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A B S T R A C T

Metaheuristics can benefit from analyzing patterns and regularities in data to perform more effective searches in 
the solution space. In line with the emerging trend in the optimization literature, this study introduces the 
Reinforcement-learning-based Alpha-List Iterated Greedy (RAIG) algorithm to contribute to the advances in 
machine learning-based optimization, notably for solving combinatorial problems. RAIG uses an N-List mecha-
nism for solution initialization and its solution improvement procedure is enhanced by Reinforcement Learning 
and an Alpha-List mechanism for more effective searches. A classic engineering optimization problem, the 
Permutation Flowshop Scheduling Problem (PFSP), is considered for numerical experiments to evaluate RAIG’s 
performance. Highly competitive solutions to the classic scheduling problem are identified, with up to 9% 
improvement compared to the baseline, when solving large-size instances. Experimental results also show that 
the RAIG algorithm performs more robustly than the baseline algorithm. Statistical tests confirm that RAIG is 
superior and hence can be introduced as a strong benchmark for future studies.

1. Introduction

Machine learning offers solutions to many of the old and emerging 
engineering challenges. Engineering tools and methods are widely used 
to improve real-world system subprocesses through machine learning, 
either as a decision aid in an existing system or in determining the 
optimal design of a new system. Engineering optimization is a prime 
example of a machine learning use case with growing popularity (Park & 
Kwon Bae, 2015; X. Yu & Luo, 2023).

Linear and static models perform well in deterministic environments, 
while machine learning excels in complex and stochastic engineering 
optimization problems (Abaimov & Martellini, 2022). Considering the 
stochastic nature of metaheuristics, researchers are using machine 
learning to enhance the search procedure in the optimization solution 
space. Machine learning applications in metaheuristics can be found in 
optimizing production processes (Weichert et al., 2019), logistics 
(Giuffrida et al., 2022), geoengineering and geoscience (W. Zhang et al., 
2022), hydropower operations (Bernardes et al., 2022), bioprocesses 
(Mondal et al., 2023), and material science (Stergiou et al., 2023), 
among other contexts.

Machine learning methods are typically categorized into four main 

types: supervised, unsupervised, semi-supervised, and reinforcement 
learning. In supervised learning, the model is trained on a labeled 
dataset, in which each input is associated with a corresponding output 
label. The goal is to learn a mapping from inputs to outputs, enabling the 
model to make predictions on unseen data. Common algorithms include 
decision trees, support vector machines, and neural networks. In unsu-
pervised learning, the model is trained on data without explicit labels. 
The goal is to find hidden patterns or structures within the data. Com-
mon tasks include clustering, dimensionality reduction, and anomaly 
detection, with algorithms like k-means clustering and principal 
component analysis being widely used. In semi-supervised learning, the 
model is trained on a dataset containing a small amount of labeled data 
and a large amount of unlabeled data. The key idea is to leverage the 
abundant unlabeled data to improve learning performance; semi- 
supervised learning is particularly useful in scenarios where obtaining 
labeled data is difficult or costly while unlabeled data is readily avail-
able. Examples of semi-supervised learning algorithms include self- 
training, co-training, and graph-based methods. In reinforcement 
learning, the model learns through interacting with its environment and 
receiving feedback in the form of rewards or penalties. The goal is to 
learn a policy that maximizes the cumulative reward over time. 
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Reinforcement learning has applications in decision-making tasks where 
the outcome is influenced by a sequence of actions. Algorithms like the 
epsilon-greedy, Q-learning, policy gradients, and deep reinforcement 
learning methods are seminal examples.

