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Abstract: This article addresses the limitations of existing statisticalmodels in analyzing and interpreting highly

skewed miRNA-seq raw read count data that can range from zero to millions. A heavy-tailed model using dis-

crete stable distributions is proposed as a novel approach to better capture the heterogeneity and extremevalues

commonly observed in miRNA-seq data. Additionally, the parameters of the discrete stable distribution are pro-

posed as analternative target for differential expression analysis. AnRpackage for computing and estimating the
discrete stable distribution is provided. The proposed model is applied to miRNA-seq raw counts from the Nor-

wegianWomen and Cancer Study (NOWAC) and the Cancer Genome Atlas (TCGA) databases. The goodness-of-fit

is compared with the popular Poisson and negative binomial distributions, and the discrete stable distributions

are found to give a better fit for both datasets. In conclusion, the use of discrete stable distributions is shown to

potentially lead to more accurate modeling of the underlying biological processes.

Keywords: breast cancer; discrete stable distributions; extremes; lung cancer;miRNA-seq rawread counts; TCGA

1 Introduction

Micro ribonucleic acids (miRNAs) form a class of small single-stranded non-coding RNAmolecules that serve as

regulators of gene expression at the post-transcriptional level. The human genome may encode over 19001 miR-

NAs. With rapid development in high-throughput RNA sequencing (RNA-seq), the quantitative assessment of

miRNAs has becomemore accessible. Recent research has identifiedmiRNAs as possible biomarkers for various

diseases,2 such as cancer. A variety of tests under development promise easier and more complete (miRNA-seq

based) cancer-screening capabilities.3 These screening methods build on mathematical models combined with

advanced computation. This has made the analysis of miRNA-seq data a highly demanded topic in the field

of biomedical research. The aim of this paper is to provide a novel heavy-tailed approach to the quantitative

analysis of miRNAs.

High-throughput miRNA-seq data involve sequencing small RNA molecules within a single experiment,

measuring the number of sequencing reads for each miRNA in a sample, termed miRNA-seq raw read counts or

1 E.g., the miRNA database at https://www.mirbase.org/cgi-bin/mirna_summary.pl?org&tnqx3d;hsa.

2 E.g., the Human miRNA Disease Database (HMDD) at https://www.cuilab.cn/hmdd.

3 E.g., https://www.science.org/content/article/catching-cancer-extremely-early.
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raw expressions. These raw expressions represent discrete non-negative integer-valued random variables with

countably infinite support, suitable for modeling using discrete probability distributions. Raw expression data

often exhibit high skewness, spanning a wide range from zero to millions, indicative of potential heavy-tailed

distributions. This heavy-tailed behavior inmiRNA expression counts could be attributed to the inherent biolog-

ical nature of these molecules, reflecting the substantial variability and diverse expression levels of miRNAs in

biological systems. Factors like post-transcriptional regulation, varying cellular conditions, and the intricate net-

works inwhichmiRNAsoperatemight contribute to this observedvariability, possibly leading to theheavy-tailed

distribution observed in miRNA expression counts.

However, the state-of-the-art models view these heavy tails as more of an erratic phenomenon caused by

technological variances, and as a result, data pre-processing techniques such as transformation or normal-

ization are utilized as a standard. One of the rationales for this is to reshape the miRNA-seq raw read count

distribution in order to streamline the analysis and use classical and well-established statistical methodologies

and distributions. For example, in limma (Ritchie et al. 2015), a popular R package for gene discovery through
differential expression analyzes, the raw read counts of the RNA sequence are converted to the logarithmic

scale, which compresses the (extreme) scale of the data, and then linear modeling and classical t-tests are used.

Although logarithmic transformations can be a valuable tool for stabilizing variance, there is a potential for

loss of information. Compression of the data scale during logarithmic transformation may result in a loss of

precision in variability, especially for large values. This, in turn, might lead to inappropriate conclusions in dif-

ferential expression analysis (e.g., if you compare the means of log-transformed variables, you are comparing

geometric rather than arithmetic means). Other commonly used R packages for differential expression analysis
are based on fitting the well-known Poisson (e.g., the DEGseq package by Wang et al. 2009) or negative binomial

(e.g., EdgeR package by Robinson et al. 2010, DESeq package by Love et al. 2014, DEseq2 package by Kalecky et al.
2020) distributions, neither of which are heavy-tailed. Another example is miRNA network learning, where the

Poisson distribution is widely assumed: a Poisson graphical model was proposed in Yang et al. (2015), a Pois-

son Markov network model was developed in Žitnik and Zupan (2015), a penalized Poisson graphical model in

Choi et al. (2017), and a hierarchical Poisson model is studied in Sinclair and Hooker (2019). Fitting these distri-

butions requires certain data pre-processing procedures, such as tailoring the data to be approximately Poisson

(e.g., Allen and Liu 2013) or applying some data normalization technique. For example, in the miRNA quantile

normalization (see e.g., Zhao et al. 2020) raw counts of each miRNA are transformed so that the distribution of

counts for each miRNA has the same quantile distribution across all samples, which is achieved by rearranging

the values for each miRNA so that they have the same rank-order distribution. A special case is the median nor-

malization, where the median expression level of each miRNA is calculated for each sample and then replaced

by a reference median value across all samples, typically the median of the median expression levels of all miR-

NAs in all samples. Another frequent pre-processing approach is the total read normalization, which involves

dividing the number of raw read counts for each miRNA by the total number of raw read counts in the sample,

and multiplying by a scaling factor, such as 106, the reads per million (RpM) value. However, recent studies (e.g.,

Li et al. 2023; Zhao et al. 2020) emphasize the fact that all known normalization techniques have flaws, can intro-

duce biases and inaccuracies, and can result in a significant loss of information. Relevant information about

variability, skewness and tails may be lost. Moreover, it is not clear whether the obtained statistical conclusions

would also be valid in the original data. The choice of normalization method can greatly influence the results

and an inappropriate choice can lead to incorrect conclusions. Additionally, the choice of probabilistic model

used to analyze the miRNA-seq expressions can also have a significant impact on the conclusions. Different dis-

tributions may lead to different outcomes, and choosing the improper distribution could impact the reliability

of the inferences made from the data. In conclusion, approaches directly modeling miRNA-seq raw read counts

are expected to be more suitable as they align closely with the inherent nature of the data. Furthermore, the use

of raw counts enhances the interpretability of our findings and avoids unnecessary transformations that could

complicate the communication of results.

Taking into account all the foregoing, a vitalmathematical perspective that has not yet been fully explored is

the properties of an underlying probability distribution that could be applied to the miRNA-seq raw read counts

(expressions), without data manipulation. Deciding on a suitable probability distribution is crucial, as it lays
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the foundation for highly relevant topics in the discovery of miRNA biomarkers, such as differential expression

analysis and miRNA networks. Given the nature of the miRNA-seq raw read counts, it would be natural (and

a novel alternative to existing approaches) to model the miRNA-seq raw read counts via discrete heavy-tailed

distributions.

This paper introduces a novel model for miRNAs based on the application of the heavy-tailed family of dis-

crete stable distributions, with the Poisson distribution as a special case. The Poisson distribution corresponds to

the lightest tail of the discrete stable distributions, and all other familymembers haveheavy tails. Theheavier the

tails, themore prone are the distributions to extreme values. Due to their properties, discrete stable distributions

can be fitted directly to themiRNA-seq raw read counts. In addition to proposing them as the appropriate under-

lying probability distribution, a novel heavy-tailed approach is introduced for differential expression analysis

via their parameters.

While exploring heavy-tailed distributions in the discrete domain, several alternatives such as the popular

Poisson-Tweedie distributions (e.g., Baccini et al. 2016) and the generalized Poisson inverse Gaussian distribution

(as seen in Qian et al. 2020) are noted. In particular, these distributions, among others, are tempered forms

derived from the discrete stable distribution (Grabchak 2018; Grabchak 2022). Tempering functions are used

to adjust the heaviness of the tails, for example, to allow for the presence of mean and variance. However,

tempered discrete stable distributions, despite their capability to model heavy tails, do not attain the extreme

levels allowed by nontempered discrete stable distributions. Given the expansive range from zero to millions

observed in miRNA expressions and that, to the best of our knowledge, this is the first application of heavy-

tailed distributions in analysis of miRNA count data, we suggest that nontempered discrete stable distributions

should be considered initially. We note that modifications of the Poisson distribution, such as the generalized

Conway-Maxwell-Poisson distribution (e.g., Qian and Zhu 2023), have also been suggested to address issues such

as overdispersion in count data. However, while flexible, these modifications are often limited in their ability to

effectively model the extreme count levels observed in miRNA data, unlike discrete stable distributions.

In the applications, two well-studied sources of miRNA-seq read counts are used. First, the mature isoform

expression quantificationmeasured in blood samples, provided by the NorwegianWomen and Cancer (NOWAC)

study. Second, themiRNA expression quantificationmeasured in primary breast tumor tissues, provided by The

Cancer Genome Atlas (TCGA) Research Network. All computational algorithms and functions are implemented

in R.
Note that for the previous generation miRNA microarray intensity data, heavy-tailed models have been

successfully applied (e.g.,Misra andKuruoglu 2016; PurdomandHolmes 2005). However, to the best of our knowl-

edge, this study is going beyond the common standard as the first tomodel next-generation high-throughput RNA

sequencing raw read counts via discrete heavy tailed distributions. In addition, to the best of our knowledge,

this study provides the first software application for the calculation and estimation of discrete stable distri-

butions. The first promising results introduced in this paper create a fertile ground for further developments

of innovative discrete heavy tailed models in the miRNA based diagnosis and treatment of cancer and other

diseases.

