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A B S T R A C T

We developed a method for fitting machine-learning interatomic potentials with magnetic degrees of freedom,
namely, magnetic Moment Tensor Potentials (mMTP). The main feature of our method consists in fitting
mMTP to magnetic forces (negative derivatives of energies with respect to magnetic moments) as obtained
spin-polarized density functional theory calculations. We test our method on the bcc Fe–Al system with
different compositions. Specifically, we calculate formation energies, equilibrium lattice parameter, and total
cell magnetization. Our findings demonstrate an accurate correspondence between the values calculated
with mMTP and those obtained by DFT at zero temperature. Additionally, using molecular dynamics, we
estimate the finite-temperature lattice parameter and capture the cell expansion as was previously revealed in
experiment. Furthermore, we demonstrate that fitting to magnetic forces increases the reliability of structure
relaxation (or, equilibration), in the sense of ensuring that every relaxation run ends up with a successfully
relaxed structure (the failure may otherwise be caused by falsely driving a configuration away from the region
covered in the training set).
0. Introduction

Magnetic materials play a key role in numerous technological fron-
tiers including spintronics, novel medical devices, and sensors. In spin-
tronics, they enable devices like magnetic tunnel junctions and spin
transistors, leading to faster, more efficient electronics. In medical
devices, they are used in magnetic resonance imaging (MRI) machines,
targeted drug delivery via magnetic nanoparticles, and cancer treat-
ment through hyperthermia. Magnetic materials also enhance sensor
technologies, including magnetoresistive sensors for automotive and
industrial applications, and Hall effect sensors for measuring magnetic
fields. Thus, study and manipulating the properties of these materials is
crucial for the further development of technology. Magnetic materials
can be investigated experimentally, both at macro and micro-scales.
However, certain limitations preclude the precise determination of their
properties. For example, preparing clean samples is essential, as even
low concentrations of impurities can significantly affect the accuracy of

∗ Corresponding authors.
E-mail addresses: christiantantardini@ymail.com (C. Tantardini), i.novikov@skoltech.ru (I.S. Novikov).

magnetic properties prediction [1]. Additionally, some methods require
accurate calibration of experimental equipment and precise control of
temperature conditions [2]. Finally, both samples and experimental
equipment can be expensive.

Computational modeling can be used for theoretical investigation
of materials. One of the most popular methods is density functional
theory (DFT) and spin-polarized DFT, used specifically for modeling
of magnetic materials. However, both DFT and spin-polarized DFT
are computationally expensive and not applicable for describing phys-
ical effects observed in systems containing thousands of atoms. For
that reason, alternative interatomic interaction models are being ac-
tively developed. Machine-learning interatomic potentials (MLIPs) have
gained significant attention as a reliable and computationally efficient
tool for materials modeling [3–13]. These potentials were applied to
solving important problems via atomistic simulation, such as crystal
structure prediction, simulating lattice dynamics, investigating defects
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in materials, and studying diffusion processes. It would have been
difficult to investigate the aforementioned problems using DFT. The
listed potentials were developed for investigating non-magnetic materi-
als and, consequently, were limited to studying only a single magnetic
state. However, to accurately describe various magnetic states of mag-
netic materials and predict properties like the Curie temperature or
Neel temperature, it is essential to explicitly incorporate the magnetic
degrees of freedom of atoms, namely, magnetic moments, into the func-
tional form of the interatomic interaction model. We refer to the MLIPs
with magnetic moments in the functional form as magnetic MLIPs. Over
the past few years a remarkable progress has been achieved in develop-
ing such type of models [14–22]. The review on the existing classical
magnetic interatomic potentials and magnetic MLIPs is given in [23].
The descriptive capabilities and the limitations of these potentials are
discussed in this paper.

The training set for fitting magnetic MLIPs is typically obtained from
spin-polarized density DFT calculations. However, such calculations
bear even higher computational burden than non spin-polarized DFT
due to explicit evaluation of magnetic moments of atoms. Besides, ac-
curate training of magnetic MLIPs require a significantly larger training
set due to doubling of magnetic MLIPs parameters (6𝑁 against 3𝑁 in
on-magnetic MLIPs). Therefore, reduction of the training set size for
n efficient fitting of accurate magnetic MLIPs is a critical problem.

Traditionally, non-magnetic MLIPs are fitted to energies, forces and,
ptionally, stresses, derived from DFT. However, with spin-polarized
FT calculations, we can obtain an additional quantity—a negative
erivative of energy with respect to magnetic moments, known as
agnetic forces. Therefore, to obtain a robust magnetic MLIPs, they can

lso be trained to reproduce this quantity. The opportunity was first
xplored by Yuan et al. [22] where the authors fitted an equivariant
eural network force field (NNFF) to energies, forces, and magnetic
orces and accurately predicted magnon dispersion of CrI3 monolayer
ith the obtained model. More importantly, an accurate NNFF fitting

equired a relatively small training set size (<1000 configurations). This
esult demonstrates that fitting magnetic MLIPs to magnetic forces can
e an opportunity to obtain an accurate model using a limited set of
pin-polarized DFT calculations.

