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A B S T R A C T

This paper addresses the crucial task of power line detection and localization in electrical infrastructure
inspection using Unmanned Aerial Vehicles (UAVs) from weak supervision, polyline annotations. We first
identify several limitations in the state-of-the-art approach LSNet. In particular, the inability of LSNet to detect
line-crossings and lines in close proximity. To overcome these limitations, we propose LSNetv2, which enhances
LSNet with multi-line segment detection capability facilitated via a bipartite matching loss. Additionally,
we update LSNet’s regression loss in order to stabilize training by reducing the interdependence between
predicted coordinates. Finally, LSNetv2 makes use of an increased receptive field to extract global information,
improving overall detection performance. Through extensive evaluations on various power line detection
datasets, LSNetv2 demonstrates superior performance and robustness. On the public datasets PLDU, PLDM and
TTPLA, it achieved 𝐹𝛽 scores of 0.857, 0.875, and 0.671, respectively, while using only modified weak polyline
annotation, establishing itself as an effective and efficient solution for power line detection in UAV-based
electrical infrastructure inspections.
1. Introduction

Electricity is the lifeblood of modern society, thus, it is essential to
ensure a stable electrical power supply across the nations. Hence, it is of
utmost importance for utility companies to inspect and maintain their
electrical facilities regularly. These tasks were conventionally done by
human inspectors manually following, observing, and assessing the
power grid (Yang et al., 2020). This inefficiency has long been recog-
nized, and continuous efforts have been made to find more automated
and unmanned solutions for the inspection tasks (Major et al., 2008,
2011). A prominent direction is to deploy Unmanned Aerial Vehicles
(UAVs) to produce higher quality and more efficient observations due
to their superior efficiency and ability to access higher altitudes and
more hazardous environments (Deng, Wang, Huang, Tan, & Liu, 2014;
Zu-jian, 2008). Additionally, to enhance the effectiveness and efficiency
of inspection and maintenance tasks, there has been an increased focus
on automating the assessment step of the observations obtained by the
UAVs, which, in many cases, are RGB camera images (Nguyen, Jenssen,
& Roverso, 2018). Towards this goal, several automatic assessment
solutions have recently been proposed, many of which are fueled by
the power of artificial intelligence and deep learning. Examples of
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such tasks are the detection of electrical components (insulators, cable
suspension clamps, etc.) and the diagnosis of defects (pole breakage, in-
sulator contamination, etc.) (Antwi-Bekoe, Zhan, Xie, & Liu, 2020; Liu,
Lai, et al., 2021; Nguyen et al., 2018). Among these tasks, cable, wire,
or power line recognition and localization are very crucial as power
lines are one of the most essential elements in any utility infrastructure
as they are directly responsible for electricity transmission. Accurate
detection of power lines can facilitate better analysis of faults (tears,
kinking, bird caging, etc.) and identification of hazards (vegetation
encroachment, etc.) on the power lines. These tasks are vital as their
failure can lead to significant negative consequences (Patnaik, 2019).
Furthermore, the ability to detect power lines is imperative for UAVs,
and other forms of low-altitude flights, to navigate safely.

However, it is nontrivial to detect power lines due to their in-
conspicuous appearances. Power lines can be very thin and might be
missed by proximity sensors on UAVs. Similarly, on camera images, the
width of power lines may only be a single pixel. Furthermore, cluttered
backgrounds, occlusion, and same-colored backgrounds, such as white
coating on snow, can cause the power lines to be imperceptible. Other
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Fig. 1. LSNet and the proposed LSNetv2 divide the images into grids and infer the existence and location of power line segments in each grid cell. An example of a polyline,
which is a path composed of multiple connected line segments, is shown in green in the image in the bottom row in the left column. LSNet can only output one prediction for
each cell (middle column), thus, the combined output might miss some line segments, especially when multiple power lines intersect and/or are in close proximity to each other.
LSNetv2 can detect multiple line segments in each grid cell (right column) and, hence, is able to produce more complete power line detections.
,

conditions, such as fog and lighting, can also negatively affect the
discernability of power lines on images.

Towards automatic detection of power lines, early methods utilize
popular classical line segment detection methods (Alpatov, Babayan, &
Shubin, 2016; Candamo, Kasturi, Goldgof, & Sarkar, 2009; Golightly
& Jones, 2005; Kasturi & Camps, 2002; Li, Liu, Hayward, Zhang, &
Cai, 2008; Li, Liu, Walker, Hayward, & Zhang, 2010; Yan, Li, Zhou,
Zhang, & Li, 2007). They rely on the assumption of clear visibility
and straight line appearance of power lines. However, these methods
require intricate post-processing steps to distinguish between spurious
lines and power lines which can require expertise. Also, they are
quite inaccurate and slow. More recently, facilitated by the increasing
availability of data and hardware, deep learning has been gaining popu-
larity for power line detection. Several deep learning approaches have
been proposed that frame the power line detection task as semantic
segmentation (Abdelfattah, Wang, & Wang, 2023; Jaffari, Hashmani, &
Reyes-Aldasoro, 2021; Li, Xiao, Zhen, & Cao, 2019; Madaan, Maturana,
& Scherer, 2017; Yang, Fan, Huo, Li, & Liu, 2022; Yang, Kong, Deng,
Li, & Liu, 2023; Zhang, Yang, Yu, Zhang, & Xia, 2019). These methods
can achieve quite competitive performance, however, gathering the
pixel-level annotations required for these approaches is a big challenge,
especially for objects with long and thin appearances like power lines.
This difficulty of producing pixel-level ground truth can be problem-
atic, as in order to obtain a power line detector that is effective and
robust across various settings of input images (variations in lighting
conditions, scenes, distances, power line types, utility infrastructures,
etc.) a large amount of data should be procured.

To address this problem, LSNet (Line Segment Net) (Nguyen, Jenssen
& Roverso, 2020) proposes to use polylines that trace the power
lines as ground truth (examples are shown in Fig. 1). These polyline
annotations are cheaper to obtain, but they provide weaker super-
vision and can lead to imprecise width estimation of power lines
due to the lack of width information in the ground truth. However,
our observations indicate that in many real-world settings, predicting
polylines or line segments that trace the power lines is adequate
2

for downstream inspection tasks, as these primarily require accurate
location information.

LSNet (Nguyen et al., 2020) is a Convolutional Neural Network
(CNN) single-shot line segment detector that can be trained from
polyline annotations. In LSNet, images are divided into overlapping
grids and the detector leverages two output branches to first classify
whether each cell grid has a line segment belonging to a power line and
second regress the endpoints of these line segments. However, LSNet
has several limitations. One major constraint is that LSNet only is able
to detect and locate one line segment in each grid cell. While this design
allows LSNet to obtain good performance on simpler datasets, where
the power lines are arranged relatively far apart and not intersecting
with each other, its design limits its application in more practical
settings, where the power lines can appear visually to be of very close
proximity or to cross each other resulting in cases where there are
multiple line segments in a single cell. This is illustrated in Fig. 1. In
addition, LSNet struggles to effectively detect more concealed line seg-
ments and discern spurious lines due to its limited ability to reason over
extended image regions due to its small receptive field. Furthermore,
the regression loss used to train the localization capability of LSNet
can introduce training instabilities due to LSNet’s swap mechanism that
introduces an interdependence between the predicted endpoints of the
line.

In this paper, to address the aforementioned problems and thereby
improve overall model accuracy, we propose an improved version of
LSNet, aptly named LSNetv2. First, to be able to detect power line cross-
ings and power lines that are in close proximity, we provide LSNetv2
with the capability to detect multiple line segments. This is facilitated
by allowing the model to make multiple predictions on each divided
cell location and by leveraging a bipartite matching loss for training.
In addition, to eliminate the interdependence of the line endpoints
during line segment localization, we also modified the loss for the
regression branch of LSNet by fixing the ordering of the endpoints, thus
simplifying the model objective and facilitating better convergence.
Finally, we show that a large receptive field is required in order for
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power line inspection models to accurately detect the semantics of
power lines and avoid misclassification of alternative lines. Based on
this insight, we increase LSNetv2’s capabilities by adopting a model
from the state-of-the-art ConvNeXt family (Liu et al., 2022) instead of
the original modified-VGG16 (Simonyan & Zisserman, 2014) to provide
a larger receptive field to the detector. We empirically demonstrate
the benefit of LSNetv2 on a wide range of power line detection tasks,
illustrating its superiority over LSNet. In summary, the contributions
are as follows:

1. We elaborately design LSNetv2 to have multi-guess capabilities.
This enhances the model’s ability to detect power line crossings
and nearby lines.