2 Methods: modeling via discrete stable distributions

2.1 Discrete stable distributions

Discrete stable distributions form a class of probability distributions defined on nonnegative integers and allow-

ing heavy tails. These features make discrete stable distributions attractive for fitting miRNA-seq raw read

counts. Discrete stable distributions are characterized by two parameters, a tail index parameter 𝛼 ∈ (0, 1] and a

parameter𝜆 > 0, in this paper, denoted byDStable(𝛼, 𝜆). The Poisson distribution forms a special case of discrete

stable distributions with 𝛼 = 1 and corresponds to the lightest tail of the discrete stable distributions. Discrete

stable distributions with 𝛼 < 1 exhibit heavy tails (e.g., Soltani et al. 2009), also referred to as Paretian tails
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(e.g., Rémillard and Theodorescu 2000, Remark 2.7). The lower the tail index 𝛼 ∈ (0, 1), the slower the decay, the

heavier the tail and the more prone to extreme values is the distribution.

2.1.1 Definition

Discrete stable distributions are characterized by their probability generating function. The probability gener-

ating function of the random variable X is defined as follows: GX (z) = E(zX ), operating on the interval [−1, 1]
andmapping to the range [0,1]. The probability generating function for discrete stable laws is defined as follows

(e.g., Devroye 1993; Klebanov and Slámová 2013; Soltani et al. 2009; Steutel and van Harn 1979, Formula (3.7)):

G(z) = e−𝜆(1−z)
𝛼

, 𝛼 ∈ (0, 1], 𝜆 > 0, ∣ z ∣≤ 1. (1)

As is typical for heavy-tailed distributions, not all moments exist. Let X be discrete stable with exponent

𝛼 ∈ (0, 1) then EXr < ∞ only for 0 < r < 𝛼 (e.g., Steutel and van Harn 2003, Chapter V, Formulas (5.15)–(5.17)).

2.1.2 Probability calculations

Except for the Poisson distribution, probability mass functions of discrete stable distributions cannot be explic-

itly expressed in terms of elementary functions. In particular, when calculating Pr𝜽(X = k) for a discrete sta-

ble distribution with parameters 𝜽 = (𝛼, 𝜆) and X ∼ DStable(𝛼, 𝜆), no explicit analytic form is available. In

(Christoph and Schreiber 1998, Formula (8), p. 245) a recursion formula was derived (see also Steutel and

van Harn 2003, Formula (5.18)):

Pr
𝜽

(X = k + 1) = 𝜆

k∑
m=0

(−1)mm+ 1

k + 1
Pr
𝜽

(X = k −m)
(

𝛼

m+ 1

)
, (2)

where k = 1, 2, 3,… and Pr𝜽(X = 0) = e−𝜆. Explicit formulas follow: Pr𝜽(X = 1) = 𝛼𝜆e−𝜆, Pr𝜽(X = 2) =
𝛼𝜆

2
e−𝜆(𝛼(𝜆− 1)+ 1) and Pr𝜽(X = 3) = 𝛼𝜆

3
e−𝜆[ 𝛼𝜆

2
(𝛼(𝜆− 1)+ 1)− 𝛼(𝛼 − 1)𝜆+ 1

2
(𝛼 − 1)(𝛼 − 2)].

The impact of changing 𝜆 for a fixed tail index 𝛼 is illustrated in Figure 1. Here, the higher values of 𝜆 not

only shift the distribution rightward, but also disperse the primary distribution mass (Table 1).

The recursive formula (2) is straightforward, but the calculation time grows rapidly as k increases, and it is

computationally time consuming, especially when handling extremes. For calculating the probabilities of large

values, (Christoph and Schreiber 1998, Formulas (11) and (12)) proved a tail asymptotic formula for k→∞:
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Figure 1: For tail indices 𝛼 = 0.1, 0.5, 0.9 and parameters 𝜆 = 2, 4, 5, the values of Pr𝜽(X = k) of X ∼ DStable(𝛼, 𝜆) are calculated using

the recursive formula (2).
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Table 1: For tail indices 𝛼 = 1, 0.9, 0.8, 0.4, 0.2 and parameter 𝜆 = 1, the values of Pr𝜽(X = k) of X ∼ DStable(𝛼, 𝜆). Calculations up to

k ≤ 104 are made using the recursive formula (2), and for values k ≥ 104, the asymptotic tail formula (3) is used.

k 𝜶 = 1 ≡ Pois(1) 𝜶 = 0.9 𝜶 = 0.8 𝜶 = 0.4 𝜶 = 0.2

0 0.368 0.368 0.368 0.368 0.368

10 1.01 × 10−7 1.71 × 10−3 3.76 × 10−3 9.01 × 10−3 6.54 × 10−3

102 3.94 × 10−159 1.55 × 10−5 4.55 × 10−5 2.82 × 10−4 4.98 × 10−4

103 0 1.89 × 10−7 6.97 × 10−7 8.92 × 10−6 3.47 × 10−5

104 0 2.38 × 10−9 1.10 × 10−8 2.82 × 10−7 2.39 × 10−6

105 0 2.99 × 10−11 1.74 × 10−10 8.92 × 10−9 1.58 × 10−7

106 0 3.77 × 10−13 2.76 × 10−12 2.82 × 10−10 1.03 × 10−8

Pr
𝜽

(X = k) = 1

𝜋

[(𝛼+1)∕𝛼]∑
j=1

(−1) j+1
j! 𝜆 j sin(𝛼 j𝜋)Γ(𝛼 j + 1)k−𝛼 j−1 + O(k−𝛼−2). (3)

Note that (Doray et al. 2009, pp. 2008) derived an explicit formula for calculating Pr𝜽(X = k), which for

k = 1, 2, 3,… can be expressed via Gamma functions as follows

Pr
𝜽

(X = k) = (−1)ke−𝜆
k∑

m=0

m∑
j=0

(
m

j

)(
𝛼 j

k

)
(−1) j 𝜆

m

m! (4)

= (−1)k 𝛼e
−𝜆

k!

k∑
m=1

𝜆m
m∑
j=1

(−1) j Γ(𝛼 j)
( j − 1)!(m− j)!

1

Γ(𝛼 j + 1− k)
, (5)

where 𝛼 ∈ (0, 1], 𝜆 > 0. For computations in R, the reciprocal Gamma function 1∕Γ(𝛼j − k + 1) can be calcu-

lated as follows (Prodanov 2019) 1∕Γ(−z) = − sin 𝜋z

𝜋
Γ(z+ 1). However, for further calculations, in R, there is a

limitation when using ‘factorial’ and ‘gamma’ functions for larger values (see R Core Team 2020).

Hence, for further analysis, we adopt a hybrid formula: combining the recursive formula (2) with the tail

asymptotic formula (3), with a change point for values bigger than pre-defined K > 0 between the formulas. In

this paper we set the change point K = 1000.

2.1.3 Simulations

For simulations of discrete stable random variables, one can use the fact that discrete stable random variables

can be represented as certain Poisson mixtures (e.g., Devroye 1993; Steutel and van Harn 1979, Corollary 6.8). A

discrete stable random variable with parameters 𝛼, 𝜆 is distributed as a Poisson random variable with param-

eter 𝜆1∕𝛼S𝛼 , where S𝛼 is a positive stable random variable with support [0,∞) and tail index 𝛼 ∈ (0, 1) Sim-

ulations of positive continuous stable random variables S𝛼 can be performed using the R package STABLE®

(Robust Analysis Inc 2017).

2.1.4 R package

The calculation of the probability generating function, probabilities and simulations are implemented in the R
package dstabledist (Krutto 2023).

2.2 Estimating the parameters of discrete stable distributions

Modeling via discrete stable distributionmeans estimating its parameters 𝛼 and 𝜆. Because the probabilitymass

function does not have a closed analytical form and not all moments exist, the popular maximum likelihood or



6 — A. Krutto et al.: Heavy-tailed model for analyzing miRNA

n = 10 n = 100 n = 1000

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0
0.00

0.02

0.04

0.06

0.08

0.00

0.05

0.10

0.15

0.0

0.2

0.4

0.6

Ab
so

lu
te

 D
iff

er
en

ce 
1

0.9

0.5

0.2

Figure 2: The absolute error between the empirical and theoretical probability generating function, |Ĝn(z)− G(z)|, z ∈ [−1, 1], where Ĝn
is based on a sample from DStable(𝛼, 1) with sizes n = 10, 100, 1000.

moment-based techniques are not directly applicable for discrete stable distributions. A popular approach is

to use the empirical probability generating function (EPGF): let X = {X1,… ,Xn} be a random sample from a

probability distribution, then the empirical probability generating function Gn: [−1, 1]→ [0, 1], is defined as

Gn(z) =
1

n

n∑
i=1

z
Xi , ∣ z ∣≤ 1. (6)

To illustrate the behavior of the empirical probability generating function Gn(z) compared to the proba-

bility generating function of discrete stable laws G(z), as given by Equation (1), individual samples of discrete

stable distributions are generated by simulation. For each sample, the absolute differences in the values of the

theoretical and empirical functions, |Ĝn(z)− G(z)| for z ∈ [−1, 1], are presented in Figure 2.
By the strong law of large numbers, Gn(z)→ G(z) almost surely as n→∞ for each z ∈ [−1, 1]. Estimation

based on empirical probability generating functions has been suggested in Doray et al. (2009) and Slámová and

Klebanov (2014). However, the former has shortcomings in terms of search procedures and the latter requires

the estimation of additional parameters. In this paper, computationally straightforward closed-form estimators

are used, proposed inMarcheselli et al. (2008). Fix two points z1, z2 ∈ (−1, 1), z1 ≠ z2 and solve the corresponding

system of equations of (1) for 𝛼 and 𝜆. Substituting G(z) with Gn(z) leads to point estimators for 𝛼 and 𝜆:

𝛼n(z1, z2,X) =
log(logGn(z1)∕ logGn(z2))
log((1− z1)∕(1− z2))

and 𝜆n(z1, z2,X) = − logGn(z1)

(1− z1)
𝛼n
. (7)

The preference for estimators (7) is rooted in their advantageous characteristics: they offer closed-form sim-

plicity and computational efficiency. Generally, these estimators (7) are versatile and applicable for evaluation in

any z1, z2 ∈ (−1, 1) where z1 ≠ z2. Although the approach is attractive from a computational perspective, deter-

mining the choice of z1, z2 to achieve the best estimates remains an open question, analogous to related studies in

continuous stable distributions (Krutto 2018; Lember andKrutto 2022). However, note thatGn(−1) = 1

n

∑n

i=1(−1)Xi ,
Gn(0) = 1

n

∑n

i=1I{Xi=0}, and Gn(1) = 1 while referring to Equation (1), for discrete stable laws the probability gen-

erating function gives: G(−1) = e−𝜆2
𝛼

,G(0) = e−𝜆, andG(1) = 1. Consequently, at z = 1, we haveGn(1) = G(1) = 1.

