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A B S T R A C T

Size measurements of fish and crustacean species play a critical role in fishery stock assessments, fishing gear size 
selectivity studies, and monitoring compliance with fisheries management regulations. One such example is from 
shrimp fisheries where samples of trawl-caught shrimps are frequently collected and size measured. However, 
the manual measurement of hundreds of small shrimps per sample is time-consuming and exhausting. Therefore, 
this study evaluates whether an automatic measuring procedure using off-the-shelf camera technology and a 
general-purpose artificial intelligence algorithm can replace manual measurements of deep-water shrimp (Pan
dalus borealis). Despite some deviations between manual and automatic measurements for individual shrimps, 
the automatic method proved sufficiently accurate for stock, gear selectivity and compliance assessment. 
Furthermore, this study demonstrated how a use-case driven approach can be applied when evaluating whether a 
new measuring technology can replace an existing.

1. Introduction

Many fisheries face challenges in sustainably exploiting resources, 
such as overfishing, the capture of undersized individuals, or species 
composition (Duarte et al., 2020). To mitigate these challenges, fisheries 
have implemented periodic monitoring of stock sizes, harvest controls, 
and restrictions on fishing gear types and designs (Melnychuk et al., 
2021; Kennelly and Broadhurst, 2021). Increasing demands for accurate 
data have led to enhanced monitoring efforts (Silva et al., 2020). Ac
curate estimates of fish population abundance and size distribution are 
vital for effective fisheries management (Jennings and Polunin, 1997; 
Jennings and Kaiser, 1998; Pauly et al., 2002). Specifically, size mea
surements of fish and crustacean species play a critical role in fishery 
stock assessments, fishing gear size selectivity studies, and monitoring 
compliance with fisheries management regulations. Specifically, the 
dynamics of species length distribution is essential for analysing marine 
population dynamics and making informed management decisions 
about exploited stocks. First, the data on composition of catches are 
crucial for stock assessments and management strategies (Jardim et al., 
2015). Second, data on the sizes of released and retained species is 
critical for evaluating size selectivity, helping optimize gear designs for 
species-specific size discrimination (Wileman et al., 1996; Kennelly and 

Broadhurst, 2021). Third, regulations may then limit the proportion of 
undersized individuals in catches, with non-compliance potentially 
leading to the closure of fishing areas (Larsen et al., 2018b). In such 
cases the check for compliance is dependent on the size measuring of 
individuals in the catch.

However, in almost all fisheries, the length estimation of fish and 
crustacean species is still done manually (Alvarez-Ellacuría et al., 2020). 
Automation, on the other hand, has the potential to enhance the accu
racy, efficiency, and consistency of species measurement, thereby 
improving the reliability of stock assessment data. Specifically, the de
velopments in artificial intelligence (AI) methods, often combined with 
computer vision, have significant potential to enhance data collection 
and processing in marine applications. This potential is highlighted by 
the formation of the Working Group on Machine Learning Applications 
in Marine Science (WGMLEARN) by the International Council for the 
Exploration of the Sea (ICES) in 2019 (ICES, 2019). According to Mar
rable et al. (2022), deep learning can automate the labour-intensive task 
of accurately locating the heads and tails of fish, replacing manual 
methods with computer vision-based algorithms. Monkman et al. (2019)
noted that measuring fish length using digital imagery is an expanding 
field. White et al. (2006) were the first to test this method using com
puter vision on a fishing vessel (Marrable et al., 2023). Also, for 
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Fig. 1. Measuring the carapace length on a deep-water shrimp with a calliper.

Fig. 2. Acquisition setup for automatic measuring of carapace length on deep-water shrimp. A: deep-water shrimp to be measured. B: Intel Realsense D405 RGB-D 
camera positioned above the shrimp to be measured. C: compact rack of Rexroth aluminium profiles for camera mount. D: laptop computer controlling acquisition 
and storing images acquired.
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crustacean species, such as shrimp, automated size measurement using 
computer vision and AI is increasingly applied, particularly in aqua
culture field (Lai et al., 2022; Hashisho et al., 2021). In the context of 
fisheries stock assessments, Harbitz (2007) explored the use of computer 
vision for measuring the length of deep-water shrimp (Pandalus borealis). 
The carapace length, often measured with a calliper (Fig. 1), is a stan
dard size metric for shrimp. This manual measurement process can be 
exhausting and time-consuming, especially when hundreds of in
dividuals across multiple samples need to be recorded. For example, 
assessing the size selectivity of fishing gear for shrimp typically involves 
measuring 300–500 individual shrimp collected from each of 8 to 12 
trawl hauls per gear configuration tested (Larsen et al., 2017, 2018a).

The deep-water shrimp (also known as the northern shrimp) is a 
commercially important species that is being harvested by means of 
demersal trawls along the Norwegian coast since the early 20th century. 

The fishing of this species expanded to deeper waters off Norway and 
other countries in the late 1960s (Larsen et al., 2017; Einarsson et al., 
2020). Given the economic importance of this species, the current study 
examines whether the manual measurement of its size by humans, for 
purposes such as stock assessment, gear size selectivity, and compliance 
monitoring, can be replaced by an automated measurement system. This 
system utilizes off-the-shelf camera technology integrated with a 
general-purpose artificial intelligence algorithm.

2. Materials and methods

2.1. Automatic acquisition method

The purpose of this study is to examine a method based on digital 
imaging, computer vision, and artificial intelligence to estimate the 

Fig. 3. Depth image of a shrimp (left) and illustration of sections B and C, which are obscured because they are on the side of the shrimp facing away from the 
camera (right).

