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A B S T R A C T

To monitor the dynamics and non-stationarity inherent in industrial processes, we propose a
novel incipient fault detection and isolation scheme grounded in a probabilistic perspective,
using the Cauchy–Schwarz (CS) divergence. Our innovation lies in the utilization of marginal
CS divergence for incipient fault detection and the conditional CS divergence for fault isola-
tion. This approach neither require prior parametric assumptions about the underlying data
distribution nor depend on historical fault data, while simultaneously providing explanatory
diagnostics. Beyond this, we develop a change point detection-base diagnosis technique for
practical engineering applications. This online process monitoring technique guarantees timely
intervention to uphold process stability and safety. We demonstrate the compelling performance,
higher detection rate and lower alarm rate, of the CS divergence over prevalent divergence-
based approaches, such as Kullback–Leibler divergence, Wasserstein distance and Mahalanobis
distance. We also illustrate the explanatory insights offered by conditional CS divergence in fault
isolation on synthetic data, benchmarks of continuous stirred-tank reactor process and contin-
uous stirred-tank heater process and even a real-world continuous catalytic reforming process.
Code of this CS divergence based fault detection and isolation is available at https://github.
com/Feiya-Lv/Incipient-Fault-Detection-and-Isolation-with-Cauchy--Schwarz-Divergence.

1. Introduction

With the growing demand for security equipments and high-quality products, process monitoring is an essential task with critical
applications in process safety and production maintenance [1]. As fault is formally defined as an ‘‘unpermitted deviation of at least
one parameter of a process from acceptable conditions’’, fault detection and isolation is a heavily studied area to systematically
determine whether a fault has occurred (detection) and identify the process variables affected by the fault (isolation) [2,3].

Multivariate statistical process monitoring approaches have been widely used in complex industrial and perform satisfactorily
in highly correlated multi-modal variables, e.g., principal component analysis (PCA) for Gaussian distributed source signals, and
independent component analysis as a non-Gaussian extension. They in general use distance-based statistics to timely detect any
deviation from normal or ‘‘in-control’’ region that has been defined to accommodate the acceptable variations. Various improved or
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recursive statistical process monitoring methods have been proposed thereafter [4,5]. They are conceptual simplicity and effective
in dealing with dynamic processes, but their performances still need improvement in terms of increased sensitivity, early detection,
and minimal false alarms during normal operation. In recent years, detection of incipient faults has attracted significant attention,
as it is crucial to prevent system deterioration. Incipient faults are easily masked by normal variation or noise due to their small
magnitudes. They seem more likely to alter the probability distribution rather than cause obvious parameter changes. As a result,
particular techniques based on specific distance measures have been applied to process control over the past few decades to detect
such faults, such as f-divergences: Kullback–Leibler (KL) divergence [6–8], Jensen–Shannon divergence [9,10]; and integral probability
metric (IPMs): Wasserstein distance [11], maximum mean discrepancy [12], etc.

The divergence-based detection identifies out-of-control conditions in a process by monitoring the dissimilarity between the
distribution of the current monitoring process and a reference one [6,8,11,13,14]. KL divergence, frequently employed within the
PCA framework for fault detection, facilitates the comparison of distributions along principal axes, demonstrating good performance
in detecting incipient faults and providing insights into fault severity [6–8]. However, computing the KL divergence in a non-
parametric way can be computationally challenging, particularly in high-dimensional spaces. Given the uncertainties inherent in
industrial engineering and the complexities of chemical reactions, it is unrealistic to assume that real-world process data adhere
to a specific parametric distribution, such as Gaussian. Furthermore, in many cases, prior knowledge regarding the shape or form
of the underlying probability density function (PDF) is limited or unavailable. This lack of information makes it difficult to rely
on traditional statistical methods that assume a particular distribution for process monitoring and fault detection. Therefore, if a
divergence can be efficiently estimated or calculated, even in the absence of knowledge about the true distribution or its conformity
to typical parametric assumptions, the resulting fault detection and isolation framework will exhibit both versatility and resilience.

In contrast to the above-mentioned f-divergences measures, which become challenging to compute with an increase in data
dimensions, and IPMs, which entail high computational complexity, the Cauchy–Schwarz (CS) divergence offers a straightforward
approach to quantifying distributional dissimilarity through the measurement of the tightness of an inequality pertaining to
two distributions [15,16]. Notably, it boasts a closed-form expression for mixture-of-Gaussians and imposes no prior parametric
assumptions on the underlying data distribution. This flexibility of the CS divergence renders it well-suited for a range of practical
applications, particularly when the underlying data distribution is unknown or deviates from simple parametric forms. Such
benefits make CS divergence an enticing choice for fault detection tasks. Indeed, classical CS divergence has been employed
in process monitoring—measuring the angle between two datasets after feature extraction within a kernel entropy component
analysis framework [17,18]—this strategy is fundamentally different from our proposal, which emphasizes joint distribution from
a probabilistic perspective.

To prevent undesired accidents and maintain system safety, fault isolation is a main function for prompt handling and mitigation
of the detected deviations [19]. Prompt and accurate fault isolation is imperative to ascertain the key observation variables that
are critical for fault diagnosis. However, this remains a challenging task due to the complexity of the processes involved and the
propagation of faults [2,20–22]. In the field of process monitoring, the traditional contribution plots and reconstruction-based
contribution methods are two typical classes tailored for fault isolation. Contribution plots are the most popular tool for identifying
which variables are pushing the monitoring statistics out of their control limits without prior knowledge [23–25]. However, it
assumes that the fault-free variables after fault occurs follows the same distribution as that under normal operating conditions,
which may not always be the case. As an alternative strategy, reconstruction-based contribution methods rely on historical fault
data to extract fault features and build models for fault reconstruction and classification [26,27]. This method, however, demands
a substantial collection of historical fault data, which may be difficult to be obtained in practice. Besides, both of them may
have difficulty handling unknown disturbances that are not covered by historical fault data [28]. Even for divergence-based fault
diagnosis, they almost involve calculating the contribution rate of each variable being faulty [9–11,13,29], which thus has the same
problem as contribution plot. Additionally, to take advantage of the aforementioned detection framework based on CS divergence, we
tend to develop an isolation approach from the perspective of conditional probability distributions. Due to the physical connections
across sensors and the inherent reaction mechanisms, a compromised or faulty sensor is likely to alter the dependence of other
sensors on it [30,31]. Recognizing this, the variation in dependency between a faulty sensor and other remaining sensors (which can
be characterized by their conditional distributions) becomes a potent means for fault isolation. Nevertheless, accurately measuring
the dissimilarity between two conditional distributions is a challenging task. While measures like f-divergences and IPMs present
potential solutions, they do not seamlessly adapt to this specific context. This predicament led us to propose a novel fault isolation
approach leveraging the conditional CS divergence [16]. This method simplifies the task of online incipient fault diagnosis without
requiring priori fault information, as we will elucidate in the upcoming sections.

Our main contributions are multi-fold:

1. Novel scheme: A statistical divergence-based fault detection and isolation scheme is developed from a probabilistic
perspective, combining both CS divergence (for incipient fault detection) and conditional CS divergence (for fault isolation).
The proposed monitoring statistics are derived from the perspective of changes in process distribution, utilizing CS divergence,
and do not rely on any prior parametric assumptions regarding the underlying data distribution.

2. Detection accuracy: Experiments, conducted on both synthetic data and benchmarks of the continuous stirred-tank reactor
(CSTR) and continuous stirred-tank heater (CSTH) processes, indicate that the CS divergence based fault detection achieves
comparable or even higher detection rates than prevalent divergence based detection approaches, such as KL divergence [6],
Mahalanobis distance [13], and Wasserstein distance [11]. Moreover, it maintains a reduced false alarm rate while ensuring
expedited detection delays.
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Abbreviation

CCR Continuous Catalytic Reforming CS Cauchy–Schwarz
CSTH Continuous Stirred-tank Heater CSTR Continuous Stirred-tank Reactor
DCS Distributed Control System FAR False Alarm Rate
FDD Fault Detection Delay FDR Fault Detection Rate
FNR Fault-to-noise Ratios IPMs Integral Probability Metric
KDE Kernel Density Estimator KL Kullback–Leibler
PCA Principal Component Analysis PDF Probability Density Function
SMD Statistics Mahalanobis Distance WD Wasserstein Distance

3. Explanatory isolation: The fault isolation technique, grounded in conditional probability distributions, leverages conditional
CS divergence to effectively identify altered dependencies between a faulty sensor and other remaining sensors. This
methodology offers explanatory insights of which sensors are affected by fault propagation, thereby providing better-informed
decision-making for maintaining process safety and risk assessment.

4. Scalability: Given the dynamics and non-stationary inherent in industrial processes, we have enhanced an online CS
divergence-based process monitoring technique by incorporating change point detection. This approach has been verified
on large scale monitoring sites of an actual continuous reforming (CCR) process in China.

The remainder of this paper is organized as follows. We first introduce the definition of CS divergence and conditional CS
divergence in Section 2. We then describe our proposed probabilistic framework of fault detection and isolation in Section 3, includes
the CS divergence based incipient fault detection, conditional CS divergence based fault isolation, and an overall dynamic process
monitoring framework in practical process. Experiments on synthetic, CSTH benchmark and an actual CCR process are performed
in Section 4. We conclude this work in Section 5.

