
Reinforcement learning-based alpha-list iterated greedy for
production scheduling

Kuo-Ching Ying a, Pourya Pourhejazy b,*, Shih-Han Cheng c

a Department of Industrial Engineering and Management, National Taipei University of Technology, Taipei 10608, Taiwan
b Department of Industrial Engineering, UiT- The Arctic University of Norway, Lodve Langesgate 2, Narvik 8514, Norway
c Microsoft Taiwan Corporation, Zhongxiao East Road, Sec. 5, Taipei City 11065, Taiwan

A R T I C L E I N F O

Keywords:
Production planning
Permutation flowshop
Metaheuristics
Reinforcement-learning-based algorithm
SDG 9: Industry, innovation, and infrastructure
Optimization

A B S T R A C T

Metaheuristics can benefit from analyzing patterns and regularities in data to perform more effective searches in
the solution space. In line with the emerging trend in the optimization literature, this study introduces the
Reinforcement-learning-based Alpha-List Iterated Greedy (RAIG) algorithm to contribute to the advances in
machine learning-based optimization, notably for solving combinatorial problems. RAIG uses an N-List mecha-
nism for solution initialization and its solution improvement procedure is enhanced by Reinforcement Learning
and an Alpha-List mechanism for more effective searches. A classic engineering optimization problem, the
Permutation Flowshop Scheduling Problem (PFSP), is considered for numerical experiments to evaluate RAIG’s
performance. Highly competitive solutions to the classic scheduling problem are identified, with up to 9%
improvement compared to the baseline, when solving large-size instances. Experimental results also show that
the RAIG algorithm performs more robustly than the baseline algorithm. Statistical tests confirm that RAIG is
superior and hence can be introduced as a strong benchmark for future studies.

1. Introduction

Machine learning offers solutions to many of the old and emerging
engineering challenges. Engineering tools and methods are widely used
to improve real-world system subprocesses through machine learning,
either as a decision aid in an existing system or in determining the
optimal design of a new system. Engineering optimization is a prime
example of a machine learning use case with growing popularity (Park &
Kwon Bae, 2015; X. Yu & Luo, 2023).

Linear and static models perform well in deterministic environments,
while machine learning excels in complex and stochastic engineering
optimization problems (Abaimov & Martellini, 2022). Considering the
stochastic nature of metaheuristics, researchers are using machine
learning to enhance the search procedure in the optimization solution
space. Machine learning applications in metaheuristics can be found in
optimizing production processes (Weichert et al., 2019), logistics
(Giuffrida et al., 2022), geoengineering and geoscience (W. Zhang et al.,
2022), hydropower operations (Bernardes et al., 2022), bioprocesses
(Mondal et al., 2023), and material science (Stergiou et al., 2023),
among other contexts.

Machine learning methods are typically categorized into four main

types: supervised, unsupervised, semi-supervised, and reinforcement
learning. In supervised learning, the model is trained on a labeled
dataset, in which each input is associated with a corresponding output
label. The goal is to learn a mapping from inputs to outputs, enabling the
model to make predictions on unseen data. Common algorithms include
decision trees, support vector machines, and neural networks. In unsu-
pervised learning, the model is trained on data without explicit labels.
The goal is to find hidden patterns or structures within the data. Com-
mon tasks include clustering, dimensionality reduction, and anomaly
detection, with algorithms like k-means clustering and principal
component analysis being widely used. In semi-supervised learning, the
model is trained on a dataset containing a small amount of labeled data
and a large amount of unlabeled data. The key idea is to leverage the
abundant unlabeled data to improve learning performance; semi-
supervised learning is particularly useful in scenarios where obtaining
labeled data is difficult or costly while unlabeled data is readily avail-
able. Examples of semi-supervised learning algorithms include self-
training, co-training, and graph-based methods. In reinforcement
learning, the model learns through interacting with its environment and
receiving feedback in the form of rewards or penalties. The goal is to
learn a policy that maximizes the cumulative reward over time.

* Corresponding author.
E-mail addresses: kcying@ntut.edu.tw (K.-C. Ying), pourya.pourhejazy@uit.no (P. Pourhejazy), helencheng@microsoft.com (S.-H. Cheng).

Contents lists available at ScienceDirect

Intelligent Systems with Applications

journal homepage: www.journals.elsevier.com/intelligent-systems-with-applications

https://doi.org/10.1016/j.iswa.2024.200451
Received 19 July 2024; Received in revised form 17 September 2024; Accepted 10 October 2024

Intelligent Systems with Applications 24 (2024) 200451

Available online 11 October 2024
2667-3053/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:kcying@ntut.edu.tw
mailto:pourya.pourhejazy@uit.no
mailto:helencheng@microsoft.com
www.sciencedirect.com/science/journal/26673053
https://www.journals.elsevier.com/intelligent-systems-with-applications
https://doi.org/10.1016/j.iswa.2024.200451
https://doi.org/10.1016/j.iswa.2024.200451
http://creativecommons.org/licenses/by/4.0/

Reinforcement learning has applications in decision-making tasks where
the outcome is influenced by a sequence of actions. Algorithms like the
epsilon-greedy, Q-learning, policy gradients, and deep reinforcement
learning methods are seminal examples.

Reinforcement learning-based algorithms are widely used to
improve the search procedure in metaheuristics (Cheng, Pourhejazy,
Ying & Lin, 2021; de Sousa Junior, Montevechi, Miranda, de Oliveira &
Campos, 2020), as well as in modern engineering applications
(Khosravian, Masih-Tehrani, Amirkhani & Ebrahimi-Nejad, 2024;
Vakili, Amirkhani & Mashadi, 2024). Reinforcement learning in a met-
aheuristic algorithm involves improving the search procedure by
rewarding a search trial that results in good outcomes
(Rodríguez-Esparza, Masegosa, Oliva & Onieva, 2024) and, in some
cases, penalizing errors and poorly performing procedures (Li, Wei,
Wang, Wang & Zhang, 2024). Additionally, metaheuristics can take
advantage of the reinforcement learning procedure by incorporating an
automatic adjustment of search operators that considers the feedback
information from prior searches (Zhang, Shao, Shao, Chen & Pi, 2024).
Reinforcement learning modules have also been used to improve the
efficiency of metaheuristics (Lu et al., 2024), select the best initialization
method (H. Yu et al., 2024), and overcome local optima (Yue, Ma, Shi &
Yang, 2024).

