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Abstract

The overlying snow cover on sea ice has a profound influence on what lies
below. Being both highly optically reflective and thermally insulating, the
snow influences the rate and timing with which the sea ice grows and melts
seasonally. The shade introduced by the snow radically reduces the light
intensity in and under the ice, affecting which organisms can survive there
and how active they can be. As a low-density mixture of ice and air, it ab-
sorbs and scatters electromagnetic microwaves, complicating remote sensing
estimates of sea ice properties. Finally, the snow’s distinctive mechanical
properties influence how humans live, work and travel on the ice.

Key Points:
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• Snow on sea ice controls the flux of light, heat, momentum and material
to the ice below.

• Its physical properties are spatiotemporally variable, being dictated by
the environmental conditions such as air temperature, ice roughness,
ice freeboard and wind speed.

• The snow layer complicates microwave observations of the underlying
sea ice by satellites, shades photosynthesising organisms in and under
the ice, and can pose additional challenges for human travel on and
through the ice.

Keywords: Snow, Sea ice, Cryosphere
PACS: 9210, 9330, 9240

1. Introduction1

Sea ice covers parts of the polar regions where the air is so cold that2

the surface of the ocean freezes. After forming, the sea ice almost immedi-3

ately accumulates a layer of fallen snow. Snow in the sea ice system strongly4

affects the underlying ice by insulating the sea ice and influencing sea ice5

growth, delaying sea ice melt onset and consequently the sea ice seasonal6

cycles and its influence on sea-ice associated algal communities. Snow also7

influences atmospheric processes by controlling vapour fluxes and biogeo-8

chemical processes through the sea ice-snow column, contributing to sea salt9

aerosols through blowing snow events. The snow layer also shields the sea10

ice from direct observation from satellites and aircraft, leading to a host of11

complications in the field of sea ice remote sensing. Snow’s critical role in12

the sea ice system led to it recently being designated an Essential Climate13

Variable by the World Meteorological Organisation (WMO, 2022, p 82).14

This chapter begins with a description of snow on sea ice itself: its macro-15

scopic and microscopic characteristics. Particular attention is paid to the16

ways in which snow on sea ice is distinct from the snow covering of moun-17

tains, glaciers, permafrost and ice sheets: this is largely through the role of18

snow salinity and snow flooding by seawater. We then turn to how the prop-19

erties of snow on sea ice might be estimated at a given time using remote20

sensing and modelling approaches. The impacts of snow on sea ice are then21

described in the cases of remote sensing of sea ice thickness, in- and under-ice22
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primary productivity and some marine mammals, and human activities in23

the polar oceans.24

2. Key Properties and Features25

2.1. Snow Albedo and Optical Depth26

Snow on sea ice reflects the majority of incoming solar radiation, ex-27

hibiting a high albedo across all visible frequencies of light, leading to snow28

being one of the most optically reflective natural materials on Earth (Web-29

ster et al., 2018). The fraction of incoming light that is reflected can be in30

excess of 90% for fresh snow (Gardner and Sharp, 2010), while old or wet31

snow can exhibit albedo values of around 60%. This is still generally higher32

than the underlying sea ice, and an order of magnitude larger than a typical33

ocean surface (Perovich et al., 2002; Perovich and Polashenski, 2012; Light34

et al., 2022). The high albedo of snow therefore has a profound effect on the35

energy balance of the polar oceans.36

Snow albedo plays a pivotal role in the polar oceans’ ice-albedo feedback37

mechanism (Curry et al., 1995). This is a positive climate feedback, meaning38

that a perturbation to the system is amplified by the feedback mechanism.39

The ice-albedo feedback can be summarised as follows: a warming atmo-40

sphere diminishes the sea ice cover, triggering the replacement of a highly41

optically reflective snow surface with a relatively optically absorbant ocean42

surface. The new, darker ocean surface absorbs more solar energy, convert-43

ing it into heat and thus warming the environment further, which further44

diminishes the sea ice cover.45

One concept closely aligned to snow’s albedo is that of optical depth. It46

must be stressed that the cause of the snow’s high albedo is not because47

incoming photons of solar radiation are directly reflected by the snow sur-48

face rather than being transmitted through it. Instead, sunlight penetrates49

the snow surface fairly effectively, but is then strongly scattered within the50

upper few centimetres of the snow with weak absorption (Libois et al., 2013;51

Letcher et al., 2022). Because of the high ratio of scattering to absorption,52

the majority of photons scatter repeatedly in the upper snow volume and53

subsequently escape back into the air, giving snow its high albedo. The long54

distances travelled by photons in the upper centimetres also explains the55

large reductions in albedo associated with relatively low concentrations of56

impurities; even a few absorbing particles in the snow volume will stop a57
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photon if the photon’s path in the snow volume is long enough (Marks and58

King, 2014; Shi et al., 2021).59

Snow’s non-zero optical depth is highly relevant to the sea ice environ-60

ment. Firstly, a thin covering of snow has a reduced albedo compared to61

a deep covering; this is because thin snow allows a fraction of photons to62

penetrate through to the relatively absorbing underlying sea ice (Grenfell63

and Perovich, 2004). This affects the radiative balance of the system, and64

can result in weak heating of the sea ice surface (Brandt and Warren, 1993).65

Secondarily, light’s penetration through the snow and into the ice allows the66

survival of in- and under-ice primary producers (Kari et al., 2020; Castellani67

et al., 2022). We will return to the topic of snow’s control on the light supply68

to primary producers in Sect. 8.2.69

2.2. Thermal Conductivity70

Snow is a porous mixture of ice and air, giving it a very low thermal71

conductivity relative to sea ice. This makes it capable of sustaining large72

vertical temperature gradients between the sea ice at its lower limit and the73

atmosphere at the top (e.g. Fig. 1). This behaviour is most noticeable in74

winter, when the polar atmosphere can be extremely cold, but the sea ice75

beneath it is kept relatively warm. Because sea ice grows thermodynami-76

cally through the transport of heat from the ocean to the atmosphere, the77

thermally insulating properties of snow limit thermodynamic sea ice growth78

when the snow surface is below freezing (Holtsmark, 1955).79

The thermodynamic role of snow on sea ice mass balance in winter con-80

trasts with the way in which it partially protects the sea ice from melting81

in the spring and summer (Fig. 6d of Perovich et al., 2003; Thielke et al.,82

2023). Several authors have therefore considered the question of whether83

snow’s presence is a net help or hindrance to sea ice mass balance (e.g. Led-84

ley, 1991, 1993), with Sturm and Massom (2016) couching the issue as one85

of “Friend or Foe?”.86

Snow’s low thermal conductivity stems from its characteristic microstruc-87

ture (Riche and Schneebeli, 2013; Macfarlane et al., 2023b): as a fine mixture88

of ice and air, convective, conductive and radiative transfers of heat are sup-89

pressed. Snow’s low thermal conductivity also dictates its microstructural90

evolution (See Sect. 4). The strong thermal gradient sustained by snow on91

sea ice encourages the formation of depth hoar : large, faceted grains of snow92

that are weakly bonded together (Colbeck, 1982). These grains are highly93
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Figure 1: Thermistor-string data over a one-month period showing strong thermal insula-
tion by a thin, ∼5cm thick snow cover over sea ice in the tank of University of Manitoba’s
Sea Ice Environmental Research Facility. Cold air temperatures drive a strong temper-
ature gradient (strong red coloration) across the snow (0 - 5 cm depth) due to its low
thermal conductivity. A weaker temperature gradient is present across the ice (> 10 cm
depth). The ice can be seen to visibly grow over time in this data. When snow surface
temperatures exceed -1.8°C, heat flows downward into the ice through the snow (blue col-
oration), and the snow plays a role in buffering this heat transfer.
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scattering to microwaves, complicating measurements with remote sensing94

techniques.95

2.3. Salinity96

One physical property that is relatively unique to the sea ice environment97

is snow salinity. The salt content can be up to 20 parts per thousand (e.g.98

Nandan et al., 2017a). This characteristic is most common over thinner99

and first-year/seasonal ice types. Highest salt concentrations are generally100

observed above the snow/sea ice interface, with diminishing concentration101

with height (Fig. 2). However, snow on first-year ice can be saline throughout102

the pack (e.g. Drinkwater and Crocker, 1988; Barber and Nghiem, 1999).103

Repeated summer melt cycles over multiyear ice often cause brine drainage104

and flushing, which leads to negligible salinity in snow on multiyear ice and105

low values in the upper sea ice layers (Cox and Weeks, 1974).106

Before discussing the impacts of snow salinity, it is worth considering how107

salt comes to exist there at all. After all, snow is fresh (i.e. not salty) when108

it falls from the sky, and only becomes saline afterwards. One mechanism109

of snowpack salinification is capillary action: this might be from the upper110

sea ice surface itself (on refrozen leads or at the freeze-up) or from a layer of111

flooded snow. As sea ice forms, some brine undergoes upward expulsion to112

the sea ice surface and can produce a shallow pool (∼ 2 to 3 mm) of brine113

(Perovich and Richter-Menge, 1994). When fresh (non-salty) snow falls on114

this pool of brine, it can wick the brine upwards into its volume (Figure115

6 of Massom et al. (2001); Figure 2 of Willatt et al. (2010)). However, it116

is unclear whether the supply of this brine from the newly formed sea ice117

surface would be sufficient to reproduce the values sometimes observed in118

snow pit analysis.119

Another source of snow salinity is via atmospheric deposition of sea salt120

aerosols produced by breaking waves over the open ocean (Confer et al., 2023;121

Frey et al., 2020; De Leeuw et al., 2011), or in the marginal ice zones (Abbatt122

et al., 2012). Salt can also enter the snow through seawater flooding caused123

by heavy snow loading, especially on Antarctic sea ice (Massom et al., 2001;124

Jutras et al., 2016). The effects of flooding are discussed further in Sect. 2.4.125

Another mode of snowpack salinification may be redistribution of snow126

that has come into contact with the ice surface during a high wind event.127

However, it is difficult to see how this would produce the characteristic mono-128

tonic salinity profiles. In the future, the routes through which salt arrives129
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Figure 2: Vertical distribution of snow salinity in snow pits of 18 cm snow from Nandan
et al. (2017a). Vertical caps mark the minimum and maximum measurements, and the
mean value for the depth bin. Snow is typically most saline at the base (with the 0-2 cm
layers notably exhibiting largest salinities), and least saline at the top. 0 represents the
snow/sea ice interface.