Fig. 4. Steps in the image analyses to obtain value for volume vr for a deep-water shrimp.
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carapace length (cl) of deep-water shrimp individually. Accurately 
positioning a shrimp in the imaging setup and reliably detecting both 
endpoints that define the cl simultaneously is challenging. Therefore, 
our method instead relies on an assumed correlation between the 
shrimp’s volume (v) and its cl. Assuming the relationship between the 
shrimp’s volume and carapace length follows a power law: 

cl = a×vb (1) 

Our method involves an acquisition setup with a low-cost 3D camera 
positioned above the shrimp, which is laid on its side for measurement 
(Fig. 2). In Eq. (1), a and b are species-specific parameters that need to 
be known prior or estimated as part of the acquisition process.

Specifically, the camera used for imaging was an Intel Realsense 
D405 RGB-D camera. This is a low-cost stereo camera that differs from 
most other RGB-D cameras in this price range due to its ability to capture 
3D information at short range. While most other RGB-D cameras have an 
ideal minimum range of 30 to 60 cm, the Realsense D405 can capture 3D 
information at distances as close as 7 cm, making it suitable for scanning 
small objects such as shrimp. The camera uses two IR cameras for stereo 
matching and an image signal processor to enhance the RGB data from 
the depth sensor, resulting in an output that combines matching colour 
and depth.

The camera was mounted on a compact rack of Rexroth aluminium 
profiles, ensuring that each sample could be positioned at approximately 
the same distance from the camera. During data collection, the Real
sense camera was connected to a computer running a user interface that 
stored each sample with an ID tag, along with raw colour and depth 
information.

However, the acquisition setup (Fig. 2) used does not provide the 
volume v required to use Eq. (1) to estimate cl, as the side of the shrimp 
facing away from the camera is obscured (Fig. 3).

Due to the challenge posed by the obscured side of the shrimp, we did 
not use Eq. (1). Instead, we assumed that the volume resulting from this, 
denoted as vr, has a similar relationship to cl as the original volume v: 

cla = a×vrb (2) 

Where we introduced cla to represent cl in our automatic method. The 
value of the parameters a and b in Eq. (2) must be determined before 
applying our automatic method. The first step, however, is to acquire vr 
using the setup depicted in Fig. 2, which involves the image analysis 
described below (Section 2.2).

2.2 Image analysis Using the acquisition method described above 
(Fig. 2), both the colour image and the depth image for each sampled 
shrimp were utilized for the image analysis. The analysis can be divided 
into four steps (Fig. 4):

Fig. 5. Measured cl (clm) versus shrimp volume (vr) for individual shrimp 
(dots) and regression curve based on minimizing Expression (3).

Table 1 
Estimated value for parameters a and b 
for use in Eq. (2) and fit performance 
based on minimizing Expression (3).

a 1.5950

b 0.2863
R2 0.94

Fig. 6. Estimated cl-values (cla) versus manual measured cl-values (clm) (upper 
panel) and deviations between estimated and measured cl-values (centre and 
lower panel).

Table 2 
Mean deviations between estimated and manually measured cl values and the 
standard deviations (SD).

Mean SD

Deviation in cl (mm) 2.31E− 4 0.72
Absolute deviation in cl (mm) 0.55 0.47
Deviation in cl (%) 0.14 3.64
Absolute deviation in cl (%) 2.73 2.41

B. Herrmann et al.                                                                                                                                                                                                                              Regional Studies in Marine Science 79 (2024) 103852 

4 



1.1. Acquisition: Both colour and depth are obtained from the camera.
1.2. Segmentation: The object of interest is segmented pixelwise from 

the background.
1.3. 3D measurement: The 3D position of each pixel in the depth image 

is calculated.
1.4. Volume calculation: The volume vr of the segmented object is 

calculated based on the 3D measurements.

For the segmentation step (Step 2 in Fig. 4) that separates the shrimp 
object from the background in the image, our approach utilized the 
colour image to identify which pixels contained the sample shrimp and 
which contained the background. We employed the Segment Anything 
Model (SAM) from Meta AI (https://segment-anything.com) for this 
purpose. SAM analyses the image and provides segmentations of objects 
within it. To execute this segmentation task, we utilized a small set of 
points at the image’s edges to help SAM detect the background. Subse
quently, the shrimp segmentation was achieved by extracting the largest 
mask in the centre of the image that did not overlap with the already 
segmented background. This segmentation method assumes the pres
ence of a single sample per image, positioned in the centre. While 
various other segmentation strategies are applicable for this task, we 
opted for SAM primarily due to its robustness. Implementing simpler 
background detection algorithms based on colour would have required 

greater control over the background lighting, which was not feasible for 
use aboard a fishing vessel.

For the 3D measurement step (Step 3 in Fig. 4), the two segmentation 
masks (background and sample object) were utilized on the depth 
image. By utilizing the intrinsic properties of the depth camera and the 
depth values within each segmentation mask, point clouds were 
computed for both the background and the sample. A RANSAC plane 
segmentation algorithm (Fischler and Bolles, 1981) was then imple
mented on the background point cloud to identify a plane and establish a 
coordinate system aligned with the table on which the shrimp was 
positioned. Subsequently, the point cloud of the sample was transformed 
into this coordinate system. The transformation ensured that the z-axis 
of the point cloud pointed upwards in a perpendicular direction from the 
plane, while the x- and y-axes were parallel to the table, with the origin 
located at the centre of the plane.

