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Abstract
Objective: This study aimed to investigate the predictive capabilities of historical patient records to predict patient adverse outcomes such as 
mortality, readmission, and prolonged length of stay (PLOS).
Methods: Leveraging a de-identified dataset from a tertiary care university hospital, we developed an eXplainable Artificial Intelligence (XAI) 
framework combining tree-based and traditional machine learning (ML) models with interpretations and statistical analysis of predictors of mor-
tality, readmission, and PLOS.
Results: Our framework demonstrated exceptional predictive performance with a notable area under the receiver operating characteristic 
(AUROC) of 0.9625 and an area under the precision-recall curve (AUPRC) of 0.8575 for 30-day mortality at discharge and an AUROC of 0.9545 
and AUPRC of 0.8419 at admission. For the readmission and PLOS risk, the highest AUROC achieved were 0.8198 and 0.9797, respectively. 
The tree-based models consistently outperformed the traditional ML models in all 4 prediction tasks. The key predictors were age, derived tem-
poral features, routine laboratory tests, and diagnostic and procedural codes.
Conclusion: The study underscores the potential of leveraging medical history for enhanced hospital predictive analytics. We present an accu-
rate and intuitive framework for early warning models that can be easily implemented in the current and developing digital health platforms to 
predict adverse outcomes accurately.

Lay Summary
This study investigates using historical electronic patient records to predict adverse hospital outcomes such as mortality, readmission, and pro-
longed length of stay (PLOS). Using data from St Olavs University Hospital in Trondheim, Norway, we developed a framework that combines 
machine learning models with eXplainable Artificial Intelligence techniques. The study focused on patients suspected of bloodstream infections, 
leveraging their comprehensive medical histories to enhance prediction accuracy. Our framework demonstrated high predictive performance, 
especially for 30-day mortality and PLOS. Key predictors included age, laboratory test results, hospital codes, and cumulative hospital length of 
stay, referring to the cumulative length of all previous hospital admissions up to but not including the current hospital admission. Our approach 
ensures that healthcare professionals can understand and trust the predictions by providing clear model explanations, ultimately supporting bet-
ter clinical decision-making and resource allocation. This framework highlights the potential of integrating historical medical data into predictive 
models to improve patient outcomes in hospital settings.
Key words: healthcare informatics; electronic patient records; tree-based models; predictive analytics; machine learning; eXplainable Artificial Intelligence; 
mortality; readmission; prolonged length of stay; medical history. 

Objectives
Background and significance
Important healthcare indicators, such as 30-day mortality, 
30-day readmissions, and prolonged length of stay (PLOS), 
are essential for managing patient care and allocating resour-
ces efficiently.1–3 Accurate forecasts of these indicators are 
pivotal for the early identification of high-risk patients, 

leading to timely medical actions and improved patient out-
comes.4,5 Electronic health record (EHR) encompasses 
diverse information systems, ranging from single-department 
files to extensive, longitudinal patient data collections. Elec-
tronic patient record (EPR), a subset of EHR, compiles an 
individual's healthcare data accumulated over time within 
the primary healthcare facility responsible for a patient's 
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comprehensive care and medical record-keeping. In this con-
text, all the patient’s health interactions, treatments, and 
medical history are documented and maintained within this 
institution.6 In Norway, patients often have long and contin-
uous histories within one health system or hospital’s records, 
allowing for retrospective medical history analysis for 
patients served by the health system. EPRs have been used for 
secondary applications to address disease progression model-
ing,7 patient trajectory modeling,8 disease inference,9 risk 
stratification, and survival prediction.10 These data-driven 
analyses are increasingly needed in various health services 
and research. However, data in an EPR may be sparse and 
require context-dependent interpretation, which may cause 
incompleteness and, to a lesser extent, inconsistency and 
inaccuracy.11

Previous work on leveraging longitudinal medical data by 
Chicco et al. showed that traditional machine learning (ML) 
models predicted the survival of patients diagnosed with sep-
sis using minimal clinical records of patients.10 Some studies 
have tackled the problems of representing medical data and 
codes. For example, Tran et al worked on building a low- 
dimensional representation of medical events using a modi-
fied restricted Boltzmann machine (RBM). After that, they 
trained a logistic regression classifier for suicide risk stratifi-
cation.12 In comparison, Jia et al used patient similarity- 
based frameworks to group similar patient histories.13 Other 
works focused on visualizing the medical history or building 
patient disease trajectories.14 The study by Choi et al. pre-
sented disease-specific applications that treated the medical 
history as a sequence of events and then trained ML models 
to predict diagnostic outcomes in the next event.15