Reinforcement learning-based algorithms are widely used to 
improve the search procedure in metaheuristics (Cheng, Pourhejazy, 
Ying & Lin, 2021; de Sousa Junior, Montevechi, Miranda, de Oliveira & 
Campos, 2020), as well as in modern engineering applications 
(Khosravian, Masih-Tehrani, Amirkhani & Ebrahimi-Nejad, 2024; 
Vakili, Amirkhani & Mashadi, 2024). Reinforcement learning in a met-
aheuristic algorithm involves improving the search procedure by 
rewarding a search trial that results in good outcomes 
(Rodríguez-Esparza, Masegosa, Oliva & Onieva, 2024) and, in some 
cases, penalizing errors and poorly performing procedures (Li, Wei, 
Wang, Wang & Zhang, 2024). Additionally, metaheuristics can take 
advantage of the reinforcement learning procedure by incorporating an 
automatic adjustment of search operators that considers the feedback 
information from prior searches (Zhang, Shao, Shao, Chen & Pi, 2024). 
Reinforcement learning modules have also been used to improve the 
efficiency of metaheuristics (Lu et al., 2024), select the best initialization 
method (H. Yu et al., 2024), and overcome local optima (Yue, Ma, Shi & 
Yang, 2024).

Integrating a learning module into the basic greedy search algorithm 
has resulted in notable improvements (Ying & Lin, 2022, 2023). Rein-
forcement learning is well-suited for the Iterated Greedy (IG) algo-
rithm’s framework for the following reasons: 

(1) Adaptability to dynamic environments. Reinforcement learning 
can adapt to changes in the environment or problem space, 
making it versatile in situations where the problem’s structure 
might evolve over time. The problem-solving process should shift 
as solutions are progressively refined. In this situation, adapt-
ability becomes crucial in IGs.

(2) Exploration-Exploitation trade-off. Reinforcement learning in-
corporates mechanisms that balance exploration (i.e., trying new 
solution paths) and exploitation (i.e., refining known good solu-
tions). This balance is important in IGs as it allows for exploring 
new solution paths while still focusing on improving the current 
solution.

(3) Learning from feedback. Reinforcement learning is designed to 
learn from feedback, using rewards to strengthen positive ac-
tions. In the context of the IG algorithm, this feedback-driven 
learning enables the algorithm to adjust its strategy based on 
the outcomes of previous iterations, resulting in a more effective 
and efficient search procedure.

These characteristics make reinforcement learning a better alterna-
tive for the IG framework compared with other machine learning tech-
niques in terms of enhancing the performance and adaptability of the IG 
algorithm when solving complex optimization problems.

Among optimization approaches used for production scheduling, the 
IG algorithm is widely recognized due to its simplicity, flexibility, and 
competitive performance. However, IGs have yet to fully benefit from 
the use of different forms of machine learning. Among the most relevant 
studies, Ozsoydan and Sağir (2021) improved the IG algorithm by 
integrating hyper-heuristic-based learning, which acts as the intensifi-
cation/diversification adaptation mechanism. Pourhejazy, Cheng, Ying 
and Nam (2022) integrated the meta-lamarckian learning-based 
perturbation mechanism into the IG algorithm to address the local op-
tima issue.

The present study introduces the Reinforcement-learning-based 
Alpha-list Iterated Greedy (RAIG) algorithm to contribute to the devel-
opment of machine learning-based optimization. In addition to the 
learning module, RAIG uses an N-List mechanism for solution initiali-
zation and an Alpha-List mechanism for more effective iterative neigh-
borhood searches. This novel integration makes RAIG highly adaptable 

and capable of delivering robust solutions across a variety of production 
scheduling challenges. Extensive numerical experiments are conducted 
to test whether RAIG can be established as a competitive benchmark 
algorithm.

IG and its variations have been successfully applied to optimize 
complex problems like the Permutation Flowshop Scheduling Problem 
(PFSP). For example, Fernandez-Viagas, Ruiz and Framinan (2017) and 
Fernandez-Viagas and Framinan (2014) proposed the IG algorithm with 
local search and a tie-breaking mechanism, hereafter denoted as 
IG_RSLS, which is one of the most competitive existing benchmarks for 
solving PFSPs. IG_RSLS outperformed well-known optimization algo-
rithms such as Discrete Differential Evolution (DDE), Estimation of 
Distribution Algorithm (EDA), Two-Stage Bat Algorithm, Multi-Start 
Simulated Annealing (MSSA), Hill Climb Search, and the earlier vari-
ants of the IG and Particle Swarm Optimization (PSO) algorithms. 
IG_RSLS is, therefore, considered the baseline algorithm to evaluate the 
performance of RAIG when solving PFSPs. In contrast to existing ap-
proaches that primarily focus on deterministic or heuristic-based ad-
aptations of IG, RAIG incorporates a data-driven learning component 
that allows the algorithm to improve continuously based on 
problem-specific feedback. Leveraging the strengths of reinforcement 
learning, our proposal enhances the performance and adaptability of IG, 
making it a powerful alternative to the state-of-the-art algorithms used 
in scheduling problems, such as IG_RSLS.

