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1. Introduction

Consideration is given to the following Dirac-Klein-Gordon equations, one-dimensional 
in the space variable, containing homogeneous multiplicative noise of the Stratonovich 
type, {

(−i∂t − iα∂x + Mβ)ψ = φβψ + βψξ1,(
∂2
t − ∂2

x + m2)φ = ψ∗βψ + φξ2,
(1.1)

with initial data

ψ(0, x, ω) = ψ0(x, ω), φ(0, x, ω) = φ0(x, ω), ∂tφ(0, x, ω) = φ1(x, ω). (1.2)

The unknowns are random processes ψ(t, x, ω) ∈ C2 and φ(t, x, ω) ∈ R, for t ≥ 0, x ∈ R

and ω in a probability space (Ω, F , P ). Here m, M � 0 are constants and the 2 ×2 Dirac 
matrices α, β satisfy α = α∗, β = β∗, α2 = β2 = I and αβ + βα = 0. For simplicity we 
choose the particular representation
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α =
(

1 0
0 −1

)
, β =

(
0 1
1 0

)
.

Let W be the cylindrical Wiener process defined by a complete orthonormal sequence 
{ek}k∈N in L2(R, R) and a sequence {Bk}k∈N of independent real-valued Brownian 
motions on (Ω, F , {Ft}t≥0, P ), where Ft is an associated filtration of F . We assume that 
the noise is of the form

ξj = dWj

dt
, Wj = KjW (j = 1, 2),

where the Kj are convolution operators

Kjf(x) =
∫
R

kj(x− y)f(y)dy (1.3)

with real-valued kernels kj ∈ Hσj (R). Here σj ≥ 0 will be chosen depending on the 
Sobolev regularity of the initial data.

Interpreting the stochastic integrals in the Stratonovich sense, we can then write (1.1)
as ⎧⎪⎪⎨⎪⎪⎩

dψ = (−α∂x − iMβ)ψ dt + iφβψ dt + iβψK1 ◦ dW,

dφ = φ̇ dt,

dφ̇ = (∂2
x −m2)φdt + ψ∗βψ dt + φK2 ◦ dW,

(1.4)

where φ̇ = ∂φ/∂t and ψK1, φK2 are understood as compositions of the convolution 
operators K1, K2 with the multiplication operators given by ψ, φ. Thus

(ψK1)f(x) = ψ(x)
∫
R

k1(x− y)f(y)dy

and similarly for φK2. Depending on the regularity of the initial data, the Sobolev regular-
ity σj of the kernel kj will be chosen so that the above compositions are Hilbert-Schmidt 
operators from L2(R, R) into suitable Sobolev spaces.

By introducing noise in the Stratonovich sense we respect two of the key physical 
properties of the original deterministic Dirac-Klein-Gordon system: the principle of least 
action and the conservation of the charge, 

∫
|ψ(t, x)|2 dx.

From an analysis perspective it is more convenient to work with the Itô stochastic 
integral. The Itô form of the above system is⎧⎪⎪⎨⎪⎪⎩

dψ = (−α∂x − iMβ)ψ dt + iφβψ dt−MK1ψ dt + iβψK1 dW,

dφ = φ̇ dt,

dφ̇ = (∂2 −m2)φdt + ψ∗βψ dt + φK dW,

(1.5)
x 2
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where MK1 = (1/2) ‖k1‖2
L2 . To see this, write (1.4) in the abstract form

dX = AXdt + N (X)dt + M(X) ◦ dW,

where

X =

⎛⎝ψ
φ
φ̇

⎞⎠ , A =
(−α∂x − iMβ 0 0

0 0 1
0 ∂2

x −m2 0

)
, M(X) =

(
iβψK1

0
φK2

)
.

Then, at least formally, the corresponding Itô form is (see e.g. [19])

dX = AXdt +
(
N (X) + 1

2
∑
k

Mk (Mk(X))
)

dt + M(X)dW,

where Mk(X) = M(X)ek and we calculate

Mk (Mk(X)) =
((iK1ekβ)2ψ

0
0

)
=
(−(K1ek)2ψ

0
0

)

and note that for all x ∈ R,∑
k

(K1ek(x))2 =
∑
k

〈 k1(x− ·), ek 〉2L2 = ‖k1‖2
L2

by Parseval’s identity. Formally, this verifies the conversion from (1.4) to (1.5).
Our aim is to prove existence and uniqueness for (1.5) with initial data (ψ, φ, φ̇)(0) =

(ψ0, φ0, φ1) in the spaces

ψ0 ∈ L2 (Ω, Hs
(
R,C2)) , φ0 ∈ L2 (Ω, Hr(R,R)) , φ1 ∈ L2 (Ω, Hr−1(R,R)

)
,

(1.6)
for a certain range of Sobolev indices s, r ∈ R. In particular, using the charge conservation 
we will prove global existence when s = 0 and 1/4 < r < 1/2, under the additional 
assumption that ψ0 ∈ Lp

(
Ω, L2(R)

)
for a sufficiently large p ≥ 4, depending on r.

Assuming for the moment that m > 0, then by a rescaling we may take m = 1. 
Applying the linear transformation (ψ, φ, φ̇) �→ (ψ+, ψ−, φ+, φ−) given by

ψ =
(
ψ+
ψ−

)
, φ = φ+ + φ−, φ± = 1

2

(
φ± 〈Dx 〉−1

iφ̇
)
,

where Dx = −i∂x and 〈 · 〉 =
(
1 + |·|2

)1/2
, the Cauchy problem (1.5), (1.6) then trans-

forms to
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

− idψ+ + Dxψ+ dt = −Mψ− dt + φψ− dt + ψ−K1 dW + iMK1ψ+ dt,

− idψ− −Dxψ− dt = −Mψ+ dt + φψ+ dt + ψ+K1 dW + iMK1ψ− dt,

− idφ+ + 〈Dx 〉φ+dt = + 〈Dx 〉−1 Re
(
ψ+ψ−

)
dt + 1

2 〈Dx 〉−1
φK2 dW,

− idφ− − 〈Dx 〉φ−dt = −〈Dx 〉−1 Re
(
ψ+ψ−

)
dt− 1

2 〈Dx 〉−1
φK2 dW,

(1.7)

with

ψ±(0) = f± ∈ L2 (Ω, Hs(R,C)) , φ±(0) = g± ∈ L2 (Ω, Hr(R,C)) , g+ = g−.

(1.8)
Here 〈Dx 〉−1

φK2 is understood as a composition of operators. We remark that φ+ = φ−. 
Thus φ = φ+ + φ+ and it suffices to solve for ψ+, ψ− and φ+.

The deterministic Dirac-Klein-Gordon system has been extensively studied in space 
dimensions d ≤ 3. For d = 1, the first global existence result was obtained in [9], for 
ψ0 ∈ H1(R). This was improved to the charge class, that is, ψ0 ∈ L2(R), in [6], by 
using space-time estimates of null form type. Both these results rely on the conservation 
of charge, of course. The complete null structure of the system, in dimensions d ≤ 3, 
was determined in [11], and this opened the way for improvements in the low-regularity 
local well-posedness theory by using Bourgain’s Fourier restriction norm spaces, see 
[11,29,30,25,26] and the references therein. Global existence in space dimension d = 2
was proved in [20], and for d = 3 in [3,8] for small data. Global existence below the 
charge in space dimension d = 1 has been proved in [7].

The optimal low-regularity result for the deterministic case in space dimension d = 1
was obtained in [26]; it states that the problem is locally well posed for s > −1/2 and 
|s| ≤ r ≤ s + 1, and that this range is optimal since some form of ill-posedness holds 
outside it. In the present work we are primarily interested in getting a global result 
for s = 0 in the presence of noise, and not so much in reaching the lowest possible 
regularity. Therefore, we restrict attention to the range s > −1/4, which corresponds to 
the results in [30,25,29] for the deterministic case. In those papers, the local existence 
proof is based on contraction in Bourgain spaces Xs,b, and that is also the approach 
we follow. However, the presence of noise introduces some further technical issues that 
have to be dealt with, including the fact that one has to work with b < 1/2 (instead of 
b > 1/2 in the deterministic case), and that one has to introduce cutoffs to deal with 
the lack of uniform bounds with respect to the probabilistic variable ω. In order to deal 
with these issues and obtain local well-posedness of the stochastic extension (1.1), we 
adopt techniques developed in [15] and based on analysis in Bourgain spaces. To prove 
global existence we take advantage of the charge conservation, ‖ψ(t)‖L2 = const., and 
that is why we need a Stratonovich noise, similar to one regarded in [14] with a nonlinear 
Schrödinger equation. We work in Bourgain spaces of low time regularity (b < 1/2) and 
so we need to extend product estimates proved in [29,30]. Once these have been obtained, 
the local existence and uniqueness for (1.7) follows from an abstract framework for well-
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posedness of nonlinear dispersive PDE systems with homogeneous multiplicative noise, 
presented in Section 6.

As mentioned, we are motivated by ideas that were introduced in [14] and [15] to 
analyse the nonlinear Schrödinger equation (NLS) and the Korteweg-de Vries equation 
with multiplicative noise. They employ the truncation argument, and so do we. Another 
approach worth mentioning is the rescaling method developed in [1,2] for stochastic 
NLS, which was also used in study of scattering [23]. With this approach, the stochastic 
NLS is transformed to an equation with random coefficients. This allows for pointwise 
estimations with respect to probability space, which in turn helps to avoid the use of 
cutoff estimates and provides a more general result on L2 theory of stochastic NLS 
compared to [14]. This approach relies on a generalisation of Strichartz estimates for a 
perturbed Schrödinger operator [27].

In the classical field theory one can determine the equations of motion by the principle 
of least action. As we restrict ourselves to the one dimensional space, the action is 
an integral functional S =

∫
Ldtdx, where the Lagrangian density, depending on the 

field and time, is defined by the physical system under consideration. The deterministic 
analogue of Equations (1.1) is related to a particular choice of the density L(ψ, φ, t), as 
explained in [5,32]. We recall very briefly the corresponding physical background and 
show how the noise can be naturally introduced here. In particle physics, the Yukawa 
interaction [32] explains how forces between nucleons are mediated by massive particles 
called mesons. Mathematically, this is described by the action integral S(ψ, φ) defined 
by the Lagrangian density

L(ψ, φ) = LDirac(ψ) + Lmeson(φ) + LYukawa(ψ, φ).