Integrating a learning module into the basic greedy search algorithm
has resulted in notable improvements (Ying & Lin, 2022, 2023). Rein-
forcement learning is well-suited for the Iterated Greedy (IG) algo-
rithm’s framework for the following reasons:

(1) Adaptability to dynamic environments. Reinforcement learning
can adapt to changes in the environment or problem space,
making it versatile in situations where the problem’s structure
might evolve over time. The problem-solving process should shift
as solutions are progressively refined. In this situation, adapt-
ability becomes crucial in IGs.

(2) Exploration-Exploitation trade-off. Reinforcement learning in-
corporates mechanisms that balance exploration (i.e., trying new
solution paths) and exploitation (i.e., refining known good solu-
tions). This balance is important in IGs as it allows for exploring
new solution paths while still focusing on improving the current
solution.

(3) Learning from feedback. Reinforcement learning is designed to
learn from feedback, using rewards to strengthen positive ac-
tions. In the context of the IG algorithm, this feedback-driven
learning enables the algorithm to adjust its strategy based on
the outcomes of previous iterations, resulting in a more effective
and efficient search procedure.

These characteristics make reinforcement learning a better alterna-
tive for the IG framework compared with other machine learning tech-
niques in terms of enhancing the performance and adaptability of the IG
algorithm when solving complex optimization problems.

Among optimization approaches used for production scheduling, the
IG algorithm is widely recognized due to its simplicity, flexibility, and
competitive performance. However, IGs have yet to fully benefit from
the use of different forms of machine learning. Among the most relevant
studies, Ozsoydan and Sağir (2021) improved the IG algorithm by
integrating hyper-heuristic-based learning, which acts as the intensifi-
cation/diversification adaptation mechanism. Pourhejazy, Cheng, Ying
and Nam (2022) integrated the meta-lamarckian learning-based
perturbation mechanism into the IG algorithm to address the local op-
tima issue.

The present study introduces the Reinforcement-learning-based
Alpha-list Iterated Greedy (RAIG) algorithm to contribute to the devel-
opment of machine learning-based optimization. In addition to the
learning module, RAIG uses an N-List mechanism for solution initiali-
zation and an Alpha-List mechanism for more effective iterative neigh-
borhood searches. This novel integration makes RAIG highly adaptable

and capable of delivering robust solutions across a variety of production
scheduling challenges. Extensive numerical experiments are conducted
to test whether RAIG can be established as a competitive benchmark
algorithm.

IG and its variations have been successfully applied to optimize
complex problems like the Permutation Flowshop Scheduling Problem
(PFSP). For example, Fernandez-Viagas, Ruiz and Framinan (2017) and
Fernandez-Viagas and Framinan (2014) proposed the IG algorithm with
local search and a tie-breaking mechanism, hereafter denoted as
IG_RSLS, which is one of the most competitive existing benchmarks for
solving PFSPs. IG_RSLS outperformed well-known optimization algo-
rithms such as Discrete Differential Evolution (DDE), Estimation of
Distribution Algorithm (EDA), Two-Stage Bat Algorithm, Multi-Start
Simulated Annealing (MSSA), Hill Climb Search, and the earlier vari-
ants of the IG and Particle Swarm Optimization (PSO) algorithms.
IG_RSLS is, therefore, considered the baseline algorithm to evaluate the
performance of RAIG when solving PFSPs. In contrast to existing ap-
proaches that primarily focus on deterministic or heuristic-based ad-
aptations of IG, RAIG incorporates a data-driven learning component
that allows the algorithm to improve continuously based on
problem-specific feedback. Leveraging the strengths of reinforcement
learning, our proposal enhances the performance and adaptability of IG,
making it a powerful alternative to the state-of-the-art algorithms used
in scheduling problems, such as IG_RSLS.

This research article is organized into three additional sections.
Section 2 introduces the proposed algorithm and elaborates on its
computational components. Section 3 evaluates the developed solution
algorithm by comparing it with IG_RSLS in solving PFSPs. Finally, Sec-
tion 4 draws conclusions based on the research outcomes and suggests
directions for future research.

2. Proposed method

To formalize the problem definition, let us assume that n jobs must be
processed on m machines with deterministic processing times pij. In a
permutation flowshop, jobs are processed in a fixed sequence on all
machines, which complete the jobs in the same order. The basic per-
mutation flowshop model assumes no interruptions once job processing
begins. Additionally, machinery is the sole resource utilized in the
production process. Finally, each machine can process only one task at a
time and each task can be undertaken on only one machine at once. The
objective is to identify the optimal job permutation that minimizes the
makespan (i.e., the maximum completion time). The notations listed in
Table 1 are used to clarify the solution procedure.

The pseudocode for the RAIG algorithm is presented in Fig. 1. The
following subsections elaborate on the mechanisms employed in the

Table 1
Mathematical notations and symbols.

Notation Description

i Machine tag, where i = 1, ...,m
j Job index, where j = 1, ...,n
m Quantity of machines
n Quantity of jobs
pij The time it takes to process job ‘i’ on machine ‘j’
α Length of the candidate list
ε A threshold to decide whether or not to retain the used α value
Cij Time of completing job ‘i’ on machine ‘j’
L The initial list
S The existing partial schedule
LN N-list of length 1 ≤ N ≤ n − 1
πS Solutions generated by the initialization module
πincumbent The incumbent solution
πbest The best solution
πR, πRʹ Vector of extracted jobs and sorted extracted jobs
πP The job sequence after removing the extracted jobs
πnew New solution in the local search phase

K.-C. Ying et al. Intelligent Systems with Applications 24 (2024) 200451

2

pseudocode.