For the Volume calculation step (Step 4 in Fig. 4), a height map was 
created from the aligned point cloud of the sample object. The height 
map had a grid resolution of 0.5 mm, where each square that contained 
one or more points from the sample point cloud was assigned the point’s 
z-value (or median z-value if multiple points resided within the same 
grid square). Subsequently, a median filter was employed on the height 
map, along with an interpolation algorithm to fill in missing grid 
squares. The area of each sample could then be determined by summing 

Fig. 7. Population size frequencies based on manual measuring (black curves) and automatic measuring (grey curves) for the entire shrimp data set at three different 
sampling levels (left column). The right column shows the delta between frequencies (automatic measuring - manual measuring). Dashed curves represent 95 % 
confidence limits.
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the area of grid squares overlapping the sample, while the volume was 
calculated by summing the volume of these grid squares. This process 
resulted in obtaining the value for the sample volume vr, which is used to 
automatically estimate the carapace length of the shrimp cla using Eq. 
(2).

2.2. Data collection

Data sampling was conducted during several hauls on a research 
cruise with the trawler "Helmer Hanssen" (63.8 m LOA and 4080 HP) in 
the Barents Sea in February 2023. The fishing trials were performed 
using a Campelen 1800# trawl constructed entirely of 80–40 mm dia
mond meshes made of 2 mm polyethylene (PE) twine. The trawl doors 
utilized were Thyborøn T2 type, measuring 6.5 m2 and weighing 
2200 kg. The design incorporated 40 m double sweeps and a 19.2 m 
long rockhopper gear composed of three sections with 46 cm rubber 
discs. Additionally, the trawl had a Nordmøre grid section like the one 
employed in the Norwegian coastal fleet for targeting shrimp. The 
stainless steel Nordmøre grid measured 1510 mm in height and 
1330 mm in width, angled at 45 ± 2.5◦ while fishing. The Nordmøre 
grid had a mean ± SD bar spacing of 18.8 ± 0.4 mm, and the escape exit 
on the top panel was a 35-mesh long and 70-mesh wide triangle. A small- 
mesh cover (mean ± SD mesh size 18.9 ± 1.2 mm) was installed over 

the escape exit to collect escaping shrimps ahead of the grid. To capture 
the shrimps passing through the grid, the codend included a small, low- 
hanging, inner net mesh (mean ± SD mesh size 18.5 ± 0.9 mm) to 
prevent shrimp from escaping. Samples of shrimp were collected from 
the codend.

For each of the sampled shrimp i, the carapace length was measured 
with a calliper, as shown in Fig. 1, to obtain a clmi value (manually 
measured carapace length by a human). The same shrimp was then 
placed in the image acquisition scene (Fig. 2) to obtain corresponding 
image data, which ultimately led to a clai value for the automatic 
measurement of the carapace length of the shrimp by using image 
analysis steps, first obtaining the volume vri (Fig. 3).

2.3. Estimation of model parameters

To use our automatic method, the values for the parameters a and b 
in Eq. (2) need to be established beforehand. For practical purposes in 
this study, we used the collected data to determine the values for these 
parameters based on our corresponding values for clmi and vsi, mini
mizing the sum of the squares of the residuals between the N pairs of vr 
and clm with respect to a and b: 
∑N

i=1
(clmi − a × vri

b)
2 (3) 

Fig. 8. Cumulative population size frequencies based on manual measuring (black curves) and automatic measuring (grey curves) for the shrimp at three different 
sampling levels (left column). The right column shows the delta between cumulative frequencies (automatic measuring - manual measuring). Dashed curves represent 
95 % confidence limits.
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2.4. Data set for performance evaluation

Based on the data collection (Section 2.3) and the established values 
for parameters a and b in Eq. (2) (described in Section 2.4), we applied 
image analysis (Section 2.2) to each of the sampled shrimp. This pro
vided us with the manually measured carapace length by humans clmi 
and the automatically measured carapace length clai. Thus, our basic 
dataset consists of paired values (clm, cla) for assessing whether the 
automatic measurement of shrimp carapace length could replace 
manual measurement by humans using a calliper. The two datasets, 
based on manual and automatic measurements, are hereafter referred to 
as the Mdata and Adata sets, respectively. Comparing results from the 
Mdata and Adata sets forms the basis for evaluating whether automatic 
measurement can replace manual measurement by humans for use in 
stock assessment, fishing gear size selectivity estimation, and manage
ment performance measures.

2.5. Evaluation based on single shrimp measurements

The evaluation on a single shrimp basis was based on comparing the 
paired values of (clm, cla). A preliminary assessment of performance can 
be obtained by plotting cla against clm for all measured shrimp and 
inspecting how much these data points deviate from a line with a slope 

of 1.0 and an intercept of 0.0. Furthermore, the deviation (in mm and %) 
between the clm and cla values can be plotted against the clm value. 
Additionally, the mean and standard deviation (SD) can be calculated 
based on the sampled data for the deviation between the individual cla 
and clm values, as well as for their absolute (unsigned) deviations.

2.6. Evaluation for stock assessment

For stock assessment purposes we based the evaluation on estimated 
population size structure using 1 mm wide size classes cl. The Mdata and 
Adata sets were transformed into count numbers ncl (nmcl and nacl 
respectively) for each cl: 

nmcl =
∑N

i=1
eq(cl, clmi)

nacl =
∑N

i=1
eq(cl, clai)

with

eq(x, y) =

{
0,&x ∕= y

1,&x = y

(4) 

Where N is the number shrimp in the Mdata and Adata sets. Based on this 
type of count data (4), a population sample is often described by the 
length frequency density distribution Dncl and/or the cumulative length 

Fig. 9. Population size frequencies based on manual measuring (black curves) and automatic measuring (grey curves) for the simulated retained population using a 
35 mm diamond mesh codend. Results are provided for three different sampling levels. The right column shows the delta between frequencies (automatic measuring - 
manual measuring). Dashed curves represent 95 % confidence limits.
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frequency density distribution CDn CL (Einarsson et al., 2020; Mytili
neou et al., 2020). Therefore, we used these two population size struc
ture descriptors in the evaluation for stock assessment purposes. Dncl 
quantifies the proportion of individuals within each size class cl relative 
to the total, whereas CDn CL quantifies the cumulative proportion of 
the total population of shrimp for and up to a given carapace length class 
CL: 