This research article is organized into three additional sections. 
Section 2 introduces the proposed algorithm and elaborates on its 
computational components. Section 3 evaluates the developed solution 
algorithm by comparing it with IG_RSLS in solving PFSPs. Finally, Sec-
tion 4 draws conclusions based on the research outcomes and suggests 
directions for future research.

2. Proposed method

To formalize the problem definition, let us assume that n jobs must be 
processed on m machines with deterministic processing times pij. In a 
permutation flowshop, jobs are processed in a fixed sequence on all 
machines, which complete the jobs in the same order. The basic per-
mutation flowshop model assumes no interruptions once job processing 
begins. Additionally, machinery is the sole resource utilized in the 
production process. Finally, each machine can process only one task at a 
time and each task can be undertaken on only one machine at once. The 
objective is to identify the optimal job permutation that minimizes the 
makespan (i.e., the maximum completion time). The notations listed in 
Table 1 are used to clarify the solution procedure.

The pseudocode for the RAIG algorithm is presented in Fig. 1. The 
following subsections elaborate on the mechanisms employed in the 

Table 1 
Mathematical notations and symbols.

Notation Description

i Machine tag, where i = 1, ...,m
j Job index, where j = 1, ...,n
m Quantity of machines
n Quantity of jobs
pij The time it takes to process job ‘i’ on machine ‘j’
α Length of the candidate list
ε A threshold to decide whether or not to retain the used α value
Cij Time of completing job ‘i’ on machine ‘j’
L The initial list
S The existing partial schedule
LN N-list of length 1 ≤ N ≤ n − 1
πS Solutions generated by the initialization module
πincumbent The incumbent solution
πbest The best solution
πR, πRʹ Vector of extracted jobs and sorted extracted jobs
πP The job sequence after removing the extracted jobs
πnew New solution in the local search phase
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pseudocode.

2.1. Initialization module

This study adopts the N-List technique developed by Puka, Duda, 
Stawowy and Skalna (2021) and enhances it for reinforcement 
learning-based applications in combinatorial optimization. The algo-
rithm is inspired by the NEH algorithm (Nawaz, Enscore & Ham, 1983) 
and the concept of multiple candidate lists. The general idea involves 
inserting the best candidate jobs from the N-list (LN) into the current 
partial schedule, where the unassigned jobs remain in the candidate list 
for the subsequent rounds and the process continues until every job is 
inserted into the current partial schedule, resulting in a feasible initial 
solution. In addition to enhancing the initial solutions, the N-List pro-
cedure can also be used to achieve power balance in metaheuristics. LN 
has a length of 1 ≤ N ≤ n − 1 where N = 1 reduces the algorithm to the 
basic form of NEH. The N-List mechanism provides superior diversity in 
the search space compared to other common initialization methods, 
such as random and rule-based initialization. This diversity often leads 
to higher-quality initial solutions, which are crucial in optimization 
contexts where the initial solution significantly impacts both the 
convergence rate and the algorithm’s overall performance. Finally, the 
N-List mechanism not only improves the quality of the initial solution, 
but also enables the initialization module to operate effectively in par-
allel computing environments. This capability is advantageous over 
other commonly used initialization strategies and further enhances its 
suitability for large-scale optimization problems.

The modified procedure includes the following steps: 

1. Sort the jobs in non-increasing order based on total processing time 
and save the sorted jobs in the initial list, L =

{
j[1], j[2],…, j[n]

}
.

2. Insert the first job from the initial list into the current partial 
schedule S; that is, S = {j[1]}, and remove it from L.