This can be interpreted as the values of Gn(z) and G(z) being closer as z approaches 1 (compared to other values

of z in [−1,1]), a trend also observed in Figure 2. Hence, it is suggested (e.g., Marcheselli et al. 2008) to consider
arguments z1 ≠ z2 close to 1.

To identify the optimal choices of z1, z2,maximum likelihood calculations can be used. Consider a realization

k = (k1,… , kn) of a discrete random vector (e.g., miRNA-seq read counts) X = (X1,… ,Xn), where Xi represents

the random variable associated with observation i. In this context, the vector k represents the observed val-

ues, while X represents the corresponding random variables.4 The likelihood function L(𝜽) is then given by

4 The use of k instead of x in the context of observed values is a common convention. In particular, x is often used to represent

continuous random variables, while k is frequently used for discrete values, counts or categories.
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L(𝜽 ∣ k) = ∏n

j=1 pX (k j ∣ 𝜽), where pX (k ∣ 𝜽) = Pr𝜽(X = k) and 𝜽 = (𝛼, 𝜆) represent the discrete stable distribu-

tion parameters. The maximum likelihood estimate �̂�∗
n

(
z∗
1
, z∗

2
, k

)
is the maximizer of L(�̂�n(z1, z2) ∣ k), where

�̂�n(z1, z2, k) = (𝛼n(z1, z2, k), �̂�n(z1, z2, k)) is computed via formulas (7) at z1, z2 from a (sub)grid of [0, 1) × [−1, 1).
Calculating Pr𝜽(X = k), where X ∼ DStable(𝛼, 𝜆), 𝛼 ∈ (0, 1], and 𝜆 > 0, involves combining the recursive for-

mula (2) with the tail asymptotic formula (3). For details, see Algorithm 1.

Algorithm 1. Parameter Estimation Algorithm

1: Choose a z ∈ [0, 1) and construct a sufficiently dense grid [z, 1) × [z, 1).

2: For each pair z1, z2 in the grid [z, 1) × [z, 1) and the discrete random vector k = (k1, . . . , kn):

3: Compute the parameter estimates �̂�n(z1, z2, k) = (𝛼n(z1, z2, k), �̂�n(z1, z2, k)) from Equations (7).

4: If 𝛼n > 1, set 𝛼n = 1.

5: Set the change point K > 0 between the recursive formula (2) and the asymptotic formula in the tail (3).

6: Calculate the likelihood function L(�̂�n(z1, z2) ∣ k), where
7: if ki < K then

8: for Pr𝜽(X = ki) formula (2) is used.

9: else

10: for Pr𝜽(X = ki) formula (3) is used.

11: end if

12:

13: Choose the maximum likelihood estimate �̂�∗
n

(
z∗
1
, z∗

2
, k
)
by maximizing L(�̂�n(z1, z2) ∣ k), i.e.,

�̂�∗
n

(
z∗
1
, z∗

2
, k
)
= argmax

z1 ,z2

L(�̂�n(z1, z2) ∣ k).

In both of our applications in Sections 3 and 4, we use the grid [0.5, 1) × [0.5, 1) and set the change point

K = 1000.

2.3 The goodness-of-fit of the Poisson, the negative binomial and the discrete stable
distributions

The goodness-of-fit of the Poisson, the negative binomial and the discrete stable distributions is compared using

Akaike Information Criteria (AIC). Recall that AIC = −2l(𝜽 ∣ k)+ 2s, where s is the number of parameters and

l(𝜽 ∣ k) is the log-likelihood function. Given k = (k1,… , kn), the realization of a discrete random vector X =
(X1,… ,Xn), the log-likelihood function is given by l(𝜽 ∣ k) = ∑n

j=1 log pX (k j ∣ 𝜽), where p(k j ∣ 𝜽) = Pr𝜽(X j = k j)

and 𝜽 is the vector of distribution parameters. For the discrete stable distribution, the values of Pr𝜽(X j = k j) are

calculated using the formulas (2) and (3). For the Poisson and negative binomial distributions, the log-likelihood

functions are computed using the R package stats. When fitting the data, both the Poisson and the negative

binomial distributions are fitted using the Moment Matching Estimation (MME), available in the R package

fitdistrplus (Delignette-Muller and Dutang 2015). The moment method is chosen because of computational
challenges encounteredwhen running theMaximumLikelihood Estimation (MLE)method for the negative bino-

mial distribution. However, note that for the Poisson distribution, the MLE and moment estimators yield the

same results.

To further assess goodness-of-fit, we present QQ plots and estimate Cramer von Mises statistic 𝜔2 and

Anderson–Darling statisticsA (e.g., Stephens et al. 1986, pp. 100) for a selection ofmiRNAs. These are based on cal-

culations performed on the cumulative distribution functions, for which the discrete stable distribution lacks a

closed analytical form. Nevertheless, we can estimate the cumulative distribution function for the discrete stable

distribution based on the probabilitymass function, calculated using the hybrid formula described in Section 1.1.

We mention that for the Poisson and the negative binomial distributions, advanced forms of Cramér-von Mises

and Anderson–Darling tests are implemented in the R package goftest (Faraway et al. 2021). However, to have
comparable results for all, we calculate same basic statistics, which can be used as a measure of distance to

assess fit. For the Cramér-von Mises𝑤2, we use:



8 — A. Krutto et al.: Heavy-tailed model for analyzing miRNA

n𝜔2 = 1

12n
+

n∑
i=1

[
2i− 1

2n
− F(X(i))

]2
, (8)

and for the Anderson–Darling A, we use:

A
2 = −n−

n∑
i=1

2i− 1

n

[
ln(F(X(i)))+ ln

(
1− F(X(n+1−i))

)]
, (9)

where X (1),… ,X (n) represent ordered data, and F is the estimated distribution function of the Poisson, negative

binomial and discrete stable, respectively.

Caution is advised when interpreting the QQ plots and the Cramer-von Mises and Anderson–Darling statis-

tics for the discrete stable distribution due to the lack of a closed-form solution.

2.4 Using discrete stable distributions for differential expression analysis

Differential expression analysis for miRNAs aims to identify miRNAs whose expression levels change notably

under different experimental conditions, such as various cancer subtypes, healthy versus diseased states, or pre-

and post-treatment stages. The objective is to understand the roles of these molecular regulators in biological

processes, disease mechanisms, and as potential therapeutic targets. This analysis involves comparing miRNA

expression profiles to discover specific miRNAs that might be crucial for driving biological changes. These

changes can involve overexpression (increased expression levels) or underexpression (reduced expression lev-

els), providing critical information on disease progression and treatment responses. The primary challenge in

differential expression analysis is to distinguish genuine biological expression changes from the inherent vari-

ability of the underlying nature of miRNA expression. Extremely large values often observed in miRNA expres-

sion have traditionally been considered experimental noise, leading to their elimination through normalization

and preprocessing procedures. However, this heavy-tailed nature might represent the underlying distribution

rather than mere experimental noise, as discussed in the Introduction section. Therefore, the development of

alternative methods for differential expression analysis directly handling raw data becomes crucial. At the out-

set, we highlight the availability of popular robust non-parametric tests, recommended for data containing

extreme values (e.g., Staudte and Sheather 2011; Wilcox 2022). For example, the rank-based Brunner-Munzel

test (e.g., Kume et al. 2017) for the stochastic equality of two populations. This test accommodates ties and does

not assume equal variances between the groups. However, if the null hypothesis is rejected, it implies differ-

ences between distributions, but it provides limited insight into the nature of these differences. Additionally, the

Moody’s median test can be applied to test for differences in medians. Although the median is robust against

heavy-tailed distributions, a limitation arises as our interest extends beyond merely determining median based

central tendency. That is, the median serves as a singular metric, and no significant differences in medians does

not necessarily imply that heavy-tailed distributions are identical or vice versa. However, we recommend using

both tests as additional tools in the context of heavy-tailed differential expression analysis. In R, the Brunner-
Munzel test can be applied by using the package brunnermunzel (Ara 2020) and themedian test via the package
agricolae (Felipe de Mendiburu 2023). In this paper, we propose that examining differences in the parameters
𝛼 and 𝜆 of the discrete stable distribution could be more sensitive and suitable for discovering group differ-

ences, considering that miRNAs are derived from heavy-tailed distributions. For each miRNA, let �̂�n > 0 and

𝛼n ∈ (0, 1] be the estimates of the parameters of the discrete stable distribution, fitted to the raw expressions of

the miRNA sequence belonging to a group of interest. We denote the (true) parameters of some group A by 𝜆A,

𝛼A and corresponding estimates by (�̂�n)A, (𝛼n)A. To measure the difference between the parameter estimates,

for each miRNA, calculate (1) the ratios of the parameter estimates of 𝜆 of the reference A to some comparison

group B: (�̂�n)A∕(�̂�n)B and (2) the differences of the corresponding tail index estimates: (𝛼n)A − (𝛼n)B. (we do not

use absolute value, as the sign indicates the direction of the tail heaviness. However, for illustrative purposes,

the absolute difference may be used in some situations). This approach allows for a visual representation of the

differences in estimates in high dimensions: assuming that the x-axis represents (𝛼n)A − (𝛼n)B and the y-axis

represents (�̂�n)A∕(�̂�n)B. All miRNAs with minimal differences are located around zero. MiRNAs with similar tail
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index estimates but differences in parameter lambda estimates align around a vertical line drawn from zero,

parallel to the y-axis. In general, differences in both 𝛼 and 𝜆 are of interest. Differences in the tail index 𝛼 esti-

mates indicate a possible difference in population tails, which affects the proneness to extreme values. However,

in a differential expression analysis context, the parameter 𝜆 might be more interesting. Since 𝜆 impacts both

the center and concentration of the primary mass of the distribution in discrete stable distributions (see the dis-

cussion of Figure 1 in Section 1.1), it might provide amore comprehensive understanding of differences between

distributions across groups. However, as we see from formulas (7), differences in the tail index estimates 𝛼 com-

plicate the direct interpretation of the related difference (or lack thereof) in the estimates of 𝜆. On the other

hand, minor variations in the tail index estimates 𝛼 indicate comparable tail characteristics, potentially facili-

tating a more straightforward comparison of the 𝜆 estimates. In practical terms, a difference of up to 0.1 could

be considered small, indicating similar tail index. Importantly, as differences are identified from parameter

estimates, the incorporation of a formal test proves to be beneficial. For similar tail indexes, differences in 𝜆

estimates might signal differences in typical patient expressions: higher 𝜆 estimates indicate a tendency toward

elevated miRNA expressions by shifting and/or spreading the distribution’s mass over a wider range.