In this work, we develop a method for fitting magnetic Moment
ensor Potential (mMTP) [18,20] to magnetic forces in addition to
nergies, forces, and stresses. The training set is obtained using the
ecently developed constrained DFT (cDFT) method [24] allowing to
mpose hard constraints on magnetic moments and calculate magnetic
orces. Additionally, we employ non-constrained DFT calculations for
btaining the configurations with the equilibrium magnetic moments
i.e., zero magnetic forces). The resulting training set includes 2632
6-atom bcc Fe–Al configurations with different concentrations of Al
toms (up to 50%) and different random distributions of the atom types
ithin the supercell. Using the obtained training set, we construct two
nsembles of mMTPs using two methods. The first method consists in
raining mMTPs only on energies, forces, and stresses [18,20]. In the
econd method, presented in this work, we additionally fit mMTPs to
agnetic forces. Further, the two methods are compared in terms of the
redictive ability of the fitted mMTPs. Specifically, we predict forma-
ion energies, lattice parameters, and total magnetic moment of the unit
ell for different concentrations of Al in the Fe–Al system. Additionally,
e employ mMTPs trained on magnetic forces in finite temperature
olecular dynamics simulation and reproduce the cell expansion trend.

inally, we assess the reliability of the obtained models by the percent-
ge of configurations with successfully equilibrated magnetic moments
i.e., almost zero magnetic forces) and configurations with fully relaxed
eometry. We note that the mMTPs may have up to several thousand
f parameters and thus the training set of 2632 configurations is not
ery large for fitting mMTPs. We show that the novel method produces
ystematically more accurate and reliable mMTPs on the same training

et in comparison with the previous method. e

2 
The paper is organized as follows. In the Methods section we intro-
uce the concept of magnetic MTP and the method of fitting mMTP to
agnetic forces. In Results and Discussion we first describe the training

nd validation procedures of the fitted ensembles of potentials. Then we
erform a quantitative analysis by comparing formation energies, lat-
ice parameters, and total magnetic moments of the unit cell calculated
y two ensembles of mMTPs and DFT. In Conclusion we summarize the
esults of this study.

. Methods

.1. Magnetic Moment Tensor Potential

The mMTP is a machine-learning interatomic potential based on the
on-magnetic version of MTP. The original MTP was proposed by A.
hapeev [6] and further extended to multi-component non-magnetic
ystems [25,26]. This potential was further modified to take into ac-
ount magnetic degrees of freedom, first for the single-component
agnetic Fe system [18], and then for the multi-component magnetic

e–Al system [20].
In mMTP, total energy of configuration is a sum of energy contri-

utions from each local atomic environment n𝑖 in the system:

𝐸 =
𝑛
∑

𝑖=1
𝑉 (n𝑖), (1)

where 𝑛 is the number of atoms in the system, n𝑖 denotes an atomic
environment (neighborhood) of the 𝑖th atom, 𝑉 (n𝑖) is the energy con-
tribution of a neighborhood. A neighborhood is the collection of atoms
around a central atom, constrained within a sphere of a cut-off radius
𝑅cut . The neighborhood is represented by the distances |𝐫𝑖𝑗 | between
the 𝑖th atom and its neighboring atoms 𝑗, as well as the atomic number
𝑧 and magnetic moment 𝑚 of atoms 𝑖 and 𝑗:

n𝑖 = {(|𝐫𝑖𝑗 |, 𝑧𝑖, 𝑧𝑗 , 𝑚𝑖, 𝑚𝑗 ), 𝑗 = 1,… , 𝑁 𝑖
nb}, (2)

where 𝑁 𝑖
nb is the total number of atoms in the neighborhood. It should

be noted that in this mMTP form magnetic moments are scalars and,
thus, only collinear magnetism can be described.

The energy 𝑉 (n𝑖) of a local neighborhood n𝑖 is linearly expanded
through the basis functions 𝐵𝛼 :

𝑉 (n𝑖) =
∑

𝛼
𝜉𝛼𝐵𝛼(n𝑖), (3)

where 𝜉𝛼 are linear parameters determined from fitting to configura-
tions from the training set. The basis functions 𝐵𝛼 are defined as all
possible contractions of moment tensor descriptors 𝑀𝜇,𝜈 :

𝑀𝜇,𝜈 (𝑛𝑖) =
∑

𝑗
𝑓𝜇(|𝑟𝑖𝑗 |, 𝑧𝑖, 𝑧𝑗 )𝐫

⊗𝜈
𝑖𝑗 , (4)

where ‘‘⊗’’ denotes outer product of vectors. The number of contrac-
tions is limited by the potential level, which was described in the
original work [6]. The radial part of descriptors 𝑓𝜇 can be written
through polynomial functions:

