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Abstract 

Mind wandering (MW) is the intentional or unintentional experience of attending to 

internal task-unrelated thoughts while being occupied with an external task. Even though 

maintaining task focus is assumed to require executive functions (EF), it is not clear how and 

to what extent MW and EF interact. Research has found that activity in the dorsolateral 

prefrontal cortex (DLPFC) is associated with EF and MW. To understand the causal role of 

the DLPFC in relation to MW and EF, researchers have turned to non-invasive brain 

stimulation. Thus far, most studies have used transcranial direct current stimulation, but the 

results have been inconclusive. To further elucidate the relationship between the DLPFC, EF 

and MW, we conducted a pre-registered, sham-controlled, triple-blinded within-subject 

experiment by combining intermittent theta burst stimulation (iTBS) interleaved with a 

recently developed MW-EF task. In contrast to our expectations, participants reported 

significantly more MW following real iTBS as compared to sham stimulation. However, at 

the same time, psychomotor precision and EF improved, indicating that participants were able 

to engage in resource-intensive MW while simultaneously performing well on the task. We 

argue that iTBS enhanced the underlying executive resources that could be used to increase 

both MW and task performance in line with the resource-control view of MW. This finding 

opens exciting avenues for studying the complex interplay between MW and EF and provides 

empirical support for the utility of iTBS in improving executive performance during a 

demanding cognitive task.  

 

 

Keywords: mind wandering, repetitive transcranial magnetic stimulation, intermittent theta 

burst stimulation, executive functions, executive resources,   
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 Mind wandering (MW) is a mental state in which humans engage in internally 

generated thoughts that are unrelated to the current task (Smallwood & Schooler, 2015). For 

instance, while you are driving home from work, you might find yourself starting to think 

about plans for the weekend or which meal you are going to prepare for dinner. Despite being 

engaged in the largely automatized activity of driving, your conscious thoughts are not related 

to the current activity. Research indicates that MW is a pervasive phenomenon, accounting for 

between 25-50 percent of our waking life (Killingsworth & Gilbert, 2010). Still, MW is 

typically associated with reduced performance on most cognitive tasks (Alexandersen et al., 

2022; Groot et al., 2021; Smallwood & Schooler, 2015; but see Vékony et al., 2023). 

Critically, MW can be dangerous during tasks such as driving because it interferes with 

maintaining attention to rarely occurring but critical events (Yanko & Spalek, 2013, 2014). 

These insights prompted enquiries into the relationship between MW and executive 

functioning (EF). 

 Some researchers have theorized that MW occurs due to a failure of EF to maintain 

task focus and to prevent engagement in MW (executive failure account; McVay & Kane, 

2010). Other researchers (Smallwood & Schooler, 2006) have posited that MW might rather 

rely on the same underlying executive resources as the primary task, implying a continuous 

balance of whether to engage in the primary task or MW (executive use account). Both 

theories predict less MW with increasing task demands (Seli, Konishi, et al., 2018). However, 

the two theories predict opposite effects on MW regarding changes in EF: If more executive 

resources are available, the executive use theory would predict MW to increase, while the 

executive failure theory would predict MW to decrease, as more resources are available to 

prevent MW from intruding. One possibility to disambiguate between these theories is the 

application of non-invasive brain stimulation (NIBS) to modulate EF.   
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Studies employing NIBS in the field of MW have typically applied transcranial direct 

current stimulation (tDCS) over the prefrontal cortex (PFC). The main motivation to target 

prefrontal areas and particularly the dorsolateral PFC (DLPFC), is its known relation to 

executive functions (e.g., Cole et al., 2010; Mansouri et al., 2009) and its involvement in MW 

(Christoff et al., 2009; Fox et al., 2015; Groot et al., 2021). However, a recent meta-analysis 

aggregating the results from the existing literature concluded that tDCS over the DLPFC does 

not seem powerful enough to reliably influence MW (Nawani et al., 2023). A key reason for 

the lack of a consistent effect of tDCS on MW may be its low intensity (Guidetti et al., 2022) 

and lack of focality (Boayue et al., 2018). Here, we used repetitive transcranial magnetic 

stimulation (rTMS), which is a more potent (Turi et al., 2021) and focal (Priori et al., 2009; 

Rossini et al., 2015) stimulation method to investigate the relationship of activity in the left 

DLPFC, EF and MW. We implemented intermittent theta burst stimulation (iTBS), which has 

been found to increase neural excitability (Huang et al., 2005; Klimesch et al., 2003; Li et al., 

2017) and improve cognitive performance (Wu et al., 2021; Xu et al., 2023) in a manner that 

may accumulate over several stimulation rounds (Tse et al., 2018; Yu et al., 2020).  