2.1. Initialization module

This study adopts the N-List technique developed by Puka, Duda,
Stawowy and Skalna (2021) and enhances it for reinforcement
learning-based applications in combinatorial optimization. The algo-
rithm is inspired by the NEH algorithm (Nawaz, Enscore & Ham, 1983)
and the concept of multiple candidate lists. The general idea involves
inserting the best candidate jobs from the N-list (LN) into the current
partial schedule, where the unassigned jobs remain in the candidate list
for the subsequent rounds and the process continues until every job is
inserted into the current partial schedule, resulting in a feasible initial
solution. In addition to enhancing the initial solutions, the N-List pro-
cedure can also be used to achieve power balance in metaheuristics. LN
has a length of 1 ≤ N ≤ n − 1 where N = 1 reduces the algorithm to the
basic form of NEH. The N-List mechanism provides superior diversity in
the search space compared to other common initialization methods,
such as random and rule-based initialization. This diversity often leads
to higher-quality initial solutions, which are crucial in optimization
contexts where the initial solution significantly impacts both the
convergence rate and the algorithm’s overall performance. Finally, the
N-List mechanism not only improves the quality of the initial solution,
but also enables the initialization module to operate effectively in par-
allel computing environments. This capability is advantageous over
other commonly used initialization strategies and further enhances its
suitability for large-scale optimization problems.

The modified procedure includes the following steps:

1. Sort the jobs in non-increasing order based on total processing time
and save the sorted jobs in the initial list, L =

{
j[1], j[2],…, j[n]

}
.

2. Insert the first job from the initial list into the current partial
schedule S; that is, S = {j[1]}, and remove it from L.

3. Set the candidate list as LN = {j[2], …, j[N+1]}. Evaluate each job in LN
by placing it in all possible positions within the existing partial
schedule, S. Select the job that yields the best outcome and remove
this job from LN. Set the best outcome as the current partial schedule.

4. If L ∕= ϕ, move the first job from L to LN and remove it from L.
5. Repeat steps 3 and 4 until all jobs are inserted into S.

This procedure is illustrated with an example. Consider an example
based on the information shown in Table 2. Fig. 2 illustrates this pro-
cedure for the case when LN = 1. After extracting the first job and
placing it in every possible position, the best outcome is considered the
best partial schedule; this procedure continues until all jobs are inserted.

The initialization procedure differs when LN > 1. For LN = 2, every
time a job needs to be inserted, two candidates from the N-List are
considered to explore all possibilities. The illustrative procedure is
depicted in Fig. 3. In this example, the jobs are initially sorted in
descending order based on total processing time. The job with the largest
total processing time, i.e., job 3, is inserted first. In the next step, the two
candidates from LN are selected, and inserted into every possible posi-
tion of the partial schedule to identify the most-competitive alternative.

Fig. 1. Pseudocode of the RAIG algorithm.

Table 2
The illustrative example.

Job M1 M2 M3 M4 M5 Total processing time

J1 7 59 22 73 38 199
J2 92 33 73 22 54 274
J3 75 66 32 64 42 279
J4 44 5 53 51 20 173
J5 25 15 10 24 21 95

K.-C. Ying et al. Intelligent Systems with Applications 24 (2024) 200451

3

This procedure results in the partial schedule
{
j1, j3

}
in the second step,

{
j1, j3, j4

}
in the third step,

{
j1, j3, j5, j4

}
in the fourth step, and the

complete schedule of
{
j1, j3, j2, j5, j4

}
. It is worth noting that If LN = 3,

three candidates will be considered for insertion. Comparison of the
outcomes in Figs. 2 and 3 shows that LN = 2 results in a better initial
solution. This difference may become more significant when solving

Fig. 2. Visual illustration of solution initialization when LN = 1.

Fig. 3. Visual illustration of solution initialization when LN = 2.

K.-C. Ying et al. Intelligent Systems with Applications 24 (2024) 200451

4

industry-scale problems.

2.2. Epsilon-greedy mechanism

The IG algorithm has demonstrated a strong exploitation power, but
it is prone to falling into local optima traps. The imbalance between the
exploitation and exploration abilities often results in suboptimal situa-
tions. To address this issue, the epsilon-greedy policy was developed,
which iteratively uses reinforcement learning to reconcile the solution
algorithm’s exploration and exploitation in stochastic search environ-
ments. The learning module helps the search algorithm prioritize actions
with the best outcomes through a rewarding mechanism. The reward
function, shown in Eq. (1), is used as the basis of the rewarding mech-
anism, where Vt represents the value of the selected action, i.e., α; n
indicates the total number of times the action has been selected; Vt− 1 is
the value calculated for the last selected action; Rt is the reward value
assigned to the selected action.

The epsilon-greedy selection strategy is a straightforward yet
powerful approach commonly employed in reinforcement learning al-
gorithms to balance exploration and exploitation. This method regulates
the balance by incorporating a parameter known as "epsilon" (ε), which
defines the probability of engaging in exploration. At each decision-
making step, the algorithm samples a random number from a uniform
distribution U(0,1). If this number is below the epsilon (ε) threshold, the
algorithm selects an action randomly, leveraging the roulette wheel
selection method to facilitate exploration. Otherwise, if the number
meets or exceeds ε, the algorithm chooses the action with the highest
fitness value based on prior steps, favoring exploitation. Overall, higher
values of epsilon favor exploration, while lower values favor
exploitation.

Inspired by the epsilon-greedy selection strategy, the fitness function
in Eq. (2) regulates the rewards considering the makespan value of the
job schedules, where fitA

iter represents the outcome (fitness) of the
selected action to be used in the upcoming round of roulette wheel se-
lection; nA is the total number of times action A has been selected in the
solution procedure. If the obtained makespan value is better in this trial,
the updated fitness function value of the selected action will be more
conducive to the next choice; otherwise, a lower fitness function value
decreases the odds of selecting the action in the upcoming iteration.