2. We propose a new loss for the regressor branch. This ensures a
more streamlined and stable training process.

3. We recognize the need for power-line inspection models to have
more extensive receptive fields to reduce the need of misclas-
sification and show that this can be achieved via a ConvNeXt
backbone.

4. We conduct extensive experiments to validate the superiority of
LSNetv2 over the original LSNet.

2. Related work

2.1. Traditional power line detection approaches

A notable early attempt at power line detection was proposed by
Kasturi and Camps (2002), where Steger’s method (Steger, 1998) was
used to extract features, which are then filtered using the Hough
transform to exclude short lines. Yan et al. (2007) propose instead
to leverage the Radon transform to generate line segments, group
these segments by slope and distance thresholding, and then finally
use Kalman filters as a post-processing step. Li et al. (2010) remove
clutter and noise in the background using a pulse-coupled neural filter
before using Hough transforms and K-means clustering to detect and
combine line segments. However, the aforementioned solutions and
similar works (Alpatov et al., 2016; Candamo et al., 2009; Golightly &
Jones, 2005; Li et al., 2008) hold the strict assumptions that power lines
appear straight and have parallel orientations, and thus, do not always
apply in reality. Song and Li (2014) aimed to address this problem and
were able to detect curved power lines by using a normalized graph cut
model to link line segments, which were produced from the responses
of a matched filter and first-order derivative of a Gaussian. However, all
of these traditional approaches are severely affected by the conditions
in which the input images were taken. Any differences in camera
settings, environment, lighting, and view angle require extensive tuning
of hyper-parameters of these methods and require specialist expertise.

2.2. Deep learning based approaches

Deep learning aims to alleviate the problems of the abovemen-
tioned traditional computer vision approaches. With enough data, deep
learning solutions for classification and detection can generalize well
to different acquisition conditions. Pan, Cao, and Wu (2016) suggest
training a CNN that takes in edge features, which are produced by
steerable filters and classifies whether square patches from an in-
put image contain a line or not. Then the Hough transform is used
to detect the power line segments. Similarly, Gubbi, Varghese, and
Balamuralidhar (2017) also propose using a CNN but, instead, use
Histogram of Oriented Gradient features as input. The line segment
detector proposed in Grompone von Gioi, Jakubowicz, Morel, and
Randall (2010) was used as a post-processing step. Since the inputs of
these two methods are individual patches, the CNN models lack the
contextual information of the entire images. Hence the performance
can be limited, especially for low-contrast images with a cluttered back-
ground. Yetgin, Benligiray, and Gerek (2019) finetuned a CNN, which
3

was pretrained on ImageNet (Deng et al., 2009) via two methods. One
is with a newly initialized linear layer with softmax that classifies the
power line existence and is trained jointly with the feature extractor.
The other method is to use dimension-reduced features from immediate
layers of the pre-trained CNN to train a classifier separately. However,
these two proposed methods only detect the existence of power lines
for real-time warning systems without localization. More recent ap-
proaches (Abdelfattah et al., 2023; Jaffari et al., 2021; Li et al., 2019;
Madaan et al., 2017; Zhang et al., 2019) frame power line detection as
binary pixel-level classification problems where each pixel is classified
whether it belongs to the power line or not. This type of problem can be
undertaken by deep learning semantic segmentation networks. Madaan
et al. (2017) investigate different dilated convolutional neural networks
for segmenting power lines. Zhang et al. (2019) produce segmentation
by fusing hierarchical feature maps from each layer of a VGG-16
model (Simonyan & Zisserman, 2014) as well as structure features,
such as power line length, width, and orientation. In (Li et al., 2019),
a CNN is introduced with two components: an information fusion
module and an attention module. The information fusion module is
in an encoder–decoder structure, where decoding stages are combined
with their corresponding same-scaled encoding stages to fuse semantic
and location information for accurate power line segmentation. The
attention module produces, from the last feature map of the encoder, a
weight map, which is multiplied elementwise with the decoder output
to increase more focus on regions with power lines. Abdelfattah et al.
(2023) trained a Generative Adversarial Network (GAN) to generate
modified versions of the input images where the power lines are
highlighted. A semantic decoder connected to an immediate layer of the
generator is also trained jointly in order to perform the actual segmen-
tation task. Jaffari et al. (2021) introduce a new type of focal loss based
on Phi coefficient (Wang, Wang, Sun, & Chen, 2020) to improve power
line segmentation performance of U-Net (Ronneberger, Fischer, & Brox,
2015)-based architectures. These semantic segmentation methods have
achieved satisfying results, however, they require training data with
pixel-level annotation, which can be laborious to obtain. Especially in
the case of power lines, which can often be quite slender yet span across
images, and require meticulousness in the annotating process. Lee et al.
(2017) aims to mitigate this burden by relying only on image-level
annotation from patches, which are extracted from the input images
via sliding windows, to train a CNN to classify the existence of power
line segments in patches of input images. Visualization of positive
patches is performed using the Visualbackprop algorithm (Bojarski
et al., 2018) to achieve localization. The visualizations are performed
on multiple layers of the network and are merged together via bilinear
interpolation and multiplication. Choi, Koo, Kim, and Kim (2021) also
used image-level annotation to train classification CNN for patches on
the input images. Visualbackprop visualization is performed to approx-
imate pseudo segmentation so that another fully convolutional network
can be trained to perform segmentation. However, while reducing the
labeling effort required, these approaches have been reported to have
low performance (Xu, Zhao, Wang, & Chen, 2023a) due to, among
others, the sliding window mechanism that restricts the integration of
global context when considering a given patch.

The predecessor of our proposed method, LSNet, reduces the need
for expensive and labor-intensive pixel-level annotations by only rely-
ing on polyline annotations that trace along the power line. Polyline
annotations require much less effort and are arguably more robust to
labeling inaccuracy allowing more ground-truth images to be acquired
and facilitating better deep learning models. LSNet is trained to detect
and locate small line segments within the ground truth polylines, which
are divided by four overlapping grids. LSNet is quite competitive in
the power line detection task, however, it is unable to detect power
lines that are in close proximity or appear to intersect each other. This
drawback leads to LSNet not being able to guarantee the complete
detection of all power lines as illustrated in Fig. 1.
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While not directly addressing the power line detection problem,
recent work has been conducted on addressing the wireframe parsing
problem, which shares certain similarities. The wireframe parsing prob-
lem aims to find the boundary of objects, structures, and regions in
the form of line segments and corresponding end-points for geometric
reasoning. L-CNN (Zhou, Qi, & Ma, 2019) infer the endpoints in an
end-to-end manner. From these points, proposed line segments are
sampled and verified with a line of interest pooling layer (LoiPooling)
that took inspiration from RoIPool (Girshick, 2015) and RoIAlign (He,
Gkioxari, Dollár, & Girshick, 2017) layers from the object detection.
HAWP (Xue et al., 2020) transforms the original line segment labels
into Holistic Attraction Fields (HAT) where each pixel is parameterized
based on its position in relation to its closest line segments. A model
is trained to approximate these fields, from which line segments can
be derived. HAWPv2 (Xue et al., 2022) combined the strengths of
LoiPooling and HAT, along with some new techniques, to improve the
performance. While the adaption of wireframe approaches to the power
line detection problem is promising, we demonstrate empirically that a
direct application of these methods leads to sub-optimal results.

3. Methodology

In this section, we first give a short description of LSNet and high-
light its shortcomings. After that, we introduce the design of LSNetv2
and detail how it addresses these limitations.

3.1. Preliminaries: LSNet

LSNet (Nguyen et al., 2020) was proposed as a single-shot line-
segment detector inspired by the Single Shot Multibox Detector (SSD)
(Liu et al., 2015) and You Only Look Once (YOLO) model (Redmon,
Divvala, Girshick, & Farhadi, 2015). Specifically, LSNet breaks down
the problem of power line detection into detecting and locating line
segments in four overlapping grids, which are superimposed onto the
input image. For the case of input images having the size of 512 × 512,
this results in a grid of 31 × 31 cells, each of which overlooks an
area of size 32 × 32 in the image. For each cell of the grids, LSNet
detects whether there exist parts of power lines within its borders and
provides the coordinates of the line segment endpoints. These divided
results can be combined to produce a complete segment map of power
lines. The four-grid approach was proposed as opposed to the one-
grid approach, commonly found in models such as SSD and YOLO, in
order to encourage more thorough detection and localization of power
lines and combat the problem of discontinuities at grid cell borders and
corners. This is illustrated in Fig. 2.