To investigate the relationship between EF and MW, the cognitive task must reliably 

draw on executive functions. However, the vast majority of research on MW has used the 

sustained attention to response task (SART; Robertson et al., 1997), which is a low-demand, 

monotonous and repetitive task requiring response inhibition to rarely occurring cues. These 

features of the SART can foster MW, which is typically measured by so-called thought 

probes, i.e., brief questions enquiring the attentional state of the participants presented 

throughout the experiment. However, due to the low EF demand of the SART, it may not be 

suitable to investigate the relationship between MW and EF. Therefore, Boayue et al. (2020) 

created the finger-tapping random sequence generation task (FT-RSGT) that strongly relies on 

EF while being monotonous and repetitive. In the FT-RSGT, participants respond to a 
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rhythmic metronome, which enables measuring behavioural variability (BV), a behavioural 

marker sensitive to fluctuations of attention (Kucyi et al., 2016; McVay & Kane, 2012; Seli et 

al., 2013). Moreover, participants are required to generate random sequences of left and right 

taps, which draws heavily on EF (Baddeley et al., 1998) and is sensitive to stimulus-

independent thoughts (Teasdale et al., 1995). Thus, the FT-RSGT enables the measurement of 

EF while retaining features that foster MW, which are necessary to investigation the 

relationship between MW and EF.  

We hypothesized that iTBS would decrease MW relative to sham stimulation, while 

improving performance as measured by randomness of the tapping sequences and BV. The 

rationale behind this hypothesis was that, in line with the executive failure account of MW, 

we expected real stimulation to enhance the availability of executive resources, which, in turn, 

would allow for more effective shielding of task-focus. 

Method 

Study design 

 The experiment has been approved by the regional ethical committee in Norway (REK 

#285811). Our study was pre-registered at OSF (https://osf.io/2g8nz) and the data and all 

study materials are publicly available (https://osf.io/txpu2/). We implemented an accelerated, 

offline iTBS procedure interleaved with blocks of the FT-RSGT. The design was a triple-

blinded sham-controlled 2 (stimulation session: sham vs. real) x 4 (blocks: B0-B3) within-

subject design (see Figure 1a). 

Figure 1 

Overview of the Experimental Procedure and the Finger Tapping Random Sequence Generation 

Task 

https://osf.io/2g8nz
https://osf.io/txpu2/
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Note: (a) Overview of the experimental procedure. (b) Schematic overview of how the 

behavioural indices, approximate entropy (AE) and behavioural variability (BV), are tracked 

through the finger-tapping random sequence generation task (Figure by Aasen, S. R., 2024; 

available at https://doi.org/10.6084/m9.figshare.25471960.v1 under the CC-BY 4.0 licence).  

ITI = inter-tap-interval. 

Participants 

We pre-registered a sample size of 40 participants, powered to find a small-to-medium 

effect size of ƞ2 = .044, with 80% power at α = .05. We recruited 46 right-handed participants 

in Tromsø, Norway between March 2022 and May 2023. All participants were informed 

about the experiment and gave written consent before joining. Two participants had to be 

replaced due to not following the protocol. Four participants dropped out at the familiarization 

stage due to discomfort with the stimulation protocol. This left us with a final sample of 40 

https://doi.org/10.6084/m9.figshare.25471960.v1
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participants (25 females) with an average age of 23.3 years (SD = 3.29). Participants were 

compensated for their time with a gift card of 500 NOK (approximately 50 Euros) at a local 

mall. Participants had to be 18-50 years old, right-handed, no previous or current 

psychiatric/neurological disorder and no first degree relative with epilepsy (see Supplemental 

Methods for more details). 