𝑓𝜇(|𝑟𝑖𝑗 |, 𝑧𝑖, 𝑧𝑗 , 𝑚𝑖, 𝑚𝑗 ) =
𝑁𝜙
∑

𝜁=1

𝑁𝜓
∑

𝛽=1

𝑁𝜓
∑

𝛾=1
𝑐𝜁,𝛽,𝛾𝜇,𝑧𝑖 ,𝑧𝑗

𝜙𝜁 (|𝐫𝑖𝑗 |)𝜓𝛽 (𝑚𝑖)𝜓𝛾 (𝑚𝑗 )(𝑅cut − |𝐫𝑖𝑗 |)2, (5)

where 𝑐𝜁,𝛽,𝛾𝜇,𝑧𝑖 ,𝑧𝑗 are radial parameters obtained during fitting, 𝜙𝜁 (|𝐫𝑖𝑗 |), 𝜓𝛽
𝑚𝑖), 𝜓𝛾 (𝑚𝑗 ) are Chebyshev polynomials of the order 𝜁, 𝛽, 𝛾, respectively,
hich take values from −1 to 1, and the term (𝑅cut − |𝐫𝑖𝑗 |)2 pro-
ides a smooth decay when reaching the cut-off radius. The function
𝜁 (|𝐫𝑖𝑗 |) is defined on the interval (𝑅min, 𝑅cut ), where 𝑅min denotes a
inimal distance between interacting atoms. The arguments of the

unctions 𝜓𝛽 (𝑚𝑖), 𝜓𝛾 (𝑚𝑗 ) are atomic magnetic moments on the interval
−𝑀𝑧𝑖

max,𝑀
𝑧𝑖
max), where 𝑀𝑧𝑖

max is the maximal absolute value of magnetic
oment for the atomic type 𝑧𝑖. The number of radial coefficients is

2 2
qual to 𝑁𝜇 ⋅𝑁𝜙 ⋅𝑁types ⋅𝑁𝜓 , where 𝑁𝜇 is the number of radial functions
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Fig. 1. The 2 × 2 × 2 16-atomic bcc supercell of the Fe–Al system. Some examples of configurations with different concentration of Al atoms: Fe14Al2, Fe12Al4, and Fe8Al8.
and 𝑁types is the number of atomic types. Thus, the number of radial
parameters increases quadratically with the number 𝑁𝜓 of magnetic
basis functions. In this paper we test mMTPs with different number of
magnetic basis functions.

We denote a collection of all the mMTP parameters by 𝜽 =
{𝜉𝛼 , 𝑐

𝜁,𝛽,𝛾
𝜇,𝑧𝑖 ,𝑧𝑗 } and the total energy of configuration by 𝐸 = 𝐸(𝜽,𝑹,𝑀),

where 𝑹 = (𝒓1,… , 𝒓𝑛) are atomic positions and 𝑀 = (𝑚1,… , 𝑚𝑛) are
magnetic moments of atoms in a configuration. The magnetic MTP is
invariant with respect to inversion of magnetic moments and the total
energy of configuration calculated by mMTP is:

𝐸mMTP = 𝐸mMTP(𝜽) = 𝐸(𝜽,𝑹,𝑀) + 𝐸(𝜽,𝑹,−𝑀)
2

. (6)

From Eq. (6) we conclude that the total energy of configuration cal-
culated with mMTP depends on the magnetic moments of the atoms
explicitly. Each step of any atomistic simulation with mMTP, e.g., ge-
ometry optimization or molecular dynamics simulations, is conducted
in two stages. At the first stage, we equilibrate magnetic moments
(i.e., minimize energy with respect to magnetic moments) for the fixed
atomic positions and lattice vectors. At the second stage, we move
atoms and, optionally, change lattice vectors for the fixed magnetic
moments. Thus, the correct and reliable equilibration of magnetic mo-
ments is critical for mMTP. However, this requires a correct description
of magnetic forces, which is discussed in the next section.

1.2. Fitting to magnetic forces

During the equilibration of magnetic moments we calculate mag-
netic forces as:

𝐓 = − 𝜕𝐸
𝜕𝐦

. (7)

As it was mentioned above, here we consider only collinear magnetic
moments 𝑚 and, therefore, magnetic force is a scalar denoted by 𝑇 .

