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Abstract

This study aimed to conduct a systematic review and meta-analysis evaluating the

inclusion of β-glucan in aquaculture animal diets and its impact on their health out-

comes. Relevant studies were identified from Scopus and Web of Science databases.

A total of 82 primary studies published between 1996 and 2024 were reviewed, of

which 70 were included in the meta-analysis. The results revealed that the application

of β-glucan to aquaculture animal's diets significantly enhanced specific growth rate

(SGR; mean effect, g = 2.71; p < 0.001), feed conversion ratio (FCR; g = �3.88;

p < 0.0001) and lowered mortality after exposure to pathogens. Likewise, β-glucan

had a positive influence (p < 0.0001) on innate immune parameters (lysozyme and

phagocyte activity, NBT, ACH50, and IgM). The study found that the effects of

β-glucans varied among marine and freshwater fish where freshwater fishes

(g = 2.05–6.57) exhibit better performance. This study also found a negative correla-

tion between fish's innate immune response and trophic level, suggesting that fish

with higher trophic levels may be less efficient at absorbing this bio-stimulant. Even

though there were high heterogeneity (I2 = 73%–97%, p < 0.05) due to the diversity

of tested organisms and publication bias, our model and findings are valid. The find-

ings suggest that the dietary application of β-glucans can have beneficial effects on
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growth and immune responses especially for freshwater species. The validity of these

observations needs to be confirmed by further prospective studies.

K E YWORD S

aquatic animal, growth performance, immune response, immunostimulant, meta-analysis,
β-glucan

1 | INTRODUCTION

Due to evolving consumption patterns and population growth, aquacul-

ture is projected to increase by 62% between 2010 and 2030, fulfilling

over two-thirds of global fish and shellfish demand.1–5 Approximately

100 million individuals rely on aquaculture for livelihoods, indicating its

substantial socio-economic impact.5 While some debates persist, aqua-

culture plays a pivotal role in addressing global food security and pov-

erty reduction, aligning with the UN's 2030 Agenda for Sustainable

Development Goals.6 Notably, besides serving as a vital protein and

income source, aquaculture offers ecosystem services like wastewater

treatment and habitat restoration.7,8 However, sustainable aquaculture

practices are imperative to ensure these benefits, as inadequate prac-

tices can strain water resources, exacerbate overfishing, introduce inva-

sive species, and foster antimicrobial resistance.9,10

Despite its significance, aquaculture faces numerous hurdles hin-

dering its growth.11 Aquatic animal diseases, exacerbated by global

trade, system intensification, and climate change, pose a major obsta-

cle.12,13 High-density cultures and intensified systems facilitate patho-

gen evolution and disease outbreaks, compelling farmers to resort to

antibiotics and disinfectants.14,15 Nevertheless, the overuse of these

chemicals compromises animal immune systems and fosters

antibiotic-resistant bacteria, posing a global health hazard.16–18 More-

over, the use of antibiotics has caused serious problems, such as the

aquatic environments and the negative impacts on the aquatic ecosys-

tem, the persistence of antibiotic residues in fish meat, and its nega-

tive impacts on human health.19,20 In this context, alternative disease

prevention strategies like functional feed supplements and vaccina-

tion have been proposed.21–23 While vaccination reduces antibiotic

usage in certain sectors, its specificity and cost limit widespread appli-

cation, especially for tropical diseases.24–26 Given the prevalence of

multi-agent infections in aquaculture, a holistic approach is crucial.

Functional feed supplements, including medicinal plants and probio-

tics, have gained traction for their potential to enhance fish perfor-

mance, immune systems, and feed utilisation.21,27,28 Incorporating

such supplements into fish diets could not only improve disease pre-

vention but also contribute to better resource utilisation, fostering

sustainable aquaculture development.29

TABLE 1 Summary of publication bias before and after removing outliers.

Variables
Heterogeneity1

(I2, %) Mean effect size1

Egger's regression
Study of
outlier Corrected effect size2

Heterogeneity2

(I2, %)Z p-value

SGR (n = 36) 99.63 2.91 [2.11 to 3.7] 8.27 <0.0001 21 2.71 [2.33 to 3.08] 94.60

FCR (n = 39) 99.95 �4.91 [�6.33 to �2.05] �13.43 0.0001 22 �3.88 [�6.10 to �1.67] 99.85

Lysozyme activity

(n = 46)

99.75 3.72 [2.47 to 4.99] 7.56 <0.0001 29 4.13 [3.67 to 4.59] 90.60

Phagocytic activity

(n = 15)