Dncl =
ncl

∑

cl
ncl

CDnCL =

∑CL

cl=0
ncl

∑

cl
ncl

(5) 

Given that there are N shrimps in a sample, where each is measured 
for length, uncertainties for the sample’s Dncl and CDn CL are obtained 
based on bootstrapping using 1000 repetitions by resampling N in
dividuals with replacement from the sample in each repetition. In each 
repetition, Eq. (4) and (5) are then applied to obtain a population of 
1000 results for Dncl and CDn CL. From these populations of results, 

Fig. 10. Cumulative population size frequencies based on manual measuring (black curves) and automatic measuring (grey curves) for the simulated retained 
population using a 35 mm diamond mesh codend. Results are provided for three different sampling levels. The right column shows the delta between cumulative 
frequencies (automatic measuring - manual measuring). Dashed curves represent 95 % confidence limits.

Table 3 
AIC values for model fits for covered gear experiments. Lowest AIC is indicated in bold, and reflects the model used for each gear configuration and sampling level.

Gear configuration model Full sampling Half sampling Quarter sampling

​ Human Auto. Human Auto. Human Auto.
Nordmøre grid + codend logistic 1932.3 1975.9 841.3 851.4 429.5 431.5
Nordmøre grid + codend dlogistic 1908.3 1967.7 819.3 835.0 429.6 433.1
Codend logistic 1753.0 1800.2 670.4 672.8 415.5 421.3
Codend dlogistic 1755.8 1804.5 674.1 675.2 419.8 419.8
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Efron 95 % percentile confidence intervals (CIs) are obtained (Efron, 
1982). This procedure for assessing values for Dncl and CDn CL with 
CI’s is applied both for the Mdata and Adata sets to enable comparison 
regarding application of the automatic method for stock assessment 
purposes. Specifically, the size-dependent results with CIs are plotted 
together. Further, to quantify the difference in results between the 
Mdata and Adata sets for the length frequency Dncl and cumulative 
length frequency CDnCL, the deltas were estimated as follows: 

ΔDncl = Dnacl − Dnmcl

ΔCDnCL = CDnaCL − CDnmCL
(6) 

Where Dnmcl and Dnacl are the values for Dncl for the Mdata and Adata 
sets, respectively. The same notation is also used for the CDnCL delta. The 
CIs for ΔCDnCL and ΔCDnCL were obtained based on the two bootstrap 
population results for Mdata and Adata sets, following the procedure for 
bootstrap calculus described in Herrmann et al. (2018). If all size classes 
(cl and CL) contain the value 0.0 inside the CIs for the deltas, no sig
nificant difference between the human-based and automatic methods 
for stock assessment purposes was found.

The procedure described above was applied separately on the full 
datasets (Mdata and Adata), the half of the datasets and one-quarter of 
the datasets to get an impression of whether sample size affects the 

difference in performance between the Adata and Mdata sets. Further
more, these three different sampling levels of data from the paired Mdata 
and Adata sets were used as entry data to simulate similar datasets that 
would be obtained with a size selective fishing gear fishing operating on 
the entry population. These datasets were simulated using the size se
lection curve for a Nordmøre grid with 19 mm bar spacing followed by a 
35 mm diamond mesh codend (Larsen et al., 2017), as this is the 
mandatory size selection system for vessels targeting deep-water 
shrimps in northern Norwegian waters (Norwegian Directorate of 
Fisheries, 2011). Therefore, we used the size selection curve obtained by 
Larsen et al. (2017) for the deep-water shrimp for this selective system. 
The size selection curve r(cl) quantifies the probability [0.0; 1.0] that a 
shrimp entering gear will be retained dependent on its carapace length. 
Specifically, for each shrimp i with a clmi and clai value, we used the clmi 
in a stochastic simulation to estimate whether it would be retained or 
released based on its clm value, using the expected mean retention 
probability r(clm). A random number z was then drawn in interval 
[0.0;1.0]. If z < r(clm), then the shrimp is simulated to be retained, and 
the clm and cla values added to the retained fractions. Otherwise, the 
specific shrimp is simulated to be released and is not considered in the 
evaluation. The resulting simulated retained population of shrimp was 
then used to estimate Dncl and CDn CL for the Mdata and Adata sets for 

Fig. 11. Covered gear size selection data and curves (left) for a Nordmøre grid followed by a codend for manual data acquisition (black) and automatic acquisition 
(grey) at three sampling levels. Dots represent the experimental retention rates. Full curves represent the estimated size selection curves, while dashed curves 
represent the CIs for the size selection curves. The right column shows the delta curves (solid lines) with CIs (dashed lines) between size selection curves obtained 
using the automatic and manual data acquisition methods.
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retained population at full, half, and quarter set sizes. Furthermore, the 
delta values between Mdata and Adata sets were evaluated according to 
equation (6).

2.7. Evaluation for fishing gear size selectivity

The covered gear and paired gear method are the two main data 
collection methods used when experimentally obtaining data for esti
mating absolute size selectivity of a fishing gear (Wileman et al., 1996; 
Grimaldo et al., 2016). Absolute size selection quantifies the length 
dependent probability that a shrimp will be retained by the fishing gear, 
given that it enters the gear (Wileman et al., 1996). In case of the shrimp, 
the cl value is used for measure of length.