in the marine snowpack could potentially be deduced by dye-tracing exper-130

iments, isotopic analysis, or controlled experiments in which flux from the131

sea ice is eliminated through the placement of impermeable membranes on132

the sea ice shortly after its formation.133

Regardless of its origins, the presence of salt influences both the elec-134

tromagnetic, thermodynamic, and photochemical properties of snow on sea135

ice (Dominé et al., 2004; Jutras et al., 2016; Nandan et al., 2020), with136

knock-on effects on its albedo through the timing of snowmelt onset. From137

optical, thermodynamic and electromagnetic perspectives, this influence is138

through the production of liquid water within the snow at sub-zero tempera-139

tures where it would not otherwise exist, since salt lowers the freezing point.140

Brine inclusions in snow have a much higher specific thermal conductivity141

than the ice and air that would normally make up the lattice; the presence142

of brine has been found to increase the snow’s thermal conductivity by up to143
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50% (Crocker, 1984) on a thin brine-saturated snowpack on young sea ice.144

Salt in snow exists in a phase equilibrium, such that brine inclusions145

coexist alongside the solid ice lattice of the snow. The brine volumes of146

both the ice and basal snow layer are smaller during winter because lower147

temperatures shift the phase equilibrium towards the ice phase. During melt148

onset, higher temperatures within the snowpack and at the snow/sea ice149

interface trigger an increase in brine volume at the snow basal layers (Barber150

and Nghiem, 1999).151

As mentioned previously, salt-induced liquid water in snow also changes152

the snow’s behaviour with regard to microwave remote sensing. Because of153

the water molecule’s polar nature, the liquid phase is a strong absorber of154

microwaves across all relevant frequencies by comparison to ice. This makes155

it more difficult for microwaves emitted from satellite or airborne platforms156

to reach and return from the sea ice surface. Brine in the snowpack also157

makes microwaves emitted from the sea ice itself less likely to penetrate to158

and through the snow surface towards a radiometer.159

During the winter season, snow is a significant regional source of sea salt160

aerosols through sublimation (Simpson et al., 2007; Yang et al., 2008) and161

highly-saline frost flowers growing on young sea ice surfaces (Dominé et al.,162

2004). Recent work (Gong et al., 2023) has highlighted the role of cloud163

nucleating salt aerosols from wind-blown snow in increasing the longwave164

radiative forcing in the Arctic.165

2.4. Slush, Snow-Ice and Superimposed Ice Formation166

As snow accumulates on sea ice it exerts increasing downward pressure,167

reducing the sea ice freeboard, i.e. the height to which the sea ice itself pro-168

trudes above the waterline. If snow accumulates to such an extent that the169

sea ice freeboard reaches zero and even becomes negative, the ice surface170

and the base of the snowpack can flood with seawater (Maksym and Jeffries,171

2000). Due to Archimedes’ law, every millimetre of accumulated snow water172

equivalent will reduce the ice freeboard by a corresponding millimetre (ig-173

noring the small difference between seawater and freshwater densities). For174

typical values of snow and sea ice density (300 & 800 kgm−3 respectively),175

an approximate rule is that a zero freeboard will occur when the snow layer176

is roughly a third of the thickness of the underlying ice.177

Flooding of snow (Figure 3a) due to negative freeboard is more com-178

monly observed on Antarctic sea ice due to relatively lower ice thickness179

(Worby et al., 2008) and heavier snowfall. Surface melting of the sea ice180
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itself by temperature gradient inversion (Ackley et al., 2008) may also play181

a role. Flooding has also been observed in some Arctic regions, for instance182

around Svalbard during the N-Ice field campaign (Provost et al., 2017). The183

increasing similarity of this region to the Southern Ocean in terms of the184

ratio of snow to sea ice thickness and the resulting flooding has been termed185

‘Antarctification’ (Granskog et al., 2019). Snow flooding is mostly enabled by186

upward hydraulic forcing of seawater through the ice and into the snowpack187

(Golden et al., 1998; Massom et al., 2001), forming a slush at the base of the188

snowpack. Slush layers have been observed with high concentrations of sea189

ice algae, and can host significant fraction of sea ice chlorophyll in Antarctic190

sea ice (Arrigo et al., 2014; Ackley and Sullivan, 1994; Fritsen et al., 1994).191

When flooded snow layers freeze, they form material known as snow-192

ice. After observing snow-ice thickness growing with the snow thickness193

over a season, Sturm et al. (1998) speculated that it forms a ‘self-balancing’194

system which sustains near-zero freeboards on long timescales. Snow-ice195

can contribute significantly to the sea ice mass balance (e.g. Jeffries et al.,196

2001), but can also be a challenge to identify; the use of stable oxygen isotope197

ratios is increasingly used for this purpose (Granskog et al., 2017; Tian et al.,198

2020). Observations by Lange et al. (1990) showed that snow-ice can be199

distinguished from frazil ice by its negative δ18O due to the large volumetric200

snow fraction. In cases where the sea ice has a variable spatial distribution201

of snow loading and freeboard, the presence of snow-ice has been observed202

to strongly control the spatial distribution of under-ice light intensity (Arndt203

et al., 2017).204

A close but distinct relation to snow-ice is superimposed ice (Fig. 3b).205

Superimposed ice is formed by the melting and refreezing of snow at the ice206

surface (e.g. Granskog et al., 2006), or by downward percolation, pooling and207

refreezing of water melted at the top of the snowpack by the sun. As such,208

superimposed ice is mostly a form of refrozen melt-pond, with the possibility209

of those ponds being either exposed to the air or being contained below the210

snow surface (‘subnivean’; Webster et al., 2022). The potential for subnivean211

formation is more relevant in the Southern Ocean, where melt ponds are212

rarely visible, but superimposed ice is often observed (Fig. 3; Haas et al.,213

2001; Kawamura et al., 2004; Arndt et al., 2021) By dint of its formation214

mechanism, superimposed ice has a considerably lower salinity than either215

sea ice or snow-ice, and has a distinct isotopic signature (Lange et al., 1990).216
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a b

Figure 3: (a) Flooded snow on sea ice with capillary action in the Bellingshausen Sea of
Antarctica. 1 cm of flooding was observed, with capillary action to a height of 8 cm above
the waterline (a total of 9 cm above the ice surface). Wetted snow is visible from the grey
colouring. (b) A snow core showing a 25 cm layer of superimposed ice in the Weddell Sea
of Antarctica. The core transitioned from snow at the top to highly dense (900 kgm−3)
ice near the bottom, which was confirmed to be fresh with salinometry.
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2.5. Spatial Variability of Snow Depth Across Scales217

Having so far focused on the vertical structure of the snowpack, we now218

turn to the horizontal variability of snow depth. This variability exists across219

scales, from wind-driven features on the centimetre scale known as sastrugi,220

to snow accumulation at pressure ridges causing snow depth variability at the221

meter scale, to synoptic scale variability driven by the tracking of individual222

weather systems, to regional variability driven by persistent water vapour223

pathways known as atmospheric rivers.224

The sea ice environment is often a windy one, and the accumulation225

of homogeneous stratigraphic snow layers is uncommon in the high Arctic.226

These winds result in near-surface turbulence and subsequent erosion and227

deposition of snow such that sastrugi, dunes and other bedforms appear228

even when the underlying sea ice surface is level (Filhol and Sturm, 2015;229

Popović et al., 2020).230

Wind plays a critical role in controlling the spatial and short- to long-term231

distribution and variability of snow depth on sea ice (Iacozza and Barber,232

1999). It affects the snow residence and sintering time, influencing deposi-233

tional snow dune growth and erosional processes, resulting in uneven snow234

depth (Savelyev et al., 2006; Filhol and Sturm, 2015; Trujillo et al., 2016).235

Sea ice dynamics drive the development of ice roughness in the form of236

pressure ridges and rafted floes. These features cause the uneven distribution237

of snow depth (Fig. 4), with snow often accumulating around ridges, par-238

ticularly on the downwind sides. Previous studies show the impact of wind239

affecting snow depth variability and redistribution on first-year sea ice over240

varying length scales. Using semi-variogram methods, Sturm et al. (2002)241

and Iacozza and Barber (1999) found 10-20 m as the short length scales con-242

trolling snow depth variability, while Moon et al. (2019) used the multi-fractal243

temporally weighted detrended fluctuation analysis (MF-TWDFA Koscielny-244

Bunde et al., 2006) and found two length scales, one at 10 m and the other245

between 30 m and 100 m affecting snow depth variability.246

Finally, we point out that two adjacent sea ice floes may have had differ-247

ent lifespans, allowing them to have accumulated different amounts of snow.248

This introduces large-scale variability in snow depth from floe to floe (see var-249

iograms in King et al., 2015a). Inter-regional differences in snow depth also250

occur in both hemispheres from the different precipitation regimes (Webster251

et al., 2019).252
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Figure 4: The relationship between the average snow depth along a 500/1000m transect,
and the typical variability in snow depth along that transect. Data from Soviet North
Pole drifting stations, 1954 - 1991. Most transects exhibit a snow depth between 15 -
35 cm and have a corresponding snow depth standard deviation of 8 - 13 cm. Deeper
transects typically have higher variability in their snow depth. Figure following Mallett
et al. (2022).
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3. The Seasonal Cycle253