Vt =
n − 1

n
× Vt− 1 +

1
n
× Rt (1)

fitN
iter =

nN − 1
nN × fitN

iter− 1 +
1
nN × [Cmax(π) − Cmax(πʹ)] (2)

2.3. Destruction/construction mechanism

Jobs are drawn randomly to re-construct an existing solution. The
destruction parameter, d, indicates how many jobs are drawn in the
destruction procedure, and the most competitive setting is selected
through calibration experiments. The jobs extracted during the
destruction phase are saved in vector πR.

Next, the α-List is used to arrange the extracted jobs in order of the
total processing time to carry out the construction procedure. In each
construction cycle, the jobs listed in the α-List are inserted into every
possible position of the current partial schedule, one by one, and the
option with the best makespan value is selected. The acceptance
mechanism decides whether to update the current best and incumbent
solutions.

2.4. Acceleration method

NEH (Nawaz et al., 1983) is extensively used as a constructive heu-
ristic for solving PFSP and its variants. The NEH process consists of: (1)
calculating the overall processing times of jobs and sorting them in

non-decreasing order; (2) scheduling the first two jobs from the initial
sequence and inserting the next jobs into the partial solution where the
makespan is the least (a total of k possibilities), which have the
computational complexities of O(mn + nlogn) and O

(
mn3), respectively.

Thus, the overall time complexity is O
(
mn3). In this study, the acceler-

ation approach proposed by Taillard (1993) is applied to reduce the
RAIG algorithm’s computational complexity.

2.5. Acceptance mechanism

The acceptance mechanism developed by Ruiz, Pan and Naderi
(2019) is adopted in this study. This approach is inspired by the
annealing processes of metals and uses Eq. (3) to determine the accep-
tance or rejection of a new, worse solution. Given that the existing so-
lution is π and the ‘worse’ new solution under acceptance consideration
is πʹ, the acceptance probability is calculated based on the current
temperature (T) and the relative difference between their respective
fitness values, i.e., (Cmax(πʹ) − Cmax(π))/Cmax(π). This approach uses a
random value that does not exceed the acceptance probability as a cri-
terion to accept a worse new solution; otherwise, the search continues
with the current schedule until the termination condition is met. The
temperature value is derived from Eq. (4), where T refers to the initial
temperature and is adjusted after every calculation. Assuming a fixed
temperature value, a smaller difference between makespan values in-
creases the acceptance probability. Alternatively, a greater difference
between makespan values tightens the acceptance threshold. The
acceptance mechanism is less restrictive at the beginning of the search
and gradually becomes more restrictive as the search progresses. Finally,
considering the relative percentage difference (RPD; Eq. (5)) allows us to
differentiate situations with similar makespan value differences (e.g.,
100 & 110 vs. 1000 & 1010, where the difference in the former is more
significant).

Random ≤ e
− RPD

Temperature (3)

Temperature = T ×

∑m

i=1

∑n

j=1
Pij

n × m × 10
(4)

RPD =
Cmax(πʹ) − Cmax(π)

Cmax(π)
× 100 (5)

The initialization module, destruction/construction mechanism, and
acceptance mechanism with the acceleration method have computa-
tional complexities of O(mn3), O(n3), and O(n), respectively. Thus, the
overall time complexity of RAIG is O(mn3), which is the same as that of
the original IG and the IG_RSLS algorithm.

3. Numerical analysis

3.1. Preliminaries

The IG_RSLS algorithm (Fernandez-Viagas & Framinan, 2014), which
is one of the best-performing algorithms for solving PFSPs, is considered
to be the baseline algorithm for evaluating RAIG’s performance. The
development environment for all compared algorithms was Microsoft
Visual Studio 2022 with C++ being the programming language. Code
compilation was performed with the Microsoft Visual C++ compiler,
applying the /O2 optimization flag to maximize execution speed by
enabling high-level optimizations like loop unrolling, function inlining,
and advanced memory usage optimizations. On the hardware side, the
experiments were conducted on a personal computer equipped with an
Intel(R) Core(™) i7–7700 CPU running at a base clock frequency of 3.60
GHz. This processor features 4 physical cores and 8 threads, allowing for
efficient multi-threaded execution. The machine was also configured
with 16 GB of DDR4 RAM, providing ample memory for the algorithms’

K.-C. Ying et al. Intelligent Systems with Applications 24 (2024) 200451

5

computational requirements. The operating system was Windows 10
(64-bit), ensuring smooth execution and access to necessary system re-
sources for the compiled binaries.

This study uses the standard dataset provided by Taillard (1993) to
investigate the algorithms’ performance. The dataset consists of 120
instances with 12 different configurations. The configurations are
characterized by different workloads (i.e., various job quantities) with
n ∈ {20, 50, 100, 200, 500}, different number of machines with m ∈ {5,
10, 20}, and job processing times generated using a Uniform [1, 99]

distribution. Each instance is solved five times using each of the solution
algorithms (a total of 600 experiments), and the best, worst, and average
fitness values are recorded for comparative analysis.

Finally, the algorithms are compared in terms of overall performance
for various workloads and the number of machines on the shop floor. To
evaluate performance, the best, worst, and average makespan values
obtained by each algorithm are used to calculate the RPD using Eq. (7).
In this formulation, Cmax(π) denotes the makespan of the solution under
evaluation, while Cmax(πbest) refers to the best-found makespan for the
particular instance. An RPD value of 0 represents the best solution, and a
smaller RPD value indicates a more competitive solution obtained by the
algorithm. Since the average value and comparisons between groups are

considered for performance evaluation, the results are presented in the
form of Average Relative Percentage Deviation (ARPD).

RPD =
Cmax(π) − Cmax(πbest)

Cmax(πbest)
× 100 (7)

3.2. Parameter calibration

To select the best parameter settings, different levels for the main
parameters of the RAIG algorithm are evaluated: d and T and ε; d denotes
the destruction size; T refers to the initial temperature of the acceptance
mechanism; and ε stands for a threshold to decide whether or not to
retain the value of α used in the current iteration.