Here ψ is a spinor field (the fermion field) and φ is a real scalar field (the meson field) 
whose free-field dynamics are determined by the Lagrangians

LDirac(ψ) = ψ∗ (i∂t + iα∂x −Mβ)ψ, Lmeson(φ) = 1
2(∂tφ)2 − 1

2(∂xφ)2 − 1
2m

2φ2,

corresponding to the free Dirac and Klein-Gordon equations. Here m, M ≥ 0 are masses 
and ψ∗ denotes the complex conjugate transpose of ψ. The interaction is determined by 
the Yukawa coupling term

LYukawa(ψ, φ) = φψ∗βψ.

The corresponding system of Euler-Lagrange equations is the deterministic Dirac-Klein-
Gordon system. We introduce the noise by adding

Lnoise(ψ, φ, x, t) = Lnoise
Dirac(ψ, x, t) + Lnoise

meson(φ, x, t) = ψ∗βψξ1 + 1
φ2ξ2.
2
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One can think about Lnoise
Dirac as stochastic fluctuations of the initial Dirac potential 

Mψ∗βψ. Similarly, Lnoise
meson represents a noisy extension of the potential m2φ2/2 in the 

Klein-Gordon model. Thus using the new Lagrangian density

L(ψ, φ, x, t) = LDirac(ψ) + Lmeson(φ) + LYukawa(ψ, φ) + Lnoise(ψ, φ, x, t)

one arrives at a stochastic variational principle leading to the system (1.1). Note that 
the Stratonovich calculus obeys normal differentiation rules, and so the derivation of the 
Euler-Lagrange equations works out as in the deterministic case.

The paper is devoted to an analysis of existence and uniqueness of a mild solution to 
the Cauchy problem for (1.7) complemented with the initial data (1.8). It is organised 
as follows. In the next section we introduce some preliminary notions that will be used 
throughout the paper. Section 3 provides the mild formulation of the Cauchy problem and 
the statement of the main existence theorems. Section 4 is devoted to an analysis of the 
stochastic integrals we are dealing with. Then in Section 5 we prove bilinear estimates 
necessary for treating nonlinear terms. In Section 6 we prove the local existence and 
uniqueness in an abstract setting. As a result we obtain a local mild solution to (1.7), 
(1.8). Section 7 is devoted to the proof of charge conservation. Finally, in Section 8 we 
prove existence of a global solution. Proofs of some very technical results are left for the 
last three sections, where we prove in general terms the so-called cutoff estimates. The 
idea of making use of a Slobodeckij norm for this comes from [15]. However, it turns out 
that the treatment should be more delicate than the argument given in [15].

2. Preliminaries

First, we fix some general notational conventions.
As usual, the symbol C will denote various positive constants, and its meaning can 

change from one instance to the next.
The characteristic function of a set E will be denoted 1E . If E is determined by some 

property P , say E = {x : P (x)}, we will often use the convenient notation 1P (x) for 
1E(x). If E is a subset of a set X, and f is a function defined on E, then by a slight 
abuse of notation we shall denote by 1Ef the extension of f by zero outside E. We call 
this the trivial extension (of f).

We will adhere to the following convention regarding restrictions of σ-algebras. Sup-
pose that M is a σ-algebra and that E ∈ M. Let M|E be the σ-algebra on E consisting 
of all sets A ∩ E, where A ∈ M. Then if f : E → H is M|E-measurable, we will sim-
ply say that it is M-measurable. This is of course equivalent to saying that the trivial 
extension is M-measurable.

We use the notation a ∧ b = min(a, b) for real numbers a and b.



8 E. Dinvay, S. Selberg / Journal of Functional Analysis 287 (2024) 110565
2.1. Random variables

We fix a filtered probability space (Ω, F , {Ft}t≥0, P ) admitting an independent se-
quence {Bk}k∈N of one-dimensional Brownian motions. We write E(X) =

∫
Ω X(ω) dP (ω)

for X ∈ L1(Ω).
A stochastic process X(t), defined on a time interval I = [S, T ] or I = [S, ∞), where 

S ≥ 0, and taking values in a separable Hilbert space H, is said to be H-adapted (or just 
adapted if it is clear from the context which Hilbert space is meant) if X(t) is (Ft, BH)-
measurable for all t ∈ I. In other words, 〈 X(t), h 〉H is Ft-measurable for all h ∈ H. 
Here BH denotes the Borel σ-algebra of H.

A process Y (t) is a modification of X(t) if for each t ∈ I we have X(t) = Y (t) a.s. 
We assume that F0 contains all sets in F with measure zero, so that any modification 
of an adapted process is itself adapted. Moreover, the filtration is supposed to be right-
continuous, i.e. 

⋂
s>t Fs = Ft for any t ≥ 0.

The process X(t) is progressively measurable if for each t ∈ I the map (s, ω) �→
X(s, ω), from [S, t] ×Ω into H, is 

(
B[S,t] ⊗Ft,BH

)
-measurable. Progressive measurability 

implies adaptedness (see [16, Proposition 2.34]), and the converse holds if the process 
has continuous paths (see [24, Proposition 1.13] or Lemma 2 below).

If Z is some Banach space of functions from [S, T ] into H, we define

L2(Ω, Z) =
{
u ∈ L2(Ω, Z) : u is progressively measurable

}
. (2.1)

2.2. Stopping times

A stopping time is a random variable τ : Ω → [0, ∞] such that for all t ≥ 0, the set 
{τ ≤ t} = {ω ∈ Ω: τ(ω) ≤ t} is Ft-measurable. Then also {τ < t}, {τ > t} and {τ ≥ t}
have this property, of course. Note that any constant τ ≥ 0 is a stopping time.

In the next three lemmas we establish some facts about stopping times. We only 
consider strictly positive stopping times.

Lemma 1. Let τ : Ω → (0, ∞] be a stopping time. Then the set

E = {(s, ω) ∈ [0,∞) × Ω: 0 ≤ s < τ(ω)}

belongs to the product σ-algebra B[0,∞) ⊗F . For any T > 0, the set

ET = E ∩ ([0, T ] × Ω)

belongs to B[0,T ] ⊗FT .

Proof. Let An be the set of numbers iT/2n, i = 0, . . . , 2n. Then ET =
⋃

n∈N
⋃

t∈An
[0, t] ×

{t < τ}, and of course E =
⋃

N∈N EN . �
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As a consequence of this lemma, if u is a random variable defined on E (so it is defined 
up to the time τ), then it makes sense to ask whether u is B[0,∞) ⊗F-measurable. That 
is, whether the trivial extension of u has this property. Similarly, one can ask whether 
u restricted to Et is B[0,t] ⊗ Ft-measurable for all t ≥ 0, which amounts to progressive 
measurability of the trivial extension. The next lemma gives sufficient conditions for this 
to hold.

Lemma 2. Let τ : Ω → (0, ∞] be a stopping time, and let E and Et, for t ≥ 0, be as 
in Lemma 1. Let u : E → H, where H is a separable Hilbert space. Assume that u has 
continuous paths, in the sense that

t �→ u(t, ω) is continuous on [0, τ(ω)), for each ω, (2.2)

and assume that u is adapted, in the sense that, for each t ≥ 0 such that {t < τ} is 
non-empty, we have

ω �→ u(t, ω), defined for ω ∈ {t < τ}, is Ft-measurable. (2.3)

Then u|Et
is B[0,t] ⊗Ft-measurable for all t ≥ 0. In other words, the trivial extension of 

u is progressively measurable.

Proof. Let U = 1Eu be the trivial extension of u to [0, ∞) × Ω. Then (2.3) says that 
U(t) is adapted for every t ≥ 0. Now fix t ≥ 0. For n ∈ N let ti = it/2n for i = 0, . . . , 2n, 
and define

Un(s, ω) = U(0, ω)1{0}(s) +
2n∑
i=1

U(ti, ω)1(ti−1,ti](s) (0 ≤ s ≤ t, ω ∈ Ω).

Then Un is B[0,t] ⊗ Ft-measurable by the adaptedness of U , and (2.2) implies that Un

converges pointwise to U in Et (and therefore in [0, t] × Ω). �
Lemma 3. Let τ : Ω → (0, ∞] be a stopping time. Suppose that f(t, ω) ≥ 0 is defined for 
ω ∈ Ω and 0 ≤ t < τ(ω), and that for each ω,

t �→ f(t, ω) is continuous on [0, τ(ω)), and f(0, ω) = 0, (2.4)

and moreover that, for each t ≥ 0 such that {t < τ} is non-empty,

ω �→ f(t, ω), defined for ω ∈ {t < τ}, is Ft-measurable. (2.5)

For R > 0 define τR : Ω → (0, ∞] by

τR(ω) = sup {t ∈ [0, τ(ω)) : f(s, ω) < R for 0 ≤ s ≤ t} .
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Then τR is a stopping time. Moreover, for each ω,

lim
R→∞

τR(ω) = τ(ω), (2.6)

0 ≤ t ≤ τR(ω) and t < τ(ω) =⇒ f(t, ω) ≤ R (2.7)

and

τR(ω) < τ(ω) =⇒ f(τR(ω), ω) = R. (2.8)

Proof. Let t ≥ 0. Note that, since τR ≤ τ ,

{τR > t} = {τR > t} ∩ {τ > t} .

Using (2.4), and the compactness of the interval [0, t], we write

{τR > t} ∩ {τ > t} =
∞⋃

n=1

⋂
s∈Q∩[0,t)

({
f(s, ·) < R− 1

n

}
∩ {τ > t}

)
,

which is evidently Ft-measurable. Indeed, for any ω belonging to the set on the right 
hand side there exists n ∈ N such that for any s ∈ Q ∩ [0, t) we have f(s, ω) < R− 1/n. 
Since t < τ(ω), the continuity now implies f(s, ω) � R − 1/n for any s ∈ [0, t], hence 
f(s, ω) < R for s in some larger interval [0, t + δ]. This implies τR(ω) > t and ω belongs 
to the set on the left hand side. Conversely, if ω belongs to the set on the left hand side, 
then f(s, ω) < R for any s ∈ [0, t]. Hence there exists n ∈ N such that f(s, ω) < R−1/n
for any s ∈ [0, t], and in particular, for any s ∈ Q ∩ [0, t). Therefore ω belongs to the set 
on the right hand side as well.