The FT-RSGT 

 The task required the participants to generate a random sequence of taps using their 

two index fingers, while closely matching the beat of a metronome (beeps at 440 Hz 

presented for 75 ms with an inter-stimulus interval of 750 ms; see Figure 1b). Each block of 

the FT-RSGT lasted approximately 10 minutes, contained 11 pseudo-randomly presented 

thought-probes prompted on average every minute (randomly between 40-80 seconds). At 

each probe, participants had to answer three consecutive questions; the first related to the 

participant's general attention: “To what degree were you focused on the task right before this 

question?”, answered on a 1-4 Likert scale (1: not at all focused; 4: completely task focused). 

The other two probes related to the content and intention of participants (these probes are not 

further analysed here, see Supplemental Methods and Results). 

BV was calculated by taking the standard deviation of the inter-tap intervals of the last 

25 taps preceding each thought-probe, which was log-transformed and z-scored (using the 

grand mean and standard-deviation across all subjects and sessions). Approximate entropy 

(AE; Pincus & Kalman, 1997) is a measure of sequence irregularity that estimates the 

probability that similar subsequence’s of a length m = 2, when augmented by one position, 

will remain similar. This statistic was calculated over the 25 taps preceding each probe. The 

raw AE value was transformed according to −log⁡(log(2) − 𝐴𝐸) to and z-transformed using 

the grand mean and standard deviation (Boayue et al., 2020).  

iTBS protocol 



INCREASING MIND WANDERING WITH ITBS OVER THE DLPF                                 8 

 The iTBS protocol consisted of 50 Hz bursts of three TMS pulses, repeated at 5 Hz for 

2 seconds and followed by a break of 8 seconds. This sequence was repeated 20 times, 

resulting in a total of 600 pulses (total duration approximately 3 minutes; Figure 2a). We used 

a MAG & More PowerMAG lab 100 with the Double coil PMD70-pCool active coil and the 

Double coil PMD70-pCool-Sham sham coil (MAG & More GmbH, Germany). To target the 

left DLPFC, we used a Localite TMS Navigator system (version 3.0.72; Localite GmbH, 

Germany). No individualized magnetic resonance imaging (MRI) scans were collected, and 

therefore, we relied on the MNI template brain co-registered to our participants' head 

anatomy, and targeted the DLPFC with MNI coordinates x = -44.23, y = 29.48, z = 21.62. The 

coil was positioned at a 45° angle in posterior-lateral orientation relative to the midline. The 

stimulation protocol resulted in an electric field that was focused on the left lateral prefrontal 

cortex (Figure 2b). 

Figure 2 

Simulation of Stimulation Intensity over the Left Dorsolateral Prefrontal Cortex and the 

Intermittent Theta Burst Stimulation Protocol 

 

Note. (a) Visual overview of the intermittent theta burst stimulation protocol. (b) Simulation of the 

electric field generated (Supplemental Methods) by the stimulation, created using simNIBS 

(Saturnino et al., 2019). Figure by Aasen, S. R., 2024; available at 

https://doi.org/10.6084/m9.figshare.25472026.v1 under the CC-BY 4.0 licence. 

https://doi.org/10.6084/m9.figshare.25472026.v1
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Procedure  

We equipped participants’ right hands with three Ag/AgCl electrodes: The ground was 

placed on the dorsum of the hand, the reference was placed on the lateral surface of the 

proximal interphalangeal joint of the 5th finger, while the active electrode was placed on the 

abductor digiti minimi muscle. The electrodes were connected to a Brain Vision V-amp 8 

digital DC amplifier (Brain Vision, LLC, the United States)1. Participants’ heads were co-

registered to the MNI anatomy, and we continued with determining the resting motor 

threshold (RMT). We navigated to the predetermined MNI coordinate corresponding to the 

primary motor cortex (x = -40, y = -20, z = 52) and started the hotspot hunting followed by 

the motor threshold. Participants then proceeded with the first round of the FT-RSGT 

(baseline, B0), while experimenters set up the blinding procedure that ensured that the 

experimenter was unaware of the coil used for stimulation. In both sessions (conducted on 

two different visits), real or sham iTBS was delivered 3 times at 80 % RMT (Figure 1a). 

Before the first stimulation round, participants were familiarized with a 1-second sequence of 

the stimulation procedure. After the last task-block, participants answered general questions 

regarding the experiment, questions regarding the efficacy of the blinding procedure, and a 

TMS checklist about possible side effects (Brunoni et al., 2011). In total, each session lasted 

approximately 2 hours (see Supplemental Methods for details). 