Since the algorithm is an extension of the IG algorithm, the param-
eter setting was primarily based on the work of Ruiz and Stützle (2007).
For the calibration experiments, 12 test sets, each consisting of five test
instances, were randomly generated using the same configurations as
those of test instances provided by Taillard (1993). Following Ruiz and
Stützle (2007), Fisher’s Least Significant Difference (LSD) with 95
percent confidence was used for statistical analysis. As shown in Fig. 4
(a), the calibration results showed that the RAIG algorithm achieved the

Fig. 4. Calibration reference.

K.-C. Ying et al. Intelligent Systems with Applications 24 (2024) 200451

6

best RPD values when the destruction size was set to d = 4. The cali-
bration results in Fig. 4(b) confirmed that T = 0.5 was the best initial
temperature value to proceed with the calibration experiments.

According to Dos Santos Mignon and De Azevedo da Rocha (2017),
when the value of ε exceeds 0.5, there is no significant gain in perfor-
mance. Therefore, in this study, ε within the range of 0.1 to 0.4 was
considered for calibration. Each of the 12 test instances for calibration
experiments was solved using the RAIG algorithm with different values
of ε, and the best value of ε for each set was summarized in Table 3. In
addition, following Fernandez-Viagas and Framinan (2014), the
maximum computational time was set as the stopping condition for a
fair evaluation of the algorithms. To achieve a balance between
computational efficiency and solution quality, n × (m /2) × t was used to
define the maximum computational time, considering the workload, the
number of machines, and t = {30, 60, 90}, where t = 90 yielded the
best outcomes for solving PFSPs (Fernandez-Viagas & Framinan, 2014).

Based on the range of ARPDs, the parameter d is the most sensitive
one of all parameters. Under a fixed maximum computation time, a
higher value of d would result in more jobs being removed from the
incumbent solution, thereby increasing the computation time allocated
to the subsequent construction mechanism for each algorithmic itera-
tion, which in turn leads to a reduction in the total number of iterations.
Hence, an excessively large value of d would lead to a reduced number of
candidate solution evaluations, potentially hindering the discovery of
the best solution. The second most sensitive parameter is T, which
directly affects the acceptance probability of a new, worse solution in
the greedy search. A larger initial temperature value of the acceptance
mechanism tightens the acceptance threshold; thus, a suitable value of T
could balance the exploration-exploitation dilemma of the RAIG algo-
rithm. In contrast, parameter ε exhibits relatively minor sensitivity to
the performance of RAIG. No significant differences were observed be-
tween the ARPDs corresponding to different ε values within the range of
0.1 to 0.4.

3.3. Results analysis

Considering a total of 120 test instances, the number of optimal so-
lutions found by the algorithms is first analyzed. This is followed by the
number of times the RAIG algorithm outperforms the baseline algorithm
in terms of the best (Min), average (Avg), and worst (Max) fitness values.
It can be observed in Table 4 that RAIG performed better by yielding the
optimal solutions in more instances compared with IG_RSLS. Expectedly,
neither algorithm was able to converge to the optimal solution when
solving very large instances.

The small difference between the worst (79), best (86), and average
performance (79) of RAIG shows that the algorithm’s performance is
quite stable. Yielding 79 out of the 120 best-found solutions demon-
strates improved stability relative to the state-of-the-art IG.

Table 5 compares the algorithms using the RPD and ARPD metrics for
each instance group. RAIG outperforms the baseline algorithm in 27 out
of 36 cases and also yields smaller ARPDs for all three metrics.

Smaller ARPDs mean that integrating the learning modules resulted
in more effectiveness in the search procedure. The difference between
ARPD values becomes greater when considering the algorithms’ best
performance. The performance of the algorithms is further analyzed by
considering various problem sizes. Tables 6-7 summarize the results for
various workloads with and without considering the number of ma-
chines, respectively.

It is observed that RAIG performs better in terms of all the ARPD
values and all problem categories. The difference becomes wider in the
instances with the largest workload (i.e., 500 jobs) and larger workshops
(i.e., 20 machines).

As the final step in the numerical experiments, the paired sample t-
tests are conducted to determine if the RPDs obtained from the bench-
marks are meaningfully different. For this purpose, a one-tailed t-test is
used to determine whether RAIG performs significantly better than the
compared algorithm. The minimum, average, and maximum values are
considered separately for the tests; the results are summarized in
Table 8.

The statistical results, with a 95 percent confidence level, provide
dependable evidence that RAIG outperforms the baseline algorithm
considering the average and maximum RPDs. This confirms that RAIG
offers more reliable performance across a broad range of cases. The
improvement in the best fitness values when solving the small-scale
problems are not significant; the small p-value in the full range row,
however, implies that, while RAIG may not always significantly improve
upon the best outcome in every instance, it consistently produces better-
than-average results, making it a reliable algorithm in general.

Overall, one can claim that RAIG performs significantly more effec-
tively and robustly than the baseline algorithm. In terms of scalability,
the largest instances tested in the present study include 500 jobs and 20
machines, and the results indicated that RAIG maintains its competi-
tiveness as the problem size increases. However, further analysis is
required to assess RAIG’s computational efficiency in handling larger
and more complex instances. This will provide a basis for adapting RAIG

Table 3
Calibration results for RAIG.

Calibration test set Corresponding test instances Best value of ε

TN001 Ta001-Ta010 0.2
TN002 Ta011-Ta020 0.3
TN003 Ta021-Ta030 0.3
TN004 Ta031-Ta040 0.1
TN005 Ta041-Ta050 0.1
TN006 Ta051-Ta060 0.3
TN007 Ta061-Ta070 0.4
TN008 Ta071-Ta080 0.3
TN009 Ta081-Ta090 0.4
TN010 Ta091-Ta100 0.1
TN011 Ta101-Ta110 0.1
TN012 Ta111-Ta120 0.4

Table 4
Overall performance in terms of optimality counts.

Workload (total number of instances) Optimality counts

IG_RSLS RAIG

20(30) 10 13
50(30) 5 6
100(30) 5 8
200(20) 0 0
500(10) 0 0

RAIG (Min) RAIG (Avg) RAIG(Max)

Best Found Solutions 49 72 63
Tie 30 7 23

Table 5
Overall performance in terms of relative percentage deviation (best in bold).