3. Set the candidate list as LN = {j[2], …, j[N+1]}. Evaluate each job in LN 
by placing it in all possible positions within the existing partial 
schedule, S. Select the job that yields the best outcome and remove 
this job from LN. Set the best outcome as the current partial schedule.

4. If L ∕= ϕ, move the first job from L to LN and remove it from L.
5. Repeat steps 3 and 4 until all jobs are inserted into S.

This procedure is illustrated with an example. Consider an example 
based on the information shown in Table 2. Fig. 2 illustrates this pro-
cedure for the case when LN = 1. After extracting the first job and 
placing it in every possible position, the best outcome is considered the 
best partial schedule; this procedure continues until all jobs are inserted.

The initialization procedure differs when LN > 1. For LN = 2, every 
time a job needs to be inserted, two candidates from the N-List are 
considered to explore all possibilities. The illustrative procedure is 
depicted in Fig. 3. In this example, the jobs are initially sorted in 
descending order based on total processing time. The job with the largest 
total processing time, i.e., job 3, is inserted first. In the next step, the two 
candidates from LN are selected, and inserted into every possible posi-
tion of the partial schedule to identify the most-competitive alternative. 

Fig. 1. Pseudocode of the RAIG algorithm.

Table 2 
The illustrative example.

Job M1 M2 M3 M4 M5 Total processing time

J1 7 59 22 73 38 199
J2 92 33 73 22 54 274
J3 75 66 32 64 42 279
J4 44 5 53 51 20 173
J5 25 15 10 24 21 95
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This procedure results in the partial schedule 
{
j1, j3

}
in the second step, 

{
j1, j3, j4

}
in the third step, 

{
j1, j3, j5, j4

}
in the fourth step, and the 

complete schedule of 
{
j1, j3, j2, j5, j4

}
. It is worth noting that If LN = 3, 

three candidates will be considered for insertion. Comparison of the 
outcomes in Figs. 2 and 3 shows that LN = 2 results in a better initial 
solution. This difference may become more significant when solving 

Fig. 2. Visual illustration of solution initialization when LN = 1.

Fig. 3. Visual illustration of solution initialization when LN = 2.
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industry-scale problems.

2.2. Epsilon-greedy mechanism

The IG algorithm has demonstrated a strong exploitation power, but 
it is prone to falling into local optima traps. The imbalance between the 
exploitation and exploration abilities often results in suboptimal situa-
tions. To address this issue, the epsilon-greedy policy was developed, 
which iteratively uses reinforcement learning to reconcile the solution 
algorithm’s exploration and exploitation in stochastic search environ-
ments. The learning module helps the search algorithm prioritize actions 
with the best outcomes through a rewarding mechanism. The reward 
function, shown in Eq. (1), is used as the basis of the rewarding mech-
anism, where Vt represents the value of the selected action, i.e., α; n 
indicates the total number of times the action has been selected; Vt− 1 is 
the value calculated for the last selected action; Rt is the reward value 
assigned to the selected action.

The epsilon-greedy selection strategy is a straightforward yet 
powerful approach commonly employed in reinforcement learning al-
gorithms to balance exploration and exploitation. This method regulates 
the balance by incorporating a parameter known as "epsilon" (ε), which 
defines the probability of engaging in exploration. At each decision- 
making step, the algorithm samples a random number from a uniform 
distribution U(0,1). If this number is below the epsilon (ε) threshold, the 
algorithm selects an action randomly, leveraging the roulette wheel 
selection method to facilitate exploration. Otherwise, if the number 
meets or exceeds ε, the algorithm chooses the action with the highest 
fitness value based on prior steps, favoring exploitation. Overall, higher 
values of epsilon favor exploration, while lower values favor 
exploitation.

Inspired by the epsilon-greedy selection strategy, the fitness function 
in Eq. (2) regulates the rewards considering the makespan value of the 
job schedules, where fitA

iter represents the outcome (fitness) of the 
selected action to be used in the upcoming round of roulette wheel se-
lection; nA is the total number of times action A has been selected in the 
solution procedure. If the obtained makespan value is better in this trial, 
the updated fitness function value of the selected action will be more 
conducive to the next choice; otherwise, a lower fitness function value 
decreases the odds of selecting the action in the upcoming iteration. 