In works predicting adverse outcomes in hospitals, a study 
by Cai et al16 developed a non-disease-specific Bayesian net-
work (BN) model to predict mortality, readmission, and 
length of stay (LOS) from EHRs. Utilizing data from 32 634 
patients admitted via emergency department to a Sydney hos-
pital between 2008 and 2011, the model achieved an average 
daily accuracy of 80% with an area under the receiver oper-
ating characteristic curve (AUROC) of 0.82 for mortality, 
which was the most predictable outcome. Tavakolian et al 
introduced an optimized hybrid deep model termed Genetic 
Algorithm-Optimized Convolutional Neural Network 
(GAOCNN) for predicting hospital readmission and LOS. 
Tested on 3 distinct healthcare datasets, this model achieved 
impressive prediction accuracies, reaching 97.2% for hospital 
readmission prediction in diabetic patients and 89.0%, 
99.4%, and 94.1% for LOS prediction in diabetic, COVID- 
19, and intensive care unit (ICU) patients, respectively.17

Clark et al explored a multistate model for predicting mortal-
ity, LOS, and readmission for surgical patients using the 
American College of Surgeons National Surgical Quality 
Improvement Program data.18 Most models focused on 
recent patient data, and none of the studies utilized the pre-
dictors from the complete medical history of their patients, 
apart from demographics and information on co-morbidities. 
In our previous work, through feature engineering from his-
torical medical records and employing an array of ML classi-
fiers, we showcased the efficacy of the eXtreme Gradient 
Boosting (XGBoost) model in predicting 30-day mortality 
using EHR trajectory features.19

The domain of health informatics (HI) has experienced sig-
nificant advancements with the integration of artificial intelli-
gence (AI) techniques, especially in predictive analytics. 

Various AI algorithms have been applied in HI, ranging from 
traditional ML models to more complex deep learning (DL) 
architectures.20,21 Tree-based models have gained popularity 
due to their robustness in handling medical data.22 While AI 
models can produce accurate predictions, their “black box” 
nature has been a concern in the medical domain due to the 
critical nature of healthcare decisions.23 The integration of 
Explainable AI (XAI) in healthcare has gained significant 
attention, particularly its potential to enhance transparency 
and trust in predictive models using EHR. Several recent XAI 
architectures and techniques have been developed to address 
the unique challenges associated with EHR data. For exam-
ple, Shapley Additive exPlanations (SHAP) values are derived 
from cooperative game theory and provide a unified measure 
of feature importance. SHAP is widely used in EHR applica-
tions because it offers consistent and interpretable explana-
tions for model predictions across various ML models, 
including tree-based models and neural networks.24 Local 
Interpretable Model agnostic Explanations (LIME) explain 
individual predictions by locally approximating the model 
around a specific instance. It is model-agnostic and applies to 
various predictive models used in EHR analysis. LIME's local 
explanations help clinicians understand model decisions on a 
case-by-case basis.25 Integrated gradients is a technique 
designed for DL models that assign importance scores to 
input features by integrating gradients of the model’s output 
to the input. This method has been applied to EHR data to 
provide insights into the contributions of different clinical 
features.26 Attention mechanisms, particularly in recurrent 
neural networks (RNNs) and transformer models, have been 
employed to enhance interpretability in sequential EHR data 
processing. These mechanisms allow models to focus on rele-
vant portions of the input data, providing intuitive explana-
tions for predictions.27 ProtoDash is an interpretable 
prototype selection method that identifies representative 
examples from the dataset to explain predictions. It has been 
used in the context of EHR to provide exemplar-based 
explanations, helping clinicians relate model predictions to 
known clinical cases.28 Anchors is a high-precision model- 
agnostic explanation method that provides if-then rules 
(anchors) to describe the conditions under which a model 
makes specific predictions. This technique has been applied 
to EHR data to generate clear and actionable explanations 
for clinicians.29 The significance of XAI in healthcare is pro-
found as it ensures both healthcare practitioners and patients 
can trust and understand AI-driven decisions.30 Though pre-
dictive analytics have shown promise, they also come with 
challenges.31 Data quality, missing values, and class imbalan-
ces are significant challenges in healthcare predictions.32,33