Since the mMTP energy explicitly depends on magnetic moments
of atoms, such a derivative 𝑇 can be calculated as a function of all
the parameters 𝜃 of the potential. Thus, along with DFT energies 𝐸DFT,
forces 𝐟DFT, and stress tensor components 𝜎DFT, magnetic forces 𝑇DFT

can be used to find optimal parameters of the potential by minimizing
the following objective function:

𝐾
∑

𝑘=1

[

𝑤𝑒
(

𝐸mMTP
𝑘 (𝜽) − 𝐸DFT

𝑘

)2
+𝑤𝑓

𝑛
∑

𝑖=1

(

𝐟mMTP
𝑖,𝑘 (𝜽) − 𝐟DFT𝑖,𝑘

)2

+𝑤𝑠
3
∑

𝑎,𝑏=1

(

𝜎mMTP
𝑎𝑏,𝑘 (𝜽) − 𝜎DFT𝑎𝑏,𝑘

)2
+𝑤𝑡

𝑛
∑

𝑖=1

(

𝑇mMTP
𝑖,𝑘 (𝜽) − 𝑇DFT

𝑖,𝑘

)2
]

,

(8)

where 𝑤𝑒, 𝑤𝑓 , 𝑤𝑠, and 𝑤𝑡 are non-negative weights that determine the
relative importance of energies, forces, stresses, and magnetic forces
during the mMTP fitting. The optimal parameters 𝜽 are obtained nu-
merically by iterative minimization of the objective function (8) with
Broyden–Fletcher–Goldfarb–Shanno algorithm [27]. Selection of the
optimal weights is discussed in the next section. We also demonstrate
that minimizing the objective function (8) with the optimal weight 𝑤
𝑡

3 
gives much more accurate magnetic forces than in the case when 𝑤𝑡 = 0
(i.e., when we do not fit mMTP to magnetic forces). Finally, we show
that fitting to magnetic forces is useful for the case of small training
set, like the one we use in this work.

2. Results and discussion

2.1. Training set

For constructing the training set we start with 21 configurations
with fully optimized geometries. They are 16-atom bcc Fe–Al supercells
with different concentrations of Al atoms (from 0% to 50%) and differ-
ent distributions of the atom types within the supercell. Some examples
are represented in Fig. 1. The entire training set of 2632 configurations
is obtained by randomly perturbing the initial 21 configurations and
using molecular dynamics simulations at 300 K. Thus, about 80%
of the new configurations are the ones with random perturbation of
atomic positions, lattice vectors, and magnetic moments of the initial
configurations as described in [20] and the remaining configurations
correspond to 300 K molecular dynamics. Further, this training set is
used to test our methodology.

The energies, forces, stresses, and magnetic forces for the given
atomic positions are calculated with DFT and the cDFT method [24]
implemented in ABINIT [28,29]. We use a 6 × 6 × 6 k-point mesh with
a cut-off energy of 25 Hartree and projector augmented wave (PAW)
pseudopotentials, implemented within the Perdew–Burke–Ernzerhof
(generalized gradient approximation) DFT functional. Importantly,
about 85% of the configurations contain non-equilibrium magnetic
moments and therefore non-zero magnetic forces.

2.2. Optimal weight in the case of fitting to magnetic forces

Once we included a magnetic force optimization in the objective
function (Eq. (8)), we are required to select an optimal weight for
fitting to magnetic forces. To determine the optimal 𝑤𝑡 value we fix
the rest of the weights 𝑤𝑒 = 1, 𝑤𝑓 = 0.01 Å2, and 𝑤𝑠 = 0.001. Such
choice for energy, force, and stress weights is motivated by the previous
works where these values were used to accurately fit both non-magnetic
and magnetic MTP [18,20,30]. We further train mMTPs with different
magnetic force weights in the range from 10−4 𝜇2𝐵 to 101 𝜇2𝐵 and with
𝑁𝜓 = 2 (415 parameters). We use 5-fold cross-validation to verify the
quality of the fitted potentials. The results are represented in Fig. 2.

From Fig. 2 we can observe a decrease of root mean square error
(RMSE) for energy with the increase of magnetic force weight up
to 𝑤𝑡 = 0.1 𝜇2𝐵 . The errors for forces and stress components rise
monotonously with the increase of 𝑤𝑡. At the same time, magnetic
force errors expectedly decrease when 𝑤𝑡 is higher. Analyzing the
obtained results we suggest 0.1 𝜇2𝐵 to be an optimal weight for magnetic
forces, as it provides minimal energy errors while force and stress
errors are still acceptable. Additionally, as it is seen in Fig. 2, fitting
and validation errors are close to each other, i.e., the training set was
constructed correctly. We further fit mMTPs on the entire training set.
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Fig. 2. Training and validation root mean square errors (RMSEs) for energies, forces, stresses, and magnetic forces with different magnetic force weights in the objective function.
Potentials were trained using a 5-fold cross-validation algorithm. We provide the results with 68% confidence interval (i.e., 1-𝜎 interval).
Table 1
Number of parameters for the potentials with different sizes of the magnetic basis.