Snow on sea ice goes through a clear seasonal cycle. A typical cycle is254

described here for the Arctic, with a broadly similar (but roughly antiphased)255

cycle occurring in the Southern Ocean.256

On first-year sea ice, snow can only accumulate once the ice has formed;257

in the Arctic, later freeze-ups have been observed to translate into lower snow258

depths because accumulation is simply less possible in the high precipitation259

months of September and October (Webster et al., 2014; Cabaj et al., 2020).260

Once freeze-up has taken hold in a region, the hydrological cycle is weakened261

as vapour fluxes from the ocean are limited, and this reduces snowfall. In262

regions such as the North Atlantic sector, warm air masses can advect into263

the Arctic and dump large amounts of snow in a short time (e.g. Webster264

et al., 2019; Edel et al., 2020). However, in most regions, snow accumulates265

fairly steadily after freeze-up (Fig. 5).266

During winter, extremely cold air temperatures lead to the characteristic267

two-layer slab/hoar stratigraphy described in Sect. 4, while wind-driven268

redistribution forms dunes and sastrugi. The diurnal temperature range in269

the snow and sea ice is relatively small, especially at high latitudes.270

As temperatures increase during spring, transient melt events start to271

occur where the snow will reach 0°C, begin to melt, and then refreeze. These272

events are typically triggered by warm air masses advecting from outside the273

Arctic (see Graham et al. (2017) for an example), and can lead to noticeable274

changes in the snow’s electromagnetic properties such as radar reflectivity275

and microwave emissivity (Drobot and Anderson, 2000).276

The early melt season is characterised by increased solar input to the snow277

surface and the detection of measurable amounts of water in the snow cover.278

As shortwave input increases, the energy balance of the snow covered sea279

ice changes. The temperature gradient decreases, and diurnal temperature280

variability within the snow cover can be observed. Meltwater first appears281

sporadically between snow grains without draining (Barber et al., 1992) and282

up to ∼2% (Langlois et al., 2007), which is in the ‘pendular regime’ (Denoth,283

1980). During early melt, the increase in snow temperature decreases the ice284

volume and brine salinity whilst increasing the brine volume in saline snow285

(Geldsetzer et al., 2009).286

Continuous melt onset (Markus et al., 2009) is often identified where snow287

contains consistent snow moisture up to 4%, rapid snow grain metamorphism288

and potential formation of melt-refreeze snow/superimposed ice layers (Bar-289
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Figure 5: Winter evolution of average snow depth (September - May) in three Arctic
Ocean observational campaigns (MOSAiC, SHEBA and North Pole Drifting Station 31).
Snow depth increases steadily over the winter, becoming tens of centimetres thick. Settling,
wind-scouring and other effects introduce reductions on short timescales. Data taken from
the Northern Loop transects of MOSAiC (Itkin et al., 2021) and the Atlanta transects of
SHEBA (Sturm et al., 2002). Transect protocols for North Pole drifting stations are
described in Warren et al. (1999).
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ber and Nghiem, 1999). Upper snow layers may exhibit melt water even at290

negative air temperatures due to insolation (Kane et al., 1997). During the291

melt onset period, snow meltwater drainage occurs due to sufficiently large292

snow saturation and this marks the regime change from ‘pendular’ to ‘fu-293

nicular’ regime (Denoth, 1980). Snow saturation values vary as a function294

of grain microstructure and range between 3% (Hallikainen et al., 1987) to295

14% (Denoth, 1982). By this point, the snow has lost its vertical temper-296

ature profile and is sometimes referred to as isothermal. The dynamics of297

melting snow involves fluid flow through a porous medium, and this remains298

a challenging physics problem in itself. This is in part because the grains of299

isothermal snow become rapidly rounded and so see significant reductions in300

their specific surface area (Vérin et al., 2022).301

The final stage in the snow’s seasonal cycle is the advanced melt phase302

where rapid melt of the saturated snow begins and formation of large poly-303

aggregate snow grains occurs (Polashenski et al., 2012). Basal snow layers304

are supersaturated with moisture such that subnivean melt ponds may form305

and manifest as slush (Webster et al., 2022). This is a precursor to full306

melt-pond formation (Polashenski et al., 2012); ponds form in micro- to307

macro-scale depressions controlled by snow and ice topography (Petrich et al.,308

2012; Webster et al., 2015). Knolls form adjacent to these depressions, and309

once all the snow has melted from the sea ice surface, another snow-like310

structure appears, with various names throughout the literature (white ice311

(Malinka et al., 2016), surface granular layer (Scharien et al., 2010)), but312

is commonly referred to as the surface scattering layer (Smith et al., 2022;313

Light et al., 2022; Macfarlane et al., 2023a). Incoming shortwave radiation314

and preferential melt of the brine channels result in surface ablation of the sea315

ice and the production of a surface layer with a relatively high specific surface316

area and reflectivity (compared to the ice with the surface scattering layer317

manually removed (Smith et al., 2022)). The regeneration of this pillared318

layer during surface ablation of the sea ice surface ensures the sea ice albedo319

is consistent throughout the season (Light et al., 2022; Macfarlane et al.,320

2023a). This is not applicable for Antarctic sea ice, which has a persistent321

snow layer through summer and subnivean ponds (Webster et al., 2022).322

Melt ponds amplify surface melt and warming, which in turn triggers a323

positive sea ice-albedo feedback which further accelerates sea ice melt (Curry324

et al., 1995; Stroeve et al., 2012). This important process means that sea ice325

models, weather and climate forecasts require high spatiotemporal observa-326

tions of melt pond coverage and its evolution to function optimally (Flocco327
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et al., 2010; Lüthje et al., 2006). Melt pond coverage varies from discrete and328

relatively small (<100m2), to widespread ponded regions (> 1200 m2) sur-329

rounded by snow/sea ice patches (Yackel et al., 2000), with pond fractions330

over smooth FYI between 75% (Istomina et al., 2015) and 90% (Webster331

et al., 2015). Areas surrounding melt ponds are characterised by thin granu-332

lar snow-ice layers, highly saturated polyaggregate snow grains and melting333

ice surface (Scharien et al., 2010).334

4. Microstructural Morphologies335

While the snowpack overlying sea ice originates from falling snow, its mi-336

croscopic structure (microstructure) is radically different from an assemblage337

of freshly precipitated snowflakes. Shortly after landing, a snowflake begins to338

bond to the snow around it in a process known as sintering (De Montmollin,339

1982; Szabo and Schneebeli, 2007). In doing so, fallen snowflakes rapidly340

form a continuous lattice of ice with pore spaces of air. Lattice properties341

are sensitive to meteorological conditions, and they have profound effects342

on the bulk electromagnetic and thermodynamic properties of the snowpack.343

Snow microstructure over sea ice particularly reflects the strong vertical tem-344

perature gradient across the snow in winter, and the high winds to which it345

is typically exposed.346

Historically, snow microstructure has often been characterised with ref-347

erence to the grain size (e.g. Gay et al., 2002), although this is increasingly348

being replaced with more objectively measurable quantities such as specific349

surface area (e.g Matzl and Schneebeli, 2006). This is in part a recognition350

that snow is a bonded lattice rather than a collection of discrete elements,351

but also that a snowpack is made of a distribution of grain sizes (Picard et al.,352

2022) which are sometimes highly non-spherical (Robledano et al., 2023).353

Field methods for characterising snow microstructure over sea ice have354

evolved rapidly over the past two decades. At the fastest and cheapest end355

of the spectrum lies the crystal card, or comparator card (Mallett, 2021).356

This tool has considerable drawbacks, which over time have driven the de-357

velopment of more advanced tools such as micropenetrometers (Schneebeli358

and Johnson, 1998) and near-infrared reflectometers (Martin and Schneebeli,359

2023). Recently, micro-CT scanners have been used in the high Arctic to gen-360

erate high-resolution digital models of snow microstructure (e.g. Macfarlane361

et al., 2023b, & Fig. 6). If a micro-CT scanner is not immediately available362

in the field, casting methods using diethyl-phthalate have allowed the man-363
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ufacture of precise replicas of snow’s interstitial pore spaces for transport364

and later scanning (Lombardo et al., 2021). While micropenetrometry and365

reflectometry offer useful proxies for snow microstructure (Kaltenborn et al.,366

2023), micro-CT scanning allows direct characterisation of the microstruc-367

ture itself.368

As mentioned in Sect. 2.2, snow on sea ice sustains significant tempera-369

ture gradients between its base (adjacent to the sea ice) and its top (adjacent370

to the atmosphere). Furthermore, its upper surface is also often subjected to371

high winds, which drive a process known as wind pumping. These two factors372

are the primary drivers of snow’s microstructural evolution over sea ice, and373

lead to a characteristic large-scale profile of microstructure in the Arctic of a374

depth hoar layer underlying a wind-slab (Sturm et al., 2002). In the Antarc-375

tic the situation is often more complicated due to larger snow depths and,376

consequently, more common flooding at the base (See Sect. 2.4). Further-377

more, sea ice in the Southern Hemisphere generally exists at a lower latitude,378

so is exposed to a less distinct seasonal cycle and higher air temperatures.379

Turning to the strong winter temperature gradient across snow on sea ice,380

let us first consider the typical case of a warm base (adjacent to the sea ice)381

and cold top (adjacent to the lower atmosphere). Key to this discussion is382

the concept of snow’s phase equilibrium. This refers to the constant process383

of sublimation and condensation at the ice-air interfaces of the crystals that384

make up the snowpack (Dominé et al., 2003). At warmer temperatures, water385

molecules are more readily detached (sublimated) from the ice and thus more386

vapour is produced by crystals of similar shape. The vertical temperature387

gradient across the snow is therefore reflected by an upward vapour flux388

through the snowpack, and faceting of the crystals near the base, which389

brings them closer to phase equilibrium (Sommerfeld and LaChapelle, 1970).390

This characteristic upward vapour flux has several effects on the mi-391

crostructural and bulk properties of the snow. On a large scale, it hollows out392

lower stratigraphic layers of the snowpack and densifies upper layers, driving393

lower bulk densities with increasing depth over sea ice (e.g. Sect. 4.1 of King394

et al., 2020) This density gradient is enhanced by the effects of wind-packing,395

which will be addressed shortly. Microstructurally, this situation drives the396

development of large, coarse structures near the snowpack base known as397

“depth hoar” where the phase equilibrium is more active (Sturm, 1989). The398

threshold for the formation of the microstructures (formed through a process399

known as kinetic growth) is known to be around 20°C/m (Colbeck, 1982, and400

references therein). This faceting through kinetic growth is distinct from the401
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Figure 6: A micro-CT scan of a snow sample taken during the 2019/20 MOSAiC expedition
(sample ID PS122/3 39-46). A sample of snow was collected in situ on sea ice and scanned
onboard the research vessel RV Polarstern to obtain this 3-D reconstruction of the snow
microstructure. Micro-CT snow reconstructions are used throughout snow physics research
and have a variety of applications. This reconstruction is annotated with microstructural
properties, but it can also be used to obtain the density, specific surface area, grain size,
etc., of the snow in addition to simulations e.g. thermal conductivity.
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rounding that a snow grain experiences with ageing, which occurs in the402