Regarding the significance of differences in the parameter 𝜆, a permutation test (e.g., Wilcox 2022) based on

a statistic such as:

D =
(
𝜆A
n
− 𝜆B

n

)
(10)

can be used to assess the significance of differences in 𝜆 between groups A and B by comparing the statistic com-

puted from the original sample with those obtained from permuted samples. Permutation tests involvemultiple

random reassignments of observations, simulating the null hypothesis distribution to evaluate the statistical sig-

nificance of observed differences. However, testing all possible permutations can be computationally intensive.

Hence, in practice, random sampling from permutations is typically adopted. The corresponding p-value based

on i = 1,… , nperm values D(i) is calculated as:

pperm = #|D(i)| > |Do|
nperm

, (11)

whereD(i) represents the difference based on the ith sample permutation,Do is the observed value of the original

data, and nperm is the number of permutations.

3 Data and exploratory data analysis

This paper aims to explore the discrete probability distribution underlyingmiRNA-seq counts in a broader sense.

Therefore, we analyze andmodel different types ofmiRNAdata. First, we used the sumexpression for all reads

aligned per miRNA (quantification of miRNA expression) measured from malignant breast neoplasm (breast

cancer primary tissue). Data were obtained from the database generated by The Cancer Genome Atlas (TCGA)

Research Network for BReast CAncer (TCGA-BRCA), available at https://www.cancer.gov/tcga. TCGA-BRCA data

consist of expressions of 1881 miRNAs, measured in primary breast tumor tissue samples n = 1076. For further

analysis, the 400 miRNAs with the highest values of median absolute deviation were selected. Modeling was

carried out on the expressions of all samples together (n = 1076) and on expressions stratified according to the

PAM50 molecular subtypes of breast cancer: LumA (n = 568), LumB (n = 202), HeR2 (n = 81), Basal (n = 186)

subtypes, and the normal-like subgroup (n = 40). The PAM50 classification list is available in R/Bioconductor
package TCGAbiolinks (see Mounir et al. 2019). Second, we use the expressions of the isoforms (quantification

of mature isoform expression) from blood samples with/without a later diagnosis of lung cancer. Data were

obtained from the database of the NorwegianWomen and Cancer Study for LUng CAncer (NOWAC-LUCA data).

More information about the NOWAC study is available at https://site.uit.no/nowac/ and an exhaustive cohort

overview is given in (Lund et al. 2007). NOWAC-LUCA data consist of 2013 miRNA expressions, measured in

n = 240 blood samples. The 198miRNAs forwhich therewere amaximumof five sampleswith no detected reads

were kept in the analyzes. Modeling was performed on expressions from all samples together (n = 240), and

https://www.cancer.gov/tcga
https://site.uit.no/nowac/
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expressions from samples with a later diagnosis of lung cancer (case, n = 124) compared to data from matched

samples without cancer diagnosis (control, n = 116).

3.1 Exploratory data analysis for heavy tails

The summary of some classic and robust statistics for the TCGA-BRCA data is given in Table 2 and for theNOWAC-

LUCA data in Table 3.

Table 2: TCGA-BRCA: for p = 400 miRNAs, the summary of summary statistics for data from all samples (n = 1076).

Measure Min. 1st qu. Median Mean 3rd qu. Max.

Classic measures

Minimum 0 0 9 557 93 36,292

Maximum 245 1880 7934 175,963 39,582 5,736,079

Range 245 1879 7892 175,405 39,432 5,699,787

Mean 21 104 449 14,131 2739 914,977

St.Dev. 25 150 594 16,135 3479 822,512

Skewness 1.9 3.2 4.3 6.1 7.0 22.7

Ex.Kurt. 4.8 15.5 30.1 82.7 82.1 622.4

Robust measures

Median 1 5 40 5703 590 648,067

IQR 20 84 370 12,161 2081 736,563

MAD 1 4 33 4727 524 490,266

Medcouple 0.00 0.33 0.37 0.39 0.44 0.86

Comparison with Poisson distribution

Var/mean 2.5 30.9 220.7 13,088.7 1832.3 739,392.0

Mean⋅Skw2 11 437 3660 162,332 24,203 12,989,100

Mean⋅Ex.Kurt 19 693 5606 242,156 38,466 15,638,396

Table 3: NOWAC-LUCA: for p = 198 miRNAs, the summary of summary statistics for data from all samples (n = 240).

Measure Min. 1st qu. Median Mean 3rd qu. Max.

Classic measures

Minimum 0 0 0 2 1 84

Maximum 145 1396 3772 38,069 19,646 1,281,836

Mean 28 120 289 3359 1558 109,551

St.Dev. 24 151 382 3963 1963 157,626

Ex.Kurt. 4.4 18.4 29.8 43.8 60.0 158.3

Skewness 1.9 3.6 4.7 5.3 6.4 11.7

Robust measures

Median 19 81 201 2292 1175 61,156

IQR 20 80 192 2244 1087 77,908

MAD 13 55 134 1420 682 44,374

Medcouple 0.05 0.27 0.32 0.32 0.37 0.51

Comparison with Poisson distribution

Var/mean 22 156 467 4947 2566 226,799

Mean⋅Skw2 114 2470 8652 94,522 45,277 2,492,023

Mean⋅Ex.Kurt 136 3513 11,333 126,248 64,386 3,036,658
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Both Tables 2 and 3 show misalignment between the classic and robust central tendency and dispersion

measures, and both tables suggest that the underlying probability distribution might be skewed to the right and

heavy tailed. We point out that even if the theoretical mean does not exist due to the heavy-tailed nature of the

distribution, the sample average (sample mean), as presented in Tables 2 and 3, can still be calculated from the

observed data. However, in this case, the sample mean will not serve as an estimate of the non-existent theo-

retical mean. With regard to the popular assumption that miRNAs follow a Poisson distribution, we also draw

attention to the inconsistency with this distribution. Theoretically, for the Poisson distribution, the variance-

to-mean ratio, the product of mean and skewness squared, and the product of mean and excess kurtosis are

all equal to 1. A summary of these measures for the TCGA-BRCA data is given in Table 2 and, correspondingly,

for the NOWAC-LUCA data in Table 3. From both Tables 2 and 3, it follows that the miRNA-seq count data are

overdispersed, overskewed, and have heavier tails, relative to the Poisson distribution. However, note that sam-

ple skewness and excess kurtosis can be severely biased in finite samples (e.g., Joanes and Gill 1998), so these

results should be treated with care.

The importance of exploratory data analysis to understand heavy-tailed distributions and the properties

of underlying discrete probability distributions is highly emphasized; However, the identification of heavy tails

often lacks formal criteria and relies instead on visual inspection (e.g., Embrechts et al. 2013, Chapter 6). Common

methods in exploratory data analysis for heavy tails, such as probability and QQ plots, the mean excess func-

tion plots, and Gumbel’s method of exceedance, tend to be better suited for a single-variable or few-variables

analysis (e.g., Embrechts et al. 2013, Section 6.2), and might become impractical in high-dimensional settings.

A simple tool for exploring heavy tails and the finiteness of moments is the ratio of maximum to sum (e.g.,

Embrechts et al. 2013, Section 6.2.6). Suppose X1,… ,Xn are iid randomvariables and for any positive r define the

quantity Rn(r) = Mn(r)∕Sn(r), where Sn(r) =∣ X1 ∣r + · · · + ∣ Xn ∣r,Mn(r) = max
(
∣ X1 ∣r,… , ∣ Xn ∣r

)
, r > 0, n ≥ 1.

The following equivalence holds: Rn(r)→
a.s. 0 if and only if E ∣ X ∣r< ∞. Therefore, Rn(r) should be small for

large n provided that E ∣ X ∣r< ∞, otherwise it indicates heavy tails. The advantage of using Rn(r) is its ability

to visually combine many variables into a plot, which is especially useful in high-dimensional data analysis. For

r = 1, 2, 3, 4, the ratios of maximum to sum Rn(r) for the TCGA-BRCA data are presented in Figure A.1-F.1 and for

the NOWAC-LUCA data in Figure A.3-F.1. From both Figures A.1-F.1 and A.3-F.1, the results suggest that most of

the analyzed miRNAs may not have moments of order r = 1, 2, 3, 4. In summary, exploratory data analysis for

heavy tails of miRNA expressions indicates that the underlying distributions are likely to be heavy tailed.

4 Results from the TCGA-BRCA data

In this section, the results of the analysis of the data obtained from the database generated by the TCGA-BRCA

Research Network are presented.

4.1 TCGA-BRCA: estimates of discrete stable distribution parameters

The discrete stable distributions were fitted to p = 400 miRNAs, both for data from all samples (all, n = 1076)

and for data from the molecular subtypes, normal-like (Normal, n = 40), luminal A (LumA, n = 568), luminal

B (LumB, n = 202), basal-like (Basal, n = 185), HER2-amplified (positive) (Her2, n = 81). A summary of the cor-

responding parameter estimates 𝛼n and �̂�n is given in Table 4. Table 4 displays estimates derived from various

samples. ‘All samples’ encompass all subtypes together, while samples from specific subtypes are selected as

subsets. The parameters are then estimated separately for each of these subsets.