99.73 4.37 [0.620 to 8.13] 9.02 <0.0001 8 2.39 [1.49 to 3.30] 97.33

ACH50 (n = 20) 98.44 1.7 [1.11 to 2.28] 1.65 0.0993 8 1.20 [0.95 to 1.46] 76.21

NBT (n = 21) 98.76 2.11 [1.11 to 3.12] 6.39 <0.0001 11 1.69 [1.31 to 2.07] 73.65

IgM (n = 10) 98.5 1.89 [1.06 to 2.73] 1.49 0.1387 5 2.32 [1.82 to 2.82] 82.02

Mortality (n = 8) 99.78 �5.85 [�7.94 to �3.75] �12.39 <0.0001 2 �5.75 [�6.68 to �4.82] 96.33

F IGURE 1 PRISMA flow chart for included studies.
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β-Glucans have been used as potential prebiotics in aquacul-

ture.30 β-glucans comprise a group of β-D-glucose polysaccharides,

naturally occurring in the cell walls of bacteria, fungi, and cereals, but

with different properties dependent on the source.31 They form a

linear backbone with 1–3 β-glycosidic bonds, but vary with respect to

molecular mass, solubility, viscosity, branching structure, and gelation

properties, causing diverse physiological effects in animals.32 In

aquaculture, β-glucan is frequently added to feed to boost immu-

nity, increase disease resistance, and enhance growth.33,34 By

boosting the animal's resistance to infections and stimulating

immunological cells, it can strengthen the host's immune

response.35,36 β-glucan can protect aquatic animals against typical

diseases like parasites, viruses, and bacterial infections.37,38

Furthermore, through increasing the number of helpful intestinal

microbes, acidifying the digestive system, and lowering the amount

of toxic intestinal metabolites, β-glucan contributes significantly to

the improvement of the intestinal environment.39–41 Based on the

literature, it is known that a β-glucan may have one or more modes

of action, including the production of inhibitory compounds,

enhancement of immune responses, improving water quality, com-

petition for adhesion sites in the intestine, creation of proper

interaction with phytoplankton, which is nutritionally important

for fish and contains natural enzymes, helping digestive system of

fish.33,42 However, the efficiency of β-glucans may change

depending on breeding conditions, methods of consumption, dos-

age, and fish species.43 Therefore, we are faced with a wealth of

information on the therapeutic effect of β-glucans, which are

sometimes contradictory. Meta-analysis is the use of specific sta-

tistical methods to summarise the results of independent studies

to find the most accurate form of relationship between the

variables.44 Therefore, we conducted a systematic review and

meta-analysis to investigate the effect of β-glucans on finfish and

shellfish health and well-being.

2 | METHODS

2.1 | Literature search

The relevant literature search was conducted using the Scopus

and Web of Science databases published from 1996 to 2024

and the combined keywords were used: (β-glucan*) AND (fish* OR

crustacean*) AND (growth* OR immune*) AND (supplement* OR

oral*). Article selection was based on the following criteria:

(i) focused on aquatic animals; (ii) one of the following parameters

was reported for both fish fed a β-glucan-free diet and fish fed

with β-glucan-enriched diet: specific growth rate (SGR, %/day),

feed conversion ratio (FCR), immunoglobulin (mg/mL), lysozyme

activity (U/mL), phagocytic activity (%), complement activity

(ACH50, U/mL), respiratory burst activity (NBT, OD 630 nm),

immunoglobulin M (IgM, mg/dL) or mortality after infected (%);

(iii) mean, number of replicates and standard deviation or standard

error were reported for each of the parameters; and (iv) effects of T
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β-glucan as feed supplement. Studies that evaluated the effect of

mixed immunostimulants along with β-glucan at a time were not

included. When the data were presented graphically, ImageJ

(National Institutes of Health, Bethesda, Maryland, USA) was used

to extract.

2.2 | Data analyses

A random-effects model was utilised to account for potential vari-

ability in effect sizes across studies. This is a standard approach to

handle heterogeneity and is appropriate for meta-analyses where

the true effect size may vary between studies.45 Hedges' g effect

size (g) was calculated as previously described.46 The magnitude of

standardised mean difference of g value was interpreted as follows:

small effect = 0.2, medium effect = 0.5, and large effect = 0.8. A

g value of zero indicated no significant difference in the tested

parameter with the administration of β-glucan. All statistical ana-

lyses were performed using the metafor package in R version

1.4.1103. The influence of explanatory variables (trophic level,

experimental duration, β-glucan level) on Hedges' g effect size was

performed with multiple linear regression under the ANCOVA

framework.