With the covered gear method, both the retained and released frac
tions of the shrimp are sampled. This is done by having a small mesh net 
surrounding the fishing gear to collect those individuals escaping. In the 
case of paired gear method, a small mesh net is towed parallel to the 
fishing gear to sample an estimate of the population of shrimp entering 
the fishing gear (Wileman et al., 1996). In the simplest case, size 
selectivity is estimated at the haul level, and we simplify the assessment 
of the automatic measuring method to this level. For the covered gear 
method, let nrcl and necl represent the number of shrimps in length class 
cl being respectively retained in the gear and released through it 
(collected in the small mesh cover net surrounding it). The parameters ν 
for the size selectivity curve model r(cl, ν) are then obtained by 
maximum likelihood estimation (MLE) by minimizing (Wileman et al., 

Fig. 12. Covered gear size selection data and curves (left) for a 35 mm diamond mesh codend for manual data acquisition (black) and automatic acquisition (grey) at 
three sampling levels. Dots represent the experimental retention rates. Full curves represent the estimated size selection curves, while dashed curves represent the CIs 
for the size selection curves. The right column shows the delta curves (solid lines) with CIs (dashed lines) between size selection curves obtained using the automatic 
and manual data acquisition methods.

Table 4 
AIC values for model fits for paired gear experiments. Lowest AIC is indicated in bold, and reflects the model used for each gear configuration and sampling level.

Gear configuration model Full sampling Half sampling Quarter sampling

​ Human Auto. Human Auto. Human Auto.
Nordmøre grid + codend logistic 5037.5 5060.5 2546.8 2552.2 1238.3 1237.4
Nordmøre grid + codend dlogistic 5043.5 5066.5 2552.4 2557.8 1244.3 1243.4
Codend logistic 5103.7 5108.3 2617.6 2615.7 1256.1 1256.9
Codend dlogistic 5108.4 5113.2 2623.5 2621.5 1260.8 1262.4
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1996): 

−
∑

cl
{nrcl × ln(r(cl, ν) )+ necl × ln(1.0 − r(cl, ν) ) } (7) 

Where the summation is over length classes in the data set.
In the case of the paired gear method, let nrcl and nccl represent the 

number of shrimps of length class cl retained in the investigated gear and 
in the small mesh control gear towed parallel with the investigated gear, 
respectively. The parameters ν for the size selectivity curve model and 
the split parameter SP are then obtained by MLE minimizing: 

−
∑

cl

{

nrcl × ln
(

SP × r(cl, ν)
SP × r(cl, ν) + 1.0 − SP

)

+ nccl

× ln
(

1.0 −
SP × r(cl, ν)

SP × r(cl, ν) + 1.0 − SP

)}

(8) 

The split parameter SP quantifies the fraction of the shrimps entering 
the test gear, given that they enter one of the two gears (Wileman et al., 
1996).

Besides absolute size selectivity, fishing gear scientists often estimate 
the relative length dependent catch efficiency (Krag et al., 2014). The 
data for this are often obtained by fishing the two gears simultaneously 
alongside each other to collect so-called catch comparison data 
(Grimaldo et al., 2016). In case of catch comparison data collection, the 
data consists of the length dependent number of shrimps, nr1cl and nr2cl. 
These data are then used to estimate the parameters ν in the functional 
description of the catch comparison rate cc(cl, ν) by MLE minimizing: 

−
∑

cl
{nr1cl × ln(cc(cl, ν) )+ nr2cl × ln(1.0 − cc(cl, ν) ) } (9) 

The catch comparison rate quantifies the length dependent proba
bility of being captured in the first gear, given capture in one of the two 
gears (Herrmann et al., 2017). Therefore, for gear performance 

evaluation, cc(cl, ν) is often transformed to the catch ratio cr(cl, ν), which 
quantifies the length dependent relative capture probability between the 
two gears (Herrmann et al., 2017): 

cr(cl, ν) = cc(cl, ν)
1.0 − cc(cl, ν) (10) 

The Mdata and Adata sets were used as entry data to simulate com
parable datasets for absolute size selection. Like Section 2.7, we used the 
size selection curve for a Nordmøre grid with 19 mm bar spacing fol
lowed by a 35 mm diamond mesh codend (Larsen et al., 2017) to 
simulate the retained and released shrimps of the Mdata and Adata sets, 
using the same stochastic simulation approach as described above for 
the stock assessment evaluation. This lead to (nmrcl, nmccl) and (narcl, 
naccl) to represent (nrcl, nccl) in order to estimate the size selectivity 
curve r(cl, ν) by MLE by minimizing expression (7). For r(cl, ν), we tested 
two models, where the second, the double logistic dlogistic, was used in 
the simulations as this models the actual size selection process for such 
fishing gear configurations (Larsen et al., 2017): 

dlogistic
(
Cgrid, L50grid, SRgrid, L50codend, SRcodend, cl

)

= Cgrid ×
(
1.0 − logistic

(
L50grid, SRgrid, cl

) )

× logistic(L50codend, SRcodend, cl) (11) 

The dlogistic model (11) is based on the logistic model often used to 
describe size selection in codends (Wileman et al., 1996): 

logistic(L50, SR, cl) =
exp

(
ln(2.0)

SR × (cl − L50)
)

1.0 + exp
(

ln(2.0)
SR × (cl − L50)

) (12) 

Furthermore, as several other shrimp fisheries only use size selective 
codends (Einarsson et al., 2020), we also simulated that situation based 

Fig. 13. Paired gear catch sharing data and curves (left) for a Nordmøre grid followed by a codend for manual data acquisition (black) and automatic acquisition 
(grey) at three sampling levels. Dots represent the experimental catch sharing rates. Full curves represent the estimated catch sharing rate curves, while dashed 
curves represent the CIs for the catch sharing rate. The centre column represents the size selection curves obtained from the sharing curves. The right column 
represents the delta curves (solid lines) with CIs (dashed lines) between size selection curves obtained using the automatic and manual data acquisition methods.
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on the logistic model (12) using the codend size selection curve obtained 
by Larsen et al. (2017) for a 35 mm mesh size diamond mesh codend. For 
covered gear data, models (11) and (12) were used directly to simulate 
retained (nrcl) and released (necl) fractions, following the same approach 
as described above for simulating stock assessment data for a size se
lective fishing gear. For simulating paired gear data, the retained data 
(nrcl) in the size selective gear was based on using (11) and (12) for 
r(cl, ν) dependent on if it was for nordmøre grid followed by codend or 
codend alone: 

SP × r(cl, ν) (13) 

And for the retention in the nonselective gear (nccl): 

1.0 − SP (14) 

For the simulations of the paired gear data using (13) and (14) with 
(11) or (12) the SP value was set at 0.5.