Notations. Throughout this paper, scalars are denoted by lowercase letters (e.g., 𝑥), vectors appear as lowercase boldface letters
(e.g., 𝐱), and matrices are indicated by uppercase letters (e.g., 𝑋). The 𝑖th row of a matrix 𝑋 is declared by the row vector 𝐱𝑖, while
the 𝑗th column is indicated with the column vector 𝐱𝑗 . Moreover, subscript indicates time (or sample) index, superscript indicates
variable (or sensor) index. 𝑝𝑟(𝐱) wrt. 𝑝𝑐 (𝐱) are denoted as two distributions of the reference state and the current monitoring process.

2. Background knowledge

2.1. Problem formulation

Let a multivariate system with 𝑚 sensors, gather the process variables ℵ = {𝐱1, 𝐱2,… , 𝐱𝑚}, if a fault happens in sensor 𝑙
(1 ≤ 𝑙 ≤ 𝑚)1, the faulty measurements observed along this sensor are represented by 𝐱𝑙 and the direction of this fault is denoted as
𝑓𝑙.

Given the monitoring observations 𝜓𝑐 = {𝐱𝑐,𝑖}𝑁𝑖=1 and a reference state 𝜓𝑟 = {𝐱𝑟,𝑖}𝑀𝑖=1 of the steady process that are assumed to
be independently and identically distributed (i.i.d.) with PDFs 𝑝𝑟(𝐱) and 𝑝𝑐 (𝐱) respectively, fault detection is to determine whether
the current process exhibits any deviation from its steady-state operations. Due to the physical connections across sensors and the
inherent reaction mechanisms, any independent manipulation of a subset of sensors will be noticeable when considering their joint
distribution [30,31]. This interdependence offers a holistic view of the system’s state. Specifically, the dissimilarity between 𝜓𝑟 and
𝜓𝑐 can be quantified by the divergence between their respective PDFs, denote as 𝐷(𝑝𝑟(𝐱); 𝑝𝑐 (𝐱)). Such divergences have demonstrated
strong performance in detecting incipient faults and provide insights into fault severity [11–13].

Fault isolation is to identify the most likely fault sensor or variable 𝐱𝑙, the innovation of this paper lies in reformulating this task
as a conditional distribution-based probabilistic problem,

𝐱𝑙 = arg max
𝐱𝑙

𝐷(𝑝𝑟(𝐱𝑙|𝑋−𝑙), 𝑝𝑐 (𝐱𝑙|𝑋−𝑙)), (1)

here 𝑋−𝑙 = [𝐱1,… , 𝐱𝑙−1, 𝐱𝑙+1,… , 𝐱𝑚]𝑇 is a remaining sensor stream that includes all sensors excluding the fault sensor 𝐱𝑙 (e.g., 𝑋−2 =
[𝐱1, 𝐱3, 𝐱4,… , 𝐱𝑚]𝑇 ), 𝑝𝑐 (𝐱𝑙|𝑋−𝑙) and 𝑝𝑟(𝐱𝑙|𝑋−𝑙) are the conditional probability of 𝐱𝑙. By leveraging the stability and dynamics of
dependencies across sensors, the variable with the maximum conditional dissimilarity𝐷 can be considered as the primary contributor
to the observed faulty state.

To capture the changes between probability distributions with high sensitivity, we propose the development of a monitoring
statistic based on CS divergence, a probabilistic measure taken from Information Theory, for incipient fault detection, denoted as
𝐷CS(𝑝𝑟(𝐱); 𝑝𝑐 (𝐱)); and a monitoring statistic based on conditional CS divergence, from a conditional probabilistic perspective, for
fault isolation, denoted as 𝐷CS(𝑝𝑘−1(𝐱𝑙|𝑋−𝑙); 𝑝𝑘(𝐱𝑙|𝑋−𝑙)), as Fig. 1 shown.

1 Here taking the univariate fault as example, multivariate faults can be also analyzed similarly.
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Fig. 1. An illustrative example of fault detection and isolation in a probabilistic perspective. 𝑝𝑟(𝐱) wrt. 𝑝𝑐 (𝐱) are two distributions of the reference state and the
current monitoring process.

2.2. The Cauchy–Schwarz divergence and conditional Cauchy–Schwarz divergence

In the early 2000s, Principe et al. [15,32] suggested a way to quantify the distributional dissimilarity simply by measuring the
tightness of the famed Cauchy–Schwarz (CS) inequality associated with two distributions:
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with equality if and only if 𝑝𝑟(𝐱) and 𝑝𝑐 (𝐱) are linear dependent, a measure of the ‘‘distance’’ between PDFs can be defined, which
was named the CS divergence, with:
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(3)

The CS divergence enjoys a few appealing properties [33]. For example, it has closed-form expression for mixture-of-Gaussians [34],
a property that KL divergence does not hold [16]. Moreover, it can be simply evaluated with the kernel density estimator (KDE).

Given {𝐱𝑟,𝑖}𝑀𝑖=1 and {𝐱𝑐,𝑖}𝑁𝑖=1 both in R𝑚, drawn i.i.d. from 𝑝𝑟(𝐱) and 𝑝𝑐 (𝐱) respectively. Using the KDE with Gaussian kernel
𝐺𝜎 (⋅) = exp(− ‖⋅‖2

2𝜎2 ), Eq. (3) can be estimated as [33]:

𝐷̂CS(𝑝𝑟(𝐱); 𝑝𝑐 (𝐱)) = log
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(4)

The non-parametric estimation used in this calculation is not confined to specific parametric forms or distributions, providing
flexibility for the design of fault detection and isolation framework and enabling its adaptation to a wide variety of industrial
processes and scenarios.

The CS divergence for two conditional distributions 𝑝𝑟(𝐲|𝐱) and 𝑝𝑐 (𝐲|𝐱), in which 𝐲 ∈ R (e.g., 𝐱𝑙) and 𝐱 ∈ R𝑚−1 (e.g., 𝑋−𝑙), can
be expressed naturally as:

𝐷CS(𝑝𝑟(𝐲|𝐱); 𝑝𝑐 (𝐲|𝐱)) = −2 log
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which contains two conditional quadratic terms (i.e., ∫ ∫
𝑝2𝑟 (𝐱,𝐲)
𝑝2𝑟 (𝐱)
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𝑑𝐱𝑑𝐲) and a cross term (i.e., ∫ ∫
𝑝𝑟(𝐱,𝐲)𝑝𝑐 (𝐱,𝐲)
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𝑑𝐱𝑑𝐲). Similarly, Eq. (5) can be elegantly estimated by the KDE.
Given observations 𝜓𝑟 = {(𝐱𝑟,𝑖, 𝐲𝑟,𝑖)}𝑀𝑖=1 and 𝜓𝑐 = {(𝐱𝑐,𝑖, 𝐲𝑐,𝑖)}𝑁𝑖=1 which are sampled from distributions 𝑝𝑟(𝐱, 𝐲) and 𝑝𝑐 (𝐱, 𝐲),

respectively. Let 𝐾𝑟 and 𝐿𝑟 denote, respectively, the Gram matrices for variables 𝐱 and 𝐲 in the distribution 𝑝 (e.g., 𝐾𝑟 = 𝜅(𝐱 −𝐱 )).
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Fig. 2. An illustrative example of monitoring measurements, in which window length 𝑤 = 3.

Similarly, let 𝐾𝑐 and 𝐿𝑐 denote, respectively, the Gram matrices for the variables 𝐱 and 𝐲 in the distribution 𝑝𝑐 . Meanwhile, let
𝐾𝑟𝑐 ∈ R𝑀×𝑁 (i.e., 𝐾𝑟𝑐

𝑖𝑗 = 𝜅(𝐱𝑟,𝑖 − 𝐱𝑐,𝑗 )) denote the Gram matrix from distribution 𝑝𝑟 to distribution 𝑝𝑐 for variable 𝐱, and 𝐿𝑟𝑐 ∈ R𝑀×𝑁

the Gram matrix from distribution 𝑝𝑟 to distribution 𝑝𝑐 for variable 𝐲. Similarly, let 𝐾𝑐𝑟 ∈ R𝑁×𝑀 (i.e., 𝐾𝑐𝑟
𝑖𝑗 = 𝜅(𝐱𝑐,𝑖 − 𝐱𝑟,𝑗 )) denote

the Gram matrix from distribution 𝑝𝑐 to distribution 𝑝𝑟 for variable 𝐱, and 𝐿𝑐𝑟 ∈ R𝑁×𝑀 the Gram matrix from distribution 𝑝𝑐 to
distribution 𝑝𝑟 for variable 𝐲. 𝐷CS(𝑝𝑟(𝐲|𝐱); 𝑝𝑐 (𝐲|𝐱)) can be estimated by [16]:
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⎟

⎠

⎞

⎟

⎟

⎠

,

(6)

where 𝜅 refers to a Gaussian kernel with width 𝜎 and takes the form of 𝜅 (𝑥 − 𝑦) = exp
(

− ‖𝑥−𝑦‖2

2𝜎2

)

.

3. Incipient fault diagnosis with Cauchy–Schwarz divergence

In this section, we develop a general fault detection and isolation scheme that combines CS and conditional CS divergences. To
enhance the practicality of our scheme for real-world industrial processes, we also develop a dynamic monitoring mechanism using
change point detection.