2.3 | Heterogeneity and publication bias

Among-study heterogeneity was determined via I2 index. Heterogene-

ity is considered high and low if I2 index is ≤50% and >50%, respec-

tively.47 Egger's tests were used to assess publication bias. When

publication bias was detected (p < 0.05) by Egger's test, we removed

outliers and reported results from an outlier-free test according to the

previous description.48 Statistical significance was assumed with a

p-value <0.05.

F IGURE 2 Forest plot for Hedge's effect size (mean and 95% confidential interval) of immune response indices. ACH50, complement activity;
IgM, immunoglobulin M; NBT, respiratory burst activity.
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3 | RESULTS

3.1 | Included studies and overview of dataset

We used the Scopus and Web of Science databases to collect rele-

vant articles, resulting in 8188 records compiled into a single End-

Note library. After removing duplicate articles, 7609 remained.

Following careful screening of titles and abstracts, 7527 articles

were excluded. Finally, 82 articles were selected for review, with

70 studies utilised in the meta-analysis. Please refer to Figure 1 for

a visual representation of this process. From the 70 compiled stud-

ies investigating the effect of β-glucan on the immune response of

fish and shrimp, a total of 33 fish species was investigated, in which

two-thirds (70%) of all studies focused on freshwater fish (70% of

the dataset), while the rest of 30% considered marine fish

(Table S1). The trophic level (2.5–4.1, IR) and β-glucan levels

(0%–0.1%) were found in the dataset. Most of β-glucan from the

literature were extracted from yeast (Saccharomyces cerevisiae)

(93% of total studies) and other sources (such as Laminarina digi-

tata, Euglena gracilis) (7%). β-Glucan was mainly obtained from com-

mercial sources (94% of total studies), while laboratory extraction

accounted for 6%. The administration duration of β-glucan on fed

organisms ranged from 28 to 60 days (IR), with a mean value of

48.18 days (Table S1).

3.2 | Effect on β-glucan enrichment on growth
production

Our findings indicated that the application of β-glucan on aquatic ani-

mal fish significantly enhanced growth performance (mean effect,

g = 2.71; 95% CI = 2.33, 3.08; p < 0.001; n = 36). All β-glucan-fed

organisms showed positive SGR compared to β-glucan-free addition

(Table 1). Feed efficiency, as indicated by the FCR index, exhibited

negative effects by supplementation of β-glucan (mean effect,

g = �3.88; 95% CI = �6.10, �1.67; p < 0.001; n = 39) (Table 1).

F IGURE 3 Hedge's effect size of lysozyme activity. ‘n’ indicates number of comparisons.

VAN DOAN ET AL. 5
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No significant association of explanatory variables was found for SGR

and FCR (Table 2).

3.3 | Effects of β-glucan enrichment on immune
parameters

The meta-analysis indicated that administration of β-glucan displayed

positive results on Hedges' g effect size of lysozyme activity, phago-

cytic activity, ACH50, NBT, IgM (p < 0.001), while negative mortality

was observed (p < 0.001), indicated better survival rate after exposed

to the pathogen (Figure 2).

From 43 studies, the meta-analysis results confirmed the positive

effect of β-glucan on lysozyme activities of aquatic animals as cate-

gorised in habitat groups, in which freshwater habitats (mean, 4.34)

responded more significantly than marine ones did (2.30). Among fish

species, carp, Caspian trout, and yellow croaker displayed the largest

effect size of 6.45, 6.65, and 8.85, respectively, while snapper, turbot,

shrimp, sea bass, and pacu remained non-significant by multiple com-

parison results (p = 0.848, 0.992, 0.300, and 0.056, respectively)

(Figure 3).

The result of analysis from 15 publications showed a high phago-

cyte activity effect size of freshwater (6.57) compared to marine

(1.85) habitats by β-glucan addition. Tilapia, pompano, flounder, and

carp were positively affected by β-glucan supplement (p < 0.001)

(Figure 4).

Most of fish species showed positive ACH50 effect size by

administration of β-glucan, except for turbot (p = 0.325), tilapia

(p = 0.471), and olive flounder (p = 0.077). Freshwater habitats also

exhibited a larger effect size than did marine ones (Figure 5).

Supplementing β-glucan positively affected the effect size of

NBT for carp (p < 0.001), pacu (p < 0.0001), sea bream (p < 0.001),

shrimp (p = 0.010), tilapia (p = 0.001). In consistency with previous

immune indicators, the effect size of NBT of marine and freshwater

species is positive, while the latter was larger than the former

(Figure 6).