Statistical Analysis 

Our main analysis complied with our pre-registered protocol (OSF; 

https://osf.io/2g8nz). We conducted 3 separate 2x4 repeated measures analysis of variance 

(rmANOVA) tests, with dependent variables MW (i.e., answers to the first probe question 

about being on-task or engaged in MW), BV and AE, and within-subject factors Stimulation 

 
1 Approximately half-way through data collection, the V-amp device malfunctioned, and we replaced it 

with a Brain Vision Quickamp (Brain Vision, LLC, the United States). 

https://osf.io/2g8nz
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(real vs. sham) and Block (B0, B1, B2, B3). Efficacy of the blinding protocol was assessed 

with nonparametric tests, separately for participants’ and researchers’ guesses at each session. 

Bayesian Exploratory Analysis 

In addition to our pre-registered models, we also carried out a set of more targeted 

analyses that included the important task-on-time effect and provided a more detailed view on 

the temporal evolution of EF and MW with task progress in the real vs. sham iTBS 

conditions. These analyses were not pre-registered and should therefore be considered as 

exploratory, even though the hypotheses being tested remain pre-registered. 

Utilizing standard linear modelling for ordinal data poses several issues (Boayue et al., 

2019; Liddell & Kruschke, 2018), and to address these concerns we used ordinal regression 

models implemented in a hierarchical Bayesian framework. More specifically, we used a 

Bayesian ordinal probit models (Bürkner & Vuorre, 2019), which has already successfully 

been used to analyse changes in MW following non-invasive brain stimulation (Alexandersen 

et al., 2022; Boayue et al., 2019, 2020). Furthermore, we report two additional analyses where 

AE and BV served as the dependent variables in hierarchical Bayesian linear regression 

models, set to evaluate changes in these two behaviour measures following real vs. sham 

iTBS.  

We estimated the effects of the predictors Trial number (z-transformed), Block (B0, 

B1, B2, B3) and Stimulation (sham vs. real) on self-reported MW and the behavioural indices 

AE and BV. We used Hamiltonian Monte-Carlo algorithms implemented in the Stan software 

(Stan Development Team, 2023; via package cmdstanr; Gabry et al., 2023) to sample from 6 

parallel chains with 3000 samples each, discarding the first 1500 samples of each chain. 

Convergence of all models was confirmed visually and all 𝑅̂-values were confirmed to be 

lower than 1.05. We used the default priors implemented in the brms-package (Bürkner, 

2017) that are non-informative for coefficients corresponding to fixed effects and weakly 
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informative for the intercept and standard-deviation parameters (Student-t prior with 3 df, 

mean = 0 and SD = 2.5). For each coefficient, we report its posterior mean 𝑏 and 95% 

highest-density interval (HDI). In addition, for directed effects, we report the probability of 

the effect to be positive (𝑝+) or negative (𝑝−) as well as the evidence ratio for a positive 

(ER+) or negative effect (ER−). The ER quantifies how much more likely the effect is to be in 

the expected compared to the opposite direction.  

Results 

Blinding Efficacy and Side Effects of the Stimulation 

 Regarding the blinding (Table S1), neither the participants (X2(1, N = 20) = 0.1, p = 

.747) nor the researchers (X2(1, N = 20) = 0, p > .999) managed correctly to guess the 

stimulation in session 1. Similar results were obtained in session 2 (participants: X2(1, N = 20) 

= 0, p > .999; researchers: X2(1, N = 20) = 0.9, p = .343), indicating successful blinding of 

both participants and experimenters. Participants reported very few side effects 

(Supplementary Results; Table S2 and Figure S1), and only "trouble concentrating" was 

elevated for real stimulation relative to sham stimulation (M = -0.33, t(39) = -2.48, p = .017) 

Pre-Registered Analyses 

 The pre-registered rmANOVA for MW indicated a significant main effect of Block 

(F(3,117) = 2.91, p = .037) and Stimulation (F(1,39) = 4.79, p = .035), but no interaction 

(F(3,117) = 1.1, p = .353), suggesting that MW increased over blocks and further increased 

with real stimulation. The corresponding analysis for BV did not reveal a main effect of Block 

(F(3,117) = 1.59, p = .195), Stimulation (F(1,39) = 1.3, p = .29), or an interaction (F(3,117) = 

1.01, p = .389). Regarding executive control (i.e., the AE measure), we found a significant 

main effect of Block (F(3,117) = 4.57, p = .005), but no main effect of Stimulation (F(1,39) = 

0.49, p = .487) or an interaction (F(3,117) = 0.62, p = .601), suggesting that AE generally 
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decreased over blocks. In accordance with our pre-registration protocol, we did no follow-up 

analyses as the interactions in these rmANOVAs were not significant. 