3.1. The CS divergence based incipient fault detection

In multivariate process systems, deviations in internal dynamics can indicate the presence of faults. However, these faults
might not always manifest themselves in individual sensors. Instead, they can cause shifts in the system’s overall distribution. This
subsection introduces a detection method on the basis of CS divergence to identify these faults with high sensitivity.

For incipient fault, samples belonging to normal and abnormal conditions usually overlap to a large extent [4,10]. Window-based
fault detection methods can partially reduce the missed detection rate by utilizing statistical information among measurements, and
alleviate data overlap [4]. Given the process observations ℵ = {𝐱1, 𝐱2,…} ∶ 𝐱𝑖 ∈ R𝑚, we construct a ‘‘time lag shift’’ observer 𝑋𝑘 at
time 𝑘, 𝑘 ∈ [𝑤 + 1, 𝑛],

𝑋𝑘 =
[

𝐱𝑘−𝑤+1,… , 𝐱𝑘−1, 𝐱𝑘
]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑥1𝑘−𝑤+1 𝑥1𝑘−𝑤+2 ⋯ 𝑥1𝑘
𝑥2𝑘−𝑤+1 𝑥2𝑘−𝑤+2 ⋯ 𝑥2𝑘

⋮ ⋮ ⋱ ⋮

𝑥𝑚𝑘−𝑤+1 𝑥𝑚𝑘−𝑤+2 ⋯ 𝑥𝑚𝑘

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ R𝑚×𝑤,
(7)

𝑤 is the length of sliding window. 𝑋𝑘 is the moving window data that are consecutively updated along time direction. Note that
𝑋𝑘 has the special form of a Hankel matrix which is widely used in system identification. Fig. 2 illustrates the time-lagged matrix
𝑋𝑘 [35].

As process variables are jointly monitored, the data covering the measurement data under normal condition are used as reference
distribution, {𝐱𝑟−𝑤+1,… , 𝐱𝑟−1, 𝐱𝑟}, and then a moving window {𝐱𝑐−𝑤+1,… , 𝐱𝑐−1, 𝐱𝑐} with length of 𝑤 is used for dissimilarity analysis
5

to evaluate the changes of distribution structure along time direction.
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The dissimilarity between two PDFs, 𝑝𝑟(𝐱) and 𝑝𝑐 (𝐱), of the above observations can be quantified by CS divergence,𝐷CS(𝑝𝑟(𝐱); 𝑝𝑐 (𝐱))
ith Eq. (3). When using 𝐷CS for process monitoring, its upper control threshold 𝐷𝑐𝑙 can be estimated by empirical method with a

given confidence level 𝜂 during the offline stage. Following the occurrence of a fault, the state may shift or oscillate concomitant
with the propagation of fault. Therefore, online monitoring aims to quantify the deviation of the operating process by CS divergence.
It is possible to detect whether the process is ‘‘in-control’’ by applying the criterion: 𝐷CS(𝑘) ≥ 𝐷𝑐𝑙.

In our work, fault detection based on CS divergence is performed in the observation space. Considering the uncertainties inherent
in industrial environments, wherein data may deviate from idealized or assumed distributions, we have adopted an adaptive kernel
computation method for online kernel density estimation. This method flexibly adjusts the kernel size based on real-time changes in
the data, thereby ensuring that the estimation results are more aligned with the actual situation. Indeed, it serves as a versatile
and flexible framework that can integrate subspace projection or feature extraction to further enhance its detection accuracy.
Additionally, with memory items recorded in sliding window, the Type-II error (i.e., fails to reject a false null-hypothesis) may
be effectively avoid consequently [36].

3.2. Fault isolation by conditional CS divergence

Fault isolation is performed to identify the variables which are responsible for the changes of distribution structure, i.e., changes
in probabilistic dependencies. With the occurrence of fault, the conditional dependence between the faulty variable and other
variables will differ from that under normal states. Thus, it is feasible to identify faulty variables by investigating whether there is
a deviant change in their conditional distributions. Considering the power of CS divergence in distribution monitoring, we aim to
develop a fault isolation strategy based on conditional CS divergence.

Given the above mentioned multivariate process ℵ, let us re-denote the ‘‘time lag shift’’ observer 𝑋𝑘 at time 𝑘 as

𝑋𝑘 ≜ [𝐱1,… , 𝐱𝑙 ,… , 𝐱𝑚]𝑇𝑘 ∈ R𝑚×𝑤, (8)

𝐱𝑙 (1 ≤ 𝑙 ≤ 𝑚) is the 𝑙th variable consists of 𝑤 observations within a sliding window. To better describe fault characteristics, we isolate
each variable 𝐱𝑙 individually during the monitoring phase to observe its specific contribution and impact on the overall monitoring
status. In other words, we examine how the variable 𝐱𝑙 depends on the remaining sensor streams 𝑋−𝑙 to get a comprehensive
understanding of the system’s behavior. This dependencies across sensors can be captured by conditional probability distributions,
denoted as 𝑝(𝐱𝑙|𝑋−𝑙). Thus, we can utilize the dissimilarity between two conditional distributions, 𝑝𝑐 (𝐱𝑙|𝑋−𝑙) and 𝑝𝑟(𝐱𝑙|𝑋−𝑙), for
fault isolation. The logic behind this is that the steady-state process should contain similar internal dynamics, in the sense that an
isolation model trained on reference state should perform satisfactory on monitoring phase as well. If the stability and dynamism
of these dependencies across sensors deviate, the variable responsible for the greatest deviation is deemed as the fault variable we
seek to identify. That is, fault isolation is the problem of identifying the most likely fault sensor or variable 𝐱𝑙 given its remaining
sensor streams 𝑋−𝑙:

𝐱𝑙 = arg max
𝐱𝑙

𝐷CS(𝑝𝑟(𝐱𝑙|𝑋−𝑙); 𝑝𝑐 (𝐱𝑙|𝑋−𝑙)). (9)

The variable with the maximum 𝐷CS can be considered as the primary contributor to the observed faulty state.
To identify the specific variable or sensor which is in disrepair or affected by the fault, we propose the normalized total

conditional divergence (nTCD) to estimate the ratio of conditional divergence,

𝑇 (𝑙) =
𝐷CS(𝑝𝑟(𝐱𝑙|𝑋−𝑙); 𝑝𝑐 (𝐱𝑙|𝑋−𝑙))

∑𝑚
𝑙=1𝐷CS(𝑝𝑟(𝐱𝑙|𝑋−𝑙); 𝑝𝑐 (𝐱𝑙|𝑋−𝑙))

. (10)

Variables with the maximum deviation ratio can be considered as the main sensor related to the fault, recorded as 𝐱𝑙∗. In Eq. (10),
ach dimension of 𝐷CS(𝑝𝑟(𝐱𝑙|𝑋−𝑙); 𝑝𝑐 (𝐱𝑙|𝑋−𝑙)) should be mean centered and normalized with reference mean 𝜇CS and standard
eviation 𝜎CS of the training set,

𝐷̂CS(𝑝𝑟(𝐱𝑙|𝑋−𝑙); 𝑝𝑐 (𝐱𝑙|𝑋−𝑙)) =
𝐷CS(𝑝𝑟(𝐱𝑙|𝑋−𝑙); 𝑝𝑐 (𝐱𝑙|𝑋−𝑙)) − 𝜇CS

𝜎2CS
. (11)

By monitoring the multivariate data with a sliding window sequentially, fault isolation resorts to the following hypothesis test
for identification of a fault variable 𝐱𝑙 on 𝑋−𝑙,

{

0 ∶ ∀𝑙, 𝑝𝑐 (𝐱𝑙|𝑋−𝑙) = 𝑝𝑟(𝐱𝑙|𝑋−𝑙),

1 ∶ ∃𝑙, 𝑝𝑐 (𝐱𝑙|𝑋−𝑙) ≠ 𝑝𝑟(𝐱𝑙|𝑋−𝑙).
(12)

Eq. (12) relies on the dependencies between 𝐱𝑙 and 𝑋−𝑙. This fault isolation strategy enables us to individually calculate the anomaly
of each sensor and dynamically assess its contribution to the current state. Importantly, it operates within the observation space,
eliminating the need for prior fault information or historical samples. This flexibility allows the method to adapt seamlessly to
various process scenarios without the need for extensive preprocessing or assumption fitting. By leveraging relative discrimination
instead of fixed control limits or thresholds, we can precisely identify specific sensors that have been compromised or affected. This
brings explanatory benefits to fault isolation, as operators need to understand the reasoning behind the algorithm’s decisions to trust
its results.
6
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3.3. Dynamic monitoring using change point detection

For actual industrial process, faults may arise or develop due to various dynamic changes. If corresponding regulation can be
mplemented during the fault symptom stage, it will effectively prevent faults from occurring. This subsection discusses a more
lexible process monitoring strategy using change point detection.