From Table 4, the tail index 𝛼 of each of the p = 400 miRNAs was estimated to be less than 1, which means

that the underlying distribution was estimated to be heavy tailed. In particular, for data from all samples, half of

the miRNAs are estimated to have a tail index less than 0.65. Focusing on the subgroups, also here all tail index

estimates was less than 1. However, the estimates are slightly larger (i.e., slightly lighter tails) than the ones for

all data. Estimates of the parameter 𝜆 range from almost zero to hundreds of thousands, both for samples from

all data and frommolecular subtypes. When comparing the subtypes, the 𝜆 estimates are similar to those for all



12 — A. Krutto et al.: Heavy-tailed model for analyzing miRNA

Table 4: TCGA-BRCA: summary of parameter estimates 𝛼n and �̂�n for the discrete stable distribution for raw read counts of p = 400

miRNAs; data from all samples and samples of molecular subtypes.

Min. 1st qu. Median Mean 3rd qu. Max.

Summary of �̂�n estimated from all samples

All samples 0.1513 0.5988 0.6577 0.6402 0.7104 0.9957

Summary of (�̂�n)Subtype estimated from molecular subtypes

Normal-like 0.3105 0.6394 0.7182 0.7312 0.8351 0.9939

LumA 0.1860 0.6118 0.7063 0.7071 0.8533 0.9820

LumB 0.1419 0.6468 0.7319 0.7326 0.8625 0.9810

Basal 0.1979 0.6403 0.7136 0.7177 0.8268 0.9883

Her2 0.2066 0.6697 0.7411 0.7446 0.8691 0.9862

Summary of �̂�n estimated from all samples

All samples 0.73 3.06 9.71 2853.87 35.52 224,116

Summary of (�̂�n)Subtype estimated from molecular subtypes

Normal-like 0.75 4.59 11.90 843.43 50.52 187,481

LumA 0.60 4.44 11.56 130.27 35.05 61,281

LumB 0.50 4.06 10.35 621.34 43.14 1,689,641

Basal 0.63 4.28 10.95 223.48 38.88 11,680

Her2 0.63 4.61 13.03 905.24 48.81 229,910

samples, except for the mean and maximum. Indeed, the maximum of the 𝜆 estimates is affected by assigning

data entries to subgroups,which accordingly affects themean. However, in all groups, themedian of �̂�n is around

10, while at least a quarter of 𝜆 estimates aremore than 50. More analysis of the differences between the groups,

at the miRNA level, is given in Sections 3.3 and 3.4.

4.2 TCGA-BRCA: comparison of the goodness-of-fit

The goodness-of-fit of the Poisson, negative binomial, and discrete stable distributions are compared using AIC.

For comparison, for every miRNA, the AIC ratio of the estimated discrete stable to the estimated Poisson dis-

tribution was evaluated, and the corresponding ratio of the estimated discrete stable to the estimated negative

binomial was evaluated. To summarize these results, box plots of the ratios are presented in Figure 3.

0.0 0.2 0.4 0.6 0.8

AIC(DisStable)/AIC(Pois)

all

Her2

Basal

LumB

LumA

normal

0.4 0.6 0.8 1.0

AIC(DisStable)/AIC(NegBin)

all

Her2

Basal

LumB

LumA

normal

Figure 3: TCGA-BRCA: for p = 400 miRNAs, the ratios of AICs of discrete stable models to Poisson and to negative binomial for data from

all samples (n = 1076) and from samples of molecular subtypes, normal-like (n = 40), LumA (n = 568), LumB (n = 202), Basal (n = 185),

Her2 (n = 81).
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The ratios are given both for the models fitted to the data from all samples together (labelled ‘all’) and

for data from the molecular subtypes (labelled correspondingly). If the ratio is less than 1, then the discrete

stable distribution gives a better fit. The smaller the ratio, the better the fit of the discrete stable distribution

(in comparison to the Poisson and negative binomial distribution). From the left side of Figure 3, it can be seen

that for all miRNAs, the discrete stable distribution gives a much better fit than the Poisson, both for the data

from all samples together and for the data from themolecular subgroups. In all samples, for around 200miRNAs

the AIC of the discrete stable distribution is approximately 90 percent reduced, and for around 300 miRNAs the

values are at least 50 percent reduced. For no miRNA, the Poisson distribution was a better fit than the discrete

stable distribution. From the right side of Figure 3, it follows that for all samples together, the discrete stable

distribution gives a better fit than the negative binomial for around 344 (86 %) of themiRNAs. For the remaining

56 (14 %) miRNAs, the ratios are close to 1, meaning that the goodness-of-fit is similar. For data from the LumA,

LumB, Basal, Her2 and normal-like subtypes, the discrete stable distribution gives a better fit than negative

binomial for 58 %, 69 %, 63 %, 73 % and 58 % of the miRNAs, respectively. For a more thorough investigation of

goodness-of-fit for a selected set of miRNAs, see Section 3.4.

4.3 TCGA-BRCA: differential expression via discrete stable distributions

In this section, differential expression analysis is performed through estimates of the parameters of discrete

stable distributions within the molecular subtypes of breast cancer. In particular, the estimates for the subtypes

LumA (n = 568), LumB (n = 202), HeR2 (n = 81) and Basal (n = 186) are compared with the ones for the normal-

like subgroup (n = 40). The general summary of the summed expression for all reads aligned per 400 miRNA

(measured in primary breast cancer tissue) is given in Table 5.

Certain tendencies can be observed from Table 5. For example, the minimum expression in each group

is 0, and the quartiles are also broadly similar. However, for all quartiles, the values of the other subtypes are

slightly lower (i.e., underexpressed) compared to the normal-like subgroup,which is in agreementwith previous

findings (e.g., Fontana et al. 2021, and references therein.) Extremely large maximum values are present in all

groups, but no obvious differences appear.

The general summary of the parameter estimates of the fitted discrete stable distributions of samples of

molecular subtypes is given in Table 4. Next, for eachmiRNA the differential expression analysis was performed

between normal-like and the other molecular subtypes, as explained in Section 1.4.

For each miRNA, we calculated (1) the ratios of estimates for the parameter 𝜆 of the normal-like subgroup

and the other subgroups and (2) the differences in estimates for the tail index 𝜆 of the normal-like subgroup and

the other subgroups. For each miRNA, both calculations are plotted in Figure 4.

Note that in Figure 4, the ratios of the estimates of 𝜆 larger than 1 represent underexpressions, while the

ratios less than 1 represent overexpressions, compared to the normal-like subgroup.

In Figure 4, compared to the normal-like subgroup, the five miRNAs that are most underexpressed (irre-

spective of differences in the tail index 𝛼 estimates) in each subtype are as follows:

– LumA: hsa-mir-21, hsa-mir-10a, hsa-mir-199b, hsa-mir-199a-2, hsa-mir-182;

– LumB: hsa-mir-143, hsa-mir-21, hsa-mir-199b, hsa-mir-93, hsa-mir-199a-2;

Table 5: TCGA-BRCA: for the raw read counts of p = 400 miRNAs, for data from the molecular subtypes, the summary of descriptive

statistics.

n Min. 1st qu. Median Mean 3rd. qu. Max.

Normal-like 40 0 7 53 10,617 706 3,961,021

LumA 568 0 6 43 10,280 609 5,736,079

LumB 202 0 5 38 6897 516 3,941,286

Basal 185 0 6 44 6679 620 4,218,093

Her2 81 0 6 45 7608 594 4,536,709
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Figure 4: TCGA-BRCA: for p = 400 miRNAs, the ratios of estimates for parameter 𝜆 and the differences in estimates for the tail index 𝛼,

between the normal-like subgroup and the other breast cancer subgroups, labeled correspondingly.

– Basal: hsa-mir-199a-2, hsa-mir-199b, hsa-mir-199a-1, hsa-mir-126, hsa-mir-100;

– Her2: hsa-mir-199b, hsa-mir-183, hsa-mir-199a-2, hsa-mir-151a, hsa-mir-182.

Although the aforementioned miRNAs have the highest ratios of 𝜆 estimates, they also have large differences in

the tail index estimates, making comparison of the estimates of 𝜆 less straightforward. As such, we can conclude

that for these miRNAs, the discrete stable distribution parameters were estimated to be different. However, as

explained in Section 1.4, in Figure 4 we are even more interested in the cases where the difference in estimates

for the tail index 𝛼 is relatively small, while the corresponding ratio of estimates for the parameter 𝜆 is different

from one. In that case, the interpretation of 𝜆 differences is more straightforward. For that purpose, a zoom

into Figure 4, where only the part with difference in tail index 𝛼 estimates between the groups of interest is less

than 0.1, is presented in Figure 5. In Figure 5, the ratios within the LumA subtype appear to fluctuate less around

the value of 1 than within other subtypes. This agrees with previous studies in which miRNA expressions of the

LumA subtype have been found to be similar to the normal-like subgroup (e.g., Fontana et al. 2021).

The ratios of 𝜆 estimates that stand out are all larger than 1, representing underexpressions compared to

the normal-like subgroup. The top 10 ratios (larger than 1) from Figure 5, with the corresponding estimated

differences in tail index, are given in Table 6.

In particular, in Table 6 the miRNAs with ratios larger than 3.5 (i.e., most underexpressed), are as follows:

(1) for LumA: none; (2) LumB: hsa-mir-1262, hsa-mir-202, hsa-mir-138-1; (3) Basal: hsa-mir-26a-1, hsa-mir-26a-2,

hsa-mir-29c, hsa-mir-202, hsa-mir-101-1; (4) Her2: hsa-mir-135a-2, hsa-mir-202, hsa-mir-93.

For all themiRNAs that stand out with especially large differences in the discrete stable distribution param-

eter estimates, a further analysis needs to be done for exploring them as potential biomarkers for the (molecular

subtypes of) breast cancer. As an example, for the miR-200 family, a more detailed analysis with robust testing

is provided in Section 3.4.