The ethical implications concerning patient data security and 
consent are also paramount.34 The recent introduction of 
XAI in HI offers transformative potential.35 It allows for 
complex data within EPRs to be analyzed in a way that can 
be understood by healthcare professionals, supporting 
informed clinical decisions.36,37 Despite the potential bene-
fits, applying comprehensive data available within EPRs for 
predictive analysis has yet to be commonplace in hospital set-
tings.38 Preliminary research suggests significant healthcare 
interactions can precede critical health events, such as cancer 
diagnoses.39 Few studies have leveraged the complete infor-
mation from patients' medical history, and most only con-
sider predictors from a specified time window.16,17 We 
theorize that historical EPRs contain patterns and early 
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indicators of impending adverse hospital outcomes. To 
explore this, we conducted a retrospective analysis of the 
patient’s medical histories. We introduce the XAI-based Risk 
Analysis and Interpretation (XRAI) framework to predict the 
risk of hospital adverse events.

Objectives and outcomes
The primary goal of this study is to investigate the predictive 
capabilities of historical EPRs maintained at hospitals to pre-
dict adverse outcomes such as mortality, readmission, and 
PLOS. Specifically, the study focuses on patients from a Nor-
wegian hospital who were suspected of bloodstream infec-
tions (BSIs) at least once in the hospital, leveraging their 
comprehensive medical histories to develop predictive mod-
els. By doing so, the research aims to:

� Develop and validate an XAI framework that integrates 
ML models to predict 30-day mortality at discharge and 
admission, 30-day readmission following discharge, and 
PLOS at admission. 

� Identify and analyze the critical predictors from historical 
EPRs, including demographics, laboratory test results, 
diagnostic and procedural codes, and derived temporal 
features. 

� Demonstrate the application and performance of the XAI 
framework in a real-world hospital setting using a de- 
identified dataset from St Olavs University Hospital in 
Trondheim, Norway. 

� Provide model explanations to ensure transparency 
and interpretability of the predictions for healthcare 
professionals. 

The context of our predictions is to assess whether histori-
cal administrative data can predict hospital adverse events. 
The findings will inform strategies to enhance early warning 
systems, improve patient outcomes, and optimize resource 
allocation in healthcare settings.

Methods
Data
This study harnessed EPRs from St Olavs University Hospi-
tal, Trondheim, Norway, encompassing 35 591 patients with 
suspected BSIs identified via physician-initiated blood cul-
tures between 2015 and 2020. In Norway, blood culture is a 
commonly ordered test in hospitalized patients when a severe 
infection is suspected, ensuring that the study population 
includes diverse patient demographics and clinical conditions. 
Detailed data are available for patients undergoing blood cul-
ture tests. Moreover, BSIs are a significant cause of morbidity 
and mortality in hospitalized patients. Identifying and pre-
dicting adverse outcomes in this patient population is clini-
cally essential. The EPRs encompassed curated data from the 
inception of electronic records in 1999 until 2020, exclusively 
included hospital care episodes, ICU admission details, 
microbiology test results, laboratory test results, and patient 
demographics comprising of gender, date of birth, and date 
of death. Primary care and other specialist care episodes were 
not available in the dataset. Diagnoses and Procedures within 
these records were classified using the International Classifi-
cation of Diseases, 10th Revision (ICD-10), facilitating stand-
ardized disease identification critical for the analytical 
models. We obtained the death dates from the Hemit Health 

IT data warehouse, which sourced the data from the National 
Patient Register (NPR), ensuring comprehensive coverage of 
deaths inside and outside the hospital. This study adhered to 
the transparent reporting of a multivariable prediction model 
for individual prognosis or diagnosis (TRIPOD).40 The EPRs 
were de-identified and accessed through a private cloud com-
puting platform for ethical and privacy reasons.