Instances Min Avg Max

IG_RSLS RAIG IG_RSLS RAIG IG_RSLS RAIG

001:010 0.1842 0.1842 0.4923 0.3452 0.9688 0.5360
011:020 0.3431 0.2669 0.8249 0.6317 1.3198 0.9580
021:030 0.2834 0.2312 0.6426 0.5334 1.0455 0.8759
031:040 0.0964 0.0889 0.1759 0.1863 0.2573 0.3057
041:050 1.2134 1.2715 1.7413 1.6397 2.2898 2.1260
051:060 2.1175 2.0842 2.7490 2.5794 3.3191 3.1073
061:070 0.0439 0.0193 0.0836 0.0778 0.1722 0.1753
071:080 0.6372 0.4936 0.7581 0.7785 0.8917 0.9629
081:090 2.1468 2.1268 2.4436 2.5172 2.8455 2.9192
091:100 0.3516 0.3237 0.5611 0.4648 0.7718 0.6171
101:110 1.7636 1.8673 2.2580 2.2881 2.7774 2.5787
111:120 0.9223 0.8742 1.0491 0.9901 1.1909 1.0900
Average 0.8420 0.8193 1.1483 1.0860 1.4875 1.3543

K.-C. Ying et al. Intelligent Systems with Applications 24 (2024) 200451

7

as an optimization tool for developing decision-aid platforms.

4. Conclusions

Machine learning enables metaheuristic algorithms to perform better
throughout the search procedure by learning from the identified search
patterns and structures; this facilitates a more effective and efficient
move toward global optima. This study introduces the RAIG algorithm,
which is equipped with reinforcement learning and the α-List mecha-
nism for improved greedy search, as well as an N-List mechanism for
solution initialization. The reinforcement learning-based construction
mechanism uses a candidates list of length α for job insertions, where
the ε-greedy module decides whether to update the list.

As a classic combinatorial optimization problem, PFSP is used to
evaluate the algorithm’s performance by comparing it with a competi-
tive variant of the IG algorithm. The numerical analysis confirmed a
meaningful difference between the average and maximum makespans
found by the RAIG and baseline algorithms. Overall, the performance of
RAIG is about 6–9 percent better when solving large instances, while the
overall performance improvement is about 3 percent. It is also shown
that RAIG is significantly more robust than the baseline algorithm.

The classic optimization problem considered in this study is a fairly
simple variant of flowshop scheduling. This represents a limitation that
necessitates further research to evaluate the performance of RAIG in
comparison with the best-performing algorithms for more complex
combinatorial optimization problems. This may involve considering

other performance indicators and incorporating multi-objective opti-
mization to solve production scheduling problems with additional
constraints. Conducting an empirical analysis comparing the proposed
RAIG algorithm with a wider range of state-of-the-art deep learning or
reinforcement learning-based methods in terms of accuracy, efficiency,
computational complexity, and inference speed merits further investi-
gation. Validating these algorithms in real-world industrial settings,
which requires collaboration with industry partners and access to real-
world data, is another important and valuable area for future
research. From a search algorithm perspective, considering multiple
initial solutions instead of a single solution could improve the search
procedure and address the issue of getting trapped in local optima.
Additionally, proposing concrete frameworks for integrating lower-
bound identification modules could provide clear pathways for further
advancements. For instance, integrating a matheuristic-inspired algo-
rithm with the learning module may further enhance search effective-
ness. Last but not least, exploring RAIG’s applications in other
combinatorial optimization problems could highlight its versatility and
potential impact.

CRediT authorship contribution statement

Kuo-Ching Ying: Conceptualization, Methodology, Software, Su-
pervision, Writing – review & editing. Pourya Pourhejazy: Investiga-
tion, Writing – original draft. Shih-Han Cheng: Formal analysis, Data
curation.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

References

Abaimov, S., & Martellini, M. (2022). Understanding Machine Learning. In Machine
Learning for Cyber Agents. Advanced Sciences and Technologies for Security Applications.
Cham: Springer. https://doi.org/10.1007/978-3-030-91585-8_2.

Bernardes, J., Santos, M., Abreu, T., Prado, L., Miranda, D., Julio, R., et al. (2022).
Hydropower operation optimization using machine learning: A systematic review.
AI, 3(1), 78–99. https://doi.org/10.3390/ai3010006

Burcin Ozsoydan, F., & Sağir, M. (2021). Iterated greedy algorithms enhanced by hyper-
heuristic based learning for hybrid flexible flowshop scheduling problem with
sequence dependent setup times: A case study at a manufacturing plant. Computers &

Table 6
Relative performance deviation by the number of machines (best in bold).

Machines Jobs Min Avg Max

IG_RSLS RAIG IG_RSLS RAIG IG_RSLS RAIG

5 20 0.1842 0.1842 0.4923 0.3452 0.9688 0.5360
50 0.0964 0.0889 0.1759 0.1863 0.2573 0.3057
100 0.0439 0.0193 0.0836 0.0778 0.1722 0.1753
Average 0.1082 0.0975 0.2506 0.2031 0.4661 0.3390

10 20 0.3431 0.2669 0.8249 0.6317 1.3198 0.9580
50 1.2134 1.2715 1.7413 1.6397 2.2898 2.1260
100 0.6372 0.4936 0.7581 0.7785 0.8917 0.9629
200 0.3516 0.3237 0.5611 0.4648 0.7718 0.6171
Average 0.6363 0.5889 0.9713 0.8787 1.3183 1.1660

20 20 0.2834 0.2312 0.6426 0.5334 1.0455 0.8759
50 2.1175 2.0842 2.7490 2.5794 3.3191 3.1073
100 2.1468 2.1268 2.4436 2.5172 2.8455 2.9192
200 1.7636 1.8673 2.2580 2.2881 2.7774 2.5787
500 0.9223 0.8742 1.0491 0.9901 1.1909 1.0900
Average 1.4467 1.4367 1.8285 1.7816 2.2357 2.1142

Table 7
Average relative performance deviation considering the number of jobs.