If 0 < a < τ(ω), then taking R > sup0≤s≤a f(s, ω) gives τR(ω) ≥ a, proving (2.6). 
Finally, the properties (2.7) and (2.8) are immediate from the definition of τR, and this 
concludes the proof of the lemma. �
2.3. Stochastic integrals

In this section, let K and H be separable Hilbert spaces, with orthonormal bases {ek}
and {fj}, respectively.

We denote by L(K, H) the space of bounded linear operators from K into H, with 
the operator norm, and by L2(K, H) the class of Hilbert-Schmidt operators

L2(K,H) = {T ∈ L(K,H) : tr(T ∗T ) < ∞} ,

which is a separable Hilbert space with the norm and inner product

‖T‖L2(K,H) = tr(T ∗T )1/2 =
(∑

‖Tek‖2
H

)1/2

, 〈S, T 〉L2(K,H) = tr(T ∗S).

k
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One can think of Hilbert-Schmidt operators as infinite-dimensional matrices. Indeed, 
defining

Tjk = 〈Tek, fj 〉H ,

then T �→ {Tjk} is an isometry from L2(K, H) onto l2(N ×N).
For later use we note the fact that if S ∈ L(H, H ′), where H ′ is a Hilbert space, and 

T ∈ L2(K, H) then the composition ST belongs to L2(K, H ′) and

‖ST‖L2(K,H′) ≤ ‖S‖L(H,H′) ‖T‖L2(K,H) . (2.9)

Consider now the cylindrical Wiener process

W (t) =
∞∑
k=1

Bk(t)ek,

where the sum is formal. Given T > 0, the H-valued Itô integral of an adapted process

F ∈ L2 ([0, T ] × Ω,L2(K,H))

is a natural generalisation of the n-dimensional Itô integral. It can be defined by

T∫
0

F (t) dW (t) = lim
n→∞

n∑
j,k=1

⎛⎝ T∫
0

Fjk(t) dBk(t)

⎞⎠ fj ,

where the integrals on the right hand side are ordinary Itô integrals and Fjk =
〈 Fek, fj 〉H are the matrix entries of F . The sum converges in L2(Ω; H) and the Itô 
isometry holds:

E

⎛⎜⎝
∥∥∥∥∥∥

T∫
0

F (t) dW (t)

∥∥∥∥∥∥
2

H

⎞⎟⎠ = E

⎛⎝ T∫
0

‖F (t)‖2
L2(K,H) dt

⎞⎠ . (2.10)

Moreover, the H-valued random variable I(t, ω) =
∫ t

0 F (s, ω) dW (s, ω) is adapted and we 
can assume that it has continuous paths, since it has a modification with this property. 
Further, I is a martingale, so by Doob’s maximal inequality (see, e.g., [17]),

E

⎛⎜⎝ sup
0≤t≤T

∥∥∥∥∥∥
t∫

0

F (s) dW (s)

∥∥∥∥∥∥
2 ⎞⎟⎠ ≤ 4E

⎛⎜⎝
∥∥∥∥∥∥

T∫
0

F (s) dW (s)

∥∥∥∥∥∥
2 ⎞⎟⎠ . (2.11)
H H
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2.4. Function spaces

Let d ∈ N. First, Hs
(
Rd
)

denotes the usual Sobolev space with norm

‖f‖Hs(Rd) =

⎛⎝∫
Rd

〈 ξ 〉2s
∣∣f̂(ξ)

∣∣2 dξ
⎞⎠1/2

, (2.12)

where 〈 ξ 〉 =
(
1 + |ξ|2

)1/2
and the Fourier transform is defined by

f̂(ξ) = Ff(ξ) =
∫
Rd

e−ixξf(x) dx
(
ξ ∈ Rd

)
.

Then the inverse transform is given by F−1g(x) = (2π)−d
∫
Rd e

ixξg(ξ) dξ, the Plancherel 
identity reads ‖Ff‖L2(Rd) = (2π)d/2 ‖f‖L2(Rd), and we have f̂g = (2π)−df̂ ∗ ĝ and 
̂f ∗ g = f̂ ĝ for f, g ∈ L2 (Rd

)
.

We recall the Sobolev product law (see Theorem 2.2 in [13])

‖fg‖H−s1 (Rd) ≤ C ‖f‖Hs2 (Rd) ‖g‖Hs3 (Rd) , (2.13)

which holds for all Schwartz functions f and g on Rd if and only if s1, s2, s3 ∈ R satisfy

s1 + s2 + s3 ≥ d

2 and min
i
=j

(si + sj) ≥ 0, which are not both equalities. (2.14)

For d = 1 and 0 < b < 1 we will make use of the norm equivalence (see [28, Lemma 
3.15])

‖f‖Hb(R) ∼
(
‖f‖2

L2(R) + ‖f‖2
Sb(R)

)1/2
. (2.15)

Here ‖f‖Sb(Ω) denotes the Slobodeckij seminorm on an open set Ω ⊂ R,

‖f‖2
Sb(Ω) =

∫
Ω

∫
Ω

|f(t) − f(r)|2

|t− r|1+2b dr dt.

On any finite time interval I = (S, T ) there is a similar norm equivalence (see [21, 
Theorem 4.1])

‖f‖Hb(I) ∼I

(
‖f‖2

L2(I) + ‖f‖2
Sb(I)

)1/2
, (2.16)
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but with the caveat that the constants depend on the interval. The norm on the left hand 
side is the restriction norm, defined as the infimum of ‖g‖Hb(R) taken over g ∈ Hb(R)
with g = f on I.

Second, given a function h ∈ C
(
Rd,R

)
, we denote by Xs,b

h(ξ)
(
R×Rd

)
the Bourgain 

space with norm

‖u‖Xs,b
h(ξ)

=

⎛⎝∫
Rd

∫
R

〈 ξ 〉2s 〈 τ + h(ξ) 〉2b |û(τ, ξ)|2 dτ dξ

⎞⎠1/2

, (2.17)

where û = F(t,x)u is the space-time Fourier transform. The restriction to a time-slab 
(S, T ) ×Rd is denoted Xs,b

h(ξ)(S, T ), and is equipped with the norm

‖u‖Xs,b
h(ξ)(S,T ) = inf

{
‖v‖Xs,b

h(ξ)
: u(t) = v(t) for t ∈ (S, T )

}
. (2.18)

The symbol τ + h(ξ) in (2.17) is associated to the linear PDE −i∂tu + h(Dx)u = 0
with the group

Sh(ξ)(t) = e−ith(Dx),

whose action on f(x) is given by Fx

{
Sh(ξ)(t)f

}
(ξ) = e−ith(ξ)f̂(ξ). Here we recall that 

Dx = −i∂x, so that D̂xf(ξ) = ξf̂(ξ). Note that we can also write (2.17) as

‖u‖2
Xs,b

h(ξ)
=
∫
〈ξ〉2s

∥∥∥eith(ξ)Fxu(t, ξ)
∥∥∥2
Hb

t (R)
dξ. (2.19)

We now mention some well-known properties of Bourgain norms; we refer to [18] and 
[31] for more details. First, we note the obvious conjugation property

‖u‖Xs,b
h(ξ)(S,T ) = ‖u‖Xs,b

−h(−ξ)(S,T ) (2.20)

valid also on the whole line R, of course. By L2 duality and Plancherel’s theorem it is 
clear that

‖u‖Xs,b
h(ξ)

= (2π)d+1 sup
‖v‖

X
−s,−b
h(ξ)

=1

∣∣∣∣∣∣
∫
Rd

∫
R

u(t, x)v(t, x) dt dx

∣∣∣∣∣∣ (2.21)

and

(2π)d+1

∣∣∣∣∣∣
∫ ∫

u(t, x)v(t, x) dt dx

∣∣∣∣∣∣ ≤ ‖u‖Xs,b
h(ξ)

‖v‖X−s,−b
h(ξ)

. (2.22)

Rd R
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Now let θ(t) be any smooth, compactly supported function. From (2.19) it is clear that

∥∥θ(t)Sh(ξ)(t)f
∥∥
Xs,b

h(ξ)
= ‖θ‖Hb(R) ‖f‖Hs(Rd) for b ∈ R. (2.23)

Moreover, for b > 1/2,

∥∥∥∥∥∥θ(t)
t∫

0

Sh(ξ)(t− t′)F (t′) dt′
∥∥∥∥∥∥
Xs,b

h(ξ)

� Cb

(
‖θ‖Hb(R) + ‖tθ(t)‖Hb

t (R)

)
‖F‖Xs,b−1

h(ξ)
(2.24)

which by (2.19) reduces to the inequality

∥∥∥∥∥∥θ(t)
t∫

0

f(t′) dt′
∥∥∥∥∥∥
Hb

t (R)

� Cb

(
‖θ‖Hb(R) + ‖tθ(t)‖Hb

t (R)

)
‖f‖Hb−1(R) for b >

1
2 . (2.25)

The latter can be proved by using Fourier inversion on f as follows, cf. [18]. Assuming 
f ∈ S(R) and using Plancherel’s theorem we can rewrite the integral of f as

t∫
0

f(t′) dt′ = 1
2π

∫
R

f̂(τ)F
(
1(0,t)

)
(τ) dτ = 1

2πi

∫
R

f̂(τ) 1
τ

(
eitτ − 1

)
dτ.

Note that the right hand side here is well defined for any f ∈ Hb−1(R) with b > 1/2, as 
we shall see below. It serves as a definition for the left hand side. We need to calculate 
the L2-norm of

J(λ) = 〈λ〉bFt

⎛⎝θ(t)
t∫

0

f(t′) dt′
⎞⎠ (λ) = 1

2πi

∫
R

f̂(τ) 〈λ〉
b

τ

(
θ̂(λ− τ) − θ̂(λ)

)
dτ.

At first we split this integral into integrals over |τ | < 1 and |τ | � 1. On the second 
domain we can just bound |τ | � 〈τ〉/2 and then return to the integration over the whole 
line R. On the first domain we use the fundamental theorem of calculus for the difference 
in brackets

1
τ

(
θ̂(λ− τ) − θ̂(λ)

)
= i

1∫
0

Ft(tθ(t))(λ− μτ) dμ.