Given two phased observations {𝐱𝑘−𝑤𝑐 ,… 𝐱𝑘−2, 𝐱𝑘−1} and {𝐱𝑘+1,… 𝐱𝑘+𝑤𝑐−2, 𝐱𝑘+𝑤𝑐−1} before and after time index 𝑘, written as
𝑘−𝑤𝑐∶𝑘−1 and 𝐱𝑘∶𝑘+𝑤𝑐−1 correspondingly, if the divergence between their pdfs 𝑝(𝐱𝑘−𝑤𝑐∶𝑘−1) and 𝑝(𝐱𝑘∶𝑘+𝑤𝑐−1) reaches a peak or exceeds
threshold 𝛿:

𝐷(𝑝(𝐱𝑘−𝑤𝑐∶𝑘−1); 𝑝(𝐱𝑘∶𝑘+𝑤𝑐−1)) ≥ 𝛿, (13)

ault or change in dynamic characteristics of processes may occurs at time 𝑘. Here, 𝑤𝑐 is the length of retrospective interval. The
hreshold 𝛿 is a minimum peak height within the interval [𝑘 − 𝑤𝑐 , 𝑘 + (𝑤𝑐 − 1)], and it can be customized by industry-specific
nowledge. In our experiment, we utilize the average divergence value calculated over the retrospective interval. Specifically,
hen the divergence value 𝐷 surpasses 𝛿 within its respective traceable interval, we classify that point as a change point.
hange point detection gives support to the hypothesis of process changes or fault occurrence through comparing interval integral
istributions [35]. The higher 𝐷(𝑝(𝐱𝑘−𝑤𝑐∶𝑘−1); 𝑝(𝐱𝑘∶𝑘+(𝑤𝑐−1))) is, the more likely the monitoring point is an abrupt change of
istribution structure along time direction.

For process monitoring, we aim to assess whether the conditional distribution of each sensor has shifted based on the other
ensors. If the conditional CS divergence reaches a peak, an alarm will be triggered,

𝑚
∑

𝑙=1
𝐷CS(𝑝𝑘−1(𝐱𝑙|𝑋−𝑙); 𝑝𝑘+𝑤𝑐−1(𝐱

𝑙
|𝑋−𝑙)) ≥ 𝛿, (14)

his alarm time is regarded as 𝑐𝑘, and the alarm time set is formed as  = {𝑐1, 𝑐2,… , 𝑐𝑘−1, 𝑐𝑘,…}. Note that, the alarm is true only if
here exists a real fault at step 𝑘∗ such that 𝑘 ∈ [𝑘∗ − 𝜏, 𝑘∗ + 𝜏], in which 𝜏 is the acceptable maximum detection delay, 𝑤𝑐 ≤ 𝜏. With
rocess changes alarmed, this developed process monitoring strategy allows operators to detect incipient faults earlier. Besides, to
ocalize which sensor is compromised or affected, isolation should be analyzed through Eq. (10) within the interval [𝑐𝑘−1, 𝑐𝑘] of two
djacent change alarm points 𝑐𝑘−1 and 𝑐𝑘., the alarm variable is recorded as 𝐱𝑠∗.

This online process monitoring method using change point detection based on conditional CS divergence tends to give more
obust and accurate detection since the retrospective interval 𝑤𝑐 can be set to a value smaller than the fault incubation period.
ctually, it can quantitatively and flexibly describe the correlation and even variable transmission relationships between sensors,
hich is more suitable for the supervision of processes in practical engineering that may undergo steady-state switching due to
perating conditions, control loops, etc. Algorithm 1 summarizes the offline modeling and online monitoring of our proposed fault
etection and isolation framework.

. Applications to process monitoring

In the subsequent sections, we conduct experiments on a simulation dataset (subSection 4.1), benchmark datasets from the CSTR
rocess (subSection 4.2) and CSTH process (subSection 4.3), as well as a real-world CCR process (subSection 4.4), to showcase the
xceptional capabilities of our fault detection and isolation method based on CS divergence in process monitoring. We also verified
he performance improvement of CS divergence based detection when integrated with latent projection.

For quantitative comparison, three generally used metrics, namely fault detection rate (FDR), false alarm rate (FAR) and fault
etection delay (FDD) are employed for performance evaluation [1,37–39]. FDR is the probability of event where an alarm is raised
hen a fault really occurs,

FDR = prob(𝐷 ≥ 𝐷cl|fault ≠ 0), (15)

here 𝐷 and 𝐷cl are respectively the divergence index and its corresponding control limit. By contrast, FAR is the percentage of
amples under normal state but are identified as faults,

FAR = prob(𝐷 ≥ 𝐷cl|fault = 0). (16)

sually, a higher FDR and a lower FAR is expected in fault detection methods. Additionally, we look forward to a smaller FDD
ecause it reflects the sensitivity of the algorithm,

FDD = Num(𝐷⟨𝐷cl|fault = 0 → 𝐷 ≥ 𝐷cl|fault ≠ 0). (17)

.1. Numerical simulation

Motivated by [4,13], we consider a simulation example generated by the following multivariate process:

𝐱 = 𝐴𝐬 + 𝐞, 𝐬 = [𝑠 , 𝑠 , 𝑠 , 𝑠 ]𝑇 , (18)
7

1 2 3 4



Journal of the Franklin Institute 361 (2024) 107114F. Lv et al.

O

1

1

1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3

Algorithm 1 The fault detection and isolation framework with CS divergence.
Input: The offline process observations {𝐱1, 𝐱2,⋯} and online measurements {𝐱test,1, 𝐱test,2,⋯}; The sliding window size 𝑤; The retrospective

reaction periods 𝑤𝑐 .
utput: Alarm or not, alarm variable 𝐱𝑠∗; Fault or not, faulty variable 𝐱𝑙∗.
Offline modeling :

1: Construct the reference matrix 𝑋ref;
2: for 𝑘 = 𝑤 + 1 to 𝑛 do
3: Construct 𝑋𝑘 and obtain 𝐷CS(𝑝𝑘(𝐱); 𝑝ref(𝐱)) with Eq. (3);
4: for 𝑙 = 1 to 𝑚 do
5: Compute 𝐷CS(𝑝𝑘−1(𝐱𝑙|𝑋−𝑙); 𝑝𝑘(𝐱𝑙|𝑋−𝑙)) with Eq. (5);
6: end for
7: end for
8: Determine the control limit 𝐷𝑐𝑙 at the significance level 𝜂.
9: Calculate reference mean 𝜇CS, standard deviation 𝜎CS.
0: return 𝐷cl; 𝜇CS; 𝜎CS.
Online monitoring :

1: Construct the reference matrix 𝑋test,ref;
12: while End of process not reached do
3: Construct 𝑋test,𝑘 and obtain 𝐷test,CS(𝑝𝑘(𝐱); 𝑝ref(𝐱)) with Eq. (3);
4: for 𝑙 = 1 to 𝑚 do
5: Compute 𝐷test,CS(𝑝𝑘−𝑤𝑐+1(𝐱

𝑙
|𝑋−𝑙); 𝑝𝑘(𝐱𝑙|𝑋−𝑙));

6: Compute 𝐷test,CS(𝑝𝑘−1(𝐱𝑙|𝑋−𝑙); 𝑝𝑘(𝐱𝑙|𝑋−𝑙));
7: end for
8: if 𝐷test,CS(𝑝𝑘−𝑤𝑐+1(𝐱

𝑙
|𝑋−𝑙); 𝑝𝑘(𝐱𝑙|𝑋−𝑙)) ≥ 𝛿 then

9: Alarm the change position, recorded as 𝑐𝑘;
0: for 𝑙 = 1 to 𝑚 do
1:

∑𝑐𝑘
𝑘=𝑐𝑘−1

𝐷test,CS(𝑝𝑘−1(𝐱𝑙|𝑋−𝑙); 𝑝𝑘(𝐱𝑙|𝑋−𝑙));
2: end for
3: Variables with the maximum deviation ratio, 𝐱𝑠∗;
4: end if
5: if 𝐷test,CS(𝑝𝑘(𝐱); 𝑝ref(𝐱)) ≥ 𝐷cl then
6: Alarm the occurrence of fault ;
7: for 𝑙 = 1 to 𝑚 do
8: Normalize the conditional divergence by 𝜇CS and 𝜎CS, and obtain the nTCD 𝑇 (𝑙) by Eq. (10);
9: end for
0: Variables with the maximum deviation ratio, 𝐱𝑙∗.
1: end if
2: 𝑘 = 𝑘 + 1; Go back to Step 13.
3: end while
4: return Decisions: Alarm or not, alarm variable 𝐱𝑠∗; Fault or not, faulty variable 𝐱𝑙∗.

where 𝐱 represents the process measurements that result from a linear combination of data sources following a multivariate Gaussian

distribution 𝐬 ∼  (𝝁, 𝐼) with 𝝁 = [1.2, 0.7, 2.3, 1.7]𝑇 , 𝐴 is the coefficient matrix, 𝐴 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.55 0.72 0.60 0.54
0.42 0.65 0.44 0.89
0.96 0.38 0.79 0.53
0.57 0.93 0.07 0.09
0.02 0.83 0.78 0.87
0.98 0.80 0.46 0.78

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. Here, a fault of sensor

bias is considered: 𝐱̂ = 𝐱 + 𝐟 , 𝐱̂ is the measurement under fault, and 𝐱 denotes the fault-free portion. A total of 700 samples were
generated under steady-state process conditions, while an additional 300 samples were generated that involved introducing a ramp
fault on 𝑥4, as 𝑥̂4 = 𝑥4 + 0.01(𝑘 − 700), 𝑘 = 701,… , 1000 [13].