Vt =
n − 1

n
× Vt− 1 +

1
n
× Rt (1) 

fitN
iter =

nN − 1
nN × fitN

iter− 1 +
1
nN × [Cmax(π) − Cmax(πʹ)] (2) 

2.3. Destruction/construction mechanism

Jobs are drawn randomly to re-construct an existing solution. The 
destruction parameter, d, indicates how many jobs are drawn in the 
destruction procedure, and the most competitive setting is selected 
through calibration experiments. The jobs extracted during the 
destruction phase are saved in vector πR.

Next, the α-List is used to arrange the extracted jobs in order of the 
total processing time to carry out the construction procedure. In each 
construction cycle, the jobs listed in the α-List are inserted into every 
possible position of the current partial schedule, one by one, and the 
option with the best makespan value is selected. The acceptance 
mechanism decides whether to update the current best and incumbent 
solutions.

2.4. Acceleration method

NEH (Nawaz et al., 1983) is extensively used as a constructive heu-
ristic for solving PFSP and its variants. The NEH process consists of: (1) 
calculating the overall processing times of jobs and sorting them in 

non-decreasing order; (2) scheduling the first two jobs from the initial 
sequence and inserting the next jobs into the partial solution where the 
makespan is the least (a total of k possibilities), which have the 
computational complexities of O(mn + nlogn) and O

(
mn3), respectively. 

Thus, the overall time complexity is O
(
mn3). In this study, the acceler-

ation approach proposed by Taillard (1993) is applied to reduce the 
RAIG algorithm’s computational complexity.

2.5. Acceptance mechanism

The acceptance mechanism developed by Ruiz, Pan and Naderi 
(2019) is adopted in this study. This approach is inspired by the 
annealing processes of metals and uses Eq. (3) to determine the accep-
tance or rejection of a new, worse solution. Given that the existing so-
lution is π and the ‘worse’ new solution under acceptance consideration 
is πʹ, the acceptance probability is calculated based on the current 
temperature (T) and the relative difference between their respective 
fitness values, i.e., (Cmax(πʹ) − Cmax(π))/Cmax(π). This approach uses a 
random value that does not exceed the acceptance probability as a cri-
terion to accept a worse new solution; otherwise, the search continues 
with the current schedule until the termination condition is met. The 
temperature value is derived from Eq. (4), where T refers to the initial 
temperature and is adjusted after every calculation. Assuming a fixed 
temperature value, a smaller difference between makespan values in-
creases the acceptance probability. Alternatively, a greater difference 
between makespan values tightens the acceptance threshold. The 
acceptance mechanism is less restrictive at the beginning of the search 
and gradually becomes more restrictive as the search progresses. Finally, 
considering the relative percentage difference (RPD; Eq. (5)) allows us to 
differentiate situations with similar makespan value differences (e.g., 
100 & 110 vs. 1000 & 1010, where the difference in the former is more 
significant). 

Random ≤ e
− RPD

Temperature (3) 

Temperature = T ×

∑m

i=1

∑n

j=1
Pij

n × m × 10
(4) 

RPD =
Cmax(πʹ) − Cmax(π)

Cmax(π)
× 100 (5) 

The initialization module, destruction/construction mechanism, and 
acceptance mechanism with the acceleration method have computa-
tional complexities of O(mn3), O(n3), and O(n), respectively. Thus, the 
overall time complexity of RAIG is O(mn3), which is the same as that of 
the original IG and the IG_RSLS algorithm.