Hence
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|J(λ)| � 1
2π

1∫
0

1∫
−1

∣∣∣f̂(τ)
∣∣∣ 〈λ〉b |Ft(tθ(t))(λ− μτ)| dτdμ

+ 1
π

∫
R

∣∣∣f̂(τ)
∣∣∣ 〈λ〉b〈τ〉

(∣∣∣θ̂(λ− τ)
∣∣∣+ ∣∣∣θ̂(λ)

∣∣∣) dτ.

In the first integral we can bound 〈λ 〉b � 〈λ− μτ 〉b+1 � 〈λ− μτ 〉b, so up to a constant 
its L2-norm gives rise to the term

‖tθ(t)‖Hb
t

1∫
−1

∣∣∣f̂(τ)
∣∣∣ dτ � ‖tθ(t)‖Hb

t

1∫
−1

∣∣∣f̂(τ)
∣∣∣ 〈 τ 〉b−1

dτ � ‖tθ(t)‖Hb
t
‖f‖Hb−1

by Minkowski’s integral inequality. Now noticing 〈λ 〉b � 〈λ− τ 〉b + 〈 τ 〉b the second 
integral can be split, up to a constant, into the following three integrals∫

R

∣∣∣f̂(τ)
∣∣∣ 〈λ〉b〈τ〉

∣∣∣θ̂(λ)
∣∣∣ dτ +

∫
R

∣∣∣f̂(τ)
∣∣∣ 〈λ− τ〉b

〈τ〉

∣∣∣θ̂(λ− τ)
∣∣∣ dτ

+
∫
R

∣∣∣f̂(τ)
∣∣∣ 〈τ〉b−1

∣∣∣θ̂(λ− τ)
∣∣∣ dτ = J1 + J2 + J3.

Here J3 is a convolution, hence

‖J3‖L2 �
∥∥∥θ̂∥∥∥

L1

∥∥∥f̂(τ)〈τ〉b−1
∥∥∥
L2

�
∥∥〈τ〉−b

∥∥
L2

τ
‖θ‖Hb ‖f‖Hb−1 ,

where the L1-norm was estimated by Hölder. Similarly,

‖J1‖L2 + ‖J2‖L2 � 2
∥∥∥θ̂(λ) 〈λ 〉b

∥∥∥
L2

∥∥∥f̂(τ)〈τ〉−1
∥∥∥
L1

� 2
∥∥〈τ〉−b

∥∥
L2

τ
‖θ‖Hb ‖f‖Hb−1

that finishes the proof of (2.25).
From (2.23) and (2.24), one immediately obtains the corresponding restriction norm 

inequalities on any time interval (0, T ), by choosing a bump function θ such that θ(t) = 1
for |t| ≤ 1. If T ∈ (0, 1], we apply (2.23) and (2.24) with θ(t), while if T > 1 we apply 
them with θ(t/T ) instead of θ(t), and use the fact that ‖θ(t/T )‖Hb

t
�

√
T ‖θ‖Hmax(b,0)

and ‖tθ(t/T )‖Hb
t
� T 3/2 ‖tθ(t)‖

H
max(b,0)
t

for T > 1. This gives∥∥Sh(ξ)(t)f
∥∥
Xs,b

h(ξ)(0,T ) ≤ Cb

(
1 +

√
T
)
‖f‖Hs(Rd) for b ∈ R and T > 0 (2.26)

and ∥∥∥∥∥∥
t∫

0

Sh(ξ)(t− t′)F (t′) dt′
∥∥∥∥∥∥
Xs,b

h(ξ)(0,T )

≤ Cb

(
1 + T 3/2

)
‖F‖Xs,b−1

h(ξ) (0,T )

for b >
1 and T > 0,

(2.27)
2
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where Cb depends on b but not on T .
Further, one has (see Lemma 2.11 in [31])

‖u‖Xs,b
h(ξ)(0,T ) ≤ Cb,b′T

b′−b ‖u‖
Xs,b′

h(ξ)(0,T ) for −1
2 < b < b′ <

1
2 and 0 < T ≤ 1 (2.28)

and

b >
1
2 =⇒ Xs,b

h(ξ)(0, T ) ↪→ C ([0, T ], Hs) with

sup
0≤t≤T

‖u(t)‖Hs(Rd) ≤ Cb ‖u‖Xs,b
h(ξ)(0,T ) ,

(2.29)

where the last inequality follows by applying the Sobolev embedding Hb(R) ↪→
L∞(R), for b > 1/2, to the function t �→ eith(ξ)û(t, ξ) staying in ‖u(t)‖2

Hs(Rd) =∫
〈 ξ 〉2s

∣∣eith(ξ)û(t, ξ)
∣∣2 dξ, and recalling first (2.19), then (2.18).

We will also need the trivial fact that

b ≥ 0 =⇒ Xs,b
h(ξ)(0, T ) ↪→ L2 ([0, T ], Hs) with ‖u‖L2([0,T ],Hs) ≤ ‖u‖Xs,b

h(ξ)(0,T ) .

(2.30)
In particular, this implies that the space L2

(
Ω, Xs,b

h(ξ)

)
is well-defined when b ≥ 0, as in 

(2.1).
Finally, we recall that for −1/2 < b < 1/2 the restriction norm on Hb(S, T ) is equiv-

alent to the Hb(R)-norm of the trivial extension. More precisely, for all φ ∈ Hb(R) we 
have

‖φ‖Hb(S,T ) �
∥∥1(S,T )φ

∥∥
Hb(R) � Cb ‖φ‖Hb(S,T ) for −1

2 < b <
1
2 , (2.31)

where we emphasise that Cb is independent of (S, T ). Similarly, for all u ∈ Xs,b
h(ξ)(R ×Rd),

‖u‖Xs,b
h(ξ)(S,T ) �

∥∥1(S,T )u
∥∥
Xs,b

h(ξ)
� Cb ‖u‖Xs,b

h(ξ)(S,T ) for −1
2 < b <

1
2 . (2.32)

Here 1(S,T )(t) is the characteristic function of the interval (S, T ). Note that the left 
inequalities in (2.31) and (2.32) hold trivially by the definition the restriction norm; for 
a proof of the right inequalities, by an argument relying on the Slobodeckij seminorm, 
see Lemma 4 in [7] (alternatively one can use the Fourier transform, applying the ideas 
used to prove Lemma 3.2 in [10]).

Combining (2.31) and (2.32) with (2.19), we get the restriction norm equivalence

‖u‖Xs,b
h(ξ)(S,T ) ∼

(∫
〈ξ〉2s

∥∥∥eith(ξ)Fxu(t, ξ)
∥∥∥2
Hb

t (S,T )
dξ

)1/2

for −1
2 < b <

1
2 , (2.33)

with constants depending on b but not on (S, T ). With an additional effort one can get 
a stronger result.
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Lemma 4 (Bourgain isometry). For any s, b ∈ R, interval (S, T ) and h ∈ C
(
Rd,R

)
we 

have the following

‖u‖Xs,b
h(ξ)(S,T ) =

(∫
〈ξ〉2s

∥∥∥eith(ξ)Fxu(t, ξ)
∥∥∥2
Hb

t (S,T )
dξ

)1/2

. (2.34)

We find the proof of this lemma instructive and not completely straightforward, so we 
put it in a separate section 9. Moreover, we could not find it presented anywhere else. 
As a matter of fact, even the weaker result (2.33) would serve all our needs below. So 
Lemma 4 together with its proof given in Section 9 can be regarded as a complementary 
material.

Another immediate consequence of (2.32) is that functions on adjacent time intervals 
can be glued together.

Lemma 5. Let −1/2 < b < 1/2. Then there exists a constant Cb such that if u ∈
Xs,b

h(ξ)(t0, t1) and v ∈ Xs,b
h(ξ)(t1, t2), where t0 < t1 < t2, then the glued function

[u, v](t) =
{
u(t) t0 < t < t1

v(t) t1 < t < t2

belongs to Xs,b
h(ξ)(t0, t2) and

‖[u, v]‖Xs,b
h(ξ)(t0,t2)

≤ Cb

(
‖u‖Xs,b

h(ξ)(t0,t1)
+ ‖v‖Xs,b

h(ξ)(t1,t2)

)
.

Proof. This follows from (2.32) and the triangle inequality since 1(t0,t2) = 1(t0,t1)+1(t1,t2)
a.e. �
2.5. Cutoffs and a modified Bourgain norm

As usual with a multiplicative noise, we have to truncate the nonlinearity in order 
to prove existence by iteration. In the corresponding cutoffs we will use, for technical 
reasons, not the restriction norm (2.18) but an equivalent norm, defined by

‖u‖2
X̃s,b

h(ξ)(S,T ) =
∫
Rd

⎛⎝ 1
(T − S)2b

T∫
S

|U(t, ξ)|2 dt +
T∫

S

T∫
S

|U(t, ξ) − U(r, ξ)|2
|t− r|1+2b dr dt

⎞⎠ dξ,

(2.35)
where U(t, ξ) = 〈ξ〉seith(ξ)Fxu(t, ξ). It is thoroughly studied below in Sections 10 and 11. 
Here it is crucial that the norm equivalence is uniform with respect to the time interval 
to which we restrict. To be precise, for any T0 > 0 and b ∈ (0, 1/2) there exists a constant 
CT0,b such that (see Lemma 21)
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C−1
T0,b

‖u‖Xs,b
h(ξ)(S,T ) ≤ ‖u‖

X̃s,b
h(ξ)(S,T ) ≤ CT0,b ‖u‖Xs,b

h(ξ)(S,T ) (2.36)

for all u ∈ Xs,b
h(ξ)(S, T ) with 0 < S < T ≤ T0.

The idea of exploiting the Slobodeckij seminorm, the double integral over (S, T ) in 
(2.35), comes from [15]. However, we point out that the factor 1/(T − S)2b in front 
of the L2-norm turns out to be important to claim the uniform equivalence (2.36); 
see Remark 6 in Section 11 for a further discussion of this. Moreover, the necessity of 
this factor becomes clear when one calculates these norms on a concrete element, say 
u(t) = Sh(ξ)(t)f , where f ∈ Hs

(
Rd
)
. In fact, by (2.34) it follows immediately that∥∥Sh(ξ)(t)f

∥∥
Xs,b

h(ξ)(0,T ) = ‖1‖Hb(0,T ) ‖f‖Hs

for all T > 0 and b ∈ R, and it is easy to see that

‖1‖Hb(0,T ) ∼ T 1/2−b for 0 � b <
1
2 and 0 < T � 1. (2.37)

Indeed, recalling (2.31), we can calculate the equivalent norm

∥∥1(0,T )
∥∥2
Hb =

∫
R

∣∣∣∣∣∣
T∫

0

e−itτdt

∣∣∣∣∣∣
2

〈 τ 〉2b dτ = T

∫
R

∣∣∣∣2τ sin τ

2

∣∣∣∣2 〈 τ

T

〉2b
dτ,

which is comparable to T 2 + T 1−2b ∼ T 1−2b (for 0 < T ≤ 1 and 0 ≤ b < 1/2) as one can 
see by splitting the last integration into |τ | ≤ T and |τ | > T . On the other hand, it is 
easily seen from (2.35), with U(t, ξ) = 〈ξ〉sf̂(ξ), that∥∥Sh(ξ)(t)f

∥∥
X̃s,b

h(ξ)(0,T ) = T 1/2−b ‖f‖Hs .