We compare our proposed method, denoted as CS, with state-of-the-art divergence-based detection approaches: KL divergence
(KL) [6], Statistics Mahalanobis Distance (SMD) [13] and Wasserstein Distance (WD) [11]. To ensure fairness, we follow the
same settings as in [11,13], 𝑤 = 100 and 𝜂 = 0.01. In KL and WD, we select 3 principal components to capture more than
95% of the variance. To robustly evaluate the performance, we examined the system’s detection capabilities under various
conditions corrupted by different noise distributions. Specifically, we considered Gaussian noises 𝐞 ∼  (0,

∑

𝐞) with ∑

𝐞 =
𝑑𝑖𝑎𝑔{0.031, 0.023, 0.192, 0.173, 0.150, 0.113}, Gamma noises 𝐞 ∼ 𝛤 (2, 1), and Exponential noises 𝐞 ∼ exp (−1.2). To ensure a compre-
hensive evaluation, we conducted 100 experiments for each noise scenario related to the fault, considering various input biases.
Table 1 has summarized the average detection performance. Under Gaussian noise, our method’s FDRs in the observation space
is comparable to that of the KL divergence method after PCA projection, but with a FAR of 0. Under Gamma noise, our method’s
detection rate is second only to that of the WD distance in the principal component space, also exhibiting a reduced FAR. Under
exponential noise, our method shows improvement in both FDRs and FARs when compared to other methods. Overall, our method
has demonstrated promising detection performance across all three noise distributions, achieving a relatively high FDR and lower
8
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Table 1
The FDRs (%) of different methods for the numerical simulations.

No. KL KL SMD WD CS

𝐾𝑧 𝐾𝑒 𝑊𝑧 𝑊𝑒

𝐞 ∼  (0,
∑

𝐞) FDR 77.55 71.67 𝟖𝟑.𝟏𝟏 61.55 70.0 79.67 𝟖𝟐.𝟑𝟑
FAR 0.07 𝟎 5.84 1.0 1.0 1.0 𝟎
FDD 67 85 𝟓𝟏 115 90 61 𝟓𝟑

𝐞 ∼ 𝛤 (2, 1) FDR 56.78 55.56 35.67 60.44 𝟔𝟓.𝟒𝟒 62.56 𝟔𝟑.𝟕𝟖
FAR 0.53 𝟎 𝟎 1.0 1.0 1.0 𝟎.𝟒
FDD 130 133 193 119 104 112 𝟏𝟎𝟗

𝐞 ∼ exp (−1.2) FDR 75.56 71.89 69.11 54.11 54.78 70.44 𝟕𝟐.𝟎𝟏
FAR 24.10 0.53 10.29 1.0 1.0 1.0 𝟎
FDD 𝟕𝟑 84 93 138 136 89 𝟖𝟒

To robustly evaluate the performance, this fault scenario undergoes 100 trials with varying input disturbances. ∗𝑧 and ∗𝑒 denote
monitoring statistics in principal space and residual space, respectively. 𝑤 = 100, 𝜂 = 1%.

Fig. 3. Detection performance of the proposed CS divergence-based fault detection method along with varying FNR values.

FAR. This represents a favorable balance between FDR and FAR. Additionally, our proposed CS divergence exhibits shorter detection
delays, with the FDD of 53 mins, 109 mins and 84 mins. The shorter detection delay facilitates prompt implementation of effective
regulatory measures, ensuring a swift restoration of the process to its normal state. However, it is worth noting that due to the slow-
varying characteristics of this incipient fault, it can be masked by higher noise levels during its early stages; meanwhile, the use of
sliding windows inevitably causes detection delays, thereby decreasing the detection rate. Then, we calculated the detection accuracy
across different fault-to-noise ratios (FNR) to evaluate the robustness of our algorithm against noises. The results, as depicted in
Fig. 3, demonstrate that our approach remains effective in detecting faults even when the FNR is low. This indicates the algorithm’s
resilience to noise and its ability to accurately identify faults in challenging conditions. Besides, the FDRs increase concurrent with
the escalation of FNR, which underscores the algorithm’s adaptability in handling different noise levels.

Fig. 4 illustrates the conditional divergence scores, notably, 𝑥4 exhibits a significant deviation from its steady state, indicating
that it is the main variable affected by the fault. This observation aligns with the actual cause, where 𝑥̂4 = 𝑥4 + 𝑓 . Besides,
deviations observed within the interval [427, 700], without any alarms in the detection results, can be attributed to system dynamics
or operational deviations. This suggests that certain information can be discerned from the conditional distribution, which differs
from the overall distribution. Consequently, real-time conditional monitoring becomes crucial as it facilitates timely regulation in
response to such deviations.

Moreover, we plot the monitoring results using change point detection in Fig. 5. In Fig. 5(a), the alarm set is [324, 427, 732], which
forms 4 stages. While the first stage displays a right-skewed state and the second stage shows a left-skewed state, the variables remain
relatively stable under normal conditions. The third stage exhibits an overall upward shift, as seen in Fig. 4, the upper quartile of
𝑥4 increases, resulting in right skewness under normal conditions. However, in the fourth stage, there is a significant upward shift
in 𝑥4, indicating a faulty state during this stage.

It is worth noting that the proposed fault detection scheme, based on CS divergence, does not employ any projections of latent
variables, such as PCA. This suggests that CS divergence is a more versatile distance metric suited for detecting incipient faults. Of
course, PCA projection can be incorporated into this scheme to further enhance its detection capabilities, a claim we will validate
in subsequent experiments.

4.2. Application to CSTR process

This section discusses the effectiveness of the proposed method in a closed-loop continuous stirred-tank reactor (CSTR) process,
which is a common chemical system that designed especially for simulating incipient faults [40–43]. The dynamic characteristics
9
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Fig. 4. The conditional divergences for fault isolation in the simulation example.

Fig. 5. The monitoring results of the simulation example. (a) Conditional CS divergence based change point detection. (b) Distributions for each state split by
change points.

of CSTR process is described by 3 ordinary differential equations which are mass and energy balances around the system,
𝑑𝐶
𝑑𝑡

= 𝑄
𝑉
(𝐶𝑖 − 𝐶) − 𝑎𝑘𝐶 + 𝑣1, (19)

𝑑𝑇
𝑑𝑡

= 𝑄
𝑉
(𝑇𝑖 − 𝑇 ) − 𝑎

(𝛥𝐻𝑟)𝑘𝐶
𝜌𝐶𝑝

− 𝑏 𝑈𝐴
𝜌𝐶𝑝𝑉

(𝑇𝑖 − 𝑇 ) + 𝑣2, (20)

𝑑𝑇𝑐
𝑑𝑡

=
𝑄𝑐
𝑉𝑐

(𝑇𝑐𝑖 − 𝑇𝑐 ) + 𝑏
𝑈𝐴

𝜌𝑐𝐶𝑝𝑐𝑉𝑐
(𝑇𝑐 − 𝑇 ) + 𝑣3, (21)

where the system’s inputs are 𝐱 = [𝐶𝑖, 𝑇𝑖, 𝑇𝑐𝑖]𝑇 , the outputs are 𝐲 = [𝐶, 𝑇 , 𝑇𝑐 , 𝑄𝑐 ]𝑇 , 𝑣𝑖 is process noise, and 𝑘 is an Arrhenius-type rate
constant with 𝑘 = 𝑘0𝑒

( −𝐸𝑅𝑇 ). A schematic diagram of the CSTR and feedback control system is shown in Fig. 6: the tank temperature 𝑇 is
maintained using a cooling jacket [41,42]. Details of parameters are described in Table 2. It is worth noting that, input disturbances
can bring out system dynamics, such that measurements are temporally correlated, non-Gaussian-distributed and noisy due to the
process non-linearity. The sampling interval is 1 min, 2000 points under normal conditions are collected as training data.2

2 We use the Simulink model developed by Pilario [41], available at http://www.mathworks.com/matlabcentral/fileexchange/66189-feedback-controlled-cstr-
process-for-fault-simulation.
10
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Table 2
Parameter description in CSTR process.

Parameter Description Value

𝑄 Inlet flow rate 100.0 L/min
𝑉 Tank volume 150.0 L
𝑉𝑐 Jacket volume 10.0 L
𝛥𝐻𝑟 Chemical reaction heat −2.0 × 105 cal/mol
𝑈𝐴 Heat transfer coefficient 7.0 × 105 cal/min/K
𝑘0 Pre-exponential factor to 𝑘 7.2 × 1010 min−1

𝐸∕𝑅 Activation energy and gas constant 1.0 × 104 K
𝜌, 𝜌𝑐 Fluid density 1000 g/L
𝐶𝑝 , 𝐶𝑝𝑐 Fluid heat capacity 1.0 cal/g/K
𝑣1 , 𝑣2 , 𝑣3 Gaussian noise 𝑁(0, 0.01)

Table 3
Incipient fault scenarios in CSTR process.