4.4 TCGA-BRCA miR-200: an illustrative example for the miR-200 family

The miR-200 family is one of the most frequent groups of miRNAs whose expression is altered in (breast) cancer

(e.g., Cavallari et al. 2021; Fontana et al. 2021; Wen et al. 2021; Ye et al. 2014). The family consists of five miRNAs:



A. Krutto et al.: Heavy-tailed model for analyzing miRNA — 15

−0.10 −0.05 0.00 0.05 0.10

0
2

4
6

8
10

normal  LumA

 n
or

m
al
 L

um
A

−0.10 −0.05 0.00 0.05 0.10

0
2

4
6

8
10

normal  LumB

 n
or

m
al
 L

um
B

−0.10 −0.05 0.00 0.05 0.10

0
2

4
6

8
10

normal  Basal

 n
or

m
al
 B

as
al

−0.10 −0.05 0.00 0.05 0.10

0
2

4
6

8
10

normal  Her2

 n
or

m
al
 H

er
2

Figure 5: TCGA-BRCA: a zoom to Figure 4, where the absolute differences in estimates for tail index 𝛼 is less than 0.1.

miR-141, miR-200a, miR-200b, miR-200c and miR-429. Despite comprehensive studies, the potential role of these

miRNAs as biomarkers in cancer has not yet been completely understood. In this section, an illustrative example

of differential expression analysis via discrete stable distributions is given for the miR-200 family for the PAM50

breast cancer molecular subtypes normal-like, LumA, LumB, Her, and Basal.

4.4.1 TCGA-BRCA miR-200: modelling via discrete stable, Poisson and negative binomial distribution

We start out by assessing goodness-of-fit. We present QQ plots in Figures A.2-A.2-F.1–F.5, which empirically con-

firm that the discrete stable distribution fits the miR200 family well, with an exception for miR429, where none

of the distributions seem to fit very well. Additionally, we estimate Cramer von Mises and Anderson–Darling

statistics (distances), see formulas (8) and (9). Results are given in Table 7.

The Poisson distribution does not provide a good fit based on either statistic. We note that compared with

the Cramer-von Mises distance, the Anderson–Darling distance assigns more weight to observations in the tails

of the distribution, making it more suitable for contexts with heavy tails. For both statistics, the discrete stable

distribution shows the closest fit for miR200a, miR200b, and miR429, while for the two others, the distances

are slightly in favor of the negative binomial distribution. However, caution is advised when interpreting these

measures for the discrete stable distribution due to the numerical estimation of the cumulative distribution

function. We have also obtained statistics for subtypes, which yielded similar results, alternately favoring both

negative binomial and discrete stable distributions (results not presented).

The estimates of the discrete stable distribution parameters, the corresponding value of AIC, and the values

of AIC for the Poisson and negative binomial distributions, are given in Table 8. These results highlight that every

member of themiR-200 family is estimated to be heavy-tailed (i.e., (𝛼n)subtype < 1). FromTable 8, for eachmiR-200

family member, the discrete stable distribution provides a better fit than the Poisson distribution; for miR-200a,

miR-200c, miR-141 the discrete stable distribution provides a better fit than the negative binomial distribution;

for miR-200b, miR-429, the discrete stable distribution provides a similar fit compared to the negative binomial.
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Table 6: TCGA-BRCA: from Figure 5, the list of miRNAs with the top 10 ratios of parameter 𝜆 estimates.

LumA (�̂�n)normal − (�̂�n)LumA (�̂�n)normal∕(�̂�n)LumA

hsa-mir-129-1 0.04 2.27

hsa-mir-26a-1 0.06 2.26

hsa-mir-129-2 0.02 2.11

hsa-mir-143 0.02 2.09

hsa-mir-378a 0.05 2.03

hsa-mir-542 0.04 2.03

hsa-mir-17 0.06 1.95

hsa-mir-218-2 0.05 1.94

hsa-mir-19b-2 0.07 1.89

hsa-mir-26b 0.1 1.89

LumB (𝛼n)normal − (𝛼n)LumB (�̂�n)normal∕(�̂�n)LumB
hsa-mir-138-1 −0.06 3.89

hsa-mir-202 0 3.75

hsa-mir-1262 0.01 3.52

hsa-mir-150 0.09 3.21

hsa-mir-1258 0 3.12

hsa-mir-1295a −0.05 2.97

hsa-mir-1304 −0.1 2.72

hsa-mir-3926-2 −0.02 2.62

hsa-mir-125b-1 0.03 2.6

hsa-mir-129-2 0.06 2.59

Basal (𝛼n)normal − (𝛼n)Basal (�̂�n)normal∕(�̂�n)Basal
hsa-mir-101-1 0.1 5.17

hsa-mir-202 0.04 4.22

hsa-mir-29c 0.07 3.88

hsa-mir-26a-2 0.08 3.6

hsa-mir-26a-1 0.07 3.55

hsa-mir-10a 0.04 3.44

hsa-mir-143 0.04 3.24

hsa-mir-944 0.05 3.15

hsa-mir-135a-2 0.02 3.01

hsa-mir-30d 0.07 2.83

Her2 (𝛼n)normal − (𝛼n)Her2 (�̂�n)normal∕(�̂�n)Her2
hsa-mir-93 0.09 4.75

hsa-mir-202 −0.03 3.78

hsa-mir-135a-2 −0.08 3.55

hsa-mir-26a-2 0.07 3.08

hsa-mir-26a-1 0.07 3.08

hsa-mir-135a-1 −0.04 3.08

hsa-mir-143 0 2.67

hsa-let-7b 0.05 2.56

hsa-mir-3926-2 −0.04 2.45

hsa-mir-92a-2 0.06 2.32

4.4.2 TCGA-BRCA miR200: differential expression analysis via discrete stable distribution

In this section, we explore the differences in discrete stable estimates between the breast cancer molecular

subtypes for the miR-200 family. Referring to the summary in Table A.2-T.1, we observe differential expression

patterns between the normal-like subtype and other subtypes for eachmember of themiR-200 family. In Table 8,
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Table 7: Goodness-of-fit statistics: Cramér-von Mises statistic (n𝜔2) and Anderson–Darling statistic (A).

miRNA Poisson Negative binomial Discrete stable

A n𝝎2 A n𝝎2 A n𝝎2

miR200a 445 113 23 79 20 28

miR200b 444 118 23 81 9 9

miR200c 594 115 21 62 27 116

miR141 481 113 21 63 27 97

miR429 245 111 24 91 14 38

Table 8: TCGA-BRCA: Estimates for discrete stable distribution parameters ((𝛼n), (�̂�n)), AIC values for discrete stable (AIC.DS), Poisson

(AIC.Pois), and negative binomial (AIC.NB) distributions, differencesΔ in tail index 𝛼 and parameter 𝜆, along with Brunner-Munzel test

(pBM) and permutation test (pperm) results comparing normal-like (n = 40) with LumA (n = 568), LumB (n = 202), Basal (n = 186), and

HER2-amplified (n = 81) subgroups.

(�̂�n) (�̂�n) AIC.DS AIC.Pois AIC.NB 𝚫(�̂�n) 𝚫(�̂�n) pBM pperm

miRa

Normal-like 0.32 18 687 69,289 710

LumA 0.30 25 9116 1,497,011 10,527 0.02 −7 0.003 0.148

LumB 0.32 20 3452 470,220 3650 0.00 −2 0.461 0.256

Basal 0.31 22 3053 405,834 3369 0.01 −4 0.089 0.265

Her2 0.33 17 1439 128,918 1440 −0.01 1 0.422 0.262

miRb

Normal-like 0.32 16 711 68,805 705

LumA 0.31 22 9413 1,289,291 10,258 0.01 −6 0.192 0.871

LumB 0.32 18 3422 361,738 3530 0.00 −2 0.351 0.516

Basal 0.31 21 3102 386,395 3299 0.01 −5 0.671 0.497

Her2 0.34 16 1425 113,739 1388 −0.02 0 0.223 0.43

miRc

Normal-like 0.78 2598 817 908,873 918

LumA 0.78 3096 11,857 15,026,637 13,233 0.00 −498 0.074 0.583

LumB 0.83 4764 3997 4,905,796 4661 0.05 −2166 0.612 0.435

Basal 0.77 2728 3870 5,445,207 4309 0.01 −130 0.314 0.408

Her2 0.85 5347 1562 1,382,181 1832 0.07 −2749 0.944 0.160

miR

Normal-like 0.32 22 718 121,047 756

LumA 0.38 50 9342 1,960,122 11,029 0.06 −28 0.002 0.025

LumB 0.45 77 3727 735,291 3916 0.13 −55 0.021 0.562

Basal 0.56 146 3490 840,206 3635 0.24 −124 0.013 0.373

Her2 0.60 199 1482 229,638 1546 0.28 −177 0.123 0.240

miR

Normal-like 0.50 14 575 8191 541

LumA 0.60 31 8293 214,501 8159 0.10 −17 0.041 0.289

LumB 0.55 24 2944 60,454 2812 0.05 −10 0.471 0.676

Basal 0.57 29 2813 78,044 2696 0.07 −15 0.012 0.300

Her2 0.47 15 1217 35,756 1154 0.03 −1 0.411 0.247
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you can find differences in tail index 𝛼 and parameter 𝜆, as well as Brunner-Munzel test and permutation test

results in addition to parameter estimates and AIC values.

From Table 8, the following can be observed:

– For both miR-200a and miR-200b, the tail index 𝛼 estimates for the LumA, LumB, Basal and Her2 subgroup

are varying ±0.02, meaning that the tails are estimated to be quite similar compared to the tail index esti-
mate for the normal-like subgroup. From this, the parameter 𝜆 estimates are rather straightforward to

compare. For both miR-200a and miR-200b, the parameter 𝜆 estimates for the LumA, LumB, Basal and Her2

subgroups are the same or slightly bigger than for the normal-like subgroup, indicating possible overex-

pression in these subtypes compared to the normal-like. For miR-200a, the Brunner-Munzel test identifies

significant differences in distributions between the normal-like and LumA subtype (p = 0.003), and close to

significant between normal-like and the Basal subtype (p = 0.089). For miR-200b, the Brunner-Munzel test

did not identify any significant differences in distributions between the normal-like and the other subtypes.