Workload Min Avg Max

IG_RSLS RAIG IG_RSLS RAIG IG_RSLS RAIG

20 0.2702 0.2274 0.6533 0.5034 1.1114 0.7900
50 1.1424 1.1482 1.5554 1.4685 1.9554 1.8463
100 1.3920 1.3102 1.6008 1.6479 1.8686 1.9411
200 1.0576 1.0955 1.4095 1.3765 1.7746 1.5979
500 0.9223 0.8742 1.0491 0.9901 1.1909 1.0900
ARPD 0.9569 0.9311 1.2536 1.1973 1.5802 1.4531

Table 8
Statistical results for the performance evaluation of the algorithms.

Degree of Freedom T p-value

Minimum 119 0.812 0.209
Average 119 1.975 0.025
Maximum 119 3.020 0.001
Full range 119 2.547 0.006

K.-C. Ying et al. Intelligent Systems with Applications 24 (2024) 200451

8

https://doi.org/10.1007/978-3-030-91585-8_2
https://doi.org/10.3390/ai3010006

Operations Research, 125, Article 105044. https://doi.org/10.1016/J.
COR.2020.105044

Cheng, C.-Y., Pourhejazy, P., Ying, K.-C., & Lin, C.-F. (2021). Unsupervised learning-
based artificial bee colony for minimizing non-value-adding operations. Applied Soft
Computing, 105, Article 107280. https://doi.org/10.1016/j.asoc.2021.107280

de Sousa Junior, W. T., Montevechi, J. A. B., Miranda, R.de C., de Oliveira, M. L. M., &
Campos, A. T. (2020). Shop floor simulation optimization using machine learning to
improve parallel metaheuristics. Expert Systems with Applications, 150, Article
113272. https://doi.org/10.1016/J.ESWA.2020.113272

Dos Santos Mignon, A., & De Azevedo Da Rocha, R. L. (2017). An adaptive
implementation of ε-greedy in reinforcement learning. Procedia Computer Science,
109, 1146–1151. https://doi.org/10.1016/J.PROCS.2017.05.431

Fernandez-Viagas, V., & Framinan, J. M. (2014). On insertion tie-breaking rules in
heuristics for the permutation flowshop scheduling problem. Computers & Operations
Research, 45, 60–67. https://doi.org/10.1016/J.COR.2013.12.012

Fernandez-Viagas, V., Ruiz, R., & Framinan, J. M. (2017). A new vision of approximate
methods for the permutation flowshop to minimise makespan: State-of-the-art and
computational evaluation. European Journal of Operational Research, 257(3),
707–721. https://doi.org/10.1016/j.ejor.2016.09.055

Giuffrida, N., Fajardo-Calderin, J., Masegosa, A. D., Werner, F., Steudter, M., & Pilla, F.
(2022). Optimization and machine learning applied to last-mile logistics: A review.
Sustainability, 14(9), 5329. https://doi.org/10.3390/su14095329

Khosravian, A., Masih-Tehrani, M., Amirkhani, A., & Ebrahimi-Nejad, S. (2024). Robust
autonomous vehicle control by leveraging multi-stage MPC and quantized CNN in
HIL Framework. Applied Soft Computing, 162, Article 111802. https://doi.org/
10.1016/j.asoc.2024.111802

Li, C., Wei, X., Wang, J., Wang, S., & Zhang, S. (2024). A review of reinforcement
learning based hyper-heuristics. PeerJ Computer Science, 10, e2141. https://doi.org/
10.7717/peerj-cs.2141

Lu, R., Jiang, Z., Yang, T., Chen, Y., Wang, D., & Peng, X. (2024). A novel hybrid-action-
based deep reinforcement learning for industrial energy management. IEEE
Transactions on Industrial Informatics, 1–15. https://doi.org/10.1109/
TII.2024.3424529

Mondal, P. P., Galodha, A., Verma, V. K., Singh, V., Show, P. L., Awasthi, M. K., et al.
(2023). Review on machine learning-based bioprocess optimization, monitoring, and
control systems. Bioresource Technology, 370, Article 128523. https://doi.org/
10.1016/J.BIORTECH.2022.128523

Nawaz, M., Enscore, E. E., Jr, & Ham, I. (1983). A heuristic algorithm for the m-machine,
n-job flow-shop sequencing problem. Omega, 11(1), 91–95.

Park, B., & Kwon Bae, J. (2015). Using machine learning algorithms for housing price
prediction: The case of Fairfax County, Virginia housing data. Expert Systems with
Applications, 42(6), 2928–2934. https://doi.org/10.1016/J.ESWA.2014.11.040

Pourhejazy, P., Cheng, C.-Y., Ying, K.-C., & Nam, N. H. (2022). Meta-Lamarckian-based
iterated greedy for optimizing distributed two-stage assembly flowshops with mixed
setups. Annals of Operations Research. https://doi.org/10.1007/s10479-022-04537-2

Puka, R., Duda, J., Stawowy, A., & Skalna, I. (2021). N-NEH+ algorithm for solving
permutation flow shop problems. Computers & Operations Research, 132, Article
105296. https://doi.org/10.1016/j.cor.2021.105296

Rodríguez-Esparza, E., Masegosa, A. D., Oliva, D., & Onieva, E. (2024). A new hyper-
heuristic based on adaptive simulated annealing and reinforcement learning for the
capacitated electric vehicle routing problem. Expert Systems with Applications, 252,
Article 124197. https://doi.org/10.1016/j.eswa.2024.124197

Ruiz, R., Pan, Q.-K., & Naderi, B. (2019). Iterated greedy methods for the distributed
permutation flowshop scheduling problem. Omega, 83, 213–222. https://doi.org/
10.1016/j.omega.2018.03.004

Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. European Journal of Operational Research,
177(3), 2033–2049. https://doi.org/10.1016/j.ejor.2005.12.009

Stergiou, K., Ntakolia, C., Varytis, P., Koumoulos, E., Karlsson, P., & Moustakidis, S.
(2023). Enhancing property prediction and process optimization in building
materials through machine learning: A review. Computational Materials Science, 220,
Article 112031. https://doi.org/10.1016/J.COMMATSCI.2023.112031

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of
Operational Research, 64(2), 278–285.