3. Numerical analysis

3.1. Preliminaries

The IG_RSLS algorithm (Fernandez-Viagas & Framinan, 2014), which 
is one of the best-performing algorithms for solving PFSPs, is considered 
to be the baseline algorithm for evaluating RAIG’s performance. The 
development environment for all compared algorithms was Microsoft 
Visual Studio 2022 with C++ being the programming language. Code 
compilation was performed with the Microsoft Visual C++ compiler, 
applying the /O2 optimization flag to maximize execution speed by 
enabling high-level optimizations like loop unrolling, function inlining, 
and advanced memory usage optimizations. On the hardware side, the 
experiments were conducted on a personal computer equipped with an 
Intel(R) Core(™) i7–7700 CPU running at a base clock frequency of 3.60 
GHz. This processor features 4 physical cores and 8 threads, allowing for 
efficient multi-threaded execution. The machine was also configured 
with 16 GB of DDR4 RAM, providing ample memory for the algorithms’ 
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computational requirements. The operating system was Windows 10 
(64-bit), ensuring smooth execution and access to necessary system re-
sources for the compiled binaries.

This study uses the standard dataset provided by Taillard (1993) to 
investigate the algorithms’ performance. The dataset consists of 120 
instances with 12 different configurations. The configurations are 
characterized by different workloads (i.e., various job quantities) with 
n ∈ {20, 50, 100, 200, 500}, different number of machines with m ∈ {5,
10, 20}, and job processing times generated using a Uniform [1, 99]

distribution. Each instance is solved five times using each of the solution 
algorithms (a total of 600 experiments), and the best, worst, and average 
fitness values are recorded for comparative analysis.

Finally, the algorithms are compared in terms of overall performance 
for various workloads and the number of machines on the shop floor. To 
evaluate performance, the best, worst, and average makespan values 
obtained by each algorithm are used to calculate the RPD using Eq. (7). 
In this formulation, Cmax(π) denotes the makespan of the solution under 
evaluation, while Cmax(πbest) refers to the best-found makespan for the 
particular instance. An RPD value of 0 represents the best solution, and a 
smaller RPD value indicates a more competitive solution obtained by the 
algorithm. Since the average value and comparisons between groups are 

considered for performance evaluation, the results are presented in the 
form of Average Relative Percentage Deviation (ARPD). 

RPD =
Cmax(π) − Cmax(πbest)

Cmax(πbest)
× 100 (7) 

3.2. Parameter calibration

To select the best parameter settings, different levels for the main 
parameters of the RAIG algorithm are evaluated: d and T and ε; d denotes 
the destruction size; T refers to the initial temperature of the acceptance 
mechanism; and ε stands for a threshold to decide whether or not to 
retain the value of α used in the current iteration.

Since the algorithm is an extension of the IG algorithm, the param-
eter setting was primarily based on the work of Ruiz and Stützle (2007). 
For the calibration experiments, 12 test sets, each consisting of five test 
instances, were randomly generated using the same configurations as 
those of test instances provided by Taillard (1993). Following Ruiz and 
Stützle (2007), Fisher’s Least Significant Difference (LSD) with 95 
percent confidence was used for statistical analysis. As shown in Fig. 4
(a), the calibration results showed that the RAIG algorithm achieved the 

Fig. 4. Calibration reference.
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best RPD values when the destruction size was set to d = 4. The cali-
bration results in Fig. 4(b) confirmed that T = 0.5 was the best initial 
temperature value to proceed with the calibration experiments.

According to Dos Santos Mignon and De Azevedo da Rocha (2017), 
when the value of ε exceeds 0.5, there is no significant gain in perfor-
mance. Therefore, in this study, ε within the range of 0.1 to 0.4 was 
considered for calibration. Each of the 12 test instances for calibration 
experiments was solved using the RAIG algorithm with different values 
of ε, and the best value of ε for each set was summarized in Table 3. In 
addition, following Fernandez-Viagas and Framinan (2014), the 
maximum computational time was set as the stopping condition for a 
fair evaluation of the algorithms. To achieve a balance between 
computational efficiency and solution quality, n × (m /2) × t was used to 
define the maximum computational time, considering the workload, the 
number of machines, and t = {30, 60, 90}, where t = 90 yielded the 
best outcomes for solving PFSPs (Fernandez-Viagas & Framinan, 2014).