absence of any temperature gradient.403

Depth hoar grains are known to be more scattering to microwaves in a404

remote sensing context (King et al., 2015b). To identify the role of snow mi-405

crostructure (density, grain size, grain shape and arrangement) in microwave406

scattering, a ‘microwave grain size’ is required. We now know this to be407

proportional to the measurable optical grain size and by a factor named408

polydispersity (Picard et al., 2022).409

The upper layers of snow on sea ice are frequently characterised as wind410

slab: this is a high-density layer resulting from wind-packing of small saltated411

and suspended grains, and condensed water vapour sourced both from lower412

levels and from wind pumping (Sommer et al., 2018). Wind slabs can develop413

quickly from the remobilisation and surface infiltration of wind-damaged,414

needle-like grains (Dominé et al., 2009) as their high specific surface area415

allows them to sinter rapidly and strongly (Figure 1 of Colbeck, 1991).416

5. Remote Sensing of Snow on Sea Ice417

Snow depth on sea ice cannot be measured in-situ with sufficient reso-418

lution in time and space to satisfy the needs of forecasters, modellers and419

other stakeholder communities. Such is the need for the quantity from these420

groups that the World Meteolorogical Organisation recently designated it an421

Essential Climate Variable (WMO, 2022, p. 82). The importance of this422

knowledge gap has also led to the development of a large number of remote423

sensing methods over the past forty years. The most mainstream of these424

will now be described, with the understanding that each has positive and425

negative aspects such that none can be categorically declared “the best”.426

Consider a comparison between the satellite microwave radiometry record427

and that of NASA’s airborne Operation Ice Bridge (OIB), which uses radar428

technology (Subsections 5.2 & 5.3). The former is considerably more tempo-429

rally and regionally complete than the latter. However, the OIB campaigns430

have much better spatial resolution and accuracy along the aircraft tracks,431

allowing them to resolve depth variability at finer scales.432

5.1. In-Situ Evaluation Methods433

Before discussing the merits of individual snow depth models and re-434

trievals, it is important to consider the means and precision with which each435
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can be evaluated against in-situ data. This process is sometimes called vali-436

dation, however this term can be misleading. Field measurements are often437

not directly comparable to those from remote sensing, so therefore often can-438

not meaningfully “validate” a remote sensing estimate in a straightforward439

way. Furthermore, field methods are often uncertain in themselves. As such,440

we encourage an evaluative approach where two uncertain quantities are com-441

pared, rather than a process where an uncertain remote sensing estimate is442

nominally validated against an assumed truth from the field.443

In-situ characterisation of snow depth on sea ice has evolved a lot over444

the past 70 years. At Soviet run drifting stations (1935 - 1991), transects445

were performed using a ruler, and this method later shifted to the use of446

a graduated ski-pole (Warren et al., 1999). A significant evolution then447

occurred with the advent of the self-measuring probe around 1994, with a448

high profile deployment on sea ice during the SHEBA expedition (Sturm449

et al., 2002). The addition of a GPS unit allows the automatic geolocation450

of snow depth measurements (Sturm and Holmgren, 2018).451

However, snow depth is not the only quantity of interest: snow density,452

specific surface area, grain size, wetness, dielectric permittivity and salinity453

are also key parameters to understanding remote seeing backscatter signals.454

Soviet stations generated a single density value by measuring the depth, and455

then characterising the total snow water equivalent by weighing a cylindrical456

core of snow. This method was superseded in sea ice field science by manual457

snow density measurements using density cutters of various shapes (Conger458

and McClung, 2009), which deliver a vertical profile of snow density. However459

this method is time-consuming and has driven the development of density460

retrievals from the Snow Micropenetrometer (Proksch et al., 2015). This is461

a rapid method, but has significant uncertainties which go beyond the scope462

of this work (e.g. King et al., 2020).463

As mentioned previously, liquid water in snow also changes the snow’s464

behaviour with regard to microwave remote sensing. Because of the polar465

nature of the water molecule, the liquid phase is a strong absorber of mi-466

crowaves across all relevant frequencies by comparison to ice. This makes467

it more difficult for microwaves emitted from satellite or airborne platforms468

to reach and return from the sea ice surface. As a result, the wetness of a469

snowpack is a critical parameter often obtained using capacitance-based mea-470

surements of dielectric permittivity (e.g. Denoth and Foglar, 1985). These471

moisture probes have become commonplace for operational monitoring of soil472

moisture content in agricultural contexts, and this technology is increasingly473
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used by sea ice teams (e.g. Geldsetzer et al., 2009).474

5.2. Microwave Radiometry475

Microwave radiometry provided one of the earliest avenues for charac-476

terising the snow depth over sea ice (Markus and Cavalieri, 1998). These477

approaches involve the measurement of natural thermal microwave radiation478

from the sea ice. All materials emit this type of radiation, which includes the479

19 & 37 GHz (or similar) channels measured by satellite-mounted radiome-480

ters, often in different polarisations.481

The most basic approach to the method relies on the principle that mi-482

crowaves of higher frequencies are attenuated more strongly by the snow. A483

thicker snowpack therefore delivers a bigger difference between the intensity484

of higher frequency microwaves and lower frequency microwaves, relative to485

the intensities with which they are emitted by the sea ice surface. Ocean486

water has characteristically high brightness temperature by comparison to487

snow and sea ice, and therefore pollutes the signal when present in a satellite-488

mounted radiometer’s field of view; as such, the sea ice concentration must489

be separately estimated and its effect controlled for as well as possible.490

In addition to its sensitivity to sea ice concentration errors, snow depth491

retrievals using microwave radiometry have a number of other drawbacks.492

Firstly, the method described above using the 19 & 37 GHz channels has only493

been successfully deployed over first-year ice (Markus and Cavalieri, 1998).494

This is because snow emits its own thermal microwaves, and the emissions495

signature of multiyear ice is too similar to that of snow for the differential496

attenuation to be identified (Comiso et al., 2003; Brucker and Markus, 2013).497

This issue is more consequential in the Arctic, where multiyear ice makes up498

a much larger fraction of the total ice area (See Fig. 7). Several teams have499

addressed this through the use of other, lower frequency radiometers channels500

(Rostosky et al., 2018; Braakmann-Folgmann and Donlon, 2019; Lee et al.,501

2021).502

Another drawback of the radiometry method of snow depth estimation503

is that of saturation for higher snow depths (see Braakmann-Folgmann and504

Donlon, 2019, for some discussion). The physics of microwave propagation505

in homogenous media such as snow results in exponential attenuation of the506

signal’s intensity, meaning that the high-frequency (37 GHz) signal drops507

off initially rapidly, but then increasingly slowly until the difference between508

it and the low-frequency intensity does not appreciably change per unit of509

additional snow depth. This places an upper limit on the snow depth which510
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Figure 7: Snow depth retrieved over Arctic first year ice using the 37 & 19 GHz vertically
polarised channels from the AMSR-E and AMSR2 radiometers. Five-day average centred
on 2012/03/23, with the data set’s multiyear ice mask colored in grey. Data from Meier
et al. (2018).
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can be retrieved with methods such as this, and this limit is typically 30 -511

50 cm. This limit is particularly problematic in the Antarctic, where snow512

depths are typically higher. Again, the use of lower frequency channels has513

helped address this challenge (Shen et al., 2022).514

Perhaps the most significant drawback of the passive microwave method is515

that it relies on the snowpack being cold and dry, such that it acts primarily as516

a frequency-dependent (or, for some methods, polarisation-dependent) filter517

on the emissions of the ice below rather than an emitter itself. This filtering518

behaviour is lost when liquid water emerges in the snowpack at the onset of519

melt, as the wet snow produces strong thermal emissions of its own. As well520

as being indistinguishable from the underlying ice, the wet snow also acts to521

absorb the microwave emissions from the ice below, further destroying the522

snow depth signal. While this limits the usefulness of snow depth retrievals,523

the behaviour has utility for the detection of snowmelt onset timing (e.g.524

Markus et al., 2009).525

5.3. Airborne Wideband Radar Remote Sensing526

Snow depth is frequently characterised using radars mounted on airborne527

platforms, such as the SnowRadar instrument that was used until 2019 to528

retrieve snow depth on sea ice for NASA’s Operation Ice Bridge campaigns529

(Panzer et al., 2010, 2013; Kurtz and Farrell, 2011). A basic description of530

a radar’s functionality is now given, before the application to snow depth531

retrievals is discussed.532

At the most abstracted level, a radar instrument can be seen to emit a533

pulse of microwave energy and to record the power and time distribution534

of the reflected energy (known as backscatter). Backscatter that arrives at535

the detector later in time is inferred to emanate from further away. This is536

analogous to the sonic echo of two hands clapping near a smooth wall: if the537

clap’s echo is heard later, the wall is understood to be further away from the538

clapper. Returning to the radar instrument over sea ice, an initially received539

pulse of reflected energy followed shortly after by a second pulse might cor-540

respond to an initial partial reflection from the snow-air interface, followed541

by another partial reflection from the snow-ice interface. By accounting for542

the reduced speed of radar-wave propagation in snow, the difference in the543

timing of the backscatter pulses can be transformed into an estimate of the544

snow depth.545

SnowRadar was an “ultrawideband” radar. This refers to the wide range546

of frequencies used by the radar by comparison to other airborne radars (e.g.547
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Figure 8: Left panel: Snow depth retrieved by SnowRadar on board an Operation Ice-
Bridge (OIB) flight in March 2013. Orange line indicates mean snow depth of 10 km
segments, blue region indicates the 1σ range of values contributing to the 10 km segment.
Right panel: red line indicates flight path of the OIB flight, where “distance along flight
track” in left panel is in the northbound direction. Light green indicates areas of multiyear
ice on the day of the flight, dark green indicates areas of first-year ice

ASIRAS & KAREN, Hvidegaard et al., 2020). The wide frequency range548

allows exceptional range resolution, which in turn theoretically allows a clear549

identification of the ranges of the snow-air interface and snow-ice interface.550