Magnetic basis size Number of parameters

2 415
3 895
4 1567
5 2431

2.3. Fitting errors for different magnetic Moment Tensor Potentials

We train an ensemble of five potentials for each number of parame-
ters using the aforementioned training set and then average the fitting
errors. After that, we calculate RMSEs between the mMTP predictions
and the DFT data. The RMSEs for energy, force, stress, and magnetic
force RMSEs are shown in Table 2 and visualized in Fig. 3.

From Table 2 we see that with an increase in the size of the
magnetic basis up to 4, the RMSEs for energy, force, and stress decrease
both for zero and non-zero magnetic force weight. This trend can be
explained by the higher number of mMTP parameters when using a
larger magnetic basis (see Table 1). Potentials with 𝑁𝜓 = 5 have
comparable accuracy and sometimes are even less accurate than those
with 𝑁𝜓 = 4. Thus, in this work we focus on the magnetic basis sizes of
2, 3 and 4 in all following tests. We note that the RMSE for magnetic
force decreases significantly with the increase in magnetic basis size
only if the weight on magnetic forces is non-zero. Hence, the quality
of magnetic forces prediction does not affected by magnetic basis size
if mMTPs are not fitted to magnetic forces. As it is expected, with
𝑤 = 0.1 𝜇2 the RMSE for magnetic force is significantly decreased
𝑡 𝐵

4 
Table 2
Root mean square errors for energies, forces, stresses, and magnetic force predicted by
mMTPs on the whole training set. 𝑁𝜓 denotes the magnetic basis size and 𝑤𝑡 is the
magnetic force weight. The results are given with 95% confidence interval (i.e., 2-𝜎
interval).
𝑁𝜓 𝑤𝑡 Energy error Force error Stress error Magnetic force error

(𝜇2
𝐵) (meV/atom) (meV/Å) (GPa) (meV/𝜇𝐵)

2 0.0 4.70 ± 0.01 70.48 ± 0.05 0.484 ± 0.001 239.4 ± 3.5
2 0.1 3.85 ± 0.19 83.07 ± 0.91 0.617 ± 0.006 30.2 ± 0.7
3 0.0 1.98 ± 0.14 59.67 ± 0.86 0.407 ± 0.012 173.0 ± 25.8
3 0.1 2.25 ± 0.07 66.89 ± 0.36 0.479 ± 0.004 17.3 ± 0.3
4 0.0 1.51 ± 0.06 54.74 ± 1.12 0.363 ± 0.004 210.1 ± 44.8
4 0.1 1.61 ± 0.16 63.01 ± 2.61 0.450 ± 0.035 15.4 ± 0.5
5 0.0 1.51 ± 0.09 54.58 ± 1.13 0.374 ± 0.013 289.9 ± 119.4
5 0.1 1.73 ± 0.06 64.40 ± 3.95 0.469 ± 0.029 15.2 ± 0.4

(by a factor of ten) for each number of magnetic basis functions in
comparison with the case of 𝑤𝑡 = 0 𝜇2𝐵 . Moreover, fitting to magnetic
forces does not significantly increase energy, force, and stress RMSEs.
Thus, the mMTP fitting method including training on magnetic forces
is promising in terms of accuracy and the predictive ability of the fitted
mMTPs.

2.4. Correlation between DFT and magnetic Moment Tensor Potential equi-
librium magnetic moments

For the additional verification of the fitted ensembles of potentials
we estimate the quality of atomic magnetic moment equilibration.
For this purpose we choose the configurations with the equilibrium
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Fig. 3. Root mean square errors for energies, forces, stresses, and magnetic forces predicted with magnetic Moment Tensor Potentials on the whole training set. 𝑁𝜓 denotes the
magnetic basis size and 𝑤𝑡 is the magnetic force weight.
Table 3
RMSEs between DFT and magnetic mMTPs, equilibrium magnetic moments, and
equilibration reliability obtained with different ensembles of mMTPs. We provide the
values with 95% confidence interval (i.e., 2-𝜎 interval).
𝑁𝜓 𝑤𝑡 Magnetic moment error, 𝜇𝐵 Equilibration reliability, %

2 0.0 0.158 ± 0.001 96.7 ± 0.2
2 0.1 0.157 ± 0.003 100.0 ± 0.0
3 0.0 0.175 ± 0.148 98.6 ± 2.3
3 0.1 0.111 ± 0.049 100.0 ± 0.0
4 0.0 0.209 ± 0.156 98.4 ± 2.3
4 0.1 0.059 ± 0.077 100.0 ± 0.0