Based on the range of ARPDs, the parameter d is the most sensitive 
one of all parameters. Under a fixed maximum computation time, a 
higher value of d would result in more jobs being removed from the 
incumbent solution, thereby increasing the computation time allocated 
to the subsequent construction mechanism for each algorithmic itera-
tion, which in turn leads to a reduction in the total number of iterations. 
Hence, an excessively large value of d would lead to a reduced number of 
candidate solution evaluations, potentially hindering the discovery of 
the best solution. The second most sensitive parameter is T, which 
directly affects the acceptance probability of a new, worse solution in 
the greedy search. A larger initial temperature value of the acceptance 
mechanism tightens the acceptance threshold; thus, a suitable value of T 
could balance the exploration-exploitation dilemma of the RAIG algo-
rithm. In contrast, parameter ε exhibits relatively minor sensitivity to 
the performance of RAIG. No significant differences were observed be-
tween the ARPDs corresponding to different ε values within the range of 
0.1 to 0.4.

3.3. Results analysis

Considering a total of 120 test instances, the number of optimal so-
lutions found by the algorithms is first analyzed. This is followed by the 
number of times the RAIG algorithm outperforms the baseline algorithm 
in terms of the best (Min), average (Avg), and worst (Max) fitness values. 
It can be observed in Table 4 that RAIG performed better by yielding the 
optimal solutions in more instances compared with IG_RSLS. Expectedly, 
neither algorithm was able to converge to the optimal solution when 
solving very large instances.

The small difference between the worst (79), best (86), and average 
performance (79) of RAIG shows that the algorithm’s performance is 
quite stable. Yielding 79 out of the 120 best-found solutions demon-
strates improved stability relative to the state-of-the-art IG.

Table 5 compares the algorithms using the RPD and ARPD metrics for 
each instance group. RAIG outperforms the baseline algorithm in 27 out 
of 36 cases and also yields smaller ARPDs for all three metrics.

Smaller ARPDs mean that integrating the learning modules resulted 
in more effectiveness in the search procedure. The difference between 
ARPD values becomes greater when considering the algorithms’ best 
performance. The performance of the algorithms is further analyzed by 
considering various problem sizes. Tables 6-7 summarize the results for 
various workloads with and without considering the number of ma-
chines, respectively.

It is observed that RAIG performs better in terms of all the ARPD 
values and all problem categories. The difference becomes wider in the 
instances with the largest workload (i.e., 500 jobs) and larger workshops 
(i.e., 20 machines).

As the final step in the numerical experiments, the paired sample t- 
tests are conducted to determine if the RPDs obtained from the bench-
marks are meaningfully different. For this purpose, a one-tailed t-test is 
used to determine whether RAIG performs significantly better than the 
compared algorithm. The minimum, average, and maximum values are 
considered separately for the tests; the results are summarized in 
Table 8.

The statistical results, with a 95 percent confidence level, provide 
dependable evidence that RAIG outperforms the baseline algorithm 
considering the average and maximum RPDs. This confirms that RAIG 
offers more reliable performance across a broad range of cases. The 
improvement in the best fitness values when solving the small-scale 
problems are not significant; the small p-value in the full range row, 
however, implies that, while RAIG may not always significantly improve 
upon the best outcome in every instance, it consistently produces better- 
than-average results, making it a reliable algorithm in general.

Overall, one can claim that RAIG performs significantly more effec-
tively and robustly than the baseline algorithm. In terms of scalability, 
the largest instances tested in the present study include 500 jobs and 20 
machines, and the results indicated that RAIG maintains its competi-
tiveness as the problem size increases. However, further analysis is 
required to assess RAIG’s computational efficiency in handling larger 
and more complex instances. This will provide a basis for adapting RAIG 

Table 3 
Calibration results for RAIG.

Calibration test set Corresponding test instances Best value of ε

TN001 Ta001-Ta010 0.2
TN002 Ta011-Ta020 0.3
TN003 Ta021-Ta030 0.3
TN004 Ta031-Ta040 0.1
TN005 Ta041-Ta050 0.1
TN006 Ta051-Ta060 0.3
TN007 Ta061-Ta070 0.4
TN008 Ta071-Ta080 0.3
TN009 Ta081-Ta090 0.4
TN010 Ta091-Ta100 0.1
TN011 Ta101-Ta110 0.1
TN012 Ta111-Ta120 0.4

Table 4 
Overall performance in terms of optimality counts.