To perform line segment detection, the architecture of LSNet in-
volves a fully convolutional feature extractor (backbone) which bran-
ches out into a classifier module and a regressor module. These two
modules aim to detect the presence of a line segment and the line
segment endpoint coordinates respectively. The classifier module and
regressor module shared a similar design and have the output of shape
𝐵 × 31 × 31 × 2 and 𝐵 × 31 × 31 × 4 respectively, with 𝐵 being the batch
size. The 𝐵 × 31 × 31 vectors from the classifier module determine if
line segments exist in their corresponding cells, and the 𝐵 × 31 × 31
vectors from the regressor module determine the xy-coordinates of the
endpoints of the line segments. This design leads to LSNet being able to
only detect the existence and location of one line segment per cell and,
thus, may not be effective in cases where more than one line segment
exists in cells, such as when power lines appear to be in close vicinity
or cross each other.

The classifier and regressor modules are trained with Focal loss
(Lin, Goyal, Girshick, He, & Dollár, 2017) and Wing loss (Feng, Kittler,
Awais, Huber, & Wu, 2017) respectively (more details are given in 3.2).
The distance error, which is used for the Wing loss, is defined as the
minimum 𝐿1 loss between the ground truth pairs and the predicted
pairs, where the predicted pairs are permuted to result in the minimum
4

Fig. 2. Depiction of the four-grid approach. With one grid like the first column, LSNet
faces the problem of disconnection at the border and corner of cells. By utilizing three
additional grids (second column), the gaps can be closed and LSNet can provide more
complete detections of power lines.

loss. We observe that this permutation can lead to training instabilities
when training LS-Net, caused by the predictions being interdependent,
resulting in sub-optimal results.

The feature extractor of the original LSNet was proposed to be
a version of VGG-16 network (Simonyan & Zisserman, 2014) which
was modified to include Group Normalization (Wu & He, 2018) before
the activation functions and all max pooling layers were replaced by
leveraging a stride of 2 in the convolutional layers. This architecture
leads to a relatively small receptive field, only covering an area of
about four times the size of a cell, resulting in inconsistent detections
when context information is required, for instance when a power line
is blending in with the background.

3.2. LSNetv2

In this section, we introduce our proposed LSNetv2, which aims to
address the abovementioned limitations of LSNet. In practice, images
captured for inspection commonly have power lines visually intersect-
ing or being in close proximity to each other, which LSNet is unable to
model.

We, therefore, design LSNetv2 to detect multiple lines per cell by
performing a fixed number of inferences N, which are chosen to be
larger than the maximum number of line segments that are believed
to exist in the cell. The training pseudocode is shown in Algorithm
1. From our observations, 𝑁 = 10 is a safe choice. This results in
the output of the classification and regression being in the shape of
𝐵×31×31×𝑁 ×2 and 𝐵×31×31×𝑁 ×4, respectively (Fig. 3). For ease
of notation, we focus the scope of our discussion on an individual cell.
The ground truth 𝑦 of each cell, which contains 𝑚 actual line segments,
is also perceived to contain 𝑁 line segments 𝑦 = {𝑦𝑖}𝑁𝑖=1. However, the
ground truth is now padded with 𝑁−𝑚 negative classification. Inspired
by DETR (Carion, Massa, Synnaeve, Usunier, Kirillov, & Zagoruyko,
2020), we frame the line segment detection within each cell as a direct
set prediction problem. In our loss computation step, we include an
optimal bipartite matching between the 𝑁 predictions and 𝑁 ground
truths (see Fig. 4).

Let �̂� = {�̂�𝑖}𝑁𝑖=1 be the set of 𝑁 predictions. The optimal bipartite
matching between the 𝑁 predictions and 𝑁 ground truths, which is
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Fig. 3. LSNetv2 shares a similar overall design as LSNet with a fully convolutional
feature extractor, a classifier module, and a regressor branch module. However, the
two branches now perform multiple guesses so that LSNetv2 has the capability to
detect multiple line segments per cell. This illustration shows that the model performs
detection on the highlighted cell in the image and produces 𝑁 = 3 guesses. Two of
the guesses are classified as positive and the regressor module infers the endpoints of
these positive line segments.

done using the Hungarian algorithm, produces a permutation �̂� ∈ S

that satisfies:

�̂� = argmin
𝜎∈S

𝑁
∑

𝑖=1
𝑚𝑎𝑡𝑐ℎ(𝑦𝑖, �̂�𝜎(𝑖)) (1)

where 𝑚𝑎𝑡𝑐ℎ(𝑦𝑖, �̂�𝜎(𝑖)) is the loss when pairing 𝑦𝑖 = (𝑐𝑖, 𝑏𝑖) and �̂�𝜎(𝑖) =
(�̂�𝜎(𝑖), �̂�𝜎(𝑖)), which is reordered via permutation 𝜎(𝑖), which belongs to
the set of all possible permutations S. This loss is defined as:

𝑚𝑎𝑡𝑐ℎ(𝑦𝑖, �̂�𝜎(𝑖)) = 𝑚𝑎𝑡𝑐ℎ
[

(𝑐𝑖, 𝑏𝑖), (�̂�𝜎(𝑖), �̂�𝜎(𝑖))
]

= −�̂�𝜎(𝑖)(𝑐𝑖) + 𝐿1(𝑏𝑖, �̂�𝜎(𝑖)) (2)

where 𝑏𝑖 and �̂�𝜎(𝑖) are line segment endpoint ground truth and the
permutated prediction at index 𝑖 respectively. 𝐿1(.) is the 𝐿1 loss and
�̂�𝜎(𝑖)(𝑐𝑖) is the predicted probability of class 𝑐𝑖. Here, 𝑐𝑖 denotes the
classification ground truth at index 𝑖, indicating if a line is present or
not. The permutation �̂� is found by solving the linear sum assignment
problem with a modified Jonker-Volgenant algorithm (Crouse, 2016).
An illustration of the bipartite matching is shown in Fig. 4.

After bipartite matching has been done, the model can be trained
with a multitask loss, , to simultaneously train the classifier and
regressor module:

 =
𝑁
∑

𝑖=1
cls(𝑦𝑖, �̂�𝑖) + 𝜆

𝑁
∑

𝑖=1
1{𝑐𝑖=positive}reg(𝑦𝑖, �̂�𝑖) (3)

where �̂�𝑖 = �̂��̂�(𝑖) is one of 𝑁 prediction at an arbitrary cell after bipartite
matching. cls is a Focal loss (Lin et al., 2017):

cls =

{

−𝛼(1 − 𝑝)𝛾 log(𝑝), if 𝑐𝑖 = positive
−(1 − 𝛼)𝑝𝛾 log(1 − 𝑝), otherwise

(4)

where 𝑝 = �̂��̂�(𝑖)(positive), 𝛼 ∈ [0, 1] and 𝛾 ≥ 0 are tunable hyperpa-
rameters that adjust the weight on uncommon class and misclassified
examples respectively. This loss is used in the original LSNet to tackle
the imbalance problem between cells with line segments and cells
without. In LSNetv2, we continue to use this loss to train the classifier
module.