– FormiR-200c, compared to the normal-like subgroup, the tail index𝛼 estimates for the LumA subgroup is the

same, similar for Basal and slightly bigger for LumB and Her2 (differences+0,+0.01,+0.05,+0.07, respec-
tively). Therefor, for LumA and Basal the estimates for 𝜆 are straightforward to compare and both indicate

potential overexpression. For LumB and Her2 subtypes, the estimates for 𝜆 are not as straightforward to

compare, but dismissing the differences in tail estimates, both are indicating potential overexpression.

The Brunner-Munzel test identifies close to significant differences only between the normal-like and LumA

subtype (p = 0.074).

– For miR141, the estimates of the tail index 𝛼 for the LumA, LumB, Basal and Her2 are most varying when

comparing to the normal-like subtype (differences +0.06, +0.13, +0.24, +0.28, respectively). A larger tail

index estimate defines a lighter tail, meaning very small or very large values are less likely. The 𝜆 estimates

for the LumA, LumB, Basal, and Her2 subgroups range from 2 to almost 10 times larger than the 𝜆 estimates

for the normal subgroup. Dismissing the differences in the tail estimates, the 𝜆 estimates for each of the

subtypes seem to suggest potential overexpression compared to the normal-like. The Brunner-Munzel test

shows significant differences in distributions between thenormal-like andLumAsubtype (p = 0.002), LumB

subtype (p = 0.021), and the Basal subtype (p = 0.013).

– For miR429, the tail index 𝛼 estimates for the LumA, LimB, Basal and Her2 are similar to the tail index

estimate in the normal-like subtype (differences+0.1,+0.05,+0.07,−0.03, respectively). For all the subtypes,
the 𝜆 estimate is indicating potential overexpression as compared to normal-like. The Brunner-Munzel test

shows significant differences in distributions between the normal-like (p = 0.041) and Basal subtype (p =
0.012).

For further insight, Moody’s median test was performed on the raw expressions, which examines whether sam-

ples originate from populations with same medians, results are given in Table A.2-T.2. In addition, t-test on the

log2-transformed expressions was performed, results given in Table A.2-T.3, which examines whether samples

originate from populations with same geometric mean.

The final conclusions for differential expressions, based on differences in the estimates of 𝛼 less than 0.1,

the values of the estimates of 𝜆, the Brunner-Munzel test (Table 8), and the Moody’s median test (Table A.2-T.2),

are as follows: Compared to the normal-like subgroup, miR200a, miR200c, miR141 were found to have elevated

expressions in the LumA subtype; miR200a was found to have elevated expressions in the Basal subtype.

As the final step, we performed permutation tests based on Equation (11), where the original value Do =
Δ(�̂�) = (�̂�n)normal − (�̂�n)subtype is found in Table 8. The resulting p-values are given in Table 8, column pperm.

From Table 8, only for miR141 the difference in estimates of 𝜆 is found to be significant between normal-like and

LumA subtypes. However, the permutation test does involve differences in tail index and should be treated with

care for final conclusions.

Another study of miR-200 TCGA-BRCA data (Fontana et al. 2021) found that miR-141-3p was underexpressed

in the normal-like subtype, miR-200a-3p was underexpressed in the Her2 and LumB subtypes, and miR-200b-

3p underexpressed in the Her2 subtype. However, for analysis they applied an ANOVA test on log-transformed
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data; for data they used the mature isoforms expressions (not the summed expression for all reads aligned per

miRNA) and applied a slightly different selection of samples.

5 Results from the NOWAC-LUCA data

To show the relevance of the discrete stable distribution also for other types of data, in this section, the results

of a corresponding analysis of the mature isoforms expressions (the mature isoform expression quantification)

measured in blood samples, obtained from the NOWAC-LUCA study database, are presented.

5.1 NOWAC-LUCA: estimates of discrete stable distribution parameters

Discrete stable distributions were fitted to 198 variables of miRNA expressions for data from all samples (n =
240) and to data from ‘case’ (n = 124) and ‘control’ (n = 116) subgroups. The summary of parameter estimates of

the discrete stable distribution is given in Table 9.

For all miRNAs, the underlying distributions were estimated to be heavy tailed (i.e., 𝛼n < 1). This is true

for all samples together, and when stratified by case-control status. In particular, for 50 % of miRNAS from all

samples tail index is estimated less than 0.59. The estimates of 𝜆 for the data from all samples vary from 6 to 66

while around half are between 8 and 25. The minimum and 1st quartile of 𝜆 estimates for the data from cases

and controls are similar while median, mean, 3rd quartile and maximum are quite different in comparison to

the ones based on all samples.

5.2 NOWAC-LUCA: comparison of the goodness-of-fit

The goodness-of-fit of the Poisson, the negative binomial and the discrete stable distributions are comparedusing

AIC. To compare goodness-of-fit, the ratios of corresponding AIC values were evaluated as before. If the ratio is

less than 1, then the discrete stable distribution gives better fit. The ratios for p = 198 miRNAs are presented in

Figure 6.

From the left side of Figure 6 it can be seen that the discrete stable distribution was a better fit than the

Poisson distribution for all miRNAs. In fact, more than half of the miRNAs have an AIC value for the Poisson

distribution more than 10 times bigger than those for the discrete stable distributions. From the right side of

Table 9: NOWAC-LUCA: for p = 198 miRNAs, the summary of parameter estimates of discrete stable distributions for data from all

samples together (n = 1076) and from samples of cases (n = 124) and controls (n = 116), respectively.

Min. 1st qu. Median Mean 3rd qu. Max.

Summary of 𝛼n: estimates from all samples

All samples 0.04164 0.32339 0.59210 0.48411 0.67225 0.79630

Summary of (𝛼n)Group: estimates from case/control groups

Case 0.0732 0.3246 0.5458 0.4573 0.6293 0.7666

Control 0.0657 0.3352 0.6830 0.5457 0.7304 0.8291

Summary of �̂�n: estimates from all samples

All samples 5.577 8.698 16.79 18.09 25.21 66.13

Summary of (�̂�n)Group: estimates from case/control groups

Case 5.54 8.367 14.29 14.71 18.70 48.22

Control 6.92 9.17 21.14 34.20 39.71 347.97
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Figure 6: NOWAC-LUCA: for p = 198 miRNAs, the ratios of AICs of discrete stable models to Poisson and negative binomial models from

all samples (n = 240) and from samples grouped to case (n = 116) and control (n = 124).

Figure 6, for the data from ‘all’, ‘control’ and ‘case’ samples, the discrete stable distribution give a better fit than

the negative binomial distribution for 58 %, 73 %, 54 % of the miRNAs, respectively. For the remaining miRNAs

on the right side of Figure 6, the goodness-of-fit is similar.

5.3 NOWAC-LUCA: differential expression via discrete stable distribution

In this section, the differential expression analysis via the estimates of the parameters of discrete stable distri-

butions for the p = 198 miRNA read counts is performed. First, the summary of data is given in Table 10. From

this table, the quantiles of reads of the data from case and control samples are quite similar, except for the

maximums.

The summary of the discrete stable distribution parameter estimates is given in Table 9. Although the quar-

tiles of the estimates of 𝛼 are quite similar, they hint that the tail index for the data from the ‘case’ samples are

slightly smaller than for the data from the ‘control’ samples, that is, the miRNA-seq counts in the ‘case’ group

have heavier tails. The quartiles of estimates of 𝜆 are lower (indicating underexpression) for the data from the

‘case’ samples, especially the 3rd quartiles and maximums. Next, for each miRNA, the differential expression

analysis between cases and controls was carried out, as explained in Section 1.4. For each miRNA, the ratio of

the 𝜆 estimates and corresponding difference in 𝛼 estimates are presented in Figure 7.

On the left side of Figure 7, the ratios that stand out represent underexpressions of certain miRNAs in the

‘case’ subgroup as compared to the controls. In particular, the top 5 underexpressed miRNAs (i.e., the largest

ratios of 𝜆 estimates) in decreasing order are hsa-miR-10b-5p, hsa-miR-186-5p, hsa-miR-128-3p, hsa-miR-222-3p,

hsa-miR-101-3p, hsa-miR-146b-5p, hsa-miR-98-5p, hsa-miR-342-3p. However, while these miRNAs have clear dif-

ferences in the 𝜆 estimates, they also have the biggest differences in the tail index 𝛼 estimates, which means

the parameter 𝜆 differences should be treated with care. For more insights, a zoom into the left side of Figure 7,

where only the part with differences in tail index estimates is less than 0.1, is presented on the right side of

Figure 7. In Table 11, the miRNAs with ratios of 𝜆 estimates most different from 1, from the right side of Figure 7,

and the corresponding differences in the tail index estimates, are listed.

Table 10: NOWAC-LUCA: for p = 198 miRNAs, the summary of data for samples from the ‘case’ and ‘control’ subgroups.

n Min. 1st qu. Median Mean 3rd. qu. Max.

Case 116 0 74 239 3064 1,207 877,569

Control 124 0 73 240 3636 1206 1,281,836
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Figure 7: NOWAC-LUCA: for p = 198 miRNAs, the ratios of estimates for parameter 𝜆 and the differences in estimates for tail index 𝛼,

between the ‘control’ and ‘case’ groups, labeled accordingly.

Table 11: NOWAC-LUCA: from the right side of Figure 7, miRNAs with ratios of the 𝜆 estimates clearly different from 1, where the

differences in 𝛼 estimates do not exceed 0.1 in absolute value.

miRNA (�̂�n)control∕(�̂�n)case (�̂�n)control − (�̂�n)case

hsa-miR-142-3p 0.67 −0.09
hsa-miR-215-5p 1.51 0.1

hsa-miR-19b-3p 1.52 0.08

hsa-miR-182-5p 1.52 0.06

hsa-miR-339-5p 1.53 0.09

hsa-miR-328-3p 1.55 0.09

hsa-miR-99a-5p 1.56 0.07

hsa-miR-140-3p 1.58 0.06

hsa-miR-29c-3p 1.6 0.1

hsa-miR-486-3p 1.64 0.1

hsa-miR-652-3p 1.74 0.1

hsa-miR-99b-5p 1.76 0.09

hsa-miR-30a-5p 1.76 0.09

hsa-miR-23b-3p 1.78 0.09

For all these miRNAs we observe an underexpression of miRNAs among cases compared to controls, except

for hsa-miR-142-3p, for which we observe an overexpression. In addition, results from an even more conserva-

tive approach regarding the tail differences, is presented in Table 12. In particular, from the right side of Figure 7,

the top 20 ratios of 𝜆 estimates with constrained differences in tail index ≤0.01, is listed in Table 12.