For the modified restriction norm (2.35) we have the following key estimates, proved 
in Section 11.

Proposition 1. Let T0 > 0 and b ∈ (0, 1/2). Let θ : R → R be a smooth, compactly 
supported function and set θR(x) = θ(x/R) for R > 0. Let n ∈ N, and for 1 ≤ i ≤ n

let si ∈ R, hi ∈ C(Rd, R) and ui, vi ∈ Xsi,b
hi(ξ)(0, T0). Then for T ∈ (0, T0], R > 0 and 

1 ≤ j ≤ n we have the estimates∥∥∥∥∥θR
(

n∑
i=1

‖ui‖2
X̃

si,b

hi(ξ)
(0,t)

)
uj(t)

∥∥∥∥∥
X

sj,b

hj(ξ)(0,T )

� C
√
R,

∥∥∥∥∥θR
(

n∑
i=1

‖ui‖2
X̃

si,b

hi(ξ)
(0,t)

)
uj(t) − θR

(
n∑

i=1
‖vi‖2

X̃
si,b

hi(ξ)
(0,t)

)
vj(t)

∥∥∥∥∥
X

sj,b

hj(ξ)(0,T )

� C

n∑
‖ui − vi‖Xsi,b

hi(ξ)
(0,T ) ,
i=1
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where C depends only on b, T0 and θ.

The modified norm (2.35) can be formulated also for functions φ(t) depending only on 
the time variable t, and this gives cutoff estimates for functions in Hb(0, T ), 0 < b < 1/2. 
See Section 11.6.

3. Main results

We consider the mild form of (1.7), which reads

ψ±(t) = S±ξ(t)f± − iM

t∫
0

S±ξ(t− σ)ψ∓(σ) dσ + i

t∫
0

S±ξ(t− σ)(φψ∓)(σ) dσ

+ i

t∫
0

S±ξ(t− σ)ψ∓(σ)K1 dW (σ) −MK1

t∫
0

S±ξ(t− σ)ψ±(σ) dσ (3.1)

and

φ+(t) = S+〈 ξ 〉(t)g+ + i

t∫
0

S+〈 ξ 〉(t− σ) 〈Dx 〉−1 Re
(
ψ+ψ−

)
(σ) dσ

+ i

2

t∫
0

S+〈 ξ 〉(t− σ) 〈Dx 〉−1
φ(σ)K2 dW (σ), (3.2)

where φ = φ+ + φ+ = 2 Reφ+. We will look for solutions

ψ± ∈ Xs,b
±ξ(0, T ), φ+ ∈ Xr,b

+〈 ξ 〉(0, T ), (3.3)

where b < 1/2 is taken sufficiently close to 1/2, depending on s and r. Note that by the 
conjugation property (2.20) we have

φ+ ∈ Xr,b
−〈 ξ 〉(0, T ). (3.4)

It will be convenient to define

H(s,s,r) = Hs(R,C) ×Hs(R,C) ×Hr(R,C) (3.5)

and

X(s,s,r),b(0, T ) = Xs,b
+ξ (0, T ) ×Xs,b

−ξ(0, T ) ×Xr,b (0, T ), (3.6)
+〈 ξ 〉
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with the product norms.
We now state our main results.

Theorem 1 (Local existence). Assume that s, r ∈ R satisfy

s > −1
4 , |s| ≤ r ≤ s + 1, 0 < r < 1 + 2s.

Assume further that the kernels kj, defining the convolution operators Kj, have the reg-
ularity

k1 ∈ H |s|(R,R), k2 ∈ Hmax(0,r−1)(R,R).

Then for any b < 1/2 sufficiently close to 1/2, the following holds. Assume that

(f+, f−, g+) ∈ L2(Ω,H(s,s,r)) is F0-measurable.

Then there exists a stopping time τ : Ω → (0, ∞] and a random process

(ψ+, ψ−, φ+)(t) ∈ H(s,s,r) for 0 ≤ t < τ

such that for 0 < t < τ , (3.1) and (3.2) hold,

(ψ+, ψ−, φ+)(t) : {t < τ} → H(s,s,r) is Ft-measurable

and

(ψ+, ψ−, φ+) ∈ C
(
[0, t],H(s,s,r)

)
∩ X(s,s,r),b(0, t).

Moreover, the solution is maximal in the sense that

τ < ∞ =⇒ lim sup
t↗τ

‖(ψ+, ψ−, φ+)‖X(s,s,r),b(0,t) = ∞,

and it is unique in the sense that if (Ψ+, Ψ−, Φ+) is a solution with the same initial data, 
and satisfying the same assumptions but with a stopping time τ ′, then almost surely

(ψ+, ψ−, φ+)(t) = (Ψ+,Ψ−,Φ+)(t) for 0 ≤ t < min(τ, τ ′).

Further, if s ≥ 0, then the charge is almost surely conserved:∫
R

(
|ψ+(t, x)|2 + |ψ−(t, x)|2

)
dx =

∫
R

|ψ0(x)|2 dx for 0 ≤ t < τ,

where ψ0 = (f+, f−).
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This theorem is a consequence of the abstract well-posedness theory presented in 
Section 6. The existence follows from Theorem 3 and the uniqueness from Theorem 4. 
The necessary assumptions stated in Section 6 are verified here on account of the bounds 
stated in Lemmas 6, 7, 8 and 9 below; see Section 6.10 for the details. The charge 
conservation is proved in Section 7.

Using the charge conservation, we will then deduce the following global result.

Theorem 2 (Global existence). Let s = 0 and 1/4 < r < 1/2. Let max(r, 1 − 2r) < b <
1/2. Given initial data as in Theorem 1, we impose the additional condition f+, f− ∈
Lp
(
Ω, L2), where

p ≥ max
(

4, 2b + 2r − 1
b + 2r − 1

)
Then the solution in Theorem 1 extends globally in time. That is, τ = ∞.

The proof is given in Section 8.
Although the local result will, as mentioned, be deduced from the abstract framework 

expounded in some detail in Section 6, we find it worthwhile to present here a broad 
outline of the key ideas behind the proof.

Existence for a short time interval (0, T ) will be proved by iteration in

L2
(
Ω,X(s,s,r),b(0, T )

)
∩ L2

(
Ω, C([0, T ],H(s,s,r))

)
, (3.7)

and the first thing to notice is that we cannot expect the stochastic integrals to be in 
this space unless b is strictly less than 1/2, the reason being that the paths of any one-
dimensional Brownian motion belong to Hb(0, T ) if and only if b < 1/2, as shown in 
[4].

For b < 1/2 the stochastic integrals can indeed be controlled in (3.7), provided that 
we know that the linear operators

f �→ M1(f) = fK1 and g �→ M2(g) = 〈Dx 〉−1
gK2 (3.8)

map Hs(R) and Hr(R), respectively, into Hilbert-Schmidt operators from L2(R, R) into 
Hs(R) and Hr(R), respectively. Thus, we need the following.

Lemma 6. Let s, r be as in Theorem 1. Assume that k1 ∈ H |s|(R, R) and k2 ∈
Hmax(0,r−1)(R, R). Then there exists a constant C such that the linear operators M1
and M2 defined by (3.8) satisfy

‖M1(f)‖L2(L2,Hs) ≤ C ‖f‖Hs and ‖M2(g)‖L2(L2,Hr) ≤ C ‖g‖Hr

for all f ∈ Hs(R) and g ∈ Hr(R).
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The proof of this lemma is given in Section 4, and in Section 6 we show how it is 
applied to control the stochastic integrals.

Now let us turn our attention to the deterministic terms in (3.1) and (3.2). Here there 
is a difference from the purely deterministic case, where one works with b > 1/2, see 
e.g. [29]. Since now we are forced to take b < 1/2, the required bilinear estimates are 
a bit tighter. We will prove the following bilinear bounds, extending those obtained in 
[29,30] to the case where b is less than, but close to, 1/2.

Lemma 7. Assume that s, r ∈ R satisfy

s > −1
4 , |s| ≤ r ≤ s + 1, 0 < r < 1 + 2s.

Then for any b < 1/2 sufficiently close to 1/2, there exists a constant C such that

‖φψ‖Xs,−b
+ξ

≤ C ‖φ‖Xr,b
±〈 ξ 〉

‖ψ‖Xs,b
−ξ

, (3.9)

‖φψ‖Xs,−b
−ξ

≤ C ‖φ‖Xr,b
±〈 ξ 〉

‖ψ‖Xs,b
+ξ

, (3.10)∥∥ψψ′∥∥
Xr−1,−b

±〈 ξ 〉
≤ C ‖ψ‖Xs,b

+ξ
‖ψ′‖Xs,b

−ξ
, (3.11)

for all Schwartz functions ψ, ψ′ and φ on Rt ×Rx. In particular, in the case s = 0 and 
1/4 < r < 1/2, relevant for Theorem 2, the above estimates hold for all b > 1/4.

This lemma is proved in Section 5. The method of proof does not differ significantly 
from that used in [29,30] for the case b > 1/2. Also, we remark that studying bilinear 
space-time estimates in Bourgain norms with b < 1/2 is nothing new. For example, 
general product estimates for wave-type spaces were studied in [12,13].

With b as in the last lemma, and choosing 0 < ε < 1/2 − b, set

B = −b + 1 − ε.