Exploratory Analyses 

Figure 3 

Mind Wandering, Approximate Entropy and Behavioural Variability Over Block 

and Stimulation 

 

Note. Figure by Aasen, S. R., 2024; available at 

https://doi.org/10.6084/m9.figshare.25472137.v1 under the CC-BY 4.0 license. 

Effects of Stimulation on MW 

Results of the Bayesian ordered probit model for MW (see Table S3) indicate that 

MW increased within blocks as a function of Trial, 𝑏 = 0.20, [0.17,0.24], 𝑝+ = 1.00,ER+ =

∞. Moreover, in the sham condition, MW increased from baseline to the second block (B0 to 

B2: 𝑏 = 0.12, [−0.03,0.27], 𝑝+ = 0.95,ER+ = 17.87). However, there was only anecdotal 

evidence that MW increased in the first block (B0 to B1: 𝑏 = 0.02, [−0.12,0.17], 𝑝+ =

0.61,ER+ = 1.59) and in the third block (B0 to B3: 𝑏 = 0.03, [−0.11,0.18], 𝑝+ =

0.67,ER+ = 2.04). Relative to sham stimulation, there is moderate evidence that MW 

increased after the first real stimulation round (stimulation × B1: 𝑏 =

0.14, [−0.07,0.34], 𝑝+ = 0.90,ER+ = 9.07), and strong evidence that it increased after the 
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second (stimulation × B2: 𝑏 = 0.21, [−0.01,0.40], 𝑝+ = 0.97,ER+ = 36.50), and third 

stimulation round (stimulation × B3: 𝑏 = 0.16, [−0.04,0.36], 𝑝+ = 0.93,ER+ = 13.73), see 

Figure 3a. 

Effects of Stimulation on Task Performance 

In terms of the performance indices, BV increased over time within blocks (𝑏 =

0.11, [0.08,0.13], 𝑝+ = 1.00,ER+ = ∞; see Table S4 for all regression coefficients). In the 

sham condition, BV did not increase in the first block relative to baseline (𝑏 =

−0.00, [−0.11,0.10], 𝑝+ = 0.48,ER+ = 0.92), but we found strong evidence that BV 

increased in the second block (B0 to B2, 𝑏 = 0.11, [0.01,0.23], 𝑝+ = 0.97,ER+ = 38.65). 

BV returned to baseline levels in B3 in the sham condition, 𝑏 = −0.04, [−0.15,0.07], 𝑝− =

0.77,ER− = 3.26. Relative to sham, BV remained stable between B0 and B1 after real 

stimulation (stimulation × B1: 𝑏 = −0.00, [−0.16,0.15], 𝑝− = 0.53,ER− = 1.11). However 

we found strong evidence for a stimulation-related decrease in BV in B2 relative to sham 

(stimulation × B2: 𝑏 = −0.15, [−0.31, −0.00], 𝑝− = 0.98,ER− = 39.36) and moderate 

evidence for a decrease in BV during B3 relative to sham (stimulation × B3: 𝑏 =

−0.09, [−0.24,0.06], 𝑝− = 0.87,ER− = 6.43), see Figure 3b. 

Regarding the entropy of the tap sequences, AE did not show a clear relationship with 

trial, 𝑏 = 0.01, [−0.02,0.04], 𝑝+ = 0.79,ER+ = 3.67. However, in the sham condition, we 

found extreme evidence that AE was reduced in all blocks when compared to baseline (B1: 

𝑏 = −0.14, [−0.25,−0.03], 𝑝− = 0.99,ER− = 199.00, B2: 𝑏 =

−0.17, [−0.27,−0.06], 𝑝− = 1.00,ER− = 599.00, B3: 𝑏 = −0.15, [−0.26,−0.04], 𝑝− =

1.00,ER− = 359.00). After real stimulation, we found moderate evidence for a relative 

decrease in the first block (stimulation × B1: 𝑏 = 0.11, [−0.04,0.28], 𝑝+ = 0.92,ER+ =