F IGURE 4 Hedge's effect size of phagocytic activity. ‘n’ indicates the number of comparisons.
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Freshwater fish had a positive response of immunoglobin M at

the addition of β-glucan (2.05), except for sturgeon (�0.41,

p = 0.060), whereas marine fish showed an inverted response (�0.99)

(Figure 7).

All species showed significantly lower mortality at the application

of β-glucan after being infected with the pathogen in comparison with

β-glucan-free diet (Figure 8).

3.4 | Meta-regression analysis

When considering the correlation between explanatory variables

of β-glucan level, duration of the experiment, and trophic

level with immune response effect size, there was no significant

relationship between β-glucan level and effect size (p > 0.05).

Experimental duration significantly correlated with lysozyme

activity, ACH50, and NBT (p < 0.05), while trophic level had a

significant relationship with phagocytic activity and NBT (Table 2,

Figure 9).

3.5 | Heterogeneity and publication bias

The analysis indicated that all immune response indices had a

remarkably high I2 index (lysozyme activity, 99.37%; phagocytic

activity, 99.73%; ACH50, 98.44%; NBT, 97.8%; IgM, 98.5%; and

mortality after infected, 99.78%), suggesting high between-study

heterogeneity.

The results from Begg's and Egger's tests showed no significant

publication bias for ACH50 and IgM, while there was publication bias

for the other four immune indices as indicated by the tests and asym-

metrical funnel plots (Table 1, Figure 10).

4 | DISCUSSION

The role of β-glucans as an immunomodulatory additive on fish immu-

nity has been extensively investigated in aquaculture nutrition

research.35,38,49–51 Due to its ability to regulate cellular and humoral

responses, restore cell homeostasis, and aid in the formation of

F IGURE 5 Hedge's effect size of complement activity (ACH50). ‘n’ indicates the number of comparisons.

VAN DOAN ET AL. 7
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immunity training, β-glucan has been widely utilised to boost the non-

specific immune system.42,52,53 Pattern recognition receptors (PRRs)

and β-glucans interact to initiate intracellular signalling that in turn

activates humoral and cellular responses.54,55 Moreover, β-glucans

can ‘train’ non-specific immunity by boosting the immune system

and improving defence versus infections in the future.56 Our

meta-analysis provided a quantitative assessment of the effect of oral

β-glucans administration on the immune response in aquatic animals.

Overall, supplementing this immunostimulant improved growth per-

formance and immune parameters while reducing FCR and mortality

after exposure to various pathogens and ammonia stress. Although

β-glucan significantly enhanced immune effect size in general, other

explanatory variables–duration of the trial and trophic levels–were

found to be significant covariances.

The high heterogeneity (>97%) across all immune parameters

could be attributed to the diversity of tested organisms in the litera-

ture. Indeed, the compiled dataset covered 20 fish species from either

marine or freshwater habitats. In the present study, publication bias

was found in all investigated indices by Egger's tests (Table 1).

By removing strong outliers from the dataset, all effect sizes were still

significant differences between β-glucans-supplemented and β-glu-

cans-free applications (Table 1). Therefore, the findings from the pre-

sent meta-analysis are valid even with publication bias.

Although the elimination of outlier studies reduced the hetero-

geneity of ACH50 and NBT, this value remained particularly high

(>50%) across effect sizes. It is therefore apparent that the diversity

of investigated fish in our study strongly affects between-study

heterogeneity.

The growth and feed efficiency of aquatic animals at the supple-

mentation of β-glucans fed were reported.57–60 β-glucan supplemen-

tation led to increased activity levels of important digestive enzymes

and gut microbiota, which implies enhanced nutrient utilisation and

digestion efficiency in aquatic farmed species.61–63 Supplementation

of dietary β-glucan at concentrations ranging from 0.02% to 0.04%

resulted in improved digestive capacity,62 antioxidant activity, and

immune response of different freshwater fishes, river prawn, banana

shrimp, and white shrimp.61,64–70 Adding β-glucans at concentrations

between 0.4% and 0.6% to the diets of Atractosteus tropicus larvae

F IGURE 6 Hedge's effect size of respiratory burst activity (NBT). ‘n’ indicates the number of comparisons.
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may enhance larval rearing.61 This is evidenced by the elevated