For the simulation of catch comparison data, we assumed a retention 
r1(cl, ν) for Nordmøre grid followed by a 35 mm mesh size diamond 
mesh codend modelled by (9) for gear one, and retention r2(cl, ν) for a 
35 mm mesh codend modelled by (12) for gear two. Data were then 
simulated based on the results for deep-water shrimps obtained by 
Larsen et al. (2017). For gear one the retained data (nr1cl) were simu
lated based on: 

SP × r1(cl, ν) (15) 

And for gear two the retained data (nr2cl) were simulated based on: 

(1.0 − SP) × r2(cl, ν) (16) 

As with the stock assessment data, the comparison of results obtained 
from the simulated Mdata and Adata was done by analysing the delta for 
the size selection and catch ratio curves, respectively. This was accom
plished by first using bootstrapping, following Herrmann et al. (2012), 

to obtain CIs for the individual curves. A significant difference between 
manual and automatic data collection methods was detected in cases 
where the CIs for the delta between curves did not contain the value 0.0.

2.8. Evaluation for fisheries management

In several fisheries, a central regulation is the establishment of a 
minimum legal size (MLS), and often a maximum limit is defined for the 
proportion of the catch that can consist of undersized individuals. deep- 
waterFor example, in the Norwegian shrimp fishery, a maximum of 
10 % of the catch is allowed to be below MLS (Norwegian Directorate of 
Fisheries, 2011). If the fraction of the catch exceeds this limit, it leads to 
closure of the fishing grounds (Norwegian Directorate of Fisheries, 
2011). The fraction of undersized individuals in a catch is often termed 
discard ratio (Wienbeck et al., 2014) and can, for deep-water shrimp, be 
given by: 

nDRatio =

∑

cl<MLS
ncl

∑

cl
ncl

(17) 

We used the simulated retained part (nr1cl) of the data covered gear 
size selection data described in Section 2.8 as input to (17) to obtain 
values for discard ratio for gear configurations for 19 mm Nordmøre grid 
followed by 35 mm mesh size diamond mesh codend, and this codend 
alone. For performance test purposes, we used a MLS set at 18 and 
20 mm cl, respectively. Again, the delta between the results obtained 
from Mdata and Adata was used to assess the performance of the auto
matic data collection method.

2.9. Software

All simulations and analyses described in Sections 2.7–2.9 were 

Fig. 14. Paired gear catch sharing data and curves (left) for the size-selective 35 mm mesh codend for manual data acquisition (black) and automatic acquisition 
(grey) at three sampling levels. Dots represent the experimental catch sharing rates. Full curves represent the estimated catch sharing rate curves, while dashed 
curves represent the CIs for the catch sharing rate. The centre column represents the size selection curves obtained from the sharing curves. The right column 
represents the delta curves (solid lines) with CIs (dashed lines) between size selection curves obtained using the automatic and manual data acquisition methods.
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carried out using the software tool SELNET (version date 6th April 2024) 
(Herrmann et al., 2012, 2016, 2022).

3. Results

3.1. Collection of shrimp data

A total of 2167 shrimp were sampled on the research vessel Helmer 
Hanssen. Deep-water shrimp was measured one by one, first manually 
and the immediately afterwards automatically. The measured size range 
for carapace length was 13.23 mm to 31.50 mm. Using the acquisition 
and image analysis described in Sections 2.2–2.3 2167 corresponding 
values for clmi and vri were obtained and used to establish the values for 
parameters a and b in Eq. (2) (Fig. 5; Table 1). The corelation between vs 
and clm was strong, as the R2-value for the fit was high (0.94).

3.2. Performance of automatic assessment on individual basis

Plotting cla against clm for the sampled shrimps showed the data 
centred around the baseline for zero deviation (Fig. 6, top panel). 
However, this plot also demonstrated some deviations, quantified by a 
mean absolute deviation at 0.55 mm, corresponding to a percentage 
deviation of 2.73 % (Table 2). The mean deviation is much smaller, with 
a value at 0.00023 mm, demonstrating that on a population basis, the 
automatic method provides a nearly unbiased value. However, the 
standard deviation is 0.72 mm, showing that predictions on single 
shrimp basis are not perfect. Nonetheless, the distribution of individual 
estimation deviations demonstrate that most are within ±2.5 mm 
(Fig. 6, centre panel) and within ±10 % (Fig. 6, lower panel).

3.3. Stock size structure assessment

The evaluation of the performance of the automatic measuring 

Fig. 15. Catch comparison data and curves (left) for a Nordmøre grid followed by a codend versus the codend alone for manual data acquisition (black) and 
automatic acquisition (grey) at three sampling levels. Dots represent the experimental catch comparison rates. Full curves represent the estimated catch comparison 
curves, while dashed curves represent the CIs for the catch comparison curves. The centre column represents the catch ratio curves obtained from the catch com
parison curves. The right column represents the delta curves (solid lines) with CIs (dashed lines) between catch ratio curves obtained using the automatic and manual 
data acquisition methods.