XRAI framework
The XRAI (eXplainable Risk Analysis and Interpretation) 
framework uses historical EPR to predict adverse hospital 
outcomes, including mortality, readmission, and PLOS. This 
framework combines various data types and ML models, 
providing interpretable predictions to support clinical 
decision-making. The framework integrates diverse data 
from EPRs, including demographics, laboratory test results, 
microbiology tests, discharge summaries, and ICU admis-
sions. Detailed patient statistics are provided in section 
“Patient characteristics.” These data are processed to create 
comprehensive patient profiles used for predictive modeling. 
Data preprocessing includes cleaning, standardizing, and cat-
egorizing information, ensuring the quality and consistency 
necessary for robust predictive analytics. Further details on 
the data preprocessing are given in Supplementary material 
S1. Four event logs were created for each patient ID, from 
episode discharge summaries, ICU admissions, laboratory 
tests, and microbiology test results, where hospital visits/ 
admissions, ICU admissions, and particular laboratory and 
microbiology tests were considered separate and overlapping 
medical events, respectively. Event logs were used as a transi-
tory setup for data augmentation and enrichment. More spe-
cifically, identifying index episodes, calculating temporal 
features, and visually analyzing patient histories. Figure 1 
depicts the workflow followed by the XRAI framework.

Data enhancement within the XRAI framework involves 
extracting meaningful predictors from raw data. Key features 
include age, laboratory test results, microbiology test results, 
comorbidities, diagnostic and procedural codes, and hospital 
and ICU length of stay (LOS). Temporal features such as time 
to the most recent hospital admission and cumulative LOS 
from previous admissions are also included. These features 
are crucial for capturing the patient's health trajectory and 
risk factors. More details on the data enhancement step are 
given in Supplementary Information 1. The framework 
employs tree-based ML models, including XGBoost, 
LightGBM, and CatBoost, which have demonstrated superior 
performance on tabular data compared to DL techniques.22

Tree-based models provide high accuracy and interpretability 
on tabular data, making them suitable for clinical applica-
tions.23 Moreover, our previous work using the same dataset 
for predicting BSI showed that combining data enhancements 
and tree-based models performed better than complex RNNs 
and transformer models trained on sequences of medical 
events.41 We employed techniques to handle class imbalance, 
such as utilizing the class_weights and scale_pos_weight 
parameters in the tree-based ML models. See Supplementary 
material S1 for more details on the model development, eval-
uations, and interpretations. Model interpretability is a core 
component of the XRAI framework. Techniques such as 
SHAP are used to elucidate the contributions of individual 
features to model predictions.24,42,43 This transparency 
ensures that healthcare professionals can understand and trust 
the model outputs, facilitating informed clinical decisions.
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Predicted outcomes
Our study aimed to predict 4 critical outcomes using the 
XRAI framework: the risk of 30-day mortality at the time of 
discharge, the risk of 30-day mortality at the time of admis-
sion, the risk of readmission within 30 days following dis-
charge, and the risk of PLOS (> 2 days) at the time of 
admission. An episode is defined as a unique discharge sum-
mary entry. The index episode was the last recorded hospital 
episode of all the patients for the mortality and PLOS predic-
tion tasks and the second last recorded episode of all patients 
for the readmission prediction task. We observed the follow-
ing outcomes among the 35 591 patients included in the anal-
ysis: For both 30-day mortality prediction tasks, Class 0 (no 
mortality within 30 days) comprised 28 173 patients 
(79.2%), while Class 1 (mortality within 30 days) included 

7418 patients (20.8%). For 30-day readmission following 
discharge, Class 0 (no readmission) was represented by 
29 655 patients (83.3%), and Class 1 (readmission) had 
5936 patients (16.7%). For PLOS, Class 0 (no PLOS) con-
sisted of 26 737 patients (75.1%), whereas Class 1 (PLOS) 
included 8854 patients (24.9%).

Predictors
The predictors included age, sex, results of recent laboratory 
tests, results of microbiology tests, counts of comorbidities, 
counts of diagnostic and procedural codes, and current, 
recent, and total hospital and ICU LOS. The most common 
laboratory tests were bilirubin, C-reactive protein (CRP), cre-
atinine, leukocytes, and thrombocytes. The counts of prior 
positive results of microbiology tests grouped by their 

Figure 1. The architecture of the XRAI framework.
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collected sample type were calculated and used as indicators 
of previous history of infections. The total length of stay vari-
able used in our analysis denotes the total time a patient has 
spent in the hospital, calculated as the cumulative sum of all 
previously recorded LOS before the index episode admission, 
excluding the LOS of the index episode itself. The prediction 
task modeling details are given in Supplementary material S1.