The regressor module is trained using the average sum of Wing
losses (Feng et al., 2017), which is applied on each coordinate value
so that the training is more sensitive to small errors and robust against
5

outliers. With 𝑏𝑖 = (𝑏𝑥1𝑖 , 𝑏𝑦1𝑖 , 𝑏𝑥2𝑖 , 𝑏𝑦2𝑖 ) and �̂�𝑖 = �̂��̂�(𝑖) = (�̂�𝑥1𝑖 , �̂�𝑦1𝑖 , �̂�𝑥2𝑖 , �̂�𝑦2𝑖 ),
the regression loss for LSNet is defined as:

LSNet
reg =

min(𝑊 ,𝑊swap)
4

(5)

with

𝑊 =
𝑊 (𝑏𝑥1𝑖 , �̂�𝑥1𝑖 ) + 𝑊 (𝑏𝑦1𝑖 , �̂�𝑦1𝑖 ) + 𝑊 (𝑏𝑥2𝑖 , �̂�𝑥2𝑖 ) + 𝑊 (𝑏𝑦2𝑖 , �̂�𝑦2𝑖 )

4
, (6)

𝑊swap =
𝑊 (𝑏𝑥1𝑖 , �̂�𝑥2𝑖 ) + 𝑊 (𝑏𝑦1𝑖 , �̂�𝑦2𝑖 ) + 𝑊 (𝑏𝑥2𝑖 , �̂�𝑥1𝑖 ) + 𝑊 (𝑏𝑦2𝑖 , �̂�𝑦1𝑖 )

4
(7)

where

𝑊 (𝑚, 𝑛) =

{

𝑤ln(1 + |𝑚 − 𝑛|∕𝜖), if |𝑚 − 𝑛| < 𝑤
|𝑚 − 𝑛| − 𝐶, otherwise,

(8)

𝑤 is used to constrain the range of the nonlinear behavior of the loss to
(−𝑤,𝑤), 𝜖 controls the growth of loss as regression error increases and
the curvature of the nonlinear part, and 𝐶 = 𝑤 − 𝑤ln(1 + 𝑤∕𝜖) is used
to smoothen the connection between the linear and nonlinear parts of
the loss.1

It can be seen that in the regression loss of LSNet, there is a
swapping mechanism that assigns the two ground truth endpoints to
the two predicted endpoints so that the regression loss will have the
minimum value. We observe that this swapping mechanism, which
allows a value pair in the regressor module to predict the location
of an arbitrary endpoint based on its closeness to the ground truth
introduces unwanted interdependence between the endpoints, resulting
in training instabilities. Specifically, during training, the prediction of
one endpoint relies on the position and closeness of the other point
to either of the ground truth endpoints. Thus, potentially sudden and
frequent changes in the ground-truth-prediction assignment can lead to
inconsistent and unmeaningful weight updates. Thus, for LSNetv2, we
propose the regression loss as follows:

LSNetv2
reg =

⎧

⎪

⎨

⎪

⎩

𝑊 (𝑏𝑥1𝑖 ,�̂�𝑥1𝑖 )+𝑊 (𝑏𝑦1𝑖 ,�̂�𝑦1𝑖 )+𝑊 (𝑏𝑥2𝑖 ,�̂�𝑥2𝑖 )+𝑊 (𝑏𝑦2𝑖 ,�̂�𝑦2𝑖 )
4 , if 𝑏𝑥1𝑖 < 𝑏𝑥2𝑖

𝑊 (𝑏𝑥2𝑖 ,�̂�𝑥1𝑖 )+𝑊 (𝑏𝑦2𝑖 ,�̂�𝑦1𝑖 )+𝑊 (𝑏𝑥1𝑖 ,�̂�𝑥2𝑖 )+𝑊 (𝑏𝑦1𝑖 ,�̂�𝑦2𝑖 )
4 , otherwise

(9)

This distance error ensures that the endpoints with the lower x-
coordinate and the endpoints with the higher x-coordinate are detected
by the same output elements in the 4-element vectors output from the
regressor module. With this restriction, the training process is more
robust and we empirically demonstrate the performance improvement
in the experiment section.

It has been shown that LSNet has been successful for cases where
images of power lines are captured from a relatively close distance
and the visibility of the power lines throughout the span of the image
is clear (Nguyen et al., 2020). However, in most practical application
settings, images such as those used for visual inspection are taken from
further away leading to segments of power lines appearing thin and/or
blending in with the background. Following the grid-based approach
of LSNet, the detection performance of power lines in each cell, espe-
cially ones that are inconspicuous, may depend heavily on the global
information of areas around it. However, the theoretic receptive field of
LSNet is only about four times the cell size. This limits the capability of
LSNet to aggregate global context for the cell inference. Thus, LSNetv2
is designed to have a larger receptive field. In particular, we leverage
the ConvNeXt-Tiny backbone, which increases the receptive field by a

1 Note, unlike in Nguyen et al. (2020), where the loss is computed per
dimension and then aggregated. This is more faithful to the original Wing loss
formulation (Feng et al., 2017) and we observe that it empirically performs on
par or improves on the formulation in Nguyen et al. (2020). Results reported
for LSNet in this work include this modification.
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Fig. 4. Illustration of the bipartite matching mechanism that facilitates the multi-guess capability of LSNetv2. The multiple predictions of each cell are matched to the multiple
ground truths based on its classification and localization of endpoints. Shown here is an image cell (green) with two line segments crossing each other. Thus, the ground truth
(left column) includes 𝑁 elements, two of which (marked with ✓) contain the positive classification label and the endpoint coordinates of the two line segments while the rest
have negative classification labels (marked with ✗) and dummy coordinate values. The prediction (right column) also has 𝑁 elements, each of which predicts if a line segment
exists and the endpoint coordinates. The 𝑁 elements from the prediction are matched with the 𝑁 elements from the ground truth using the Hungarian algorithm based on 𝐿𝑚𝑎𝑡𝑐ℎ.
Algorithm 1: Training LSNetv2 pseudocode
Data: Training dataset:  = {(𝑥𝑖, 𝑦𝑖)}𝑀𝑖=1
Result: Trained LSNetv2 model
Initialization:;
Initialize LSNetv2 weights 𝜃;
Set number of epochs, learning rate and Adam
hyperparameters;

Preprocess the dataset (adapt labels, resize, etc.);
for epoch = 1 to num_epochs do

for each minibatch {(𝑥𝑗 , 𝑦𝑗 )} in  do
/* Forward pass */
�̂�𝑗 = (�̂�𝑗 , �̂�𝑗 ) = 𝐿𝑆𝑁𝑒𝑡𝑣2_𝐹𝑜𝑟𝑤𝑎𝑟𝑑_𝑃𝑎𝑠𝑠(𝑥𝑗 );
/* Compute Bipartite Matching with 𝑚𝑎𝑡𝑐ℎ

and permutate */
�̂��̂�(𝑗) = HungarianAlgorithm(�̂�𝑗 , 𝑦𝑗 ,𝑚𝑎𝑡𝑐ℎ);
/* Compute the loss */
 =

∑𝑁
𝑖=1 cls(𝑦𝑖, �̂��̂�(𝑗)) + 𝜆

∑𝑁
𝑖=1 1{𝑐𝑖=positive}reg(𝑦𝑖, �̂��̂�(𝑗));

/* Compute gradients w.r.t. the parameters
*/

∇𝜃 = 𝜕
𝜕𝜃 ;

/* Update weights */
Update parameters 𝜃 using Adam optimizer;

factor of 12. ConvNeXt-Tiny, which is the smallest in the ConvNeXt,
was recently introduced as a modernized version of Resnet (He, Zhang,
Ren, & Sun, 2015) which is equipped with recent properties based on
the hierarchical vision transformer Swin (Liu, Lin, et al., 2021). We
use an altered version of ConvNeXt-Tiny. Similarly to Resnet and other
well-known CNNs, ConvNeXt-Tiny has a multi-stage design. Each stage
results in the compression of the features with a ratio of 2. We use
a truncated ConvNeXt-Tiny as the new backbone. The output of the
truncated model reduces the input to a size of 32 × 32 × 384. The
architecture is detailed in Table 5.

4. Experiments

In this section, we provide quantitative and qualitative evaluations
of our proposed approach and illustrate its advantages over the current
state-of-the-art approaches LSNet (Nguyen et al., 2020) and HAWPv2
(Xue et al., 2022). HAWPv2 is included in the comparison as it can
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be considered the state-of-the-art approach for wireframe parsing. It
is an improved version of the highly-cited HAWP and, to the best of
our knowledge, HAWPv2 achieved the highest performance in popular
wireframe parsing benchmarks. As mentioned above, wireframe pars-
ing is, in essence, very similar to the task of power line detection and
HAWPv2 can be trained directly with the polyline annotations. Exper-
iments are conducted on four different power line detection datasets
of varying creation methods and difficulty. In addition, an analysis of
different backbones was performed and ablation studies were done to
highlight the benefit of the novel components that constitute LSNetv2,
namely the multi-guess capability via bipartite matching, the ordered
regression loss, and the new ConvNeXt-Tiny backbone.

4.1. Datasets

4.1.1. PLD-UAV
PLD-UAV (Snorker, 2019) contains two datasets of power lines: the

power line dataset of urban scenes (PLDU) and the power line dataset
of mountain scenes (PLDM). In these datasets, the backgrounds are
urban and mountain scenes, respectively, and are relatively cluttered
and complex. However, the power lines to be detected are still quite
observable. In this dataset, the boundaries of power lines are annotated
at the pixel level. To adapt to LSNetv2, we detected individual bound-
aries by dilating the pixel annotations and clustering the pixels via
connected component analysis. From each cluster of pixels, a polygon
is approximated and filled with white pixels (positive labels). Then,
a skeletonization algorithm, introduced in Huang (2021), is used to
produce polylines tracing the power lines. The polylines are simpli-
fied using the Ramer–Douglas–Peucker (RDP) algorithm (Douglas &
Peucker, 1973) and imposed on the 31 × 31 grid to produce the
annotation for LSNetv2. Manual inspection was done to ensure that the
procedure produces accurate labels. PLDU contains 453 training data
points and 120 testing data points. PLDM contains 237 training data
points and 50 testing data points.