Table 5 
Discard ratios (%) obtained for manual automatic data acquisition methods for Nordmøre grid followed by codend and for codend alone. Numbers in () represents 95 % 
confidence bands. The delta column provides the difference between discard ratios obtained based on automatic and manual measured cl values for the shrimps.

Samling level MLS Grid + codend Codend

(mm) measured estimated delta measured estimated delta
18 7.8(6.9− 8.7) 7.8(6.8− 8.7) 0.0(− 1.3− 1.3) 7.4(6.4− 8.4) 7.3(6.3− 8.2) − 0.2(− 1.7− 1.1)

Full 20 22.9(21.6− 24.2) 23.5(22.3− 24.8) 0.6(− 1.1− 2.6) 22.4(21.1− 23.7) 22.7(21.5− 24.0) 0.4(− 1.4− 2.1)
18 4.5(3.3− 5.6) 3.7(2.7− 4.8) − 0.7(− 2.3− 1.0) 5.3(4.1− 6.5) 4.1(3.1− 5.3) − 1.2(− 2.8− 0.5)

Half 20 16.2(14.6− 17.7) 14.7(13.1− 16.3) − 1.4(− 3.7− 0.7) 17.3(15.8− 18.8) 15.8(14.3− 17.3) − 1.5(− 3.4− 0.7)
18 4.8(3.1− 6.5) 3.3(1.8− 4.9) − 1.5(− 3.8− 0.7) 6.2(4.2− 8.1) 4.7(3.2− 6.4) − 1.5(− 3.8− 1.1)

Quarter 20 16.3(14.0− 18.6) 15.0(12.7− 17.3) − 1.3(− 4.3− 1.9) 16.5(14.1− 18.9) 15.0(12.8− 17.5) − 1.5(− 4.8− 1.9)
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method for stock assessment purposes was, as described in Section 2.7, 
based on comparing the population distributions of shrimp cl obtained 
from the Mdata (manually measured) and Adata (automatically 
measured). The frequency plots showed very similar distributions for the 
two methods for full, half, and quarter samplings, with overlapping CIs 
(Fig. 7, left column). This is further supported by the delta plots, which 
identified only one length class (cl = 21.5) where the CIs did not contain 
the baseline value of 0.0 for no difference in both full and half sampling, 
while no significant difference was observed for quarter sampling 
(Fig. 7, right column).

The frequency plots for comparing population size structures (Fig. 7) 
can be a bit noisy, and a less noisy comparison can often be obtained 
based on cumulative frequencies (Fig. 8). The results based on cumu
lative frequencies show very similar outcomes for the manual and 
automatic measurements of cl for shrimp (Fig. 8, left column), implying 
that the two acquisition methods lead to very similar results. This is 
supported by the delta plots (Fig. 8, right column), which showed the 
significant differences in cumulative frequences are only in the full 
sampling case, and only few length classes.

To further examine the performance of the automatic measuring 
method for stock assessment purposes, the Mdata and Adata sets were 
used to simulate the retained datasets with size-selective gear, specif
ically a 35 mm mesh diamond mesh codend, as described in Section 2.7. 
The performance on such "size-selected" data (Figs. 9–10) showed 
similarly good results for the automatic measuring method as for the 
non-size-selected data (Figs. 7–8), as the size frequency plots and cu
mulative size frequency plots exhibited very similar curves for the 
manual and automatic measuring of the shrimp.

3.4. Size selectivity assessment

The assessment of the performance of the automatic measuring 
method for estimating fishing gear size selectivity was conducted based 
on the simulation of size selectivity data using the Mdata and Adata for 
the covered gear, paired gear, and catch comparison data collection 
methods, following the procedures described in Section 2.8.

3.4.1. Covered gear analysis
For the simulated covered gear data for a Nordmøre grid followed by 

a size-selective codend and for the codend alone, we followed a standard 
analysis procedure by first using AIC values (Akaike, 1974) to determine 
which model to use for the data. In this case, both the logistic (Eq. 12) 
and the dlogistic (Eq. 11) models were considered (Table 3).

For the simulated covered gear data for a Nordmøre grid followed by 
a size-selective codend at all three sampling levels (full, half, and 
quarter), the analysis demonstrated that, despite some differences in the 
retention rate for individual data points obtained using the manual and 
automatic acquisition methods, the estimated selection curves appeared 
similar to each other (Fig. 11, left column). The exception was for the 
largest size classes of shrimp, where the CIs expanded for both data 
acquisition methods, leading to no significant differences in any size 
classes between the size selection curves. This is formally demonstrated 
by the delta plots, which show no significant differences between size 
selection curves obtained using the two sampling methods for any size 
classes of shrimp at any sampling level (Fig. 11, right column).

To further examine the performance of the automatic measuring 
method for estimating size selectivity from covered gear data, the Mdata 
and Adata sets were used to simulate the data obtained with size- 
selective gear, specifically a 35 mm diamond mesh codend, as 
described in Section 2.8. The performance based on those size selection 
data showed similarly good results for the automatic measuring method 
as the plots for the size selectivity are very similar for the manual and 
automatic measuring of the shrimp (Fig. 12, left column). This is 
collaborated by the delta plots, which show no significant differences 
between size selection curves obtained using the two sampling methods 
for any size classes of shrimp at any sampling levels (Fig. 12, right 

column).

3.4.2. Paired gear analysis
For the simulated paired gear data for a Nordmøre grid followed by a 

size-selective codend and for the codend alone, we followed a standard 
analysis procedure by first using AIC values to determine which model 
to use for the data. In this case, both the logistic (Eq. 12) and the dlogistic 
(Eq. 11) models were considered (Table 4).