11.62), and anecdotal evidence for such a stimulation-related decreasing during the 

subsequent blocks (stimulation × B2: 𝑏 = 0.05, [−0.10,0.21], 𝑝+ = 0.75,ER+ = 3.04, 
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stimulation × B3: 𝑏 = 0.03, [−0.12,0.18], 𝑝+ = 0.67,ER+ = 2.00), suggesting that real 

stimulation attenuated the reduction in AE score compared to the sham stimulation, see Figure 

3c. 

Discussion 

We investigated whether three rounds of iTBS targeting the left DLPFC in an 

accelerated protocol would decrease the tendency to MW while maintaining or improving 

task-performance in the FT-RSGT. In contrast to our hypotheses, we found that real 

stimulation actually increased MW relative to sham stimulation. This was further 

corroborated by reports of heightened difficulty in concentrating during the real stimulation 

condition. In addition, the behavioural data indicate that BV and AE were slightly improved 

in some blocks, and otherwise remained comparable to the sham condition.  

While our results do not support the executive failure view of MW, which predicted 

decreased MW because of an increased capacity to avoid distracting thoughts due to iTBS, 

our results are in line with the executive use view of MW (Smallwood & Schooler, 2006). 

This account posits that executive resources are shared between the task at hand and MW, and 

thus, higher MW propensity leads to reduced availability of executive resources and hence, a 

reduction in cognitive performance. Accordingly, if the general pool of executive resources 

available is increased via an experimental manipulation such as iTBS, participants can 

potentially employ these extra resources to engage in more MW while maintaining or even 

improving performance on the FT-RSGT. This is precisely the pattern of results observed in 

our study, and we therefore cautiously interpret our results in support of that theory.  

The apparent conflict between the executive use and -failure accounts is resolved 

when considering the resource-control account of MW (Thomson et al., 2015). This theory 

distinguishes between executive control and executive resources and proposes that executive 

resources typically remain constant, while executive control decreases over time as fatigue 
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sets in (Thomson et al., 2015). In that view, executive control is responsible for delegating 

and shielding executive resources allocated to the task and preventing engagement in MW. 

Therefore, as executive control decreases during the task, more of executive resources 

become available for MW. In relation to our results, if we assume that iTBS targeting the left 

DLPFC increased the pool of executive resources while not affecting executive control, our 

results seem to support this theory: As the pool of executive resources is increased, the 

capacity to MW also grows while maintaining the ability to perform the task at an acceptable 

level. The improvement in behaviour might occur because the optimal distribution of task 

resources increases due to the larger pool of executive resources. Moreover, given that we did 

not find iTBS to influence the ratio of deliberate vs. spontaneous episodes of MW (see: 

Supplementary Results), here we also propose that any iTBS-induced change in the 

redistribution of executive resources did not depend on participants’ deliberate control. Lastly, 

we found a significant time-on-task effect indicating that task performance decreased over 

time, which suggests that executive control appears to be unaffected by the stimulation 

protocol.  

Further, our results suggest that the cognitive effects of multiple rounds of stimulation 

accumulate, as we observed that the relative reduction in MW and BV increased over blocks, 

despite the well-documented gradually increase in both measures during cognitive tasks 

(Zanesco et al., 2024). Such accumulating effects of iTBS are in line with previous studies 

suggesting that neural excitability can increase with repeated rounds of iTBS over the motor 

cortex (Nettekoven et al., 2014; Yu et al., 2020). However, other studies have failed to find 

accumulating effects of iTBS, (Chung et al., 2018; Thomson et al., 2019), which might be 

because some individuals do not appear to be responsive to either single or repeated iTBS 

stimulation (López-Alonso et al., 2014; Nettekoven et al., 2015). Furthermore, short delays 

(2-5 minutes) between iTBS stimulations can result in inhibitory rather than excitatory effects 
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(Tse et al., 2018) and the effect and efficacy of rTMS may also depend on other factors such 

as the functional connectivity of the target region (Nettekoven et al., 2015), and coil rotation 

(Turi et al., 2022).  