However, interpreting the power timeseries produced by a radar instrument551

can be challenging. Spurious peaks are produced by a variety of effects,552

many of which are known as sidelobes. Detailing the origin and nature of553

radar sidelobes is beyond the scope of this chapter, but one essential impact554

is to make the interpretation of radar waveforms returned by snow covered555

sea ice non-trivial (Kwok and Maksym, 2014; Kwok and Haas, 2015). The556

problem and subjectivity of waveform interpretation has spurred the creation557

of several snow depth products from the same set of OIB radar data (Kwok558

et al., 2017). Part of the product of Kurtz et al. (2013) is displayed in Figure559

8. These products differ among each other significantly, and as such any560

given product should be treated with caution. This is especially the case561

when the OIB data are used to “validate” other remote-sensing or modelled562

products.563

5.4. Dual-Frequency Satellite Altimetry564

The ultrawideband radar methods described above produce sufficient res-565

olution in the radar range to theoretically allow the identification of snow-air566

and snow-ice interfaces in a power-range plot from one instrument (known as567
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an echogram). However, an ultrawideband radar is large and power-hungry,568

making it unsuitable for satellite platforms. This is unfortunate, as airborne569

platforms cannot provide the spatiotemporal coverage necessary for climate570

change studies and many operational applications. As such, a satellite-571

altimeter based snow depth retrieval method is highly desirable. The general572

principle underpinning dual-frequency altimetry methods is that different fre-573

quencies penetrate differentially through the snowpack. This is analogous to574

the differential attenuation of thermal microwaves in the passive-microwave575

method, however it should be noted that satellite altimeters have consid-576

erably better spatial resolution than radiometers. Most methods generally577

assume that radar pulses in the Ku-band spectrum (12 - 18 GHz) reach and578

return from the snow-ice interface. By then assuming that Ka-band radar579

waves (26.5 - 40 GHz) return from the snow-air interface, some authors have580

taken the difference in Ka and Ku-band retrieved ranges to estimate snow581

depth (e.g. Guerreiro et al., 2016; Garnier et al., 2021). Lawrence et al.582

(2018) performed a calibration procedure using Operation Ice Bridge data to583

account for underpenetration of Ku-band radar waves and overpenetration584

of Ka-band radar waves, and found the calibration procedure to be fairly585

consequential, limiting the method to the spring season. Others have taken586

the difference between the Ku-band ranges and laser range retrievals to de-587

rive snow depths (Kwok et al., 2020). While it is a safer assumption to588

assume that lasers mostly do not penetrate the surface (relative to Ka-band589

radar waves), this technique suffers from the drawback of reduced temporal590

coverage of laser altimeters.591

The Ku/Ka-band method is the operating principle for the European592

Space Agency’s upcoming CRISTAL altimetry mission, which aims to re-593

trieve snow depth over sea ice to within a 5 cm uncertainty (Kern et al., 2020).594

Establishing the snow-penetrating abilities of Ku- and Ka-band radar waves595

is therefore an active area of research, particularly ahead of the CRISTAL596

mission. Several surface-based units have been constructed and deployed on597

snow-covered sea ice to investigate the problem (e.g. Willatt et al., 2010;598

Stroeve et al., 2020b). However, these instruments struggle to measure snow599

on the spatial scales of a radar-altimeter’s footprint, making direct compar-600

isons challenging (De Rijke-Thomas et al., 2023). However, taken together601

with satellite-based (Ricker et al., 2015; Nab et al., 2023) and airborne studies602

(Willatt et al., 2011; King et al., 2018), a picture of inconsistent penetration603

of Ku-band radar is emerging. The issue of radar penetration through snow604

is revisited in Sect. 7 in the discussion of snow’s role in complicating radar605
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estimates of underlying sea ice thickness.606

Recent work by Willatt et al. (2023) has investigated the use of two607

different polarizations of returned radar waves for detecting the snow and ice608

surfaces. This presents a potential new method for satellite-based snow depth609

retrievals; however, currently operational missions do not have the hardware610

required so a new instrument would need to be launched. Furthermore, it is611

unclear whether the cross-polarized returns that mostly indicate the range612

to the snow-ice interface at the surface scale would continue to do so at the613

satellite scale.614

5.5. Imaging SAR and Scatterometry615

Active microwave remote sensing using surface- and space-based microwave616

scatterometry and imaging synthetic aperture radar (SAR) systems has demon-617

strated its ability for sea ice monitoring, in large part due to its relative inde-618

pendence to weather (compared to optical systems) and 24-h high-resolution619

imaging capability (Barber et al., 1995; Yackel et al., 2000; Howell et al., 2005;620

Scharien et al., 2010; Mahmud et al., 2016; Nandan et al., 2017b; Scharien621

et al., 2017; Howell et al., 2019). The vast majority of research has been per-622

formed using Ku-, X-, C- and L-band SAR and scatterometer sensors such as623

QuikSCAT, ScatSAT-1, ASCAT, ERS-1/2, Envisat-ASAR, RADARSAT 1, 2624

and Constellation Mission, Sentinel-1 legacy, TerraSAR-X, Cosmo SkyMed,625

ALOS PALSAR 1, 2 etc. However, satellite systems operate over a wide626

range of frequencies, spatial and temporal resolutions, polarisations and cov-627

erage over wide swath widths of 30-500 km. This intrinsically introduces628

sampling ambiguity due to the presence of incoherent pixels, adding uncer-629

tainty to snow geophysical interpretation and retrievals. Changes in snow630

geophysical properties introduce temporal decorrelation, particularly in the631

presence of diurnal forcing during the Spring and Autumn seasons.632

Historically, our baseline understanding of microwave interactions of snow633

on sea ice under different geophysical and thermodynamic states has been634

achieved through lab- and field-based observational and theoretical studies635

using surface-based radar observations and microwave models, supported by636

quasi-coincident measurements of meteorological/snow/sea ice geophysical637

data (e.g. King et al., 2013; Isleifson et al., 2014; Nandan et al., 2016; Stroeve638

et al., 2020b; Geldsetzer et al., 2007).639

Characterising active microwave backscatter from snow-covered sea ice is640

primarily governed by two factors: a) microwave parameters such as choice641

of frequency, incidence angle range and type of polarisation, and b) snow/sea642

26



ice geophysical properties, which in turn affect dielectric properties (Barber643

et al., 1998; Barber and Nghiem, 1999; Nandan et al., 2016). Generally, sur-644

face scattering governs at near-range incidence angles (<30°), and is caused645

by dielectric differences across the snow/air interface (Tjuatja et al., 1992).646

At larger incidence angles (>30° and <60°), snow/sea ice volume scattering is647

influenced by changes in snow grain size (number and density) and air/brine648

inclusions within the sea ice volume (Tucker et al., 2011). Generally, un-649

der cold, dry and homogenous snow/sea ice conditions, microwaves attain650

greater penetration through the snow volume owing to lower snow dielectric651

permittivity, while moisture plays a dominant role in masking penetration652

during the melt season (Barber et al., 1998; Barber and Nghiem, 1999). In653

the domain of snow on sea ice, SAR and scatterometers have been used for:654

• Characterising seasonal evolution of snow thermodynamics on sea ice655

from Ku-band (e.g. Howell et al., 2005), C-band (Barber et al., 1998)656

and L-band (e.g. Mahmud et al., 2020)657

• Detecting melt- and pond-onset and fractions (e.g. Barber et al., 1995;658

Mahmud et al., 2016; Fors et al., 2017; Scharien et al., 2017; Geldsetzer659

et al., 2023)660

• Characterising snow/sea ice surface roughness (e.g. Fors et al., 2016;661

Cafarella et al., 2019; Segal et al., 2020; Huang et al., 2021)662

The major disadvantage of using higher frequencies is that although mi-663

crowaves provide necessary contrast between sea ice types in winter, the664

method fails to discriminate between ice classes during summer when snow665

cover is wet (Barber and Nghiem, 1999). This issue is further complicated666

at higher frequencies such as Ku-band where microwave backscatter is influ-667

enced by fluctuations in snow grain microstructure during melt (Howell et al.,668

2005). As a potential solution, Mahmud et al. (2020) and Casey et al. (2016)669

showed that longer wavelengths such as L-band are ideal to separate sea ice670

classes during the melt season compared to C-band and higher frequencies.671

Quantifying snow depth on sea ice from imaging SAR and microwave scat-672

terometers is still considered to be a challenge. Previous surface-based scat-673

terometer and SAR studies of snow-covered FYI mentioned above have pro-674

vided the physical basis towards developing an active microwave-based snow675

depth retrieval. Those studies show that changes in snow properties such as676

temperature, salinity, density and microstructure control total backscatter.677
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However, snow depth inversion from highly spatiotemporal snow thermody-678

namic changes follows complex scattering mechanisms at multiple incidence679

angles and polarisations at air/snow and snow/sea ice interfaces, within snow680

layers and volume (Barber and Nghiem, 1999; Nandan et al., 2016). Recently,681

Yackel et al. (2019) developed a framework to estimate relative snow depth682

on FYI using statistical variance in Ku- and C-band microwave backscat-683

ter from QuikSCAT and ASCAT scatterometer measurements of FYI from684

selected locations in the Canadian Arctic during late winters. Their study685

showed that a thinner snow cover shows a larger variance in daily backscatter686

compared to thicker snow covers. They argue that, with increase in air tem-687

perature, Ku- and C-band backscatter increases from thinner snow covers688

exhibiting a larger increase in snow brine volume in the basal layers (owing689

to stronger thermal conductivity) and an apparent increase in dielectric con-690

stant. However, it should be noted that this framework does not hold when691

snow depth distributions are statistically similar, suggesting similar winter692

backscatter variances.693

6. Modelling of Snow on Sea Ice694

The challenges to effective remote sensing of snow on sea ice are stark.695

Modelling approaches have therefore proved complementary, and come with696

the bonus that the effective modelling of snow cover is also critical in fore-697

casting future polar change. Models for snow on sea ice span a range of698

complexities and spatio-temporal resolutions, some of which are described699

here.700

6.1. 1D Models701

It takes time for a snowpack on sea ice to be produced. For instance,702

a snowpack can be made up of a few individual snowfall events that gener-703

ate clear stratigraphy, or it can be more a product of persistent “diamond-704

dusting” from the frequent but slight oversaturation of water vapour in air705

over sea ice (Andreas et al., 2002). The extent to which the snowpack’s706

stratigraphy is “event-driven” will depend on its location (e.g. Webster et al.,707