Fault ID Description Value of 𝑓 Type

𝑓1 𝑄 = 𝑄0 + 𝛿 5 Additive bias
𝑓2 𝑎 = 𝑎0𝑒𝑥𝑝(−𝛿𝑡) 0.0005 Multiplicative
𝑓3 𝑏 = 𝑏0𝑒𝑥𝑝(−𝛿𝑡) 0.001 Multiplicative
𝑓4 𝑓1, 𝑓2 simultaneous Multiplicative
𝑓5 𝐶𝑖 = 𝐶𝑖,0 + 𝛿𝑡 0.001 Additive
𝑓6 𝑇𝑐 = 𝑇𝑐,0 + 𝛿𝑡 0.05 Additive
𝑓7 𝐶 = 𝐶0 + 𝛿𝑡 0.001 Additive
𝑓8 𝑇 = 𝑇0 + 𝛿𝑡 0.05 Additive
𝑓9 𝑇𝑖 = 𝑇𝑖,0 + 𝛿𝑡 0.05 Additive
𝑓10 𝑄𝑐 = 𝑄𝑐,0 + 𝛿𝑡 −0.1 Additive

Fig. 6. Schematic diagram of the CSTR process.

We generated 100 faulty datasets for each fault scenario, as detailed in Table 3, differing in the random seeds for process noise,
measurement noise, and input disturbances. Each testing set comprises 1600 samples, with faults imposed starting from the 201st
sample. We averaged performance metrics for monitoring across all trials, and the comprehensive results, including FDR, FAR, and
FDD, are presented in Table 4. It is clear that, although most methods achieve a FAR of 0, their FDD are not exceptionally early,
suggesting there is room for refining strategies to enhance incipient fault detection. Incorporating latent projection, represented as
𝐶𝑆𝑧 and 𝐶𝑆𝑒, has significantly boosted our proposed method by minimizing its detection delay. Early detection of small process
deviations, prior to serious failure of the overall process, is crucial to preventing undesired consequences. Notably, our proposed
method consistently performs well across all datasets, and even stands out compared to other methods, highlighting the efficacy
of CS divergence in differentiating faulty from normal states. One of the challenges in diagnosing incipient faults lies in detecting
tiny faults with power levels close to or even lower than the surrounding noise. To intensely evaluate the detection performance
of CS divergence in such scenarios, we conducted an assessment for 𝑓8 under different noise conditions of signals 𝑣1, 𝑣2, and 𝑣3.
Band-limited white noise was used in this assessment, and the resulting detection outcomes are graphically presented in Fig. 7. As
evident from the figure, with the reduction of noise, the FDRs of our method increase accordingly, demonstrating effective fault
detection across different noise power levels. Except for the noise level of 1e-1, where the detection rate is relatively low due to the
overwhelming noise obscuring the fault, but the overall stable detection rate convincingly illustrates the robustness of the proposed
algorithm in mitigating the adverse effects of noise. In particular, 𝐶𝑆𝑒 after PCA projection (shown in blue) exhibits the best noise
robustness, maintaining high detection accuracy even under challenging noise conditions.

Subsequently, we assess the efficacy of the proposed isolation method, the isolation results for the mentioned fault scenarios
in Table 3 were calculated and box-plotted in Fig. 8. For each fault scenario, the calculation highlights a specific variable with
a higher/wider interval or various outliers than the others; this corresponds to the actual faulty one that was set. Specifically, 𝑓4
to 𝑓10 were designed as unvariable faults due to additive settings, and the identified variables exhibited a higher/wider interval.
Conversely, 𝑓2, 𝑓3, and 𝑓4 were multiplicative faults characterized by changes in coefficients, these faults manifested as outliers
across a broader range of variables as the system evolved. Take 𝑓1 for example, 𝑄 is subjected to a sensor bias fault of 5 L∕min,
which aligns with the 201st sample. Given that the bias 5 L is notably small compared to its initial value of 330.9 L, 𝑓 qualifies
11
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Table 4
The fault detection performance (%) in the CSTR process.

No. KL SMD WD CS

𝐾𝑧 𝐾𝑒 MD𝑧 MD𝑒 𝑊𝑧 𝑊𝑒 CS𝑧 CS𝑒
𝑓1 91.50 97.69 98.05 97.93 96.07 96.02 97.64 97.31 95.17 𝟗𝟖.𝟏𝟗

𝟎 33.33 8.82 𝟎 1.63 𝟎 𝟎 𝟎 𝟎 𝟎
71 33 27 28 55 51 34 38 67 𝟐𝟔

𝑓2 69.92 78.36 76.86 75.21 75.36 71.36 76.64 69.93 69.50 𝟖𝟓.𝟕𝟏
𝟎 𝟎 8.82 23.53 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
15 25 𝟏𝟎 133 346 382 235 419 33 𝟑𝟑

𝑓3 61.35 𝟗𝟕.𝟎 94.28 87.28 96.35 69.35 89.57 85.78 70.71 93.93
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
485 𝟒𝟑 57 86 52 427 147 200 360 𝟏𝟗

𝑓4 67.85 95.43 90.07 90.21 𝟗𝟓.𝟗𝟑 73.71 87.57 81.21 76.64 90.96
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
437 65 110 137 𝟓𝟖 344 175 237 326 129

𝑓5 93.29 91.29 94.85 95.43 85.93 94.91 93.29 94.64 𝟗𝟒.𝟗𝟑 93.29
𝟎 𝟎 𝟎 0.98 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
95 106 73 65 198 72 95 76 𝟕𝟐 𝟖

𝑓6 95.93 88.36 96.29 𝟗𝟕.𝟐𝟗 89.50 97.28 89.14 96.50 96.57 89.71
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
58 107 53 𝟑𝟗 146 39 151 50 49 145

𝑓7 86.29 40.57 85.93 83.07 29.79 89.43 50.86 𝟗𝟐.𝟑𝟔 91.71 61.50
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
193 𝟏𝟔 64 153 566 124 558 𝟖𝟐 83 44

𝑓8 80.0 𝟗𝟕.𝟕𝟖 94.78 93.21 98.86 88.43 92.79 93.07 89.21 94.71
𝟎 𝟎 𝟎 𝟎 6.86 𝟎 𝟎 𝟎 𝟎 𝟎
185 𝟑𝟐 73 92 17 163 102 𝟏𝟏 147 75

𝑓9 84.43 98.5 3.64 93.64 𝟗𝟖.𝟖𝟔 89.57 93.86 92.64 89.29 95.29
𝟎 𝟎 𝟎 𝟎 𝟎 20.59 𝟎 𝟎 𝟎 𝟎
213 22 419 86 𝟏𝟕 146 87 104 148 67

𝑓10 79.29 𝟗𝟓.𝟓 90.42 93.36 95.00 87.79 94.36 93.57 88.50 94.36
𝟎 𝟎 0.98 6.86 36.27 𝟎 𝟎 𝟎 𝟎 𝟎
215 𝟔𝟒 135 93 71 165 78 91 𝟒𝟓 78

𝐴𝑣𝑒.FDR 80.99 88.05 82.52 𝟗𝟎.𝟔𝟕 86.17 85.79 86.57 89.72 86.22 𝟖𝟗.𝟕𝟕
𝐴𝑣𝑒.FAR 𝟎 3.33 2.16 3.14 4.48 2.06 𝟎 𝟎 𝟎 𝟎
𝐴𝑣𝑒.FDD 197 51 102 91 152 191 166 130 133 𝟔𝟐

In each fault scenario, 100 trials were conducted, with variations introduced through different random seeds for process noise,
measurement noise, and input disturbances. 𝑤 = 100, 𝜂 = 1%.

Fig. 7. Detection performance of the proposed CS divergence-based fault detection method for 𝑓8 along with different noise power in the CSTR process. (a) 𝑣1.
(b) 𝑣2.(c) 𝑣3. (d) 𝑣1, 𝑣2, 𝑣3. The radar coordinates represent the noise power, while the green color represents the FDRs of 𝐶𝑆, red stands for the FDRs of 𝐶𝑆𝑧,
and blue indicates the FDRs of 𝐶𝑆𝑒. The closer to the edge, the higher the FDR is. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

as an incipient fault. Fig. 9 clearly indicates that the dimensions of 𝑄,𝐶𝑖, 𝑇𝑖 are the most affected by the fault. This observation is
consistent with the dependence between 𝑄 and {𝐶𝑖, 𝑇𝑖} as detailed in Eqs. (19) and (20). The box-plot to the right validates this,
showcasing a significant number of outliers for these variables, which are predominantly of larger values, thus causing a rightward
skew in the distribution. To provide a more detailed explanation, we specifically illustrate the monitoring result based on conditional
CS divergence for 𝑓1 in Fig. 10. From Fig. 10(a), the alarm points are segmented into 8 phased stages. The dependencies largely
12

remain consistent during the time intervals [200, 303] (ascending) and [302, 524] (descending), which aligns with Fig. 10(b). In the



Journal of the Franklin Institute 361 (2024) 107114F. Lv et al.
Fig. 8. Fault isolation results for the mentioned fault scenarios in the CSTR process.

Fig. 9. Fault isolation results of 𝑓1 in the CSTR process.

Table 5
Incipient fault scenarios in the cascade-controlled CSTR process.

Fault ID Description Primary fault variables Secondary fault variables

𝑐𝑓1 Cooling water heat transfer and scaling 𝑇𝑐 , 𝐹𝑐 𝑇 , 𝐶
𝑐𝑓2 Increase in feed flow rate 𝐹𝑖 , 𝐹 𝐶, 𝐹𝑐 , 𝑇 , 𝑇𝑐

third stage, the 2-th dimension, which is the controlled object 𝑇 , has a significant impact due to shifts in its dependence structure
with 𝑄. Consequently, our method enhances the explanatory of dynamic monitoring and isolation.