magnetic moments from the training set, equilibrate these magnetic
moments with the ensembles of mMTPs, and compare the result with
DFT. The correlation between the DFT and mMTPs equilibrium Fe
magnetic moments for 420 configurations are shown in Fig. 4. In the
figure we observe a better correlation between the DFT equilibrium
magnetic moments and the ones obtained with the ensembles of mMTPs
fitted to magnetic forces than with the ones without such fitting. In
Table 3 we provide RMSEs between DFT and mMTPs equilibrium
magnetic moments. As seen in the table, the RMSEs decrease with
the increase of the number of 𝑁𝜓 for the mMTPs fitted with 𝑤𝑡 =
0.1 𝜇2𝐵 as opposed to the mMTPs fitted with 𝑤𝑡 = 0 𝜇2𝐵 . We note
that the results are presented only for the configurations in which
the magnetic moments were successfully equilibrated, i.e. when the
maximal absolute magnetic force smaller than 5 ⋅ 10−3 meV/𝜇𝐵 af-
ter equilibration. We refer to the percentage of configurations with
successfully equilibrated magnetic moments as equilibration reliability
and present it in Table 3. Indeed, all the mMTPs fitted to magnetic
forces result in 100% equilibration reliability whereas in the case when
𝑤𝑡 = 0.0 𝜇2𝐵 the equilibration reliability is below 100%. A possible
reason for such a result is insufficient training set size for the potentials
with 𝑁𝜓 = 3 and 𝑁𝜓 = 4 that were not fitted to magnetic forces. Due to
the same reason RMSE between DFT and mMTPs equilibrium magnetic
moments increase with the increase of the magnetic basis.
5 
2.5. Formation energy, lattice parameter, and total magnetic moment ob-
tained with different magnetic Moment Tensor Potentials

To test the predictive ability of the ensembles of mMTPs depending
on the number of magnetic basis functions, we calculate the formation
energy, lattice parameter, and total magnetic moment of the unit cell.
We start from relaxation of 21 initial configurations using the mMTPs
ensembles with different number of 𝑁𝜓 fitted with 𝑤𝑡 = 0.1 𝜇2𝐵 and
𝑤𝑡 = 0 𝜇2𝐵 . The errors obtained during this procedure are demonstrated
in Table 4. We also provide the relaxation reliability, which is the
percentage of successfully relaxed configurations (i.e., with almost zero
forces, stresses and magnetic forces). As it is seen in the table, all the
21 configurations were successfully relaxed in case when mMTPs were
trained with 𝑤𝑡 = 0.1 𝜇2𝐵 . On the contrary, the relaxation reliability
falls below 100% when mMTPs are not fitted to magnetic forces. Thus,
the training set including 2632 is sufficient when training to additional
data such as magnetic forces. We also observe that the increase of the
magnetic basis size significantly improves the predictive ability of the
mMTPs. Finally, our results in Table 4 demonstrate that the mMTPs
fitted with 𝑤𝑡 = 0.1 𝜇2𝐵 yield a systematically better accuracy than
the mMTPs fitted with 𝑤𝑡 = 0.0 𝜇2𝐵 for 𝑁𝜓 = 3 and 𝑁𝜓 = 4. Due to
the above reasons we provide further results only for the ensembles of
mMTPs fitted to magnetic forces.

The formation energies of 21 initial configurations calculated with
different ensembles of mMTPs and DFT are shown in Fig. 5. All the
ensembles of mMTPs accurately reproduce the formation energies for
configurations with different concentration of Al and different distribu-
tion of atom types within the supercell. We provide further results for
the configurations with the lowest formation energy for each concen-
tration of Al in the Fe–Al compound. In Figs. 6(a) and 6(b), we present
the dependence of total magnetic moment of the Fe–Al unit cell and
lattice parameter on the concentration of Al. The figures reveal that
values predicted with mMTPs approach the DFT-calculated values with
the increase of 𝑁𝜓 . Interestingly, the ensemble of mMTPs with 𝑁𝜓 = 4

is able to accurately reproduce the total magnetic moment of the unit
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Fig. 4. Correlation between equilibrium magnetic moments of Fe calculated with mMTPs and DFT. Pearson correlation coefficient 𝑟 between mMTP and DFT magnetic moments
is greater for the ensembles of mMTPs with 𝑤𝑡 = 0.1 𝜇2

𝐵 than when 𝑤𝑡 = 0.0 𝜇2
𝐵 .
Table 4
RMSEs between DFT and mMTPs for formation energy, equilibrium lattice parameter, total cell magnetic moment per Fe atom, and the percentage of successfully relaxed
configurations (relaxation reliability) of 21 initial configurations. Magnetic MTPs were fitted with different magnetic basis sizes and the magnetic force weights of 0.0 𝜇2

𝐵 and
0.1 𝜇2

𝐵 . All the RMSEs decrease with the increase of magnetic basis size. Potentials with non-zero magnetic force weight show better accuracy compared to 𝑤𝑡 = 0 for 𝑁𝜓 = 3
and 𝑁𝜓 = 4. The results for mMTPs fitted with 0.0 𝜇2

𝐵 are presented only for the successfully relaxed configurations. The values are provided with 95% confidence interval
(i.e., 2-𝜎).
𝑁𝜓 𝑤𝑡 Formation energy error Lattice parameter error Total magnetic moment error Relaxation reliability