4.1.2. TTPLA
TTPLA (Abdelfattah, Wang, & Wang, 2020) is a newly introduced

dataset. It consists of images taken from UAVs under a variety of con-
ditions, such as different scenes, angles, zoom, and lighting conditions.
Many instances in this dataset suffer from problems like occlusion
and blending, which make the detection more challenging. TTPLA also
possesses some data points that have power lines being close to each
other and power line crossings. This makes it an ideal test bed to
evaluate the effectiveness of our proposed method, which is designed

to effectively segment multiple power lines/line segments. It should be
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noted that the annotations of this dataset only include power trans-
mission lines. Despite some other wire types also appearing in some
images, these other wires are not annotated, which is different from
the eSmart dataset described in the next subsection. The annotation
of TTPLA is provided at an instance segmentation level via polygons
that precisely wrap around the power lines. To adapt this dataset
to LSNetv2, similarly to the datasets above, we performed an image
processing procedure that includes skeletonizing the blobs that fill the
polygon annotations to generate polylines. The polylines are simplified
using the RDP algorithm and then imposed on the 31 × 31 overlapping
grid to find intersections, which are the labels for LSNetv2. This dataset
contains 1242 images and we use 992 for training and 250 for testing.

4.1.3. eSmart dataset
We also evaluated the method using a proprietary dataset of power

lines aggregated by eSmart Systems. This dataset is made from UAV
images taken by multiple clients of eSmart Systems, and thus, con-
tains significant diversity in terms of scenes, angles, zooming levels,
weather, and lighting conditions. This dataset has polyline annotations
tracing the trajectories of the power lines. The polyline annotation
can be imposed onto the 31 × 31 grid to produce the annotation for
LSNetv2. In this dataset, the lines annotated include conductors, guy
wires, and overhead ground wires. Conductors are normally in parallel.
However, the other two types of wires can have different directions
and, hence, there are many visual crossings. Included in the dataset
are also some instances of line segments being in close proximity. The
dataset contains 2961 images for training and 468 images for testing.

4.2. Implementation details

The proposed LSNetv2 is implemented in Tensorflow. Each model
is trained on one NVIDIA RTX 3090 24 GB. The model was initialized
using Xavier initialization (Glorot & Bengio, 2010) and trained with a
batch size of 8 for 100 epochs. The Adam optimizer (Kingma & Ba,
2015) is used with a learning rate of 0.0001, a first momentum of
0.9, and a second momentum of 0.99. Empirical experiments indicate
that results are robust with respect to the choice of the weight 𝜆
for the multitask loss. Following LSNet, we therefore also set 𝜆 to 1
for all datasets.. The input image size is 512 × 512. During training,
augmentation techniques applied include randomized occurrences of
sharpening, blur, color jittering, pixel dropouts, and additive noise.
After that, randomized square crops of varying sizes between 360 and
512 are taken from the input and then scaled back to the input size of
512 × 512.

4.3. Evaluation metrics

For comparison purposes, we follow prior work (Nguyen et al.,
2020) and evaluate LSNetv2 in the same manner as segmentation mod-
els. Similarly to Nguyen et al. (2020), we adopt pixel-level Averaged
Recall Rate (ARR), Averaged Precision Rate (APR), and 𝐹1 Scores. In
addition, we also use averaged 𝐹𝛽 :

𝐹𝛽 = 1
𝑁

𝑁
∑

𝑖=1

(1 + 𝛽2)Precision × Recall
𝛽2 × Precision + Recall

(10)

where 𝑁 is the number of test images and 𝛽2 = 0.3 in order to
place more emphasis on precision compared to the conventional 𝐹1
metric. According to Achanta, Hemami, Estrada, and Süsstrunk (2009),
Cheng, Zhang, Mitra, Huang, and Hu (2011), recall is not as relevant
as precision since the recall rate of 1.0 can be achieved by predicting
all pixels in the image as positive. Also, higher recall rates can be
an indication of imprecise predictions of line segment endpoints as
illustrated in Fig. 5. Thus the 𝐹𝛽 score can be considered a better
measurement of the overall performance than the 𝐹1 score.

To produce the segmentation map, for each cell within the 31 × 31
output grid that was classified to contain segments of power lines, we
7

Fig. 5. Illustration of a case where imprecise inferences from LSNetv2 can leads to
better recall. The orange and blue segments are individual inferences of the cells. The
line segment inferences are rasterized with a width. The green lines are the ground
truth rasterized with the actual line width. The left image shows that, especially in
cases where the chosen line width is less than the actual one, imprecise inferences
of line segments, when combined, can include more true positive pixels and less false
negative than the more precise inferences shown on the right.

use OpenCV to generate visible white lines from the predicted pairs of
endpoints. Specific line widths are chosen for each dataset based on the
common width of the power lines for each dataset. Through inspection,
we find that the common width of the power lines in the PLDU dataset
is 9, 6 for the PDLM dataset, 2 for the TTPLA dataset, and 5 for the
eSmart dataset.

4.4. Evaluation methods

The comparison is done with the previously proposed LSNet across
the four datasets. We also compare LsNetv2 with HAWPv2 by training
the model, whose code is provided by the original author (Xue, 2021),
the output of the HAWPv2 model is rasterized into segmentation maps,
from which APR, ARR, 𝐹1 and 𝐹𝛽 score are calculated.

4.5. Main results

Results in Table 1 illustrate that LSNetv2 consistently outperforms
LSNet across all datasets considered. The difference is most pronounced
when considering the APR metric, leading to a performance improve-
ment when considering the 𝐹𝛽 metric. The performance gap is largest
for the TTPLA and eSmart datasets, which can be attributed to them
being arguably more complex datasets. From Fig. 6, we can see that
the TTPLA dataset contains many images with several semi-parallel
power lines in close proximity to each other, which showcases the
effectiveness of LSNetv2 to a larger degree leading to a considerable
performance gap. LSNetv2 is able to both detect more true positive
line segments and semantic power lines. In the eSmart dataset, as
aforementioned, due to the need to also detect guy wires, each image
in this dataset usually contains at least one visual crossing. As shown in
Fig. 7, unlike LSNetv2, LSNet, by design, cannot detect the two line seg-
ments at the crossings. Further, it can be observed that LSNetv2 is even
better than LSNet in general one-line-segment-per-cell cases, especially
when the visibility of the line segments is limited due to camera angle
and distance, which makes the line segments thin, and/or background
blending. This can partially be attributed to the ConvNeXt backbone by
providing filters with a larger receptive field that, together with other
modernized features, allows LSNetv2 to get global information across
the images to make accurate inferences at each cell.

The performance gap is smaller for the PLDU and PLDM datasets
since these datasets are subjectively less difficult than the other two.
Similarly to the two previous cases, the improvement lies mainly in
the APR metric. There are no explicit line crossings found in the test set
and in cases where there are parallel power lines in close proximity, the
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Fig. 6. The comparison of different methods on test images in TTPLA dataset.
Table 1
Performance of HAWPv2, LSNet and LSNetv2 across 4 datasets: PLDU, PLDM, TTPLA
and eSmart dataset.