Additionally, in order to test the algorithm’s compatibility with actual data even in the presence of multiplicative faults, we
further extended its application to a 4-state CSTR process dynamic simulation under 2 cascade control loops. Two multiplicative
faults, as shown in Table 5, are simulated3. Each testing set comprises 1000 samples, with faults imposed starting from the 201st
sample. Additive white noise is present in all output measurements. The isolation results, summarized in Table 6, are almost entirely
consistent with the actual situation. This demonstrates the ability of the proposed method to accurately identify fault variables
without causing false alarms or omissions. Specifically, we present the isolation and identification results for 𝑐𝑓2. 𝑐𝑓2 denotes an
increase in feed flow 𝐹𝑖, due to the liquid level control loop, concurrently induces an increase in discharge flow 𝐹 . This, in turn,
leads to an increase in outlet concentration 𝐶 and a rise in reaction heat, ultimately resulting in an increase of the cooling water flow
rate 𝐹𝑐 . Indeed, while the changes in 𝐹𝑖 and 𝐹 are significant, the variations in 𝐶 and 𝐹𝑐 are slowly and slightly above their normal
values. Fig. 11 displays the monitoring results of 𝑐𝑓2 based on conditional CS divergence, 𝐹𝑖 and 𝐹 exhibit significant increases

3 We use the Simulink model accessible at https://www.mathworks.com/matlabcentral/fileexchange/65091-cascade-controlled-cstr-for-fault-simulation.
13
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Fig. 10. The monitoring results based on change point detection of 𝑓1 in the CSTR process. (a) Conditional CS based change point detection of 𝑓1. (b) Distributions
for each state split by change points.

Table 6
The fault isolation results in the cascade-controlled CSTR process.
𝑐𝑓1 𝑠1 𝑠2 𝑠3 𝑠4

𝑇𝑐 , 𝐹𝑐 𝑇𝑐 , 𝐹𝑐 𝑇𝑐 , 𝐹𝑐 𝑇𝑐 , 𝐹𝑐
𝑇𝑐𝑖 , 𝑇 𝑇 , 𝐶 𝐶, 𝑇 𝐶, 𝑇

𝑐𝑓2 𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6
𝐹𝑖 , 𝐹 𝐹𝑖 , 𝐹 𝐹𝑖 , 𝐹 𝐹𝑖 , 𝐹 𝐹𝑖 , 𝐹 𝐹𝑖 , 𝐹
𝐶, 𝐹𝑐 , 𝑇𝑖 𝐶, 𝐹𝑐 , 𝐶𝑖 𝐶, 𝐹𝑐 , 𝑇 𝐹𝑐 , 𝑇𝑐 , 𝐶 𝐶, 𝐹𝑐 , 𝐶𝑖 𝐹𝑐 , 𝐶, 𝑇𝑐𝑖

Under each fault, the first line represents the primary fault variables, the second line indicates
the secondary fault variables.

across all stages, highlighting their status as the primary fault variables. Meanwhile, Fig. 12 presents the variations of each variable
in relation to their respective thresholds, which are calculated using the comparison algorithm, SPE contribution and IG methods4.
In the SPE contribution method, the contributions of nearly all variables surpassed their thresholds, except 𝑇𝑖. Likewise, almost all
variables, excluding 𝐶𝑖 and 𝑇𝑖, exceeded their thresholds in the IG method. Both the SPE contribution and IG methods are suffering
from smearing effect, the smearing out of fault variables’ residuals over other non-fault process variables in the latent space [23].
Such issue may be particularly detrimental in the field of chemical engineering, where the operations are often characterized by
highly interconnected equipment and numerous control-loops.

Our conditional CS divergence approach effectively isolates 𝐱𝑙 from the overall distribution during the identification process.
Through our experiments conducted on two distinct CSTR systems, we have demonstrated its robust performance across the given
fault scenarios. By utilizing 𝐱𝑙|𝑋−𝑙 instead of 𝐱𝑙|𝑋, we are able to mitigate the influence of fault variables on other variables, ensuring
accurate isolation (see Table 7).

4.3. Application to CSTH process

In this part, we investigate a benchmark of a closed-loop continuous stirred-tank heater (CSTH) process [47]. The CSTH process
represents a typical chemical mixing vessel and is equipped with three sensors, tank level L, steam valve 𝐹 and outflow temperature
𝑇 , refer to the schematic diagram in Fig. 13. As depicted by dashed lines in Fig. 13, two closed loops with three PI controllers are

4 Note that, since traditional fault isolation methods can be employed in conjunction with DNNs for fault isolation, we use long short-term memory-autoencoder
(LSTM-AE) as the baseline network model for comparison algorithms owing to its demonstrated effectiveness in detecting faults, as evidenced in previous
studies [44–46]. The hidden dimension of the LSTM-AE used in our experiment is 32 and the bottleneck of latent dimension is 16. Interested readers are referred
to our previous work [44] for more details.
14
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Fig. 11. The monitoring results of 𝑐𝑓2 in the cascade-controlled CSTR process. (a) Conditional CS divergence based change point detection. (b) Distributions for
each state split by change points. Variables 𝐹𝑖 , 𝐹 were correctly identified as primary fault variables.

Fig. 12. The monitoring results of 𝑐𝑓2 by SPE contribution and IG methods in the cascade-controlled CSTR process. Variables 𝐹𝑖 , 𝐹 , 𝐶, 𝐹𝑐 , 𝑇 , 𝑇𝑐 were correctly
identified, while others are falsely recognized due to the smearing effect.

employed to regulate L and 𝑇 . The system monitors five variables, namely 𝐱 = [𝐶𝐿, 𝐶𝐹 , 𝐿, 𝑇 , 𝐹 ]𝑇 , where 𝐶𝐿 is the cold water flow
and 𝐶𝐹 is the cold water valve. It is worth mentioning that all the measurements are electrical signals within the range of 4-20 mA5.

5 The simulation code can be accessed at http://www.ps.ic.ac.uk/~nina/CSTHSimulation/index.htm.
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Fig. 13. Schematic diagram of the CSTH process.

Table 7
Incipient fault scenarios in the CSTH process.

No. Description Type

𝑓1 Hot water temperature Slow increase, 50◦C to 70◦C
𝑓2 Cold water valve Sticking

Fig. 14. The variables of CSTH (a) Normal, (b)𝑓1, (c) 𝑓2.

Two scenarios of faults are investigated here, denoted as 𝑓1 and 𝑓2, as Table 7. 𝑓1 stands for a slow increase in the hot water
temperature, gradually rising from 50 ◦C to 70 ◦C over a period of 300 s. This gradual increase in temperature leads to a corresponding
rise in the outlet temperature 𝑇 , while the control loop causes the steam valve 𝐹 to decrease slowly. 𝑓2 represents a momentary
sticking of the cold water valve, resulting in faulty changes in the level L and the cold water flow 𝐶𝐿. Both testing sets consist of
2000 samples, with the faults imposed starting from sample 601. Fig. 14 shows the variation of each variable over time under normal
state and two fault conditions, each variable only fluctuates steadily in a small range around its own stationary state under normal
conditions, as shown in Fig. 14(a).

We conducted an analysis on the effects of the window size 𝑤, considering the potential violation of the local stationary or
smoothness assumption with a large window size and the unreliable distribution estimation with a small window size due to limited
16
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Fig. 15. Detection results related to different window size 𝑤 in the CSTH process. (a) FAR (%) of 𝑓1 and 𝑓2. (b) FDR (%) of 𝑓1 and 𝑓2.

Table 8
The fault detection results (%) in the CSTH process.

No. KL SMD WD VAE OSAVA CS

𝐾𝑧 𝐾𝑒 𝑀𝐷𝑧 𝑀𝐷𝑒 𝑊𝑧 𝑊𝑒 𝐶𝑆𝑧 𝐶𝑆𝑒
𝑓1 FDR 94.86 77.86 97.21 97.43 96.79 97.21 78.0 92.43 94.31 96.93 𝟗𝟕.𝟕𝟗 80.50

FAR 0 0 8.85 20.9 3.01 9.98 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
FDD 57 165 38 34 44 38 165 68 51 41 𝟑𝟎 157

𝑓2 FDR 95.21 6.29 98.50 99.43 10.64 98.36 2.0 94.24 97.22 97.79 𝟗𝟕.𝟗𝟑 9.0
FAR 0 0 8.85 20.9 3.01 9.98 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
FDD 66 108 17 7 130 22 124 52 25 30 𝟐𝟖 102

𝑤 = 70, 𝜂 = 5%.

samples. Fig. 15 presents the detection results by varying 𝑤 from 50 to 150 in steps of ten. Note that the FARs of 𝑓1 and 𝑓2 are same
because the first 600 normal samples in both testing sets are identical, with unique noise and disturbances. According to Fig. 15(b),
as the window length increases, the FDRs of KL, WD and CS show a decreasing trend in the principal space while maintaining
comparable performance in the residual space. On the other hand, their FARs gradually decrease towards 0 with the increase of
𝑤. To strike a good trade-off between FDR and FAR, 𝑤 = 70 is optimal for CS and SMD-based detection, meanwhile 𝑤 = 50 and
𝑤 = 100 are more suitable for KL-based, WD-based detection, respectively.