activity levels of various digestive enzymes (such as lipase and

trypsin) and the upregulation of immune system genes. Our findings

indicate that the effect of β-glucans on innate immune indices

varied widely among marine and freshwater fish. For example,

Del Rio-Zaragoza et al.,71 and Ogier de Baulny et al.72 found no sig-

nificant difference in lysozyme activities of turbot and snapper fed

with enriched glucan relative to the control diet, while carp and trout

showed a strong positive response to this supplementation.59,73,74

The phenomenon could likely be explained by the difference in the

digestive tract system, nutritional requirement, and gut microbiota-

driven immune response. Therefore, the use of β-glucan for some

marine fish, such as sea bass, with the target of enhancing immune

response should be carefully considered. The use of β-glucan in com-

bination with other immunostimulants in marine fish could be an

effective strategy.49

Given that the immune response of aquatic animals is known to

primarily rely on the duration of treatment, this relationship remains

controversial in the literature. Douxfils et al.75 reported a higher

immune-related gene expression of rainbow trout fed β-glucan for

15 days than do 30 days. Similarly, lysozyme activity and ACH50 of

tilapia were found to increase after 1 and 2 weeks of administrated

β-glucans and to follow a slight decrease by the end of the 8-week

experiment. A prolonged administration of β-glucan could lead to the

immunity fatigue phenomenon found in fish.38 In contrast, recent

findings have developed a new term ‘trained immunity’ referring to

the longer supplementation of β-glucan for enhancing the immune

response in fish.76 Our meta-regression models indicated that a rela-

tively short feeding period (8 weeks for lysozyme activity and ACH50,

and 3 weeks for NBT) was suitable for fish. This could hint at impor-

tant information for further investigation at laboratory or commercial

purposes to reduce treatment duration, thereby related costs. More-

over, our study found that all species exhibited significantly lower

mortality rates when fed with β-glucan compared to those on a β-glu-

can-free diet after being infected with the pathogen. Some studies

have also indicated that the dietary intake of β-glucan improved resis-

tance to toxic stress (such as ammonia, fipronil, trichlorfon, and lead)

to a certain extent, possibly by activating the antioxidative system in

golden mahseer (Tor putitora), Nile tilapia, and African catfish (Clarias

gariepinus).65,77,78

F IGURE 7 Hedge's effect size of immunoglobin M (IgM) activity. ‘n’ indicates the number of comparisons.
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Recent studies have evidenced the influence of trophic levels on

growth performance, immunity, and disease tolerance in fish.79 The

meta-regression analysis showed a negative correlation between

the innate immune response of fish (phagocytic activity and NBT) and

trophic level (Figure 8). The absorption of β-glucans has ultimately

occurred in the intestine,38 whose length has a negative relationship

with trophic level. Therefore, the higher trophic level fish could be less

effective in absorbing this bio-stimulant, thereby immune response.

5 | CONCLUDING REMARKS AND
RESEARCH GAPS

The majority of the studies included in this review summarise that

β-glucan supplementation improved the immunological properties

(lysozyme activity, phagocyte activity, complement activity, respira-

tory burst activity, and immunoglobin M) as well as reduced mortality

among aquaculture species infected with the pathogen. It was found

that a number of species, including carp, Caspian trout, yellow

croaker, tilapia, pompano, and flounder, responded strongly to the

previously mentioned properties when provided with β-glucan supple-

ment. Moreover, our findings concluded that results vary depending

on fish species, environment, trophic level, and diet concentration.

However, based on the results of this meta-analysis, adding β-glucan

has a significant positive effect on the growth performance and

immune responses of freshwater fish rather than marine fish. For

β-glucan application, our meta-regression models suggest a short

feeding period of 8 weeks for lysozyme activity and ACH50, and

3 weeks for NBT, which could provide valuable insights for further

research to reduce treatment duration and associated costs. More-

over, there are limited studies examining the effects of adding dietary

β-glucans on digestive enzyme activities in aquatic species.61,63 The

findings indicate that β-glucans can modulate digestive enzyme activ-

ity in aquatic species, suggesting potential implications for nutrient

absorption and overall digestive health in this species. Based on the

fact that no information is available about the effect of immunostimu-

lants on the ‘good’ gut microbiota with antagonistic activity against

fish pathogenic bacteria, this should be a topic of further research, as

F IGURE 8 Hedge's effect size of mortality after exposure to pathogens. ‘n’ indicates the number of comparisons.
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F IGURE 9 Significant correlation between explanatory variables and effect size. The centre and diameter of the circle represent the mean
and the 95% confidential interval of effect size.

F IGURE 10 Funnel plots to assess the publication bias.
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the gastrointestinal tract in fish is a potential port of entry for

pathogenic bacteria.80
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