Statistical analysis of predictors
To investigate the strength and significance of predictors 
across the predicted outcomes in our study, we employed 
statistical analysis, utilizing both non-parametric and catego-
rical data analysis techniques. For numerical features, the 
Mann-Whitney U test was applied to compare distributions 
between 2 independent groups defined by the outcome varia-
bles. Each feature's mean value for both outcome classes was 
calculated to quantify the average influence of the feature 
within each group. For categorical features, such as gender, 
care level code, and urgency code, we conducted chi-square 
tests of independence.

Results
Patient characteristics
The dataset’s mean patient age was 63.6 years, with a near- 
equal gender distribution (47.4% female, 52.5% male). To 
provide a detailed description of the study population, we 
include Table 1, summarizing the patients' demographics and 
key clinical characteristics included in the analysis. These 
characteristics are based on the entire dataset encompassing 
all care episodes recorded from 1999 to 2020, thus providing 
a comprehensive overview of the patient population and their 
interactions with the healthcare system.

Model evaluation
Table 2 depicts the performance metrics for 30-day mortality 
prediction at discharge and admission. To predict 30-day 
mortality at the end of the episode, the XGBoost, LightGBM, 
and CatBoost models demonstrated superior performance 
with AUROCs ranging from 0.9600 to 0.9625. The XGBoost 
model achieved the highest AUPRC and F1 score of 0.8575 
and 0.7552. Similarly, for predicting 30-day mortality at the 
start of the episode, the tree-based model AUROCs ranged 
from 0.9515 to 0.9545. The LightGBM model achieved an 
AUPRC of 0.8419 and a recall of 0.7324.

Table 3 depicts the performance metrics for the readmis-
sion and PLOS prediction tasks. The task of predicting read-
mission risk saw the CatBoost model reaching an AUROC of 
0.8198, accompanied by a 95% CI of 0.8064 to 0.8325, but 
the F1-score and Recall were low for all the models. Lastly, 

for the prediction of PLOS at the start of the episode, the 
LightGBM model proved highly effective, with an AUROC 
of 0.9797 and AUPRC of 0.9365. In all the prediction tasks, 
XGBoost, LightGBM, and CatBoost performed better than 
the traditional models like ANN, RF, and LR, with LR giving 
the worst overall performance.

Model explanations for the four prediction tasks
Figure 2 depicts the SHAP summary plots for 30-day mortal-
ity prediction at discharge and admission. For the 30-day 
mortality prediction at the end of the episode, important fea-
tures such as age, total length of stay (total_los), CRP levels, 
and time to the most recent hospital admission (time_to_last) 
stand out. High values of CRP and older age are associated 
with an increased risk of mortality, as indicated by the accu-
mulation of red dots on the right side of the zero line. Simi-
larly, in predicting 30-day mortality at the start of the 
episode, age and total length of stay are prominent, and in 
predicting 30-day mortality at the end of the episode, age and 
time to the most recent hospital admission are prominent. 
The SHAP summary plot highlights the consistent signifi-
cance of these features across the different stages of hospital-
ization. Additionally, care level codes and the urgency of the 
case are influential, suggesting that more acute presentations 
are associated with higher mortality risk.

Figure 3 depicts the SHAP summary plots for the readmis-
sion risk at discharge and PLOS risk at admission. The read-
mission risk prediction at the end of the episode emphasizes 
features like time to the most recent hospital admission, age, 
urgency code, LOS, CRP levels, leukocyte count, and pre-
vious ICD codes related to infections (ICD_C). For the pre-
diction of prolonged length of stay (PLOS) at the start of the 
episode, features like care level code, total LOS (total_los), 
ICD codes of ICD chapter X (J00-J99) concerning Diseases 
of the respiratory system, CRP levels, and ICU length of stay 
(total_ICU_LOS) provide substantial predictive power. The 
impact of higher care levels and previous high CRP levels 
indicate a potentially more complicated hospital course, lead-
ing to more extended stays.