2019): for instance, the Barents and Kara Seas of the Arctic Ocean are ex-708

posed to storm tracks which can dump significant amounts of snow onto the709

sea ice at once.710

One-dimensional models of snow stratigraphy and properties have a fairly711

long history in the terrestrial environment, which is beyond the scope of this712
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Figure 9: Sample output of the SNOWPACK 1D physical model (Wever et al., 2020) for
a newly formed drifting Arctic sea ice parcel accumulating snow over a two-week period
in January/February 2018. The model was driven by the ERA5 atmospheric reanalysis.
Around 5 cm of snowfall is deposited on the night of the 2nd of February which causes a
visible reduction in ice freeboard. Over time, the layer of deposited snow densifies, and
its grains coarsen, decomposing from “precipitation particles” through to faceted crystals
and depth hoar. This happens rapidly in part due to strong diurnal temperature cycling
visible in the top-right panel.
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chapter. In the sea ice domain, much 1D modelling is inspired by the seminal713

work of Maykut et al. (1971). Some high-profile models currently being714

applied in the sea ice domain include HIGH-TSI (Launiainen and Cheng,715

1998), SNOWPACK (Wever et al., 2020), SnowModel (Liston et al., 2018),716

and CROCUS (Vionnet et al., 2012). The principle component of these717

models is to solve heat transfer and vapour flux equations at high temporal718

and spatial resolution relative to the snow modules in climate models. As a719

result, several of the models can provide physical (rather than parametrised)720

representations of phenomena such as snow settling, grain metamorphism,721

and albedo evolution. An illustrative example of SNOWPACK’s output is722

given in Figure 9.723

6.2. Spatially distributed models forced by reanalysis724

One-dimensional models for snow accumulation are now regularly de-725

ployed in concert with ice motion data to produce distributed outputs of726

snow properties over the Arctic. However, if only the depth or snow-water-727

equivalent (SWE) is required, such as for altimetry applications, then an728

obvious first step is not to use a numerically complex model but to simply729

accumulate snowfall from an atmospheric reanalysis dataset. This was done730

by Kwok and Cunningham (2008, KC8) in order to generate sea ice thickness731

estimates from the ICESat laser altimetry mission. To generate the density732

(which is required for a sea ice thickness estimate) KC8 used a modified733

curve from Warren et al. (1999). KC8 used ice motion vectors to account for734

the effect of deeper/shallower snow being transported around the Arctic by735

drifting pack ice.736

A more advanced method of snow modelling (which can be seen as an737

evolution of KC8) is the Nasa Eulerian Snow On Sea Ice Model (NESOSIM738

Petty et al., 2018). A critical difference between NESOSIM and KC8 is that739

the former contains a wind-packing scheme for snow density such that it740

is not climatological, and has produced data from a variety of atmospheric741

reanalysis datasets. NESOSIM currently forms the basis of the Goddard742

Space Flight Center’s retrievals of sea ice thickness using the ICESat-2 laser743

altimeter (Petty et al., 2020).744

Another step up in model complexity is SnowModel-LG (SMLG; Liston745

et al., 2020; Stroeve et al., 2020a). While NESOSIM is an Eulerian model746

(meaning that its underlying grid coordinates remain fixed), SMLG is a La-747

grangian model, meaning that snow depth is modelled by individually fol-748

lowing a number of “parcels” around the Arctic, with a regular grid of data749
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Figure 10: Snow depth on the 1st December 2015 in SnowModel-LG and NESOSIM.
SnowModel-LG’s Lagrangian architecture contributes to visibly finer structure in the hor-
izontal variability of the final product.

only being produced as a final step. There are a number of advantages and750

disadvantages to this technique. The most obvious disadvantage is that it is751

computationally and arguably conceptually more complex than its Eulerian752

alternative. However, a Lagrangian framework allows the preservation of753

steeper, more realistic gradients in snow properties than would be preserved754

with an Eulerian approach (Fig 10). However, and perhaps crucially, the La-755

grangian approach allows individual instances of a 1D model (SnowModel in756

this case; Liston et al., 2018) to be run for each parcel, generating a distinct757

spatial distribution of snow stratigraphy in Lagrangian coordinates. This is758

not easily possible for an Eulerian model such as NESOSIM, as it is unclear759

how to combine disparate snow stratigraphies when one grid cell is advecting760

ice into another.761

It is notable that most reanalysis data sets do not include a modelled762

layer of snow on sea ice (Batrak and Müller, 2019; Arduini et al., 2022). As763

such, the snow depth cannot be extracted from reanalysis databases as mete-764

orological data often are. The results of this omission are also noteworthy: a765

warm bias in the 2m temperature data is introduced, putting outputs at odds766

not just with in-situ and satellite-based data but also climate models, which767
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Figure 11: Trends in April and October snow depths in SnowModel-LG from 1981 - 2021.
Areas where trends were calculated but found to be statistically non-significant at the
5% level are greyed out. A clear decreasing trend is seen in the Arctic’s marginal seas,
stemming from progressively later freeze-ups and ice-advance timings over the period.

often include snow cover on sea ice (Tian et al., 2024). This bias is relevant768

to physics-based models for snow on sea ice such as SnowModel which are769

driven by these reanalyses, and the impact of this bias has not yet been fully770

investigated.771

With the exception of Merkouriadi et al. (2020), no spatially distributed772

snow model of this type has yet included either snow flooding or the thickness-773

dependent heat flux delivered by an underlying layer of sea ice. The impact774

of snow flooding from negative ice freeboard is likely much more relevant775

in Antarctica, a context in which the KC8 approach, NESOSIM or SMLG776

have not yet been run. An example of the snow depth trends produced by777

SnowModel-LG is shown in Figure 11.778

6.3. Snow on sea ice in coupled earth systems models779

Earth Systems Models (ESMs) are coupled models that incorporate at-780

mospheric, oceanic and cryospheric dynamics among other systems. Outputs781

from ESMs are used to inform climate policy (for instance by the IPCC), but782

also in model intercomparison projects to refine projections of global change783

themselves. All modern ESMs participating in the sixth round of the Cou-784

pled Model Intercomparison Project (CMIP6) include sea ice modules, and785

these modules represent snow with variable complexity and nuance.786

Snow is typically represented by a single layer (e.g. Lecomte et al. (2013)787
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for the NEMO-LIM model; Plante et al. (2020) for the submodule of the788

CICE model), and therefore cannot contain stratigraphy. This is partially789

justified by the conceptual challenge (discussed in Sect 6.2) of how disparate790

stratigraphy would be merged in an Eulerian framework, however the main791

justification is that of computational simplicity; it is important that the snow792

physics does not overly burden the speed of an ESM.793

A number of other key aspects of snow physics are often omitted from794

earth systems models: the loss of snow to leads is one example, and the795

magnitude and thus importance of this potential bias remains unclear (e.g.796

Clemens-Sewall et al. (2023), see Liston et al. (2020) for discussion). Another797

example is melt-pond formation in summer: this drives significant albedo798

reductions in models, and where it is accounted for in ESMs the effects can799

be large (e.g. Flocco et al., 2012; Schröder et al., 2014; Guarino et al., 2020).800

It is finally worth considering how snowfall and accumulation over sea ice801

is represented by these coupled models in the future. Webster et al. (2021)802

observed that the magnitude of the decreasing trend in snow depth is sen-803

sitive to the amount of snowfall overall in the model. It is also noteworthy804

that the newer generation of coupled models (CMIP6) indicate a more rapid805

increase in rainfall alongside intensifying snowfall (McCrystall et al., 2021).806

This will have significant impacts on our remote sensing of the sea ice itself807

(Stroeve et al., 2022). In the CESM2 model (a contributor to CMIP6), Hol-808

land and Landrum (2021) documented strong inter-hemispheric differences809

in the future influence of intensified snowfall on the ice mass balance: in the810

Southern Ocean increasing snowfall increases ice growth due to more snow-ice811

formation; in the Arctic, increased snow has a more thermodynamic impact,812

reducing mass balance by insulating the ice and stalling congelation growth.813

6.4. Active and Passive Microwave Modelling814

It is theoretically possible to characterise all aspects of snow on sea ice815

such that its thermal microwave emissions and backscattering response to816

an incident radar wave can be modelled to the precision required by the re-817

mote sensing community. This is particularly the case given that micro-CT818

analysis of the snow microstructure is increasingly available. A number of819

models exist such as HUT (Pulliainen and Grandeil, 1999), MEMLS (Wies-820

mann et al., 2000), DMRT (Tsang et al., 2000) and SMRT (Picard et al.,821

2018); the full expansion of these acronyms can be found in the respective,822

listed publications. An intercomparison of several of the models in the pas-823

sive case has been carried out by Royer et al. (2017) and Saberi et al. (2020),824
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in which the acronyms behind the model names are also given. These models825

are yet to be effectively validated and deployed in the active (radar) case,826

for several reasons which are often common to terrestrial, glacial and marine827

contexts. Here we will focus on only the most recent development in this828

field: the Snow Microwave Radiative Transfer model (SMRT; Picard et al.,829

2018), with particular attention paid to sea-ice-specific aspects. This narrow830

focus is not overly limiting, since SMRT is similar to many of the other mod-831

els mentioned above, and in some cases its submodules are the same. It’s832

noteworthy that there have been several developments to the model since its833

initial description paper was published in 2018.834

SMRT is a one-dimensional model that, at the time of writing, can be835

operated in three modes: passive, active, and altimetric. It is initialised with836

layer-wise snow parameters such as snow temperature, microstructural pa-837

rameters (such as grain size), density, salinity, and layer thickness. Recently,838

the Integral Equation Model has been added, such that the roughness of839

interfaces can be added, although this model can be numerically unstable.840

SMRT has the capability of simulating first-year or multiyear ice underly-841

ing the snow cover, with first-year ice consisting of brine inclusions within842

a saline ice matrix, and multiyear ice consisting of air-bubble inclusions in843

saline ice.844

In passive mode, SMRT is capable of simulating brightness temperatures845

in the vertical and horizontal polarisations over the full range of observation846