Then B > 1/2, so we can apply (2.27) and (2.28) to control the deterministic in-
tegrals in X(s,s,r),B(0, T ). And then, crucially, by (2.29) they are also controlled in 
C
(
[0, T ];H(s,s,r)) (and of course also in X(s,s,r),b(0, T ), since b < B). For example,∥∥∥∥∥∥
t∫

0

S+ξ(t− σ)(φ+ψ−)(σ) dσ

∥∥∥∥∥∥
Xs,B

+ξ (0,T )

≤ C ‖φ+ψ−‖Xs,B−1
+ξ (0,T ) by (2.27)

≤ CT ε ‖φ+ψ−‖Xs,−b
+ξ (0,T ) by (2.28)

≤ CT ε ‖φ+‖Xr,b
+〈 ξ 〉(0,T ) ‖ψ−‖Xs,b

−ξ (0,T ) by Lemma 7,

and similarly for the other bilinear terms, and also for the linear ones, for which we use 
the following.
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Lemma 8. Let s ∈ R and b ≥ 0. Then

‖u‖Xs,−b
h(ξ)

≤
√

2π ‖u‖L2(Rt,Hs) ≤ ‖u‖Xs,b
g(ξ)

for all Schwartz functions u on Rt ×Rx and any choice of g, h ∈ C(R, R).

Proof. This is obvious from the definitions (2.17) and (2.12), and Plancherel’s theo-
rem. �

The bounds are pointwise in ω, and for the iteration in the space (3.7) one must now 
take the L2(Ω) norm of them. So for example, one needs to control

E
(
‖φ+‖2

Xr,b
+〈 ξ 〉(0,T ) ‖ψ− − Ψ−‖2

Xs,b
−ξ (0,T )

)
,

where ψ− and Ψ− represent different iterates. The only reasonable way to estimate this, 
seems to be (

sup
ω

‖φ+‖2
Xr,b

+〈 ξ 〉(0,T )

)
E
(
‖ψ− − Ψ−‖2

Xs,b
−ξ (0,T )

)
,

so one needs to control the norms of the iterates uniformly in ω. Here, a further difference 
from the deterministic case becomes apparent, since there one usually chooses R > 0 and 
considers initial data whose norm is at most R. Then for T > 0 small enough depending 
on R, the Bourgain norms in the iteration are all bounded by R times some constant. 
This will not work in the stochastic case, since a bound in the space (3.7) does not imply 
a pointwise bound in ω. Instead, as is usual in stochastic problems with multiplicative 
noise, one must truncate the equations. Following the approach in [15], for a given R > 0
we consider a truncated version of (3.1), (3.2) where in the deterministic integrals, each 
unknown is multiplied by the cutoff

Θ(t) = θR

(
‖ψ+‖2

X̃s,b
+ξ (0,t) + ‖ψ−‖2

X̃s,b
−ξ (0,t) + ‖φ+‖2

X̃r,b
+〈 ξ 〉(0,t)

)
, (3.12)

where θ : R → R is any smooth, compactly supported cutoff function with θ(t) = 1 for 
t ∈ [0, 1], and we define θR(x) = θ(x/R). So for example, the integral term

t∫
0

S+ξ(t− σ)(φ+ψ−)(σ) dσ,

considered above, is replaced by

t∫
S+ξ(t− σ) (Θφ+Θψ−) (σ) dσ
0
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and similarly for the other bilinear terms. For technical reasons, inside the cutoffs we 
do not use the Bourgain restriction norm as defined in (2.17), (2.18), but rather the 
equivalent norm (2.36), discussed in detail in Section 10.

With the truncation, and making use of Proposition 1, the bilinear terms can be 
controlled in the space (3.7), and by iteration one can prove existence up to a small time 
T > 0 depending only on R. Repeating this argument one obtains existence on a time 
interval of any size. Letting R tend to ∞, this implies the existence of a maximal solution 
of the original, non-truncated problem. The uniqueness requires a separate argument. 
The details are shown in Section 6 in an abstract framework. As mentioned, the necessary 
assumptions in Section 6 are verified on account of the bounds in Lemmas 6, 7 and 8, as 
well as Lemma 9 below. The details are discussed in Section 6.10.

The following estimates show that the deterministic integrals make sense as Bochner 
integrals if the regularity is sufficiently high, and that this fails if s ≤ 0.

Lemma 9. Assume that

s > 0, s ≤ r ≤ s + 1, 1
2 < r <

1
2 + 2s.

Then there exists a constant C such that

‖fg‖Hs ≤ C ‖f‖Hr ‖g‖Hs and ‖fg‖Hr−1 ≤ C ‖f‖Hs ‖g‖Hs

for all Schwartz functions f and g on R. Moreover, if s ≤ 0, the above estimates cannot 
both hold, for any r ∈ R and C > 0.

Proof. This follows from the Sobolev product law (2.13), (2.14). �
Remark 1. The case m = 0 in (1.1) does not bring anything new to our analysis. Indeed, 
if m = 0 then we can add φ to both sides of the second line in (1.1), which gives rise to 
Equation (3.2) with an additional linear term

i

2

t∫
0

S+〈 ξ 〉(t− s) 〈Dx 〉−1
φ(s)ds

on the right hand side. It can be treated by Lemma 8 and (2.24)–(2.29).

4. Bounds for Hilbert-Schmidt operators

Our main aim in this section is to prove Lemma 6.
To this end, we require the following lemma. It corresponds to Lemma 2.6 in [15], but 

we remove an additional assumption made there, namely that the convolution kernel k
is in L1 ∩ L2.
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Lemma 10. Let k ∈ L2 (Rd,R
)
, v ∈ L2 (Rd,C

)
and let K be the convolution operator 

defined by

Kf(x) =
∫
Rd

k(x− y)f(y)dy. (4.1)

Then for any orthonormal basis {ej}j∈N of L2 (Rd,R
)

we have

∞∑
j=1

|F (vKej) (ξ)|2 = 1
(2π)d

∫
Rd

∣∣∣v̂(ξ − η)̂k(η)
∣∣∣2 dη < ∞

for a.e. ξ ∈ Rd.

Proof. Set fj(x) = ej(−x). Then {fj} is also an orthonormal basis of L2(Rd), and 

f̂j(ξ) = êj(ξ), by the assumption that ej is real valued.
Since ∫

Rd

∫
Rd

∣∣∣v̂(ξ − η)̂k(η)
∣∣∣2 dξ dη = ‖v̂ ‖2

L2 ‖̂k‖2
L2 = (2π)2d ‖v‖2

L2 ‖k‖2
L2

it follows that

‖Fξ‖2
L2 = 1

(2π)d

∫
Rd

∣∣∣v̂(ξ − η)̂k(η)
∣∣∣2 dη < ∞ for a.e. ξ ∈ Rd,

where Fξ(x) = F−1
{
η �→ v̂(ξ − η)̂k(η)

}
. Applying Parseval’s identity we have, for a.e. ξ,

‖Fξ‖2
L2 =

∞∑
j=1

|〈Fξ, fj 〉L2 |2 =
∞∑
j=1

∣∣∣∣ 1
(2π)d

〈
F̂ξ, f̂j

〉
L2

∣∣∣∣2

=
∞∑
j=1

∣∣∣∣ 1
(2π)d

∫
v̂(ξ − η)̂k(η)êj(η) dη

∣∣∣∣2 < ∞.

To finish the proof we only have to notice that vKej belongs to L2 (the operator K maps 
L2 into L∞, by Hölder’s inequality) and has Fourier transform

F(vKej)(ξ) = 1
(2π)d

∫
v̂(ξ − η)̂k ∗ ej(η) dη = 1

(2π)d

∫
v̂(ξ − η)̂k(η)êj(η) dη.

We claim that this equality holds in L2(Rd), hence for a.e. ξ. To prove the claim, ap-
proximate the L2 functions v, k and ej by Schwartz functions, for which the equality 
clearly holds, and then pass to the limit using the fact that (2π)−d/2F is an isometry on 
L2, and the bound
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∥∥∥∥∫ v̂(ξ − η)̂k(η)êj(η) dη
∥∥∥∥
L2

ξ

≤ ‖v̂‖L2

∫ ∣∣∣̂k(η)êj(η)∣∣∣ dη ≤ ‖v̂‖L2 ‖̂k‖L2 ‖êj‖L2 ,

where we applied Minkowski’s integral inequality and Hölder’s inequality. �
Remark 2. Integrating both sides of the equality in Lemma 10, one recovers the well-
known fact that vK is a Hilbert-Schmidt operator on L2(R), and ‖vK‖L2(L2,L2) =
‖v‖L2 ‖k‖L2 .

Corollary 1. Let s ∈ R. Assume that k ∈ H |s| (Rd,R
)
. Then the convolution operator K

defined by (4.1) satisfies

‖vK‖L2(L2,Hs) ≤ C ‖v‖Hs ‖k‖H|s| for all v ∈ S
(
Rd
)
,

where the constant depends only on s. Thus the map v �→ vK extends to a bounded linear 
map from Hs

(
Rd
)

into L2
(
L2 (Rd

)
, Hs

(
Rd
))

.

Proof. Integrating both sides of the equality in Lemma 10 with respect to 〈 ξ 〉2s dξ one 
obtains

‖vK‖2
L2(L2,Hs) = 1

(2π)d

∫
Rd

∫
Rd

∣∣∣v̂(ξ − η)̂k(η)
∣∣∣2 〈 ξ 〉2s dξ dη.

Applying the inequality

〈 ξ 〉s ≤ Cs 〈 ξ − η 〉s 〈 η 〉|s| for all ξ, η ∈ Rd, s ∈ R, (4.2)

the claimed bound follows immediately. �
With this corollary in hand, we can now prove Lemma 6.

Proof of Lemma 6. The bound on M1(f) = fK1 is immediate from Corollary 1. For 
M2(g) = 〈Dx 〉−1

gK2 we write

‖M2(g)‖L2(L2,Hr) = ‖gK2‖L2(L2,Hr−1)

and use again the corollary; if 0 ≤ r ≤ 1, we bound by

‖gK2‖L2(L2,L2) ≤ C ‖k‖L2 ‖g‖L2 ,

while if r ≥ 1 we bound by

C ‖k‖Hr−1 ‖g‖Hr−1 .

This concludes the proof of the lemma. �
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5. Bilinear bounds

In this section we prove Lemma 7, and we prove some additional null form bound, 
stated in two lemmas at the end of the section, that will be needed in the proof of global 
existence. Throughout this section the space dimension is d = 1.

We first note the following basic product law for Bourgain norms.