HAWP (best 𝐹1) HAWP (best 𝐹𝛽 ) LSNet LSNetv2

PLDU

APR 0.830 0.924 0.914 0.938
ARR 0.649 0.562 0.662 0.666
𝐹1 0.728 0.700 0.767 0.779
𝐹𝛽 0.780 0.805 0.840 0.857

PLDM

APR 0.815 0.904 0.916 0.934
ARR 0.664 0.578 0.726 0.724
𝐹1 0.732 0.705 0.810 0.815
𝐹𝛽 0.775 0.800 0.863 0.875

TTPLA

APR 0.559 0.586 0.603 0.714
ARR 0.639 0.567 0.618 0.560
𝐹1 0.596 0.576 0.610 0.628
𝐹𝛽 0.575 0.582 0.606 0.671

eSmart

APR 0.751 0.775 0.726 0.845
ARR 0.850 0.808 0.812 0.814
𝐹1 0.797 0.791 0.766 0.829
𝐹𝛽 0.772 0.782 0.744 0.837
8

four-grid design of LSNet may help compensate for when a line segment
is not detected by one of the four grids. However, as shown in Figs. 8–9,
the missing line segment problem still exists for LSNet leading to the
eventual miss-detection of the whole power line. Furthermore, close
line segments may confuse LSNet resulting in imprecise localization
of endpoints implied by the occasional fillings in the gaps between
power lines, such as the examples shown in the first row of Fig. 8. This
might cause further complications for potential downstream instance
segmentation tasks. LSNetv2 is more robust to such close-proximity
cases and can produce output masks with fewer missing segments
and with clearer and more precise division between power lines. The
last row of Fig. 8 shows that LSNet is susceptible to confusion by
background lines, while LSNetv2 appears to be more resistant. This
can be attributed to ConvNeXt being able to mimic the non-local self-
attention mechanism of the Vision Transformer (Dosovitskiy et al.,
2020), which helps gather more global information, helping LSNetv2
to better differentiate between semantic line segments.

Table 1 further shows the quantitative results of HAWPv2. We
observed that the performance of HAWPv2, estimated by either 𝐹1
or 𝐹𝛽 , was highly dependent on different choices of line width and
score threshold (used to filter out unconfident line segments). Thus,
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Fig. 7. The comparison of different methods on test images in eSmart dataset.
Table 2
Line widths (lw) and score thresholds (st) at which HAWPv2 achieves the best 𝐹1 and
𝐹𝛽 scores across all four datasets.

PLDU PLDM TTPLA eSmart

lw st lw st lw st lw st

Best 𝐹1 7 0.1 7 0.1 2 0.2 5 0.1
Best 𝐹𝛽 7 0.6 5 0.1 2 0.3 5 0.2

for HAWPv2, we considered two settings, the one that leads to the
best 𝐹1 score and the one yielding the best 𝐹𝛽 score. Table 2 shows
the configuration choices, at which these highest metric values were
achieved for each dataset. Overall, the best values are achieved at line
widths similar to those used when calculating the metrics for LSNet
and LSNetv2. In addition, high score thresholds lead to higher APR and
𝐹𝛽 at the expense of ARR and vice versa, which is expected. Overall,
LSNetv2 is able to outperform the best 𝐹1 score and 𝐹𝛽 score across all
datasets. Figs. 6–9 show that HAWPv2 is able to detect entire power
lines consistently, however, false positive and false negative regions
are often larger than those observed in LSNetv2. This can be attributed
to the 4-overlapping-grid design, where missing line segments in each
9

cell can be compensated by its neighbors and, since each cell is only
responsible for a small region, false positives occurring in one cell do
not have a significant impact. In addition, LSNet model outperforms
HAWPv2 in three out of four datasets.

In the following, we briefly present some failure cases of LSNetv2.
Besides common cases of false positive and false negative line detection.
There are some interesting phenomenons as shown in Fig. 10. The first
row shows that both LSNet and LSNetv2 predict a false positive line
(constituted by various line segments) which is caused by the edge of
the road. For LSNetv2, this false positive line cuts off the continuity
of a nearby true positive line and extends itself using a part of that
true positive line. Cases like this one indicate that LSNetv2 implicitly
enforces the line segments forming continuous lines. However, LSNetv2
might be wrong in its assumption and output semantically incorrect
continuous lines as power lines. Another failure case is presented in
the second row. As mentioned previously, the TTPLA dataset does not
involve guy wires as detection targets, and thus the trained LSNetv2
should exclude these wires. However, as can be observed in this ex-
ample LSNetv2 detects them partially as positives. LSNetv2 detects guy
wires often in the test set demonstrating that it struggles to differentiate
between normal power lines and guy wires. This could potentially be



Expert Systems With Applications 250 (2024) 123773D.K. Tran et al.
Fig. 8. The comparison of different methods on test images in PLDU dataset.
.

due to the input images being cropped, providing a limited view of the
overall line structure. Further, while LSNetv2 generally works well for
images with power lines in close proximity, it can still struggle with
very thin lines that run closely in parallel, as illustrated in the example
in row three. Finally, the overall performance of LSNetv2 is affected by
outliers such as the image in row four. This image is captured with a
bottom-up perspective, which is different from the rest of the training
dataset.

4.6. Ablation study

We conduct ablation experiments on the TTPLA and eSmart datasets
and present results in Table 3 and 4, respectively. We can see the
following overall trend for both datasets: removing any of the three
proposed components of LSNetv2 results in a degradation in terms
of the 𝐹𝛽 score, highlighting their importance to the overall model.
Furthermore, we note that adding any of the components to the original
LSNet (top row) improves the LSNet performance. Finally, the combi-
nation of the three achieves the most desirable performance, providing
a considerable boost in both 𝐹 and 𝐹 scores.
10

1 𝛽
Table 3
Results from the ablation study performed on the TTPLA dataset. The study investigates
the effect of the proposed components individually and in combination with each other

ConvNeXt Multi-guess Ordered loss APR ARR 𝐹1 𝐹𝛽

0.603 0.618 0.610 0.606
✓ 0.624 0.660 0.641 0.631

✓ 0.671 0.550 0.604 0.638
✓ 0.673 0.487 0.565 0.619

✓ ✓ 0.683 0.561 0.616 0.650
✓ ✓ 0.736 0.495 0.592 0.661

✓ ✓ 0.696 0.566 0.624 0.660
✓ ✓ ✓ 0.714 0.560 0.628 0.672

For the eSmart dataset, ConvNeXt is clearly a beneficial addition
that gives LSNetv2 improvements in both 𝐹1 and 𝐹𝛽 scores. The benefits
are also noticeable when concerning the addition of the multi-guess
capability brought about by bipartite matching and the ordered loss.
These two components individually improved the 𝐹𝛽 score while main-
taining a comparable 𝐹1 score. Combining the ConvNeXt-Tiny back-
bone with either the multi-guess capability or the ordered loss, instead,
achieves a noticeable performance increase when compared to just
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Fig. 9. The comparison of different methods on test images in PLDM dataset.
.

Table 4
Results from the ablation study performed on the eSmart dataset. The study looks into
the effect of the proposed components individually and in combination with each other

ConvNeXt Multi-guess Ordered loss APR ARR 𝐹1 𝐹𝛽

0.726 0.812 0.766 0.744
✓ 0.844 0.770 0.806 0.825

✓ 0.743 0.787 0.764 0.752
✓ 0.769 0.749 0.759 0.764

✓ ✓ 0.825 0.820 0.823 0.824
✓ ✓ 0.839 0.765 0.800 0.820

✓ ✓ 0.759 0.813 0.785 0.770
✓ ✓ ✓ 0.845 0.814 0.829 0.837

using the multi-guess capability or the ordered loss alone. This further
validates the benefit of having ConvNeXt-Tiny with its increased recep-
tive field as the new backbone. For the TTPLA dataset, we observe that
the addition of each of the components individually provides noticeable
improvements in 𝐹𝛽 scores while maintaining comparable 𝐹1 scores.
In particular, the addition of the ConvNeXt-Tiny backbone provides a
significant performance boost, indicated in the jumps in both 𝐹1 and
𝐹𝛽 score. Pairings ConvNeXt-Tiny with one of the other contributions
provides models with higher APR and 𝐹𝛽 but with lowered ARR and 𝐹1
when compared to just using ConvNeXt-Tiny alone. This is acceptable
since the 𝐹𝛽 metric is more preferable as explained in 4.3 and the ARR
values are still comparable to the base case where no components are
added. In addition, this is understandable since the bipartite matching
task provides LSNetv2 with the ability to detect multi line segments
per cell but might pose a harder challenge for the model to train. Also,
the ordered loss is observed to be particularly relevant when paired
with the harder training task brought about by bipartite matching.
In fact, for both datasets, the combinations of bipartite matching and
ordered loss generated models with better performance than if the two
components are used alone.

Fig. 11 also supports these observations. Across different line widths,
LSNetv2, with the combination of all three components, consistently
11
achieves superior performance, especially on the eSmart dataset. An
addition of either of the three proposed components alone is enough
to provide the model with consistent performance improvements, with
ConvNeXt having the most impact. Further combination of any two of
the proposed components leads to additional improvements.