Results of statistical analysis
Notably, age, the total length of previous stays, time to the 
recent episodes, CRP levels, urgency code, and care level code 
were identified as significant numerical predictors with a pro-
found impact on the risk assessments for 30-day mortality, 
readmission, and PLOS. Supplementary Table 1 gives the 
mean values of the top 10 most significant predictors for the 
4 prediction tasks (see Supplementary material S1). The com-
plete statistical analysis is detailed in Tables S3-S6, and Table 
S2 describes each predictor (see Supplementary material S2). 
The distribution of predictors across different outcome sce-
narios provided insightful revelations. For instance, the statis-
tical analysis underscored a strong association between 
higher CRP levels, advanced age, and an increased risk of 30- 
day mortality and PLOS, which aligns with clinical expecta-
tions. Similarly, the analysis of categorical predictors, such as 
urgency and care level codes, unveiled significant associations 
with the outcomes, thus providing a deeper understanding of 
the factors influencing patient risk profiles. Certain predictors, 
such as total length of stay, are associated with an increased 
risk of adverse outcomes. It is important to clarify that “total 
length of stay” refers to the cumulative length of all previous 
hospital admissions up to but not including the current hospital 

Table 1. Summary of patient and care episode characteristics  
(1999-2020).

Characteristics Value

Total patients 35 591
Age (mean) 63.6
Sex (male%/female%) 52.5/47.4
Median length of stays (days) 0.41
ICU admissions (%) 66.2
30-day mortality (%) 20.8
30-day readmission (%) 10.4
Number of blood cultures 72 495

JAMIA Open, 2024, Vol. 7, No. 3                                                                                                                                                                                                5 

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

iaopen/article/7/3/ooae074/7758162 by guest on 17 O
ctober 2024

https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooae074#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooae074#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooae074#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooae074#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooae074#supplementary-data
https://academic.oup.com/jamiaopen/article-lookup/doi/10.1093/jamiaopen/ooae074#supplementary-data


admission. This measure helps capture the patient's overall bur-
den of hospitalization before the current episode, which can be 
an essential factor in predicting outcomes such as 30-day mor-
tality and PLOS. To further investigate the impact of demo-
graphic features on model performance and to address 
potential biases, we conducted ablation studies where we sys-
tematically removed demographic features from the models 
and observed the changes in performance. Specifically, we 
assessed the following scenarios: When age was excluded from 
the models, we observed a noticeable decrease in performance 
for all prediction tasks, as reflected in lower AUROC scores in  
Table 4. This confirmed that age is a critical factor for predict-
ing adverse outcomes in the hospital. Removing sex from the 
models did not significantly change performance metrics. This 
aligns with our SHAP analysis, which indicated that sex was 
not a crucial feature for our predictions. Removing age and sex 
together also led to a decline in performance, although the 
impact was primarily due to the exclusion of age.

Discussion
The main findings of this study highlight the predictive 
capacity of medical history features for mortality and PLOS. 
Across all 4 prediction tasks, the tree-based models have con-
sistently outperformed traditional ML models’ efficiency, 
underscoring the superiority of tree-based models on tabular 
data.44 The performance for predicting mortality saw a mar-
ginal decrease from the episode's conclusion to the start of 

the episode, underscoring the critical role of current episode 
information in forecasting mortality outcomes. Moreover, 
readmission prediction results could have been more impres-
sive when compared with the other 3 tasks. This aligns with 
the broader literature, suggesting a lack of strong association 
between hospital readmission rates and mortality across vari-
ous conditions, affirming the distinct pathways influencing 
mortality and readmission outcomes.45,46 Our findings on 
simultaneous good results for mortality and PLOS prediction 
tasks are consistent with the findings on positive correlations 
between these 2 events at patient and hospital levels.47 While 
our models have identified various predictors associated with 
an increased risk of 30-day mortality, readmission, and 
PLOS, it is important to note that these relationships are 
associative rather than causal. This means that while certain 
factors are statistically linked to higher risks, they do not nec-
essarily cause adverse outcomes directly.