Workload (total number of instances) Optimality counts

IG_RSLS RAIG

20(30) 10 13
50(30) 5 6
100(30) 5 8
200(20) 0 0
500(10) 0 0

RAIG (Min) RAIG (Avg) RAIG(Max)

Best Found Solutions 49 72 63
Tie 30 7 23

Table 5 
Overall performance in terms of relative percentage deviation (best in bold).

Instances Min Avg Max

IG_RSLS RAIG IG_RSLS RAIG IG_RSLS RAIG

001:010 0.1842 0.1842 0.4923 0.3452 0.9688 0.5360
011:020 0.3431 0.2669 0.8249 0.6317 1.3198 0.9580
021:030 0.2834 0.2312 0.6426 0.5334 1.0455 0.8759
031:040 0.0964 0.0889 0.1759 0.1863 0.2573 0.3057
041:050 1.2134 1.2715 1.7413 1.6397 2.2898 2.1260
051:060 2.1175 2.0842 2.7490 2.5794 3.3191 3.1073
061:070 0.0439 0.0193 0.0836 0.0778 0.1722 0.1753
071:080 0.6372 0.4936 0.7581 0.7785 0.8917 0.9629
081:090 2.1468 2.1268 2.4436 2.5172 2.8455 2.9192
091:100 0.3516 0.3237 0.5611 0.4648 0.7718 0.6171
101:110 1.7636 1.8673 2.2580 2.2881 2.7774 2.5787
111:120 0.9223 0.8742 1.0491 0.9901 1.1909 1.0900
Average 0.8420 0.8193 1.1483 1.0860 1.4875 1.3543
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as an optimization tool for developing decision-aid platforms.

4. Conclusions

Machine learning enables metaheuristic algorithms to perform better 
throughout the search procedure by learning from the identified search 
patterns and structures; this facilitates a more effective and efficient 
move toward global optima. This study introduces the RAIG algorithm, 
which is equipped with reinforcement learning and the α-List mecha-
nism for improved greedy search, as well as an N-List mechanism for 
solution initialization. The reinforcement learning-based construction 
mechanism uses a candidates list of length α for job insertions, where 
the ε-greedy module decides whether to update the list.

As a classic combinatorial optimization problem, PFSP is used to 
evaluate the algorithm’s performance by comparing it with a competi-
tive variant of the IG algorithm. The numerical analysis confirmed a 
meaningful difference between the average and maximum makespans 
found by the RAIG and baseline algorithms. Overall, the performance of 
RAIG is about 6–9 percent better when solving large instances, while the 
overall performance improvement is about 3 percent. It is also shown 
that RAIG is significantly more robust than the baseline algorithm.

The classic optimization problem considered in this study is a fairly 
simple variant of flowshop scheduling. This represents a limitation that 
necessitates further research to evaluate the performance of RAIG in 
comparison with the best-performing algorithms for more complex 
combinatorial optimization problems. This may involve considering 

other performance indicators and incorporating multi-objective opti-
mization to solve production scheduling problems with additional 
constraints. Conducting an empirical analysis comparing the proposed 
RAIG algorithm with a wider range of state-of-the-art deep learning or 
reinforcement learning-based methods in terms of accuracy, efficiency, 
computational complexity, and inference speed merits further investi-
gation. Validating these algorithms in real-world industrial settings, 
which requires collaboration with industry partners and access to real- 
world data, is another important and valuable area for future 
research. From a search algorithm perspective, considering multiple 
initial solutions instead of a single solution could improve the search 
procedure and address the issue of getting trapped in local optima. 
Additionally, proposing concrete frameworks for integrating lower- 
bound identification modules could provide clear pathways for further 
advancements. For instance, integrating a matheuristic-inspired algo-
rithm with the learning module may further enhance search effective-
ness. Last but not least, exploring RAIG’s applications in other 
combinatorial optimization problems could highlight its versatility and 
potential impact.
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