angles. In active mode, SMRT acts as if a scatterometer were incident on a847

plane-parallel snow cover with a given small-scale roughness represented by848

the Integral Equation Model in terms of correlation length and RMS height.849

In the recently added altimetric mode (Larue et al., 2021), SMRT is ca-850

pable of simulating a pulse-limited radar waveform that would be returned851

from plane-parallel snow. It should be noted that this does not include852

the synthetic-aperture mode of modern altimeters such as CryoSat-2 and853

Sentinel-6. It should also be considered that sea ice generally features topo-854

graphic roughness (ridges, floe-scale changes in freeboard) that has a length855

scale well beyond what can be represented by SMRT; as such, the waveform856

simulated by SMRT in altimetric mode will not reflect that generated by a857

rough sea ice cover. This is also the case in active mode, where changes in858

the backscattered power to a real satellite sensor will often be a function859

of large-scale roughness that cannot currently be captured by SMRT. It is860

possible that in future, SMRT will be incorporated in active mode into a861

facet-based model similar to that of Landy et al. (2019).862
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7. Snow’s Impact on Satellite-Altimeter Retrievals of Sea Ice Thick-863

ness864

Sea ice thickness is a key indicator of environmental change and so it865

is highly desirable to monitor it from space. This is generally done with866

satellite-mounted altimeters of various frequencies, which generally use as-867

sumptions involving hydrostatic equilibrium to estimate the total sea ice868

thickness based on the freeboard of a floe and its snow loading. The un-869

certain role of snow on sea ice in altimetry estimates of sea ice thickness870

has been repeatedly highlighted by the Intergovernmental Panel on Climate871

Change (IPCC). The IPCC’s previous Special Report on Oceans and the872

Cryosphere in a Changing Climate (SROCC) included snow on sea ice in873

a list Key Knowledge Gaps and Uncertainties, describing it as “Essentially874

unmeasured, limiting mass balance estimates and ice thickness retrievals”875

(Meredith et al., 2019, p. 275). This was reiterated by the IPCC’s most876

recent, sixth assessment report with regard to the Cryosat-2 mission (Fox-877

Kemper et al., 2021, p. 1251).878

7.1. Laser Altimetry879

The two highest profile laser altimeters which operate over the sea ice do-880

main are NASA’s IceSat and IceSat-2 missions (Schutz et al., 2005; Abdalati881

et al., 2010). The way in which sea ice thickness is traditionally estimated882

from these satellites is described by Petty et al. (2023): essentially, a mea-883

surement is taken of the height of the snow surface above the waterline. The884

snow depth (obtained a priori) is then subtracted from that height, to esti-885

mate the height of the sea ice surface above the waterline. At this point, the886

weight of the snow and the density of the sea ice are used to estimate the887

thickness of the ice given the knowledge that it exists in hydrostatic equilib-888

rium. From this description, it is clear that snow loading plays a significant889

role in the processing of laser data to sea ice thickness data.890

One initial consideration in determining the height of the snow surface891

above the waterline is the potential over-penetration of the laser pulse (see892

Sect. 2.1 for a description of the ability for photons to penetrate the snow893

surface and experience multiple scattering before departing again from the894

snow surface). This effect is strongly affected by the wavelength of the895

laser, which for ICESat’s surface ranging was 1064 nm (near-infrared; NIR)896

and for ICESat-2 is 532 (green). While over-penetration is more of a risk897

for NIR wavelengths of ICESat, modelling work has also indicated that898
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over-penetration and multiple-scattering may introduce ranging biases with899

ICESat-2 (Smith et al., 2018). It has even been suggested that the phe-900

nomenon itself may be used to measure snow depth over Arctic sea ice (Hu901

et al., 2022).902

“Shot-to-shot” variability in snow depth must also be considered in laser-903

based retrievals. To illustrate this, a conventional snow depth product (whether904

modelled or observed) will generally not have a spatial resolution higher than905

10 km, whereas ICESat-2 data is often presented in freeboard segments less906

than 200m long. It can therefore be the case that a given spot-height will be907

lower than the mean snow depth for the grid cell in which the spot height908

resides. It would thus not be appropriate to naively subtract the mean snow909

depth from the spot height to derive a negative ice freeboard; somehow, low910

snow depths must be accounted for. Petty et al. (2020) contains information911

on this problem, summarising a number of snow redistribution functions that912

have been used for both the ICESat and ICESat-2 missions. This is less of913

a problem for radar altimeters due to their larger footprints. Nonetheless,914

Glissenaar et al. (2021) provides a comparison of approaches in the radar915

domain.916

Finally, the absolute depth of the assumed snow cover introduces poten-917

tial biases in laser-based sea ice thickness retrievals (e.g. Kern and Spreen,918

2015). For a given ranging measurement, the assumption of additional snow919

depth decreases the assumed ice freeboard, and thus reduces the derived ice920

thickness. As such, snow products that are biased high will introduce a low921

bias into sea ice thickness retrievals. This is the opposite to the case for922

radar, where higher assumed snow depths result in thicker sea ice thickness923

retrievals (see below).924

7.2. Radar Altimetry925

Radar altimetry retrievals of sea ice thickness rely on similar concepts of926

hydrostatic equilibrium to the laser-based case. This is particularly the case927

with some processing chains that use data from the AltiKa mission, where928

the Ka-band radar waves are assumed by some to act like a laser ((i.e. to929

backscatter from the snow surface; Guerreiro et al., 2016)).930

However, by far the most common frequency band for radar altimeters is931

the Ku-Band; this is the case for the ERS1/2, EnviSat, CryoSat-2, Sentinel-3932

and HY-2B altimeters. In the Ku-band case, radar backscatter is often as-933

sumed to originate from the snow/sea-ice interface (e.g. Tilling et al., 2018),934

with waves having fully penetrated and returned back through the snow935
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cover. When operating under this assumption, a given uncertainty in snow936

loading results in the opposite sign of uncertainty in sea ice thickness re-937

trievals. However, compared to the laser case, the magnitudes of the induced938

biases are similar. It is worth noting that radar waves travel more slowly in939

snow than in air, and this is corrected for in all mainstream sea ice thickness940

products (Mallett et al., 2020).941

A distinguishing characteristic of Ku-band altimetry of sea ice thickness942

is the contentious issue of radar penetration of the snow cover. This is a943

particularly active area of research ahead of the European Space Agency’s944

planned CRISTAL altimetry mission (Kern et al., 2020), which will use both945

Ka and Ku-band frequencies, ostensibly assuming that they experience zero946

and total penetration of sea ice’s snow cover respectively. Tank studies of947

Ku-band penetration from the 1990s (Beaven, 1995; Beaven et al., 1995) show948

a negligible or only a small amount of radar power returning from the snow949

surface, depending on the radar antenna’s geometry. However, more recent950

field studies (Willatt et al., 2010, 2023; Jutila et al., 2022) show a much more951

significant return. The issue is further complicated by issues involving the952

footprint size of in-situ instruments relative to satellites (De Rijke-Thomas953

et al., 2023).954

Willatt et al. (2011) examined airborne Ku-band data, finding that power955

again did not return consistently from the snow-ice interface. King et al.956

(2015a) used airborne data to statistically investigate the effective scattering957

height of CryoSat-2, finding that the best fit was obtained from associating958

the scattering height with the snow-air interface. However, it is unclear how959

sensitive this finding is to artificially high retrieved freeboards in the raw data960

set known as “Baseline-C”, which has now been superseded. Studies which961

combine satellite data with snow information from buoys (Ricker et al., 2015)962

and SnowModel-LG (Nab et al., 2023) also indicate that radar does not fully963

penetrate on a consistent basis in the time period immediately after snowfall.964

On the other hand, it is clear that no consistent high bias (associated with965

artificially elevated scattering horizons) exists in publicly available sea ice966

thickness data (e.g. Figure 16 of Tilling et al., 2018). This implies that967

considerable further study is required before the present understanding of968

radar underpenetration can be incorporated into sea ice thickness retrievals.969
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8. Snow’s Impact on Sea Ice Related Biology970

8.1. Gas flux and biogeochemistry971

The unique microstructure of snow, with a high specific surface area972

(SSA), provides surfaces for chemical reactions, enabling the transformation973

of gases and aerosols and facilitating reactions such as the deposition and974

uptake of atmospheric pollutants. Sunlight-induced photolysis reactions also975

occur in the Arctic snow cover (Grannas et al., 2007), affecting the abundance976

of important photochemical chemicals, e.g., bromine, oxides of nitrogen, ni-977

trous acid, and formaldehyde (Hov et al., 2007), which dominate the local978

chemistry of the lower atmosphere and are responsible for the depletion of979

tropospheric ozone and gaseous mercury (Pratt et al., 2013; Baccarini et al.,980

2020; Benavent et al., 2022). Moreover, snow serves as a reservoir for persis-981

tent naturally occurring elements (Dominé et al., 2004; Nomura et al., 2013),982

organic pollutants (Lei and Wania, 2004; Meyer and Wania, 2008), and trace983

metals (Durnford and Dastoor, 2011), which, when released into the envi-984

ronment during snowmelt can accumulate in Arctic invertebrates, fish, birds985

and mammals, and affect the overall functioning of Arctic ecosystems (Köck986

et al., 1996; Wang et al., 2022).987

While snow cover hinders the movement of gases between sea ice and988

the atmosphere, it is not an impermeable barrier. Instead, fluxes of carbon989

dioxide can occur through a snow cover even during winter (Nomura et al.,990

2018). There is large spatial and seasonal variability in such fluxes depend-991

ing, in part, to the nature of the snow cover (e.g. snow structure) and its992

stage of melt (Tison et al., 2016, and references therein). The presence of993

superimposed ice (Sect. 2.4) is known to block gas diffusion (Nomura et al.,994

2010).995

8.2. Primary Productivity996

As mentioned in Sect. 2.1, sunlight is capable of penetrating through997

many centimetres of snow, and even greater distances in ice (Lebrun et al.,998

2023). Veyssière et al. (2022) measured light transmittance to the base of sea999

ice before and after clearing snow from the surface, and Figure 3 of their work1000

provides an illustration of the variable degree to which snow itself controls1001

light transmission. The penetration of light through snow covered sea ice1002

allows photosynthetic activity of ice algae within sea ice (Leu et al., 2015),1003

and potentially of phytoplankton beneath sea ice (Ardyna et al., 2020). A1004

majority of ice algae live within the bottom skeletal-ice layer, and to a lesser1005
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extent within the brine network. Ice algal communities can also develop1006

on the surface of sea ice under flooded or ponded conditions. Bottom-ice1007

algae are understood to be shade-obligate flora, meaning that they are able1008

to grow with near-zero quantities of light (Cota, 1985; Hancke et al., 2018).1009