This study presented a comprehensive and accurate data 
modeling methodology compared to techniques such as tem-
poral sequence modeling and patient data simulations, which 
may introduce unnecessary bias in the original data using 
imputations.48 Our methodology provides a more detailed 
analysis at the individual patient level by including the entire 
medical history in the analysis, compared to similar studies 
that made significant contributions to this field.16–18 Cai 
et al. developed a BN model that, while impressive, achieved 
slightly lower accuracy and AUROC values compared to our 
models for mortality prediction.16 They provided a daily 

Table 2. Model performance metrics for the mortality prediction tasks.

Models Accuracy Precision Recall F1 score Specificity AUPRC AUROC (95% CI)

30-day mortality prediction at discharge
XGBoost 0.9130 0.8221 0.7478 0.7832 0.9570 0.8524 0.9600 (0.9553-0.9642)
LightGBM 0.9168 0.8332 0.7552 0.7923 0.9598 0.8575 0.9625 (0.9580-0.9666)
Catboost 0.9177 0.8399 0.7512 0.7931 0.9619 0.8566 0.9625 (0.9580-0.9667)
ANN 0.8911 0.7571 0.7090 0.7323 0.9395 0.8243 0.9322 (0.9251-0.9394)
RF 0.9056 0.8532 0.6649 0.7474 0.9696 0.8172 0.9543 (0.9493-0.9591)
LR 0.8320 0.6459 0.4428 0.5254 0.9355 0.6891 0.8257 (0.8133-0.8381)
30-day mortality prediction at admission
XGBoost 0.9004 0.7885 0.7184 0.7518 0.9488 0.8336 0.9515 (0.9464-0.9564)
LightGBM 0.9055 0.8004 0.7324 0.7649 0.9515 0.8419 0.9540 (0.9493-0.9588)
Catboost 0.9059 0.8031 0.7311 0.7654 0.9523 0.8417 0.9545 (0.9494-0.9592)
ANN 0.9592 0.6794 0.6776 0.6785 0.9150 0.7963 0.9099 (0.9022-0.9181)
RF 0.8893 0.8126 0.6147 0.6999 0.9623 0.7885 0.9459 (0.9403-0.9513)
LR 0.8137 0.5865 0.3833 0.4636 0.9282 0.6557 0.7901 (0.7765-0.8029)

Table 3. Metrics for predicting 30-day readmission and prolonged length of stay.

Models Accuracy Precision Recall F1 score Specificity AUPRC AUROC (95% CI)

30-day readmission prediction at discharge
XGBoost 0.8460 0.5867 0.2803 0.3794 0.9602 0.6202 0.8001 (0.7867-0.8133)
LightGBM 0.8525 0.6593 0.2510 0.3636 0.9738 0.6124 0.8118 (0.7982-0.8245)
Catboost 0.8563 0.6886 0.2628 0.3804 0.9760 0.6194 0.8198 (0.8064-0.8325)
ANN 0.8038 0.4029 0.3506 0.3749 0.8952 0.6229 0.6839 (0.6660-0.7024)
RF 0.8449 0.7333 0.1197 0.2058 0.9912 0.5554 0.8009 (0.7864-0.8143)
LR 0.8278 0.4124 0.0611 0.1064 0.9824 0.5218 0.6141 (0.5968-0.6294)
PLOS prediction at admission
XGBoost 0.9286 0.8200 0.9179 0.8662 0.9322 0.9251 0.9779 (0.9750-0.9809)
LightGBM 0.9313 0.8115 0.9470 0.8740 0.9261 0.9365 0.9797 (0.9770-0.9822)
Catboost 0.9310 0.8137 0.9414 0.8729 0.9276 0.9345 0.9794 (0.9767-0.9821)
ANN 0.8941 0.7783 0.8096 0.7937 0.9225 0.8660 0.9551 (0.9504-0.9593)
RF 0.9237 0.8050 0.9196 0.8585 0.9251 0.9224 0.9733 (0.9702-0.9764)
LR 0.7665 0.5931 0.2295 0.3309 0.9471 0.5883 0.7388 (0.7251-0.7513)
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prediction using features from recent and current medical epi-
sodes to predict outcomes of the next episode; in contrast, we 
included all the synthesized information from the complete 
medical history available to predict impending adverse 

outcomes. While Tavakolian et al's GAOCNN approach to 
predicting hospital readmission and LOS using specific dis-
ease population datasets achieved high accuracy,17 our 
study's emphasis on ease of adoption and explainability 