Figs. 12 and 13 show the example outputs of the model variants
in the ablation study. In general, the detection outputs of LSNet are
susceptible to random false positives and lines in the background that
are not power lines (e.g. road markings). Naturally, LSNet also suffers
in cases of line crossings and close proximity. With the ConvNeXt
backbone and its increased receptive fields, the model is less affected
by semantically incorrect line segments and general false positives.
The outputs from LSNet with ConvNeXt backbone are also visually
‘cleaner’ where the detected neighboring line segments constituting
the same power lines are in stronger agreement leading to smoother
detected overall power lines. However, leveraging ConvNeXt does not
relieve the shortcomings in cases of line crossings and lines that are in
close proximity, leading to missing detection and disrupted power line
continuity. It can be seen that the addition of the multi-guess capability
effectively tackles this problem. Although less apparent, we observed
that the inclusion of the ordered loss alone helps LSNet remedy the
confusion problem taking place between parallel power lines that are
closely spaced. By using the ordered loss, there are fewer false positives
that bridge between these power lines and better separation of detected
power lines can be achieved.

4.7. Backbone analysis

To further validate the benefit of the ConvNeXt-Tiny backbone,
we compare ConvNeXt-Tiny with the original modified VGG-16 archi-
tecture, as well as a Resnet-50 and Efficientnetv2-M backbone. The
detailed architecture is shown in Table 5.

Table 6 shows the results of our experiment with other backbones.
In general, the ConvNeXt-Tiny backbone is superior to the other alter-

natives, helping LSNetv2 achieve the highest 𝐹1 and 𝐹𝛽 scores across
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Fig. 10. Example failed outputs of LSNetv2. The first two rows show images from the TTPLA dataset. The remaining two rows show images from the eSmart dataset.

Fig. 11. Line plots of 𝐹1 and 𝐹𝛽 scores obtained from the ablation study across multiple line pixel widths.
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Fig. 12. Example outputs on the TTPLA dataset of LSNet, LSNetv2, and other variants in the ablation study.
almost all scenarios. In addition, with ConvNeXt-Tiny being in one of
the state-of-the-art families of CNNs, the performance of this backbone
can be attributed to it having a big theoretical receptive field, more
than double the size of the input image. This means that each cell
inference produced by this network can hypothetically gain information
from the entire image. LSNetv2 with the modified VGG-16 backbone
has competitive performance versus the first version of LSNet for all
datasets except for PLDM, where LSNetv2 has a comparable 𝐹1 score
but noticeably lower APR and 𝐹𝛽 score. This can be attributed to the
limited need for multi-line-segment-per-cell detection when considering
the PLDU and PLDM datasets. Additionally, in these scenarios, the
introduction of bipartite matching might result in more challenging
optimization due to the additional degree of freedom when training
LSNetv2. Nevertheless, for the more challenging TTPLA and eSmart
datasets, which benefit from the multi-line-segment detection capa-
bility, LSNetv2 with a modified-VGG backbone achieves considerably
13
better performance than the original LSNet. LSNetv2 with Resnet-50
backbone is consistently the second-best across all cases despite having
a relatively smaller theoretical receptive field and the lowest number
of trainable parameters. This is expected since Resnet is the direct
predecessor of ConvNeXt and both are equipped with skip connections,
which have been demonstrated to smoothen the optimization landscape
(Li, Xu, Taylor, Studer, & Goldstein, 2018). The VGG-16 model, on
the other hand, does not have these features, making it harder to
optimize. Efficientnetv2-M is another relatively recent architecture that
is competitive at image classification (Tan & Le, 2021) and object de-
tection (Tan, Pang, & Le, 2019). It also has a high theoretical receptive
field (technically covers the entire image due to the squeeze-and-
excitation blocks) as well as skip connections. However, this backbone
is consistently inferior to the rest, including the original modified-
VGG backbone. This might be because EfficientnetV2 was designed
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Fig. 13. Example outputs on the eSmart dataset of LSNet, LSNetv2, and other variants in the ablation study.
specifically to achieve high accuracy for image classification and, even
though this architecture family also performs well for object detection
and semantic segmentation (Tan & Le, 2021), EfficientnetV2 is simply
not suitable for the tasks of LSNetv2. Also, since EfficientnetV2 was de-
signed with a high level of specificity via a compound scaling method,
therefore, any modification, such as truncation in this case, can have a
greater negative effect on performance.

4.8. Robustness analysis

In order to ensure consistent performance of LSNetv2, we performed
multiple training trials of LSNet and LSNetv2 and observed the varia-
tions in the metrics. The result is shown in Table 7. As can be seen, all
the scores indicate that LSNetv2 is robust with small standard deviation
in the performance. LSNet is also robust for the eSmart dataset but its
14
metrics vary more across runs. T-tests illustrate that the improvements
of LSNetv2 are statistically significant for most metrics (p< 0.05).
In addition, we can see that, through T-tests, LSNetv2 is assuredly
better than HAWPv2 in terms of the 𝐹1 scores. For the eSmart dataset,
𝐹𝛽 scores also ascertain the performance gap between LSNetv2 and
HAWPv2.

4.9. Computational analysis

The increased capability of LSNetv2 comes at the cost of efficiency.
LSNetv2 has a lower amount of FLOPS (floating point operations) (41.9
GFLOPs vs. 130.8 GFLOPs) due to the use of depthwise and 1 × 1
convolutions. However it has slightly more parameters (13.9 million
vs. 10.0 million), and, in reality, a higher inference time (0.17 s vs.
0.10 s on an RTX 3090). Future work should investigate directions to
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Table 5
The architecture of LSNetv2 using different CNNs as the backbone. 𝑎 × 𝑎, 𝑏, s = 𝑐 indicates a convolutional layer with kernel size 𝑎, number of filters 𝑏 and stride 𝑐.
dw indicates a depthwise convolutional layer. The curl brackets signal groups of layers with skip connections. This table excludes more detailed information such as
normalization and activation layers. The receptive fields are calculated by receptive_field_analysis_toolbox (Richter, 2021).

Stage Output size Modified VGG Resnet-50 EfficientnetV2-M ConvNeXt-Tiny

1 256 × 256
3 × 3, 64
3 × 3, 64

1 × 3, 64, , s=2
7 × 7, s=2

3 × 3, 24, s=2
3×

{

3 × 3, 24

2 128 × 128
3 × 3, 128
3 × 3, 128

1 × 3, 128, , s=2

3 × 3 maxpool, s=2

3×

⎧

⎪

⎨

⎪

⎩

1 × 1, 64
3 × 3, 64
1 × 3, 256

3 × 3, 96, s=2
1 × 1, 48

4×

{

3 × 3, 192
1 × 1, 48

4 × 4, 96, s=4

3 64 × 64
3 × 3, 256
3 × 3, 256

1 × 3, 256, , s=2

1×

⎧

⎪

⎨

⎪

⎩

1 × 1, 128, s=2
3 × 3, 128
1 × 3, 512

3×

⎧

⎪

⎨

⎪

⎩

1 × 1, 128
3 × 3, 128
1 × 3, 512

3 × 3, 192, s=2
1 × 1, 80

4×

{

3 × 3, 320
1 × 1, 80

3×

⎧

⎪

⎨

⎪

⎩

dw 7 × 7, 96
1 × 1, 384
1 × 1, 96

2 × 2, 192, s=2

4 32 × 32
3 × 3, 512
3 × 3, 512

1 × 3, 512, , s=2

1×

⎧

⎪

⎨

⎪

⎩

1 × 1, 256, s=2
3 × 3, 256
1 × 3, 1024

5×

⎧

⎪

⎨

⎪

⎩

1 × 1, 256
3 × 3, 256
1 × 3, 1024

1 × 1, 320
dw 3 × 3, 320, 𝑠 = 2

SE-Block(ratio=0.25)
1 × 1, 160

6×

⎧

⎪

⎨

⎪

⎩

1 × 1, 640
dw 3 × 3, 640
SE-Block(ratio=0.25)
1 × 1, 160

3×

⎧

⎪

⎨

⎪

⎩

dw 7 × 7, 192
1 × 1, 768
1 × 1, 192

2 × 2, 384, s=2

5 32 × 32

1 × 1, 960
dw 3 × 3, 960

SE-Block(ratio=0.25)
1 × 1, 176

13×

⎧

⎪

⎨

⎪

⎩

1 × 1, 1056
dw 3 × 3, 1056
SE-Block(ratio=0.25)
1 × 1, 176

1 × 1, 1056

9×

⎧

⎪

⎨

⎪

⎩

dw 7 × 7, 384
1 × 1, 1536
1 × 1, 384

Classifier or
Regressor module 31 × 31 2 × 2, 512

1 × 1,2 * 10 or 4 * 10
Receptive field 91 291 779 (inf) 1096
Parameters (M) 10.0 12.8 14.5 13.9
Table 6
Performance of LSNetv2 using different CNNs as the backbone.