Lemma 11. Let s1, s2, s3 ∈ R and b1, b2, b3 ≥ 0, and assume that

• s1 + s2 + s3 ≥ 1/2, and
• mini
=j(si + sj) ≥ 0, and
• the two preceding inequalities are not both equalities, and
• b1 + b2 + b3 > 1/2.

Then there is a constant C such that the bound

‖uv‖
X

−s1,−b1
h1(ξ)

≤ C ‖u‖
X

s2,b2
h2(ξ)

‖v‖
X

s3,b3
h3(ξ)

(5.1)

holds for all Schwartz functions u and v on Rt × Rx and any choice of h1, h2, h3 ∈
C(R, R).

Proof. By Plancherel’s theorem and L2 duality, (5.1) can be reformulated as∫
R4

f1(τ, ξ)f2(τ − λ, ξ − η)f3(λ, η) dλ dη dτ dξ

〈 ξ 〉s1 〈 ξ − η 〉s2 〈 η 〉s3 〈 τ + h1(ξ) 〉b1 〈 τ − λ + h2(ξ − η) 〉b2 〈λ + h3(η) 〉b3

≤ C

3∏
i=1

‖fi‖L2 ,

where the fi are non-negative. By symmetry, it suffices to consider the region where 
〈λ + h3(η) 〉 is the minimum among 〈 τ + h1(ξ) 〉, 〈 τ − λ + h2(ξ − η) 〉 and 〈λ + h3(η) 〉, 
and then the left side is bounded by∫

R4

f1(τ, ξ)f2(τ − λ, ξ − η)f3(λ, η) dλ dη dτ dξ

〈 ξ 〉s1 〈 ξ − η 〉s2 〈 η 〉s3 〈λ + h3(η) 〉b1+b2+b3
,

where we used the assumption b1, b2, b3 ≥ 0. This shows that it is enough to prove

‖uv‖
X

−s1,0
h1(ξ)

≤ C ‖u‖
X

s2,0
h2(ξ)

‖v‖
X

s3,b1+b2+b3
h3(ξ)

. (5.2)

But by the assumptions on s1, s2, s3 we can apply the product law (2.13) to get

‖u(t)v(t)‖H−s1 ≤ Cs1,s2,s3 ‖u(t)‖Hs2 ‖v(t)‖Hs3
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for all t. Taking now the L2 norm with respect to t of both sides, and using (2.29) to 
bound

sup
t∈R

‖v(t)‖Hs3 ≤ Cb1,b2,b3 ‖v‖Xs3,b1+b2+b3
h3(ξ)

,

we then obtain (5.2), and this concludes the proof. �
Now we apply the above lemma to obtain estimates of the form

‖uv‖
X

−s1,−b1
±〈 ξ 〉

≤ C ‖u‖
X

s2,b2
+ξ

‖v‖
X

s3,b3
−ξ

. (5.3)

But here we can gain some regularity compared to the generic case, due to the opposite 
signs in the dispersion relations on the right hand side; the symbols τ + ξ and τ − ξ

correspond to transport equations with propagation in transverse directions. Thus, (5.3)
is a null form estimate.

Let us denote by bmin, bmed, bmax the minimum, median and maximum, respectively, 
of the three numbers b1, b2, b3. We then have the following result.

Lemma 12. Suppose s1, s2, s3 ∈ R and b1, b2, b3 ≥ 0. Then the following conditions are 
sufficient for the null form estimate (5.3) to hold for all Schwartz functions u and v on 
Rt ×Rx:

• s1 + s2 + s3 + bmin ≥ 1/2, and
• min (s2 + s3 + bmin, s1 + s2, s1 + s3) ≥ 0, and
• the two preceding inequalities are not both equalities, and
• bmed + bmax > 1/2.

Proof. We reformulate (5.3) as

∫
R4

f1(τ, ξ)f2(τ − λ, ξ − η)f3(λ, η) dλ dη dτdξ

〈 ξ 〉s1 〈 ξ − η 〉s2 〈 η 〉s3 〈 τ ± 〈 ξ 〉 〉b1 〈 τ − λ + (ξ − η) 〉b2 〈λ− η 〉b3
≤ C

3∏
i=1

‖fi‖L2 ,

where the fi are non-negative. By the triangle inequality,

2 |η| ≤ |τ + ξ| + |τ − λ + (ξ − η)| + |λ− η| ,
2 |ξ − η| ≤ |τ − ξ| + |τ − λ + (ξ − η)| + |λ− η| ,

implying

min (〈 η 〉 , 〈 ξ − η 〉) ≤ C max (〈 τ ± 〈 ξ 〉 〉 , 〈 τ − λ + (ξ − η) 〉 , 〈λ− η 〉) ,

since 〈 τ ± |ξ| 〉 is comparable to 〈 τ ± 〈 ξ 〉 〉. Thus, we can reduce (5.3) to estimates
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‖uv‖
X

−s1,−B1
±〈 ξ 〉

≤ C ‖u‖
X

s2+bmin,B2
+ξ

‖v‖
X

s3,B3
−ξ

,

‖uv‖
X

−s1,−B1
±〈 ξ 〉

≤ C ‖u‖
X

s2,B2
+ξ

‖v‖
X

s3+bmin,B3
−ξ

,

where B1, B2, B3 ≥ 0 and B1 +B2 +B3 = bmed +bmax. Applying Lemma 11 we therefore 
obtain the claimed result. �

We are now ready to prove Lemma 7.

Proof of Lemma 7. We start with (3.11), which reads∥∥ψψ′∥∥
Xr−1,−b

±〈 ξ 〉
≤ C ‖ψ‖Xs,b

+ξ
‖ψ′‖Xs,b

−ξ
.

By (2.20), ‖ψ‖Xs,b
+ξ

= ‖ψ‖Xs,b
+ξ

, so we can remove the conjugation on ψ. Now we apply 

Lemma 12 with s1 = 1 − r, s2 = s3 = s and b1 = b2 = b3 = b, and conclude that (3.11)
holds if

b >
1
4 , 2s + b ≥ 0, 1 − r + s ≥ 0, 1 − r + 2s + b >

1
2 . (5.4)

It remains to consider (3.9) (the proof of (3.10) is similar). We have to show

‖φψ‖Xs,−b
+ξ

≤ C ‖φ‖Xr,b
±〈 ξ 〉

‖ψ‖Xs,b
−ξ

.

By (2.21),

‖φψ‖Xs,−b
+ξ

= (2π)2 sup
‖ψ′‖

X
−s,b
+ξ

=1

∣∣∣∣∣∣
∫
R2

φψψ′ dt dx

∣∣∣∣∣∣ ,
where by (2.22),

(2π)2
∣∣∣∣∣∣
∫
R2

φψψ′ dt dx

∣∣∣∣∣∣ ≤ ‖φ‖Xr,b
±〈 ξ 〉

∥∥ψψ′
∥∥
X−r,−b

±〈 ξ 〉
.

Thus we have reduced to obtaining a bound∥∥ψ′ψ
∥∥
X−r,−b

±〈 ξ 〉
≤ C ‖ψ′‖X−s,b

+ξ
‖ψ‖Xs,b

−ξ
.

Applying Lemma 12 with s1 = r, s2 = −s, s3 = s and b1 = b2 = b3 = b, we conclude 
that (3.9) holds if

b >
1
, r + b >

1
, r − s ≥ 0, r + s ≥ 0. (5.5)
4 2
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If we take b = 1/2 −δ with δ > 0 sufficiently small, then both (5.4) and (5.5) are satisfied 
if

s > −1
4 , |s| ≤ r ≤ s + 1, 0 < r < 1 + 2s,

proving the main part of Lemma 7. In the special case s = 0, r ∈ (1/4, 1/2), mentioned 
at the end of Lemma 7, it is clear that (5.4) and (5.5) hold for any b > 1/4. �

We conclude this section with some additional null form estimates, given in the next 
two lemmas.

Lemma 13. Let 1 ≤ p ≤ 2. Then for all Schwartz functions u and v on Rt × Rx the 
following bound holds true

‖uv‖Lp
t,x

≤ C ‖u‖X0,b
+ξ

‖v‖X0,b
−ξ

where b =
{

1 − 1/p if 1 ≤ p < 2,
1/2 + ε if p = 2.

(5.6)

Here ε > 0 is arbitrarily small; C depends on p, and on ε if p = 2.

Proof. In null coordinates (s, y) = (t + x, t − x) on R2, the desired inequality reads

‖uv‖Lp
s,y

≤ C
∥∥∥〈Ds 〉b u

∥∥∥
L2

s,y

∥∥∥〈Dy 〉b v
∥∥∥
L2

s,y

.

But by Hölder’s inequality, letting q ∈ [2, ∞] be defined by 1/p = 1/2 + 1/q,

‖uv‖Lp
s,y

≤ ‖u‖Lq
s(L2

y) ‖v‖L2
s(L

q
y) ≤ ‖u‖L2

y(Lq
s) ‖v‖L2

s(L
q
y) ,

where we used Minkowski’s integral inequality in the last step. The desired inequality now 
follows by applying the Sobolev embedding Hb(R) ↪→ Lq(R), which holds for b = 1/2 +ε

if q = ∞, and for b = 1/2 − 1/q if 2 ≤ q < ∞. �
Lemma 14. Let r > 0 and h ∈ C(R, R). Then for all Schwartz functions u and v on 
Rt ×Rx, we have the estimate

‖uv‖X−r,−r
h(ξ)

≤ C ‖u‖X0,b
+ξ

‖v‖X0,b
−ξ

, where b =

⎧⎪⎪⎨⎪⎪⎩
1/2 − r if 0 < r < 1/2,
ε if r = 1/2,
0 if r > 1/2.

(5.7)

Here ε > 0 is arbitrarily small; C depends on r, and on ε if r = 1/2, but not on h.