(𝜇2
𝐵) (meV/atom) (Å) (𝜇𝐵/NFe) (%)

2 0.0 3.20 ± 0.03 0.0089 ± 0.0001 0.176 ± 0.001 95.2 ± 0.0
2 0.1 2.9 ± 0.4 0.0093 ± 0.0003 0.177 ± 0.001 100.0 ± 0.0
3 0.0 1.8 ± 0.8 0.0081 ± 0.0019 0.133 ± 0.071 97.1 ± 4.7
3 0.1 1.5 ± 0.1 0.0061 ± 0.0002 0.079 ± 0.027 100.0 ± 0.0
4 0.0 2.0 ± 0.5 0.0063 ± 0.0011 0.110 ± 0.051 90.5 ± 8.5
4 0.1 1.1 ± 0.3 0.0049 ± 0.0006 0.032 ± 0.003 100.0 ± 0.0
Fig. 5. Formation energy of configurations with different Al concentration calculated
using the ensembles of mMTP with different magnetic basis size fitted with 𝑤𝑡 = 0.1𝜇2

𝐵
and DFT. The results are provided with a 95% confidence interval, i.e. 2-𝜎. All mMTPs
correctly reproduce the trend of DFT formation energies.

cell for the Al concentration of 50% as opposed to the ensembles with
𝑁𝜓 = 2 and 𝑁𝜓 = 3 (see Fig. 6(a)).

2.6. Molecular dynamics with magnetic Moment Tensor Potential

In the previous sections we tested the ensembles of mMTPs for the
16-atom configurations at zero temperature. Next, we test the mMTP at
finite temperature by conducting molecular dynamics (MD) simulations
in the NPT-ensemble (the isothermal–isobaric ensemble in which the
6 
number of particles 𝑁 , pressure 𝑃 , and temperature 𝑇 are constant)
using the LAMMPS package [31,32]. Lattice expansion modeling was
performed for a bcc supercell of 128 atoms at 300 K. This way we test
both the applicability of mMTPs for studying the Fe–Al system at finite
temperatures and the transferability of the potentials to configurations
with a larger number of atoms none of which were not included in
the training set. We used the most accurate ensemble of mMTPs with
𝑁𝜓 = 4, 𝑤𝑡 = 0.1 𝜇2𝐵 trained on the entire dataset. The obtained trend
between the lattice parameter and Al concentration at 300 K is plotted
and compared to the experimental data [33] in Fig. 7. Additionally, we
provide the lattice parameter calculated with mMTPs and DFT at zero
temperature. We note that one of the five mMTPs from the ensemble
demonstrated non-physical behavior, i.e., non-periodic fluctuations of
the lattice parameter during MD simulations for the configurations with
43.75% and 50% of Al. Therefore, we excluded this potential in the
calculations with these concentrations. Additionally, there was another
mMTP from this ensemble that significantly underestimated the lattice
parameters of configurations with 37.5% and 43.75% concentration of
Al. We did not exclude this potential which resulted in clearly observed
increase of the confidence intervals in Fig. 7 for these concentrations of
Al. The reason behind non-physical behavior of one of the mMTPs and
the underestimation of the lattice parameters with the other potential
is the problem with transferability from the 16-atom systems, used in
the training set, to the system including 128 atoms, that were not used
during the fitting. Therefore, to model such systems one can rely either
on manually testing and selecting suitable potentials, as we have done
in this work, or on the use of the active learning algorithm. This algo-
rithm estimates the extrapolation grade of configurations ‘‘on-the-fly’’
and selects the most representative configurations for mMTP re-fitting
(see, e.g. [34]). The supercell extension trend at finite temperature is
clearly observed in Fig. 7 in comparison with the zero temperature
calculations. Thus, the finite-temperature lattice parameter approaches
the experimentally measured value. However, the RMSE between the
mMTPs and the experimental lattice parameters at 300 K obtained
through the ‘‘cast and quenched’’ approach is about 0.025 Å which
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Fig. 6. (a) Total magnetic moment of the unit cell divided by the number of Fe atoms and (b) equilibrium lattice parameter at 0 K for the configurations with minimal formation
energy calculated using the ensembles of mMTPs with different magnetic basis sizes and DFT. All the mMTPs are trained with a magnetic force weight of 𝑤𝑡 = 0.1 𝜇2