Modified VGG Resnet-50 Efficientnetv2-M ConvNeXt-Tiny

PLDU

APR 0.899 0.920 0.907 0.938
ARR 0.685 0.673 0.645 0.666
𝐹1 0.778 0.778 0.764 0.779
𝐹𝛽 0.838 0.848 0.829 0.857

PLDM

APR 0.818 0.918 0.923 0.934
ARR 0.793 0.731 0.674 0.724
𝐹1 0.805 0.814 0.779 0.815
𝐹𝛽 0.812 0.866 0.850 0.875

TTPLA

APR 0.696 0.643 0.573 0.714
ARR 0.566 0.635 0.355 0.560
𝐹1 0.624 0.639 0.438 0.628
𝐹𝛽 0.660 0.641 0.501 0.671

eSmart

APR 0.759 0.794 0.747 0.845
ARR 0.813 0.809 0.796 0.814
𝐹1 0.785 0.802 0.771 0.829
𝐹𝛽 0.770 0.797 0.757 0.837
Table 7
Table showing the robustness analysis of LSNet and LSNetv2 across 5 runs. The superscript symbols ∗, + , and − indicates that the performance
gaps of pairs (LSNetv2, LSNet), (LSNetv2, HAWPv2 at best 𝐹1 score), and (LSNetv2, HAWPv2 at best 𝐹𝛽 score) are statistically significant
(𝑝 < 0.05).

HAWPv2 (𝐹1) HAWPv2 (𝐹𝛽 ) LSNet LSNetv2

TTPLA

APR 0.677 ± 0.059 0.682 ± 0.049 0.607 ± 0.021 0.703 ± 0.008∗

ARR 0.426 ± 0.107 0.411 ± 0.078 0.593 ± 0.036 0.566 ± 0.011+−

𝐹1 0.509 ± 0.045 0.505 ± 0.038 0.600 ± 0.024 0.626 ± 0.004∗+−

𝐹𝛽 0.641 ± 0.035 0.642 ± 0.032 0.603 ± 0.021 0.665 ± 0.004∗

eSmart

APR 0.823 ± 0.036 0.828 ± 0.027 0.713 ± 0.008 0.844 ± 0.004∗+−

ARR 0.654 ± 0.098 0.654 ± 0.098 0.813 ± 0.003 0.818 ± 0.002∗

𝐹1 0.722 ± 0.038 0.721 ± 0.035 0.760 ± 0.005 0.831 ± 0.002∗+−

𝐹𝛽 0.806 ± 0.017 0.809 ± 0.013 0.734 ± 0.007 0.837 ± 0.003∗+−
15
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improve the complexity of LSNetv2 while maintaining its performance
to support real-time applications. Regarding HAWPv2, it possesses an
amount of parameters of about 11.1 million, 121.5 GFLOPs and an
average inference time without post-processing of 0.03 s.

5. Future works

LSNetv2 opens up new possibilities in efficient monitoring of power
lines and there are several directions that can be explored to fur-
ther improve on this. These directions can be categorized into two
main directions, one focusing on improving the detection capabilities
of LSNetv2 by improving algorithmic aspects, while the other aims
to directly incorporate and leverage UAV properties. These are two
orthogonal directions, and we will briefly reflect on potential directions
within both.

5.1. Algorithmic aspects

Future work on LSNetv2 should focus on exploring new directions to
further improve its capabilities. One area of interest for future research
is the multi-guess capability of LSNetv2, which has shown significant
improvement over the predecessor model, LSNet. However, this feature
potentially further exacerbates the imbalance problem between the
number of positive and negative labels already present in LSNet. Both
LSNet and LSNetv2 leverage the Focal loss to partly mitigate this
problem, however, future work on losses and sampling techniques is
needed to further address the issue and enhance the performance of
LSNetv2.

Another promising direction is to further model the width of the
power lines. While it is sufficient for most downstream inspection tasks
to only obtain the trajectories of the power lines, it could be beneficial
if width information across the power lines could be derived from
LSNetv2 as well. For example, changes in the power line circumference
could help detect bird caging defects and joint components. Thus,
future work should look into ways to extract this width information
while maintaining the use of polyline annotations.

Furthermore, future work should also involve an investigation of
how to better model curvature in power lines. While LSNet and LSNetv2
can somewhat account for curves via detecting power lines in a piece-
wise manner, they are still limited for severely curved power lines
when the assumption of straight power line segments in a cell is less
applicable.

The ablation study has validated the contribution of each proposed
components that advance LSNet into LSNetv2. However, the improve-
ments can be further emphasized if they can be shown through more
intuitive means such as GradCAM heatmaps. Hence, it can be a good
idea to investigate into the discovery and application of interpretability
methods on LSNetv2 to gain more insights into the inner workings of
the model and identify possible future work directions.

Finally, another promising direction of future work is the study of
domain adaptation in the context of LSNetv2 to generalize its perfor-
mance to changing conditions. This would facilitate the use of LSNetv2
in diverse real-world scenarios, ensuring a better foundation for further
downstream inspection tasks.

5.2. Leverage UAV properties

While we in this work have focused on algorithmic development,
numerous hardware constraints need to be considered when work-
ing with UAVs. Hence, a promising future direction is to explicitly
incorporate the UAV design into the model to tailor it to specific
designs.

First is the choice of imaging sensor. Given the ease of imple-
mentation and applicability in most types of inspections, images by
conventional visual light cameras have been used in this work and
are currently the most popular approach (Abdelfattah et al., 2020;
16
Martinez, Sampedro, Chauhan, Collumeau, & Campoy, 2018; Wang,
Gao, Xu, & Li, 2022; Yang et al., 2020). However, LSNetv2 could poten-
tially be improved by including other modalities such as LiDAR (Chen
et al., 2017), ultraviolet (Zhao & Guo, 2019), infrared (Zhang et al.,
2016) and/or thermal cameras (Demkiv, Ruffo, Silano, Bednar, & Saska,
2021), which have achieved promising results in detecting specific
defects such as overheating or corona discharge.

Further, there are two types of UAVs commonly used for power
line inspection: fixed-wing and rotary-wing UAVs. Each has its own
characteristics, strengths, and weaknesses making it suitable for specific
inspection scenarios (Nekovář, Faigl, & Saska, 2021; Wang et al., 2022;
Xu, Zhao, Wang, & Chen, 2023b). In addition, they are inevitably af-
fected by challenges such as innate vibrations or external disturbances,
which can reduce the quality of the camera observations greatly (with
motion blur, inconsistent angle, etc.) (Gurtner et al., 2009). These prob-
lems are attributed to different causes (Li et al., 2017; Ma & Wu, 2012;
Verbeke & Debruyne, 2016) and, thus, need to be accounted for in
different manners (Mizui, Yamamoto, & Ohsawa, 2012; Rodin, 2019).
Currently, LSNetv2 does not take these challenges into consideration.
Thus, future work should look at either finding efficient procedures
to account for these problems and the UAV design shift, or making
LSNetv2 robust against these variables, and thus widely applicable to
many inspection systems configurations.

6. Conclusion

We presented LSNetv2, an improved version of LSNet with the
capability to detect multiple line segments per divided grid cell, thus
enabling it to detect line-crossing as well as power lines that are in
close proximity to each other. This capability is brought about by using
multiple outputs trained with bipartite matching. Furthermore, we pro-
posed a new regression loss, where the order of the detected endpoints
is fixed, to remove interdependencies between the predicted endpoints
and thus improve the performance, especially when in conjunction with
the multi-guess capability. In this new loss, the endpoint with a smaller
x-coordinate is always inferred by the same element pair in the output
matrix, and the remaining endpoint is inferred with the same remaining
element pair. In addition, we updated the backbone to the state-of-the-
art family of ConvNeXt, which inherits well-proven designed elements
from previous state-of-the-art approaches, in order to increase the
overall receptive field of the model. We empirically demonstrate that
this leads to an overall increase in performance achieving 𝐹𝛽 scores of
over of 0.857, 0.875, and 0.671 on the public datasets PLDU, PLDM
and TTPLA, respectively, while using only modified weak polyline
annotation. Overall, LSNetv2 consistently outperforms its predecessor,
LSNet, and its competitor, HAWPv2, across all datasets evaluated.
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