The analysis at all three sampling levels (full, half, and quarter) 
demonstrated that, despite some differences in the catch sharing rate for 
individual data points obtained using the manual and automatic 
acquisition methods, the estimated catch share curves appeared very 
similar (Figs. 13 and 14, left column). Likewise, the estimated size se
lection curves seemed very similar for the two data acquisition methods 
(Figs. 13 and 14, centre column). This is formally demonstrated by the 
delta plots, which show no significant differences between size selection 
curves obtained using the two sampling methods for any size classes of 
shrimp at any sampling levels (Figs. 13 and 14, right column).

3.4.3. Catch comparison analysis
For the simulated catch comparison data for a Nordmøre grid fol

lowed by a size-selective codend versus the codend alone at all three 
sampling levels (full, half, and quarter), the analysis demonstrated that, 
despite some differences in the catch comparison rate for individual data 
points obtained using the manual and automatic acquisition methods, 
the estimated catch comparison curves appeared very similar (Fig. 15, 
left column). Likewise, the estimated catch ratio curves seemed very 
similar for the two data acquisition methods (Fig. 15, centre column). 
This is formally demonstrated by the delta plots, which show no sig
nificant differences between catch ratio curves obtained using the two 
sampling methods for any size classes of shrimp at any sampling levels 
(Fig. 15, right column).

3.5. Indicator assessment for fisheries management control of compliance

The assessment of the performance of the automatic measuring 
method for use in fisheries management control of compliance was 
conducted based on a simulation of the retained shrimp, using the Mdata 
and Adata following the procedures described in Section 2.9. The 
simulation was conducted for a Nordmøre grid followed by a size- 
selective codend versus the codend alone at three sampling levels 
(full, half, and quarter). The performance assessment was based on 
comparing the obtained discard ratios (Eq. 17), assuming MLS at 18 mm 
and 20 mm cl, respectively. The estimated discard ratios obtained very 
similar values for the two data acquisition methods across the cases 
investigated (Table 5). The delta values between manual and automatic 
measurements showed no significant difference between the two esti
mation methods was observed for any of the cases investigated 
(Table 5).

4. Discussion

In this study, we investigated whether an automatic method using 
computer vision and artificial intelligence for measuring the carapace 
length of deep-water shrimp can replace the current manual method 
using a calliper when data is used for stock assessment, fishing gear size 
selectivity estimation, or fisheries management purposes. Judging 
whether the automatic method provides sufficient accuracy to replace 
the current method for a specific purpose is challenging when based 
solely on comparing individual values for carapace length obtained with 
the two methods, as shown in Fig. 6 and Table 2. Therefore, we addi
tionally employed what could be termed a use case-driven approach 
(Nebut et al., 2006). Specifically, we examined the consequences on the 
results in stock assessment, fishing gear size selectivity estimation, and 
fisheries compliance control if one or the other measuring method was 
used to obtain the dataset for the assessment. We compared results, 
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including considering the uncertainty in the results due to sample sizes, 
to evaluate whether applying one or the other measuring method led to 
significant differences in outcomes. For uncertainty estimation, we 
adopted the same methods commonly applied within the specific 
domain to make our assessment as realistic as possible. We believe that 
the outlined and applied use case-driven approach for evaluating 
whether a new measuring method can replace an existing one has ad
vantages compared to judging based on single sample measures, as 
provided in Fig. 6 and Table 2, a method often used (Lai et al., 2022; 
Monkman et al., 2019).

Based on our use case-driven approach, we found that an automatic 
measuring procedure based on "off-the-shelf" camera technology com
bined with a general-purpose artificial intelligence algorithm can pro
vide sufficient accuracy to replace manual measurement of deep-water 
shrimp for data use in stock assessment, gear size selectivity, and 
compliance control assessment purposes, despite some deviations in 
individual shrimp size measurements between the manual and auto
matic methods (Fig. 6; Table 2). If we had based the evaluation solely on 
a non-use case-driven approach like Fig. 6 and Table 2, we would not 
have been able to determine whether the automatic method provided 
sufficient accuracy to replace the manual method. This demonstrates the 
usefulness of adopting a use case-driven approach for the performance 
evaluation of a new measuring technique, as done in this study.

The manual measurement of the size of deep-water shrimp with a 
calliper is a direct measuring procedure of the attribute of interest (here, 
the carapace length). However, automatically identifying and locating 
the two endpoints defining the carapace length on every image (Fig. 1) 
can be challenging. Therefore, for our computer vision-based method, 
we used an indirect approach by utilizing a strong correlation between 
the shrimp volume vr and the carapace length, as given by Eq. (2). In this 
respect, our measurement approach has some similarities with the 
method investigated by Harbitz (2007), who based the estimation on a 
correlation between shrimp area and carapace length. Despite the issue 
with the side of the shrimp facing away from the camera that is obscured 
in our acquisition method, we believe that using volume vr instead of, 
for example, area provides a more robust measurement regarding seg
mentation errors (separating the shrimp from the background). 
Compared to area measurement, where each segmented pixel contrib
utes equally to the area sum, a pixel in the centre of the shrimp con
tributes more to the total volume due to its height measurement, than an 
erroneously segmented pixel at the border of the shrimp, e.g., segmen
tation of its whiskers. However, future work could compare these two 
methods in detail. Other examples of using artificial intelligence in 
combination with computer vision to assess shrimp size by means of 
other estimation procedures include Lin et al. (2019) and Setiawan et al. 
(2022).

Our study is another example of how modern technology, in this case 
based on computer vision and artificial intelligence, provides new pos
sibilities for data sampling and processing in marine science applica
tions, aligning with the objectives of the working group WGLEARN 
(ICES, 2019). A comprehensive reference list of works and methods for 
marine applications of artificial intelligence can be found in Rubbens 
et al. (2023).
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