𝐵 . We provide
the results with the 95% confidence interval, i.e. the 2-𝜎 interval. The mMTP ensembles reproduce the main trend of DFT calculations for both total magnetic moments and lattice
parameters, and the accuracy of mMTPs prediction improves with the increase of the number of magnetic basis functions. This improvement is clearly seen from the total magnetic
moment for an Al concentration of 50%: the potentials with 𝑁𝜓 = 2 give zero magnetic moment, whereas the mMTPs with 𝑁𝜓 = 4 correctly reproduce the DFT magnetic moment.
is larger than the RMSE between mMTPs and DFT lattice parameters
of 0.005 Å obtained at zero temperature. A possible reason for the
underestimation of the lattice parameter of bcc Fe is the Perdew–
Burke–Ernzerhof DFT functional [35], that is reported to affect the
underestimation of the lattice parameter for bcc Fe–Al alloys [36].
Consequently, this may also lead to errors in prediction of magnetic
properties, e.g., total magnetic moment of the unit cell as it depends on
the cell volume (see, e.g., [18]). Selection of more accurate parameters
for DFT calculations or the use of other exchange–correlation potential
can improve the predictive ability of both spin-polarized DFT calcula-
tion and the ensemble of mMTPs fitted to the results of spin-polarized
DFT. Nevertheless, the experimental trend is correctly captured by
mMTP.

2.7. Accelerating DFT calculations with magnetic Moment Tensor Potential

To compare the computational cost of spin-polarized DFT and
mMTP we estimate the average computational time needed to calculate
energy, forces, stresses, and equilibrium magnetic moments of several
hundred different 16-atom Fe–Al configurations. Average calculation
time on a single central processing unit (CPU) core is about 104 s/atom
for spin-polarized DFT and approximately 10−2 s/atom for mMTP with
𝑁𝜓 = 4. Therefore, mMTP is several orders of magnitude faster than
spin-polarized DFT. This fact clearly demonstrates the relevance of
developing magnetic MLIPs for such kind of simulations.

Conclusion

In this paper we developed a method for fitting magnetic Moment
Tensor Potentials (mMTPs) [18,20] to magnetic forces (negative deriva-
tives of energies with respect to magnetic moments) in addition to
energies, forces, and stresses. To test the methodology we constructed
a training set containing 16-atom bcc Fe–Al supercells with different
concentrations of Al and Fe using density functional theory (DFT) and
cDFT calculations [24] implemented in ABINIT [28]. The resulting
training set included 2632 configurations. Further, we compared two
mMTPs fitting methods. In the first method used in [18,20] we fitted
mMTPs only to DFT energies, forces, and stresses. The second method
7 
Fig. 7. Lattice parameters calculated at 𝑇 = 0 K and 𝑇 = 300 K using the ensemble
of mMTPs fitted with 𝑤𝑡 = 0.1 𝜇2

𝐵 and a 𝑁𝜓 = 4. Experimental points at 𝑇 = 300
K are taken from [33] and DFT calculations were obtained at 𝑇 = 0 K. The results
obtained with mMTPs are provided with the 95% confidence interval, i.e., the 2-𝜎
interval. We observe the extension of the lattice at 300 K. The mMTPs qualitatively
describe the experimentally observed expansion trend of at 𝑇 = 300 K, but quantitatively
underestimate the values of the lattice parameters.

included fitting to magnetic forces, obtained from DFT. First, we de-
termined an optimal weight 𝑤𝑡 for fitting to magnetic forces. Next, we
trained the ensembles of mMTPs with different number of magnetic
basis functions using the both methods. While the our developed ap-
proach did not result in an observable reduction of RMSEs for energies,
forces and stresses, it significantly decreased (ten times) the RMSE for
magnetic forces in comparison when mMTPs is not fitted to them. Next,
we observed a better agreement between DFT-calculated equilibrium
magnetic moments and those obtained with the ensemble of mMTPs
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fitted to magnetic forces. On the contrary, mMTPs without fitting to
magnetic forces showed a higher deviation from DFT-calculated values.
Additionally, the mMTPs fitted to magnetic forces gave systematically
better results in predicting formation energies, lattice parameters, and
unit cell magnetic moments. Moreover, we verified the impact of
magnetic basis size on the accuracy of prediction of bcc Fe–Al prop-
erties. Thus, we demonstrated a higher prediction accuracy when the
magnetic basis size is increased. Next, we assessed the equilibration
and relaxation reliability which is the percentage of configurations with
successfully equilibrated magnetic moments and relaxed geometry. We
demonstrated that mMTPs fitted to magnetic forces always result in
100% reliability, while mMTPs without such fitting cannot successfully
equilibrate and relax all the configurations from the training set. This
fact indicates a lack of the data in the training set in the case when
we do not fit mMTPs to magnetic forces as opposed to the novel
algorithm: all of the mMTPs were able to equilibrate and relax all the
configurations. Finally, we conducted molecular dynamics simulations
at 𝑇 = 300 K with the ensemble of mMTPs fitted using the novel
method. We correctly captured the experimentally observed lattice
expansion trend.

The obtained results reveal that the presented methodology for
mMTP fitting is a tool for obtaining an accurate mMTP keeping the
training set size relatively small. The method should also be very
effective in combination with active learning [26,34] as it automatically
selects the representative configurations for the training set, thus min-
imizing the number of computationally expensive spin-polarized DFT
calculations.
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