Vakili, E., Amirkhani, A., & Mashadi, B. (2024). DQN-based ethical decision-making for
self-driving cars in unavoidable crashes: An applied ethical knob. Expert Systems with
Applications, 255, Article 124569. https://doi.org/10.1016/j.eswa.2024.124569

Weichert, D., Link, P., Stoll, A., Rüping, S., Ihlenfeldt, S., & Wrobel, S. (2019). A review
of machine learning for the optimization of production processes. The International
Journal of Advanced Manufacturing Technology, 104(5–8), 1889–1902. https://doi.
org/10.1007/s00170-019-03988-5

Ying, K.-C., & Lin, S.-W. (2022). Reinforcement learning iterated greedy algorithm for
distributed assembly permutation flowshop scheduling problems. Journal of Ambient
Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-022-04392-
w

Ying, K.-C., & Lin, S.-W. (2023). Minimizing makespan in two-stage assembly additive
manufacturing: A reinforcement learning iterated greedy algorithm. Applied Soft
Computing, 138, Article 110190. https://doi.org/10.1016/J.ASOC.2023.110190

Yu, H., Gao, K., Wu, N., Zhou, M., Suganthan, P. N., & Wang, S. (2024). Scheduling
multiobjective dynamic surgery problems via Q -learning-based meta-heuristics.
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 54(6), 3321–3333.
https://doi.org/10.1109/TSMC.2024.3352522

Yu, X., & Luo, W. (2023). Reinforcement learning-based multi-strategy cuckoo search
algorithm for 3D UAV path planning. Expert Systems with Applications, 223, Article
119910. https://doi.org/10.1016/J.ESWA.2023.119910

Yue, B., Ma, J., Shi, J., & Yang, J. (2024). A deep reinforcement learning-based adaptive
search for solving time-dependent green vehicle routing problem. IEEE access :
practical innovations, open solutions, 12, 33400–33419. https://doi.org/10.1109/
ACCESS.2024.3369474

Zhang, W., Gu, X., Tang, L., Yin, Y., Liu, D., & Zhang, Y. (2022). Application of machine
learning, deep learning and optimization algorithms in geoengineering and
geoscience: Comprehensive review and future challenge. Gondwana Research, 109,
1–17. https://doi.org/10.1016/J.GR.2022.03.015

Zhang, Z., Shao, Z., Shao, W., Chen, J., & Pi, D. (2024). MRLM: A meta-reinforcement
learning-based metaheuristic for hybrid flow-shop scheduling problem with learning
and forgetting effects. Swarm and Evolutionary Computation, 85, Article 101479.
https://doi.org/10.1016/j.swevo.2024.101479

K.-C. Ying et al. Intelligent Systems with Applications 24 (2024) 200451

9

https://doi.org/10.1016/J.COR.2020.105044
https://doi.org/10.1016/J.COR.2020.105044
https://doi.org/10.1016/j.asoc.2021.107280
https://doi.org/10.1016/J.ESWA.2020.113272
https://doi.org/10.1016/J.PROCS.2017.05.431
https://doi.org/10.1016/J.COR.2013.12.012
https://doi.org/10.1016/j.ejor.2016.09.055
https://doi.org/10.3390/su14095329
https://doi.org/10.1016/j.asoc.2024.111802
https://doi.org/10.1016/j.asoc.2024.111802
https://doi.org/10.7717/peerj-cs.2141
https://doi.org/10.7717/peerj-cs.2141
https://doi.org/10.1109/TII.2024.3424529
https://doi.org/10.1109/TII.2024.3424529
https://doi.org/10.1016/J.BIORTECH.2022.128523
https://doi.org/10.1016/J.BIORTECH.2022.128523
http://refhub.elsevier.com/S2667-3053(24)00125-X/sbref0013
http://refhub.elsevier.com/S2667-3053(24)00125-X/sbref0013
https://doi.org/10.1016/J.ESWA.2014.11.040
https://doi.org/10.1007/s10479-022-04537-2
https://doi.org/10.1016/j.cor.2021.105296
https://doi.org/10.1016/j.eswa.2024.124197
https://doi.org/10.1016/j.omega.2018.03.004
https://doi.org/10.1016/j.omega.2018.03.004
https://doi.org/10.1016/j.ejor.2005.12.009
https://doi.org/10.1016/J.COMMATSCI.2023.112031
http://refhub.elsevier.com/S2667-3053(24)00125-X/sbref0021
http://refhub.elsevier.com/S2667-3053(24)00125-X/sbref0021
https://doi.org/10.1016/j.eswa.2024.124569
https://doi.org/10.1007/s00170-019-03988-5
https://doi.org/10.1007/s00170-019-03988-5
https://doi.org/10.1007/s12652-022-04392-w
https://doi.org/10.1007/s12652-022-04392-w
https://doi.org/10.1016/J.ASOC.2023.110190
https://doi.org/10.1109/TSMC.2024.3352522
https://doi.org/10.1016/J.ESWA.2023.119910
https://doi.org/10.1109/ACCESS.2024.3369474
https://doi.org/10.1109/ACCESS.2024.3369474
https://doi.org/10.1016/J.GR.2022.03.015
https://doi.org/10.1016/j.swevo.2024.101479

	Reinforcement learning-based alpha-list iterated greedy for production scheduling
	1 Introduction
	2 Proposed method
	2.1 Initialization module
	2.2 Epsilon-greedy mechanism
	2.3 Destruction/construction mechanism
	2.4 Acceleration method
	2.5 Acceptance mechanism

	3 Numerical analysis
	3.1 Preliminaries
	3.2 Parameter calibration
	3.3 Results analysis

	4 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	datalink5
	References