However, their adaptation to low light extremes also makes them susceptible1010

to cell damage or even death, collectively referred to as photoinhibition, with1011

exposure to high light levels that may be experienced with the removal or1012

melt of snow (Campbell et al., 2015). Due to this sensitivity, a thinner snow1013

cover does not always equate to higher biological productivity for ice algae1014

(Michel et al., 1988; Lund-Hansen et al., 2020).1015

With the dependence of photosynthesis on light, the spatial variability of1016

snow is thus tightly coupled to the distribution of ice algae (Campbell et al.,1017

2015). This is evident across scales of variability, from the local distribution1018

of snow drifts to inter-floe or regional differences in snow depth. The result1019

is a described patchiness of bottom-ice algal productivity on the order of 31020

m (Campbell et al., 2022) and ice algal chlorophyll a (Chl a) that represents1021

algal biomass anywhere from five to nearly 100 meters in size (Gosselin et al.,1022

1986; Granskog et al., 2005; Søgaard et al., 2010; Wongpan et al., 2020). One1023

key control on the light reaching in- and under-ice algae is the impact of1024

horizontal scatter within sea ice (Abraham et al., 2015); where even a small1025

area of thin snow in an otherwise thickly covered landscape can produce1026

“windows” in the snow layer, through which light can penetrate to support1027

photosynthetic growth.1028

The nature of snow movement across the surface of sea ice also affects1029

the growth of sea ice algae. Drift migration across level first-year sea ice is1030

thought to create a more dynamic light environment than multiyear ice where1031

snow movement is restricted by hummock features. As a result, algae within1032

first-year ice may be more robust to sudden increases in light (Campbell et al.,1033

2022). The more stable light environment of multiyear sea ice also supports1034

a stronger relationship between sea ice algal growth and light transmission1035

Lange et al. (2019).1036

Stroeve et al. (2021) used a satellite-based approach to show that year-1037

to-year variability in snow depth has a significant impact on the amount of1038

light that makes it into and through the sea ice to support these primary1039

producers. With the dependence of sea ice algal growth on light availability,1040

development of the bottom-ice algal bloom will first begin under the thinnest1041

snow covers. Mundy et al. (2005) observed the greatest total Chl a under1042

intermediate snow covers, with less Chl a under thin snow attributed to1043
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the increased thermal conductivity of the cover (e.g. Gosselin et al., 1986).1044

The ice algal bloom will typically end first under such thin snow-covered1045

areas due to this earlier removal from the ice following snow-ice melt, as well1046

as photoinhibition (Campbell et al., 2015). This timing is consequential for1047

grazing organisms at higher trophic levels like zooplankton, which have timed1048

their reproductive cycles to benefit from the lipid-rich food resource of the1049

ice algal bloom (Leu et al., 2011).1050

To study the impact of snow on the timing of ice algal blooms, known as1051

their phenology, several studies have selectively modified snow depth. Arctic1052

results indicate that brine drainage resulting from the temperature effects1053

of snow addition appeared to limit abundance, but also strongly affected1054

the species of organisms found (Gradinger et al., 1991; Grossi et al., 1987).1055

More recent work (Campbell et al., 2015; Lund-Hansen et al., 2020) has1056

documented a switching in the type of the relationship between snow depth1057

and chlorophyll-a abundance over time as the snowpack evolves, where the1058

snow first prevents light transmission then later delays ice melt. Due to1059

the insulting effect of snow in late spring, total removal of the snow cover1060

by severe weather event or artificial clearing can cause early termination of1061

bottom-ice algal blooms (Campbell et al., 2015).1062

The onset of snowmelt plays a key role in the triggering of under-ice1063

phytoplankton blooms (Fortier et al., 2002), largely through two mechanisms.1064

The first is the rapid increase in transmitted PAR when the snow becomes1065

wet (e.g. Mundy et al., 2014; Katlein et al., 2019). The second mechanism1066

involves the creation of melt ponds, which form effective windows in the snow1067

through which large amounts of light can be transmitted (Frey et al., 2011).1068

8.3. Higher Trophic levels1069

Literature on the impact of snow on sea ice on animals such as mammals1070

and birds is limited. Ringed seals are often presented as the canonical exam-1071

ple of a mammal vulnerable to changes in the sea ice’s snow cover. Forming1072

their dens in the snow cover of the sea ice (Kingsley et al., 1990), they are1073

particularly sensitive to the projected reductions in spring snow depths in1074

the Arctic (Hezel et al., 2012; Lindsay et al., 2021, 2023). Mahoney et al.1075

(2021) discusses flooding of ringed seal lairs where the ratio of ice to snow1076

thickness is poor, which may drive lair abandonment (their Sections 4.2 and1077

5.2).1078

Snow conditions on sea ice also affect polar bear populations and how1079

they hunt seals (e.g. Hauser et al., 2023). For instance, Ferguson et al. (2001)1080
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describes the role of hard snow in reducing foraging opportunities for bears,1081

thus impacting habitat selection. Furthermore, bears have been observed to1082

use snow shelters on sea ice in regions and times of sparse prey availability1083

(Ferguson et al., 2001). Along these lines, Stirling et al. (1993) reported an1084

absence of bears in regions in regions of landfast ice without snowdrifts. An1085

interplay also exists between the thickness of a snow drift and the speed with1086

which a polar bear can reach a seal pub within it, with Hammill and Smith1087

(2011) finding that deeper snow depths resulted in less successful predation1088

by bears. Structurally weaker (not just thinner) snow cover above seals has1089

also been associated with increased predation by bears (Stirling and Smith,1090

2004; Chambellant et al., 2012).1091

9. Snow’s Impact on Human Activities in the Polar Oceans1092

9.1. On-Ice hunting and travel in the Arctic1093

Many indigenous coastal communities in the Arctic rely on on-ice hunting1094

and travel, making them sensitive to environmental change and natural vari-1095

ability in snow and ice conditions. For instance, Riewe (1991) documents the1096

identification of seal dens by Inuit people by the formation of hoar-frost crys-1097

tals on the snow above. During discussions about the role of snow in hunting,1098

communities have identified the roughness induced by snow bedforms and the1099

slush formed by melting and flooding to be potential hazards for snowmobile1100

travel (Bell et al., 2015). Snow and sea ice surface roughness have a joint1101

impact on sea ice trafficability using snowmobiles. Smoother snow provides1102

safer travel on sea ice by snowmobile with reduced fuel consumption and1103

minimal wear and tear on equipment. Frequent snow storms, snow hum-1104

mocks, and snow drifting around rough sea ice also affect on-ice travel safety1105

(Segal et al., 2020). Sea ice discontinuities such as pressure ridges, cracks1106

and leads filled with snow appear deceptively trafficable for hunters to travel1107

across, and can become a safety risk. The timing of autumn snowfall has1108

also been identified as making seal hunting more dangerous (through stalling1109

ice growth and promoting melt; Laidler et al., 2009). To inform commu-1110

nity members on safe sea ice travel, community-led organisations such as1111

the Arctic Eider Society in the Canadian Arctic regularly train local hunters1112

and community members to take snow and sea ice observations by recording1113

photos and videos to link indigenous knowledge and science through online1114

platforms such as SIKU and ELOKA (Pulsifer et al., 2012; Krupnik et al.,1115

2010).1116
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9.2. Icebreaking Ships1117

The properties of snow on sea ice are also known to control the effec-1118

tiveness of icebreaking ships, mostly through mechanical friction on the hull.1119

Icebreaking hulls typically operate by sliding upwards and over sea ice until1120

the downward force from the weight of the hull breaks the ice from above,1121

and this is made much more difficult when the snow cover is deep or wet.1122

This occurred in 2022 when the United Kingdom’s newly built polar ship1123

was unable to pass through fairly thin sea ice to resupply the International1124

Thwaites Glacier Collaboration (Maritime Executive, 2022; Ralph Stevens,1125

Personal Communication 2023). When snow is blown into the water and1126

freezes into a sticky slush, it can also pose challenges to icebreaking ships:1127

this has been reported in the Bay of Bothnia by hull manufacturers (Teemu1128

Heinonen, Personal Communication 2023).1129

10. Summary1130

In this chapter we first described the various forms of snow on sea ice.1131

From large-scale patterns of depth distribution, to the vertical structure of a1132

layered snowpack, to microscale grain metamorphism, the marine snowpack’s1133

physical properties vary across scales in both space and time. We focused in1134

particular on the unique aspects of snow in the sea ice environment; much1135

of these stem from the presence of salt in the snow, and the potential for1136

seawater flooding at its base.1137

We then discussed the ways in which we measure and quantify snow on1138

sea ice through earth observation and modelling. With regard to different1139

observational methods, tradeoffs are numerous and ubiquitous. Different1140

data products have different strengths and weaknesses, resulting in no one1141

product being “the best”. Model outputs have similar issues, although the1142

trades tend to be more focused around available computing power and its1143

impact on the complexity of physics which can be represented.1144

Finally, we presented the impact of snow in four regards: remote sensing1145

of sea ice thickness, primary production in and under the ice, the habitat of1146

ringed seals and polar bears, and the use of the sea ice by humans both on1147

foot, snowmobile, and icebreaker.1148
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eral, S., Zielcke, J., Simpson, W.R., Platt, U., Tanner, D.J., Gregory Huey,1960

L., Carlsen, M., Stirm, B.H., 2013. Photochemical production of molec-1961

ular bromine in Arctic surface snowpacks. Nature Geoscience 2013 6:5 6,1962

351–356. doi:10.1038/ngeo1779.1963
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