Table 8 provides a comparison of the detection performances. All methods displayed good performance, except SMD, which had
higher FARs. In terms of FDR, CS divergence achieved consistent performance with KL, SMD and WD, with FDRs of 96.93% for 𝑓1 and
97.79% for 𝑓2. Additionally, PCA-CS, which integrates the CS divergence-based detection with PCA projections, achieved optimal
detection performance, with the highest FDRs and the lowest FARs. The PCA projection also effectively reduced the detection delay,
enabling the detection of 𝑓1 in just 30 s and 𝑓2 in 28 s. It is worth highlighting that the CS-based detection method outperformed
the deep learning-based methods, such as the variational autoencoder (VAE) [48] and orthogonal self-attentive VAE [44]. This
could be attributed to the fact that only 5 variables were used in this benchmark, which may be insufficient to fully demonstrate
the superior representation ability of deep networks. Deep learning-based process monitoring methods generally perform well in
high-dimensional data with multimodal variables.

In Fig. 16, we present the isolation results. From Fig. 16(a), 𝑇 and 𝐹 are related to fault 𝑓1. The affected variable 𝐹 exhibits
almost identical trends to the root cause variable 𝑇 . Variables gradually return to a steady state after fault occurred, indicating
the creation of a new operating status. In Fig. 16(b), L is isolated as a faulty variable affected by 𝑓2. Although 𝑓2 is caused by the
sticking of 𝐶𝐹 , 𝐶𝐹 itself was not identified as faulty because its valve position and flow remained within the normal range. Overall,
our proposed method provides a clear isolation of the faulty variables in the CSTH process, making the results interpretable.

The monitoring results for 𝑓1 and 𝑓2 are depicted in Figs. 17 and 18, respectively. For instance, a large number of outliers
appear in both 𝑇 and 𝐹 during the 1-th stage, while deviations and drift become evident in the 2-th stage in Fig. 17. Table 9
presents the corresponding isolation results. The first row indicates the variable most affected by the current state; the second row
17
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Fig. 16. Fault isolation results of 𝑓1 and 𝑓2 in the CSTH process. (a) Fault isolation results of 𝑓1. (b) Fault isolation results of 𝑓2.

Fig. 17. The monitoring results based on change point detection of 𝑓1 in the CSTH process. (a) Conditional CS divergence based change point detection of 𝑓1.
(b) Distributions for each state split by change points.

lists the secondary identified variables, and so forth. Table 9 offers valuable guidance for regulation. By integrating this with process

knowledge, one can effectively adjust the pertinent variables.
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Fig. 18. The monitoring results based on change point detection of 𝑓2 in the CSTH process. (a) Conditional CS divergence based change point detection of 𝑓2.
(b) Distributions for each state split by change points.

Table 9
The dynamic variable isolation results for CSTH process.
𝑓1 𝑠1 𝑠2 𝑠3 𝑠4 𝑠5

𝐹 𝐹 𝑇 𝑇 𝑇
𝑇 𝑇 𝐹 𝐶𝐹 𝐶𝐹
𝐶𝐹 𝐶𝐹 𝐶𝐹 𝐶𝐿 𝐶𝐿

𝑓2 𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 𝑠7 𝑠8 𝑠9 𝑠10 𝑠11
𝐶𝐹 𝐿 𝐿 𝐿 𝐿 𝐿 𝐿 𝐹 𝐹 𝐹 𝐹
𝐶𝐿 𝐶𝐹 𝐹 𝐹 𝐶𝐿 𝐶𝐿 𝐹 𝐿 𝑇 𝑇 𝐿
𝑇 𝐹 𝑇 𝑇 𝑇 𝐹 𝑇 𝑇 𝐿 𝐿 𝑇

The first three variables identified as the principal components to the current state; Their importance decrease by row.

4.4. Application to an actual petrochemical production

In this section, we evaluate the proposed method using real-world data from a continuous catalytic reforming (CCR) process in a
petrochemical enterprise in China. The CCR process involves the regeneration of catalysts. We focus on analyzing the top temperature
of one reaction tower as an example. This temperature is influenced by various factors, including the feed amount, liquid level, and
feed amount of its adjacent reaction tower, as well as the liquid level and return flow of its corresponding storage tank, among others.
Please refer to Fig. 19 for a visual representation of these relationships. Due to the intricate physical or topological connections
involving multiple monitoring variables, we used our previously proposed causality-gated time series Transformer (CGTST) model6
select 7 most relevant variables for subsequent modeling.

6 CGTST evaluates the causal strength of each variable’s contribution to the prediction through its causal gating mechanism, making it well-suited for causal
discovery within industrial big data. For a more comprehensive understanding, interested readers are encouraged to refer to our previous work [49].
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Fig. 19. Schematic diagram of a reaction tower in actual CCR process.

Fig. 20. The variables of the CCR process.

Fig. 21. Detection and isolation results for the CCR process. (a) The detection static for CCR process. (b) The conditional CS divergence for fault isolation.
20
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Fig. 22. The monitoring results based on change point detection for the CCR process. (a) Conditional CS divergence based change point detection. (b) Distributions
for each stage split by change points.

Fig. 20 displays the process measurements of a certain period in February 2022. Within the approximate range of [675, 1515],
the damage to a speed governor safety barrier in the recycle hydrogen compressor caused these variables to exhibit abnormal
behavior after the 1515 time point, exceeding the distributed control system (DCS) control limits and triggering an alarm. Using
the methodology presented in this paper, the detection results are shown in Fig. 21(a), faults are concentrated in the intervals
of [716, 2220] and [3088, 3638]. These intervals are longer than the actual DCS alarm interval of [1515, 2220] due to the reliance
of the DCS on univariate alarms according to its thresholds, which may not be sufficient to detect potential changes or evolving
patterns that could indicate the onset of abnormalities or performance degradation. Variables in the intervals of [716, 1516] and
[3088, 3638] may exhibit abnormal trends without triggering their DCS alarm thresholds. Indeed, the interval [716, 1516] represents
the fault-tolerant range for the damage to the speed governor safety barrier, and the fault within the interval [3088, 3638] is caused
by the addition of an extra process pipeline in the aromatics process. Here, the FDD, 41 mins, is acceptable compared to the sliding
window length of 30 mins. The isolation results in Fig. 21(b) show that variables 𝑥1 and 𝑥3 have higher brightness in the interval
of [716, 2220], indicating their association with the fault. This aligns with the actual operation situation.

The monitoring results are presented in Fig. 22(a), with changes alarmed at time points [713, 1161, 1462, 1783, 2212, 3295,
3623, 3955, 4287, 4726, 5446]. The retrospective interval 𝑤𝑐 is chosen as 120 mins, falling within the actual reliability range.
Notably, the alarm delay of 38 mins here is shorter than the previously mentioned FDD (41 mins), highlighting the necessity and
effectiveness of change point monitoring. In Fig. 22(b), a significant number of outliers are observed in the 1-th stage, but no obvious
changes in their mean values, forming an upward abrupt step change; the mean values of 𝑥1, 𝑥2, 𝑥3, 𝑥4 increased in the 2-th stage,
indicating the importance of further monitoring or regulation of these variables, yielding improved physical interpretation. This
enhanced online process monitoring strategy facilitates informed decision-making at each stage of the process, enabling operators
to make timely and accurate adjustments that ultimately lead to better process control and optimization. It is important to note that
the feasibility validation of our algorithm was carried out in the raw observation space, without performing any data preprocessing
or assumption fitting. This underscores its capability to handle uncertainties inherent in real-world industrial process data.
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5. Conclusions

Given that divergence-based detection illustrates the dissimilarity between the monitored process and its reference normal state,
e have introduced an innovative fault detection and isolation scheme grounded in a probabilistic perspective, offering enhanced

ensitivity. It leverages monitoring statistics to jointly detect the occurrence of incipient faults using Cauchy–Schwarz divergence
nd isolate the specific compromised or faulty sensors through conditional Cauchy–Schwarz divergence. Our monitoring statistics,
n the basis of Cauchy–Schwarz divergence, boast the advantage as they do not rely on any prior parametric assumptions about
he underlying data distribution or historical fault data. Experiments conducted on both synthetic datasets and benchmark datasets
rom the continuous stirred-tank reactor and heater processes have demonstrated the compelling performance of our method. We
lso developed a change point detection-based fault diagnosis approach that utilizes conditional Cauchy–Schwarz divergence. It
llows operators to adjust sensors during different phases, demarcated by alarm points, to preemptively address potential faults.
he approach was validated on a real-world dataset from the continuous catalytic reforming process, confirming its applicability
nd effectiveness.

Our work offers a holistic solution for fault detection and isolation, it exhibits a higher detection rate, a lower false alarm rate, and
arlier fault detection. Importantly, the conditional probabilistic analysis provides explanatory insights of which sensors are affected
y fault propagation, making it a valuable monitoring tool for industrial engineering. With this established groundwork, researchers
an further concentrate and expand their explorations into multivariate fault isolation, fault estimation, as well as traceability within
ault diagnosis. We look forward to providing more valuable insights and practical solutions for enhancing the reliability and safety
f industrial processes.
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