ n¼1) from the previous case. As illustrated in Listing 4, it

only uses one line to perform such a search by using the helper func-

tion template find_all in the library Tinned.

From these examples, it can readily conclude that the use of

SymEngine and Tinned libraries will enable one to develop response

theory codes in a more compact and less error-prone manner. Sym-

bolic computations and numerical evaluations are completely or

almost decoupled for response theory. It can thus reduce the effort

for the development and maintenance of response theory codes.

CONCLUSIONS

Built on top of the C++ symbolic library SymEngine, we have developed

a new symbolic library Tinned for computational chemistry and in particu-

lar for response theory. As demonstrated in the previous section, it will

become straightforward to develop the density matrix-based and coupled-

cluster response theories by using the library Tinned. We will report this

work in the near future, and a unified framework can be expected for

response theory at different levels of electronic structure theory.

Furthermore, the outcome of the current work can also be helpful

for other area relevant to response theory. For example, it could facili-

tate the development of high-order derivatives of XC energies and

potentials by using the differentiated results of classes ExchCorrE-

nergy and ExchCorrPotential.

ACKNOWLEDGMENTS

This work was partially supported by the Research Council of Norway

through its Centres of Excellence scheme, project number 262695.

This work also received support from the Sigma2 through a grant of

computer time (Grant no. NN14654K).

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly available in

tinned at https://github.com/bingao/tinned.

ORCID

Bin Gao https://orcid.org/0000-0003-1092-7785

REFERENCES

[1] J. Olsen, P. Jørgensen, J. Chem. Phys.1985, 82, 3235.
[2] T. Helgaker, S. Coriani, P. Jørgensen, K. Kristensen, J. Olsen, K. Ruud,

Chem. Rev. 2012, 112, 543.

[3] A. J. Thorvaldsen, K. Ruud, K. Kristensen, P. Jørgensen, S. Coriani,

J. Chem. Phys. 2008, 129, 214108.
[4] M. Ringholm, D. Jonsson, K. Ruud, J. Comput. Chem. 2014a, 35, 622.
[5] D. H. Friese, M. T. P. Beerepoot, M. Ringholm, K. Ruud, J. Chem. The-

ory Comput. 2015a, 11, 1129.
[6] D. H. Friese, M. Ringholm, B. Gao, K. Ruud, J. Chem. Theory Comput.

2015b, 11, 4814.
[7] R. Bast, D. H. Friese, B. Gao, D. J. Jonsson, M. Ringholm, S. S. Reine,

K. Ruud, OpenRSP: open-ended response theory. 2020 https://doi.

org/10.5281/zenodo.3923836

[8] K. Kristensen, P. Jørgensen, A. J. Thorvaldsen, T. Helgaker, J. Chem.

Phys.2008, 129, 214103.
[9] B. Gao, Tinned (2023), a set of nonnumerical routines for computa-

tional chemistry. 2023 https://github.com/bingao/tinned

[10] C. Hattig, O. Christiansen, P. Jørgensen, J. Chem. Phys. 1998, 108,
8331.

[11] R. Bast, U. Ekstrom, B. Gao, T. Helgaker, K. Ruud, A. J. Thorvaldsen,

Phys. Chem. Chem. Phys. 2011, 13, 2627.
[12] O. Christiansen, P. Jørgensen, Int. J. Quantum Chem. 1998, 68, 1.

[13] P. Norman, Phys. Chem. Chem. Phys.2011, 13, 20519.
[14] R. Nederpelt, F. Kamareddine, Logical Reasoning: A First Course,

Texts in computing, King's College Publications, London 2004.
[15] T. Mansour, Combinatorics of Set Partitions, Discrete Mathematics

and Its Applications, Taylor & Francis, Boca Raton 2012.
[16] M. Ringholm, D. Jonsson, R. Bast, B. Gao, A. J. Thorvaldsen,

U. Ekstrom, T. Helgakero, K. Ruud, J. Chem. Phys. 2014b, 140,

034103.

[17] T. B. Pedersen, H. Koch, J. Chem. Phys. 1997, 106, 8059.

[18] B. C. Hall, Lie Groups, Lie Algebras, and Representations: An Elemen-

tary Introduction, Graduate Texts in Mathematics, Springer, Heidel-

berg 2015.
[19] R. J. Bartlett, M. Musiał, Rev. Mod. Phys. 2007, 79, 291.
[20] SymEngine, a standalone fast C++ symbolic manipulation library.

https://github.com/symengine/symengine

[21] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley Professional

Computing Series, Addison-Wesley, Boston 1994.
[22] J. Riordan, Bull. Amer. Math. Soc. 1946, 52, 664.

How to cite this article: B. Gao, J. Comput. Chem. 2024,

45(25), 2136. https://doi.org/10.1002/jcc.27437

LISTING 4 Snippet for finding all (un)perturbed density matrices in ðeE0,aÞbck,n (k¼ n¼1).

1 auto a l l _Ds = f i n d _ a l l (E_0a_kn , D) ;

2152 GAO

 1096987x, 2024, 25, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcc.27437 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [07/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/bingao/tinned
https://orcid.org/0000-0003-1092-7785
https://orcid.org/0000-0003-1092-7785
https://doi.org/10.5281/zenodo.3923836
https://doi.org/10.5281/zenodo.3923836
https://github.com/bingao/tinned
https://github.com/symengine/symengine
https://doi.org/10.1002/jcc.27437

	Tinned: A symbolic library for response theory and high-order derivatives
	INTRODUCTION
	THEORETICAL BACKGROUND
	Perturbation tuple and perturbation index chain
	Density matrix-based response theory
	Coupled-cluster response theory

	SYMBOLIC COMPUTATIONS-DESIGN AND IMPLEMENTATION FOR RESPONSE THEORY
	Symbolic arithmetic, differentiation and matrix operations
	Perturbations
	Non-electron like functions and one-electron like operators
	Electronic state
	Two-electron like operators and energy
	XC energy and potential
	Time differentiation it and T matrix
	Cluster operator, Lagrangian multipliers and exponential map
	Symbolic search, removal and replacement
	Bridging symbolic computation and numerical evaluation

	LIBRARY APIS AND EXAMPLES
	CONCLUSIONS
	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT

	REFERENCES