Our results indicate a general improvement in performance and a decrease in MW 

reports on the last block relative to the preceding blocks in both the sham and the real 

stimulation sessions. We believe this “end-of-session” effect is related to motivational factors 

(Bengtsson et al., 2009; Locke & Braver, 2008; Seli, Carriere, et al., 2018) initiated by the 

participants' realization that they were close to the end of the long and exhausting experiment 

(Emanuel et al., 2022). In support of this idea, recent research indicates that implementing a 

continuous task progression feedback improves performance relative to not providing such 

feedback (Katzir et al., 2020). Other studies suggest that task motivation follows a U-shape 

curve, where effort is the highest at the start and end of a task (Emanuel, 2019). In addition, 

MW reports have been found to follow an inverse U-shape pattern in a task with predictable 

task demands: MW reports were less frequent at the start and end of a task run, but increased 

around the middle of the task run (Seli, Carriere, et al., 2018). Participants in our study were 

instructed in advance about the number of blocks and were also reminded by the 

experimenters before starting their last block, and hence, our results are in line with previous 

research reviewed above. 

The DLPFC has been proposed as a region crucial for allocating resources to neural 

networks relevant for either off-task or on-task cognition (Turnbull, Wang, Murphy, et al., 

2019). Similarly, this cortical area is part of the fronto-parietal control network (FPCN), 

which has also been related to switches in mental content (Christoff et al., 2016; Smallwood et 

al., 2012; Turnbull, Wang, Schooler, et al., 2019). As a consequence, increased activity in the 

DLPFC induced by iTBS could have improved the efficiency of reallocating resources 

between brain networks, and optimize attentional switching between MW and on-task (e.g., 
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Mittner et al., 2016). For instance, the DLPFC has been found to directly modulate activity 

within the default mode network (DMN; Deck et al., 2023; Spreng et al., 2013), which in turn 

has been repeatedly linked to both MW (Christoff et al., 2009; Deck et al., 2023; Fox et al., 

2015) and stable task performance (Esterman et al., 2014; Groot et al., 2022; Kucyi et al., 

2017). In addition, the DLPFC is a key region in integrating and maintaining task-related 

information (Cole et al., 2010, 2016; Kim et al., 2015), and thus, it is possible that modulating 

neural excitability within the DLFPC could have optimized between-network dynamics, 

leading to changes in both MW propensity and task performance. Ultimately, more research is 

needed to elucidate the precise mechanisms by which the DLPFC modulates attentional focus 

and task performance, respectively. 

 Future research might want to investigate the impact of alternative stimulation 

protocols such as continuous TBS (cTBS; Huang et al., 2005) as well as targeting alternative 

brain regions that have been shown to be involved in MW, such as the inferior parietal lobe 

(Nawani et al., 2023; see Drevland et al., 2023) and the right DLPFC (Groot et al., 2022). For 

example, dual-coil stimulation protocols might be particularly interesting to investigate the 

effect of stimulating the DLPFC bilaterally. Limitations of our current study include our 

reliance on standardized MNI coordinates. Optimally, individual MRI scans in combination 

with functional MRI (fMRI) could be applied to improve targeting the DLPFC. There is, 

however, evidence that more elaborate scalp measurements, and even the international 10-20 

system is not necessarily inferior to individualized MRI or fMRI-based targeting approaches 

(Xu et al., 2023). Finally, MW is a multifaceted phenomenon, and it might be necessary to 

incorporate multiple methodological approaches (Mittner et al., 2014), such as simultaneous 

fMRI-EEG (Groot et al., 2022) and pupillometry (Groot et al., 2021), to study the effects of 

brain stimulation protocols on the delicate interplay between EF and MW.  
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In summary, we found that repeated application of an iTBS protocol over the left 

DLPFC withing a single experimental session increased experiences of MW while retaining 

or even improving psychomotor precision and EF relative to the sham condition. Our results 

are in general agreement with previous research, indicating that rTMS over the DLPFC can 

improve cognitive functions, such as faster response times, increased accuracy (Xu et al., 

2023), improved working memory and cognitive flexibility (Wu et al., 2021) relative to sham 

stimulation in an accumulating way (Tse et al., 2018; Yu et al., 2020). We argue that iTBS 

increased the pool of executive resources (e.g., Smallwood & Schooler, 2006) in light of the 

resource-control view of MW (Thomson et al., 2015). 
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