Here, all ratios of the 𝜆 estimates represent underexpression of miRNAs in the ‘case’ subgroup. Although

the ratios of the 𝜆’s in both Tables 11 and 12 are not too remarkable, the listed miRNAs could be considered as

potential biomarkers. Similarly, from the left side of Figure 7, miRNAS with the largest relative differences in 𝜆

estimates as well as differences in 𝛼 estimates should be studied further as potential biomarkers for lung cancer.

In (Nøst et al. 2023) nine candidate miRNAs were proposed as potential early markers of lung cancer; miR-

320d, miR-320c, miR-320b, miR-92b-3p,miR-130b-3p, miR-200c-3p, miR-375-3p, miR-335-5p,and miR-323a-3p. This

study foundmiR-320c andmiR-320 elevated in pre-diagnostic specimen, i.e., they can be suggested as earlymark-

ers of lung cancer. Based on Table 12, we would in addition highlight hsa-miR-335-5p (and hsa-miR-320a-3p from

the miR-320 family).
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Table 12: NOWAC-LUCA: from the right side of Figure 7, miRNAs with the largest relative differences in 𝜆 estimates, where the

differences in 𝛼 estimates do not exceed 0.01 in absolute value.

miRNA (�̂�n)control∕(�̂�n)case (�̂�n)control − (�̂�n)case

hsa-miR-16-2-3p 1.2 0

hsa-let-7g-5p 1.2 0

hsa-miR-181a-5p 1.21 0

hsa-let-7i-5p 1.22 0

hsa-miR-93-5p 1.23 0

hsa-miR-146a-5p 1.24 0

hsa-miR-150-5p 1.25 0

hsa-let-7f-5p 1.25 0

hsa-miR-30e-5p 1.25 0

hsa-miR-185-5p 1.26 0

hsa-miR-486-5p 1.26 0

hsa-miR-199a-3p 1.27 0.01

hsa-miR-199b-3p 1.27 0.01

hsa-miR-425-5p 1.28 0.01

hsa-miR-335-5p 1.28 −0.01
hsa-miR-484 1.28 0.01

hsa-miR-126-5p 1.3 0.01

hsa-miR-320a-3p 1.3 0.01

hsa-miR-423-5p 1.32 0.01

hsa-miR-27b-3p 1.34 0.01

6 Conclusions

A new approach to analysis of miRNA-seq data is introduced. In particular, a novel application of modelling

via the heavy tailed family of discrete stable distributions is proposed. In addition, the parameters of the dis-

crete stable distribution are suggested as a possible alternative heavy tailed target of inference in differential

expression analysis.

Based on two sources of miRNA-seq raw read counts data, the results of this paper show that (1) the miRNA-

seq raw read counts arise from a heavy tailed distribution: exploratory analysis for heavy tails shows that both

TCGA-BRCA summed expressions per miRNA as well as NOWAC-LUCA mature isoforms expressions per miRNA

are most likely following a heavy tailed distribution. Moreover, in both datasets, the estimates for the tail index

𝛼 imply a heavy tailed distribution; (2) the proposed heavy-tailed discrete stable distributions are suitable for

modelling the miRNA-seq raw read counts: the goodness-of-fit of the discrete stable distributions are better

than the popular Poisson and negative binomial distributions. Following (1) and (2), we conclude that in the

differential expression analysis, a heavy-tailed approach (and possibly supported by some robust testing) would

be most suitable.

Additionally, the proposed heavy-tailed approach formiRNA analysis via discrete stable distributions offers

improved goodness-of-fit and benefits from relaxing the normalization requirement without any loss of infor-

mation. Moreover, in the differential expression analysis, the analysis being conducted and the hypotheses

being tested are not affected by data transformation, unlike the case with popular transformations such as

log-transformation. In addition, the use of the discrete stable distribution allows us to explore various types

of differences, such as differences in the tail index and parameter 𝜆. However, in this paper, conclusions were

primarily based on differences in estimates for the parameter 𝜆, with the constraint that estimates for the tail

index 𝛼 are small (indicating similar tails). While differences in the 𝛼 estimates are interesting, interpreting

them can be more challenging because they represent the degree of tail heaviness, which may be difficult to
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grasp in a practical sense. Nonetheless, differences in 𝛼 estimates can provide valuable information about the

relative likelihood of extreme values in the different distributions.

In conclusion, the analysis performed in this paper shows that independently of the source (e.g., blood,

tissue, etc.) or type (isoform or miRNA expression) of miRNA-seq raw read counts, discrete heavy-tailed distri-

butions, such as the proposed discrete stable distribution, is a promising approach to modelling of miRNA-seq

raw read counts.
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Appendix A: TCGA-BRCA: exploratory data analysis
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Figure A.1-F.1: TCGA-BRCA: for p = 400 miRNAs, the ratio of maximum to sum of order r = 1, 2, 3, 4 for data from all samples (n = 1076).
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Appendix B: TCGA-BRCA: miR-200 family

Table A.2-T.1: TCGA-BRCA: summary of miR-200 family members.

Type Min. 1st qu. Median Mean 3rd qu. Max.

Summary of miR200a

Normal-like 99 1038 1955 2525 2824 13,483

LumA 68 1580 2688 3822 4767 56,886

LumB 19 1246 2041 2991 3380 19,371

Basal 6 1306 2321 3262 4120 21,310

Her2 33 1283 2163 2680 3452 13,458

Summary of miR200b

Normal-like 57.0 951.8 1938.0 2377.8 2602.5 10,401

LumA 59 1143 2034 3042 3905 35,239

LumB 24.0 885.2 1438.0 2177.5 2400.8 15,458

Basal 7.0 909.2 1745.5 2598.2 3340.5 20,688

Her2 17 792 1365 1896 2433 11,426

Summary of miR200c

Normal-like 1246 13,397 26,235 34,708 38,226 137,471

LumA 2732 19,000 31,958 44,683 58,266 324,329

LumB 4481 17,654 27,240 37,545 41,597 283,239

Basal 4589 15,679 27,344 41,514 52,562 241,924

Her2 4776 14,840 25,993 31,826 36,457 160,062

Summary of miR141

Normal-like 161 2262 3476 4576 5258 22,643

LumA 269 3082 5333 6674 8580 36,871

LumB 458 3042 4572 6281 7561 36,743

Basal 485 2920 4440 6831 9347 37,275

Her2 640 2499 4273 5510 6640 26,727

Summary of miR429

Normal-like 8.0 135.0 259.0 310.1 384.0 1379

LumA 10.0 170.5 307.0 461.4 566.8 6277

LumB 4.0 145.0 253.0 382.4 444.2 2410

Basal 0.0 167.0 314.5 508.3 662.5 4122

Her2 1.0 132.0 289.0 434.1 535.0 3072
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Table A.2-T.2: TCGA-BRCA: Moody’s median tests in miR-200 family. Results are based on multiple comparisons, where groups labeled

with the same letter were found to originate from populations with the same median.

Type Median Groupsa

Median test for miR200a

Normal-like 1955.0 c

LumA 2687.5 a

LumB 2041.0 bc

Basal 2321.0 b

Her2 2163.0 bc

Median test for miR200b

Normal-like 1938.0 ab

LumA 2034.5 a

LumB 1438.0 b

Basal 1745.5 ab

Her2 1365.0 b

Median test for miR200c

Normal-like 26,235.0 b

LumA 31,958.0 a

LumB 27,239.5 b

Basal 27,343.5 b

Her2 25,993.0 b

Median test for miR141

Normal-like 3476.0 b

LumA 5333.0 a

LumB 4571.5 b

Basal 4440.0 b

Her2 4273.0 b

Median test for miR429

Normal-like 259.0 ab

LumA 307.0 a

LumB 253.0 b

Basal 314.5 a

Her2 289.0 ab

aThe medians of groups labeled with the same letter were found to be not significantly different at a significance level of 0.05. For

example, for miR429, normal-like is labeled ‘ab’ and subgroups LumA and LumB are labeled ‘a’ and ‘b’, respectively, indicating they are

not significantly different from normal-like, while they differ from each other.
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Table A.2-T.3: TCGA-BRCA: the log2 transform based t-test in miR-200 family.

Group1 Group2 p

log2 transform t-test for miR200a

Normal-like Basal 0.04

Normal-like Her2 0.84

Normal-like LumA 0.00

Normal-like LumB 0.40

log2 transform t-test for miR200b

Normal-like Basal 0.37

Normal-like Her2 0.16

Normal-like LumA 0.05

Normal-like LumB 0.69

log2 transform t-test for miR200c

Normal-like Basal 0.07

Normal-like Her2 0.73

Normal-like LumA 0.01

Normal-like LumB 0.19

log2 transform t-test for miR141

Normal-like Basal 0.00

Normal-like Her2 0.03

Normal-like LumA 0.00

Normal-like LumB 0.00

log2 transform t-test for miR429

Normal-like Basal 0.01

Normal-like Her2 0.52

Normal-like LumA 0.02

Normal-like LumB 0.27
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Figure A.2-F.1: TCGA-BRCA: QQ-plots for miR-200 family member miR200a.
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Figure A.2-F.2: TCGA-BRCA: QQ-plots for miR-200 family member miR200b.
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Figure A.2-F.3: TCGA-BRCA: QQ-plots for miR-200 family member miR200c.
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Figure A.2-F.4: TCGA-BRCA: QQ-plots for miR-200 family member miR141.
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Figure A.2-F.5: TCGA-BRCA: QQ-plots for miR-200 family member miR429.
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Appendix C: NOWAC-LUCA: exploratory data analysis
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Figure A.3-F.1: NOWAC-LUCA: for p = 198 miRNAs, the ratio of maximum to sum of order r = 1, 2, 3, 4 for data from all samples

(n = 240).
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