Figure 2. The SHAP summary plots for 30-day mortality prediction at the episode's discharge (top) and admission (bottom). Beeswarm plot detailing the 
individual SHAP values for each feature and their impact on the model's output.
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provides more foundational value for clinical decision- 
making processes. The multistate model by Clark et al. for 
surgical patients offers a comprehensive view of hospital 
quality of care.18 Our framework complements such models 
by harnessing predictors of adverse hospital outcomes from 
the medical history of the general hospital population. The 

comparison with other works is intended to provide contex-
tual insights rather than direct equivalence. By highlighting 
similarities and differences, we aim to offer a broader under-
standing of the current state of predictive modeling in health-
care. The predictive models developed in this study can be 
applied to all hospitalized patients with available EPRs. While 

Figure 3. The SHAP summary plots for readmission risk at discharge (top) and PLOS risk at admission (bottom). Beeswarm plot detailing the individual 
SHAP values for each feature and their impact on the model’s output.
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our analysis focused on patients with at least one blood culture 
taken over 5 years, the framework is scalable to utilize addi-
tional relevant data to predict adverse events across diverse 
patient populations. A vital consideration in our study is the 
hierarchical relationship between 30-day mortality and 30-day 
readmission. To address this, we selected different index events 
for these predictions. For 30-day readmission prediction, we 
used the second last episode as the index event, ensuring that 
the patient was alive during the index event. This approach 
removed the possibility of including patients who died within 
30 days in the readmission analysis. The framework is 
designed to be compatible with existing hospital information 
systems, facilitating seamless integration into current work-
flows without requiring substantial changes to infrastructure 
or extensive training for healthcare professionals. This com-
patibility ensures that the framework can be quickly and effi-
ciently implemented in diverse healthcare settings, promoting 
widespread use and maximizing its impact on patient care.

Our feature engineering process focused on creating robust 
features, such as cumulative length of stay and time to most 
recent admission, which are less sensitive to variations in 
data collection practices. These measures and standardized 
coding systems, such as ICD-10, collectively mitigate data 
source variability concerns and enhance our predictive mod-
els' reliability. The limitation of this study is its reliance on 
data from a single center. While we have compared our 
results with those reported in other studies, it is essential to 
acknowledge that these comparisons have inherent limita-
tions due to differences in data sources. Other works may use 
datasets from multiple centers or institutions with distinct 
patient demographics and healthcare delivery models. We 
have employed rigorous methodologies, including compre-
hensive data preprocessing and data enhancement, to ensure 
the robustness of our models. These methodological strengths 
mitigate some concerns related to data source variability and 
enhance the reliability of our findings within the context of 
our single-center dataset. Another limitation of our study is 
the specific focus on patients with a history of suspected BSIs, 
which may not fully represent the broader hospitalized popu-
lation. Patients with BSIs are a significant and clinically 
important subgroup; however, their characteristics may differ 
from other patient groups. Future research should validate 
our framework across more diverse patient populations to 
ensure generalizability and robustness.

Conclusions
This study presents a simple and intuitive XAI framework 
that comprehensively captures the complete medical history 
of a patient to predict the risk of hospital adverse outcomes 
accurately. The XRAI framework is the first to significantly 
enhance the predictive analysis by integrating information 
stored as diagnostic and procedural ICD-10 codes and deriv-
ing novel temporal features capturing critical indicators of 

individual trajectories. We also demonstrate that tree-based 
ML models predict these critical healthcare outcomes, partic-
ularly XGBoost, CatBoost, and LightGBM. The SHAP values 
for model explanation provide valuable insights into the 
framework's decision-making process. Our findings under-
score the importance of age, total length of hospital stay, 
recent CRP levels, care level codes, and time to the most 
recent hospital admission as significant predictors of patient 
outcomes. To further enhance the generalizability of our find-
ings and adoption of our framework, we need to validate our 
framework on administrative datasets of hospitals outside 
Norway and include more diverse data sources, such as imag-
ing data, genomics, and patient-reported outcomes, in future 
works.
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