Proof. Define p = p(r) ∈ [1, 2) by (i) 1/p = r + 1/2 if 0 < r < 1/2, (ii) 1/p = 1 − ε if 
r = 1/2, and (iii) p = 1 if r > 1/2. Here we can take any 0 < ε < 1/2. Then the Sobolev 
embedding
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Lp(R) ↪→ H−r(R) (5.8)

holds. Setting F (t, ξ) = 〈 ξ 〉−r
eith(ξ)ûv(t, ξ), we then have

‖uv‖X−r,−r
h(ξ)

=
∥∥∥‖F (t, ξ)‖H−r

t

∥∥∥
L2

ξ

≤ C
∥∥∥‖F (t, ξ)‖Lp

t

∥∥∥
L2

ξ

≤ C
∥∥∥‖F (t, ξ)‖L2

ξ

∥∥∥
Lp

t

= C
∥∥‖uv‖H−r

x

∥∥
Lp

t

≤ C ‖uv‖Lp
t,x

,

where we applied (5.8) twice, to get the first and third inequalities, and we used 
Minkowski’s integral inequality to get the second inequality. The proof can now be con-
cluded by appealing to Lemma 13; we are in the case 1 ≤ p < 2, so (5.6) holds with 
b = 1 − 1/p. �

As a consequence we get the following result used later in Section 8.

Corollary 2. Let

0 < r < b <
1
2 , 0 < μ < 1, 1

2 − r = μb.

Then for any h ∈ C(R, R) and T > 0 we have the estimates

‖φψ‖X0,−b
±ξ (0,T ) � C ‖φ‖Xr,b

h(ξ)(0,T ) ‖ψ‖
μ

X0,b
∓ξ (0,T ) ‖ψ‖

1−μ
L2((0,T )×R) ,

where C depends on r, b but neither on h nor on T .

Proof. Firstly, by (2.32) we can substitute the restriction norm with the norm of trivial 
extension

‖φψ‖X0,−b
±ξ (0,T ) �

∥∥1(0,T )φ1(0,T )ψ
∥∥
X0,−b

±ξ

and without loss of generality we will write simply φ, ψ while meaning in fact the trivial 
extensions 1(0,T )φ, 1(0,T )ψ. Secondly, we apply Lemma 14 via duality (2.21), (2.22) as 
follows. Given an arbitrary test function with ‖u‖X0,b

±ξ
= 1 consider the integral

(2π)2
∣∣∣∣∫ φψudtdx

∣∣∣∣ � ‖φ‖Xr,r
h(ξ)

∥∥ψu∥∥
X−r,−r

h(ξ)
� Cr ‖φ‖Xr,b

h(ξ)

∥∥ψ∥∥
X

0,1/2−r
∓ξ

‖u‖
X

0,1/2−r
±ξ

� Cr ‖φ‖Xr,b
h(ξ)

‖ψ‖X0,μb
∓ξ

,

where Cr comes exactly from the previous lemma. Here we have used the conjugation 
property (2.20) and obvious embeddings of Bourgain spaces. Appealing to the interpo-
lation argument one obtains
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‖ψ‖X0,μb
∓ξ

� ‖ψ‖μ
X0,b

∓ξ

‖ψ‖1−μ

X0,0
∓ξ

= (2π)1−μ ‖ψ‖μ
X0,b

∓ξ

‖ψ‖1−μ
L2(R2) .

Now taking the supremum of the above integral over test functions and recalling that 
φ, ψ stand for the trivial extensions 1(0,T )φ, 1(0,T )ψ one obtains the needed statement

‖φψ‖X0,−b
±ξ (0,T ) � (2π)1−μCrC

1+μ
b ‖φ‖Xr,b

h(ξ)(0,T ) ‖ψ‖
μ

X0,b
∓ξ (0,T ) ‖ψ‖

1−μ
L2((0,T )×R)

by (2.21) and (2.32). Finally, the interpolation used above is justified as∥∥∥f(τ, ξ) 〈 τ 〉μb
∥∥∥
L2

τ,ξ

�
∥∥∥fμ(τ, ξ) 〈 τ 〉μb

∥∥∥
L

2/μ
τ,ξ

∥∥f1−μ(τ, ξ)
∥∥
L

2/(1−μ)
τ,ξ

by Hölder’s inequality with f(τ, ξ) =
∣∣∣ψ̂(τ ± ξ, ξ)

∣∣∣ and the Bourgain norm definition 

(2.17). �
6. Abstract well-posedness for dispersive PDE systems with noise

Let W (t) be a cylindrical Wiener process, as in Section 2.

6.1. Notation and definitions

Let d, n ∈ N. Given s = (s1, . . . , sn) ∈ Rn, define

Hs (Rd
)

= Hs1
(
Rd
)
× · · · ×Hsn

(
Rd
)

with the product norm

‖f‖Hs(Rd) =
(
‖f1‖2

Hs1 (Rd) + · · · + ‖fn‖2
Hsn (Rd)

)1/2
for f =

⎛⎝ f1
...
fn

⎞⎠ .

Given h1, . . . , hn ∈ C(Rd, R), define the Fourier multiplier h(Dx) and the group S(t) by

h(Dx)f =

⎛⎝ h1(Dx)f1
...

hn(Dx)fn

⎞⎠ , S(t)f =

⎛⎜⎝ Sh1(ξ)(t)f1
...

Shn(ξ)(t)fn

⎞⎟⎠ ,

where the latter is then an isometry of Hs. Further, given b ∈ R, we define

Xs,b (R×Rd
)

= Xs1,b
h1(ξ)

(
R×Rd

)
× · · · ×Xsn,b

hn(ξ)
(
R×Rd

)
with the product norm. The restriction to (S, T ) ×Rd is denoted Xs,b(S, T ).

The following space will play a key role.
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Definition 1. For 0 ≤ S < T let, with notation as in (2.1),

Zs,b(S, T ) = L2 (Ω,Xs,b(S, T ) ∩ C ([S, T ],Hs)
)

with norm

‖u‖Zs,b(S,T ) = ‖u‖L2(Ω,Xs,b(S,T )) + ‖u‖L2(Ω,C([S,T ],Hs)) .

Note that this space is complete.

Remark 3. From the embedding

‖u‖L2([S,T ],Hs) ≤ ‖u‖Xs,b(S,T ) if b ≥ 0, (6.1)

we infer that Zs,b(S, T ) ↪→ L2 ([S, T ] × Ω,Hs) for b ≥ 0.

By Lemma 5, we see immediately that the Z-space has the following gluing property.

Lemma 15. Let 0 < S < S′ and −1/2 < b < 1/2. Given u ∈ Zs,b(0, S) and v ∈
Zs,b(S, S′), define [u, v] by

[u,v](t) =
{

u(t) for 0 ≤ t ≤ S

v(t) for S < t ≤ S′.

Then

‖[u,v]‖Xs,b(0,S′) ≤ Cb

(
‖u‖Xs,b(0,S) + ‖v‖Xs,b(S,S′)

)
,

where Cb depends only on b. Moreover, if u(S) = v(S), then [u, v] ∈ Zs,b(0, S′).

6.2. Initial value problem

Now consider the Cauchy problem for a system of dispersive nonlinear stochastic PDE,

−idu(t)+h(D)u(t) dt = [N(u(t)) + L(u(t))] dt+M(u(t)) dW (t), u(0) = u0, (6.2)

where the unknown is a random variable u(t) taking values in Hs for a given s ∈ Rn,

u0 : Ω → Hs is F0-measurable, (6.3)

and the operators

M(f) =

⎛⎝M1(f)
...

⎞⎠ , L(f) =

⎛⎝L1(f)
...

⎞⎠ and N(f) =

⎛⎝N1(f)
...

⎞⎠ ,
Mn(f) Ln(f) Nn(f)
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acting only in the space variable x, are assumed to have the following properties:

M : Hs → L2(K,Hs) is linear, with a bound ‖M(f)‖L2(K,Hs) ≤ C ‖f‖Hs . (6.4)

Further,

N(0) = 0 (6.5)

and

N : Xs,b → Xs,b′ is locally Lipschitz, for some −1
2 < b′ < 0 < b <

1
2 , (6.6)

with the bound, for some constants p ∈ N and C > 0,

‖N(u) − N(v)‖Xs,b′ ≤ C (1 + ‖u‖Xs,b + ‖v‖Xs,b)p−1 ‖u − v‖Xs,b . (6.7)

These estimates of course imply the corresponding ones with time restriction to any slab 
(S, T ) ×Rd. Finally, we assume that with the same b, b′ as above,

L : Xs,b → Xs,b′ is linear, with a bound ‖L(u)‖Xs,b′ ≤ C ‖u‖Xs,b . (6.8)

We emphasise that for the examples we have in mind, N may fail to map Hs into 
itself, hence the deterministic integral in (6.12) below may not make sense as a Bochner 
integral in Hs. However, one expects that this obstruction disappears at sufficiently high 
regularity. We therefore add the assumption

there exists s′ ∈ Rn, with s′i ≥ si, such that N and L map Hs′ continuously into Hs′ .

(6.9)
This will be used to establish measurability properties, and to regularise (6.2).

Remark 4. The reason for separating the linear part L from the nonlinear part N is that 
this allows us to avoid truncating the linear terms; see (6.16). This is not essential for 
the arguments used to prove existence and uniqueness in this section, but is used in the 
proof of conservation of charge in Section 7.

Remark 5. It is easy to construct operators satisfying (6.4). Taking K = L2 (Rd,R
)
, we 

consider

Mi(f) =
n∑

j=1
〈D 〉−σi,j fjKi,j ,

where σi,j are real numbers and Ki,j are of the form (4.1) with kernels ki,j . Then by 
Corollary 1,
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‖Mi(f)‖L2(L2,Hsi ) ≤
n∑

j=1
‖fjKi,j‖L2(L2,Hsi−σi,j ) ≤ C

n∑
j=1

‖fj‖Hsj ‖ki,j‖H|sj |

provided that si − σi,j ≤ sj and ki,j ∈ H |sj |(Rd, R) for all 1 ≤ i, j ≤ n.

Let us now define precisely what we mean by a solution of (6.2).

Definition 2. Let τ : Ω → (0, ∞] be a stopping time. By a solution of (6.2), (6.3) up to 
time τ , we mean a random variable

u(t, ω) ∈ Hs for 0 ≤ t < τ(ω)

such that

u(t) : {t < τ} → Hs is Ft-measurable, (6.10)

and such that, almost surely,

u ∈ C ([0, t],Hs) ∩ Xs,b(0, t) for 0 < t < τ (6.11)

and

u(t) = S(t)u0+i

t∫
0

S(t−s) [N(u(s)) + L(u(s))] ds+i

t∫
0

S(t−s)M(u(s)) dW (s) (6.12)

for 0 ≤ t < τ . So in particular, u(0) = u0 almost surely.

Some remarks are in order. First, by the assumptions on N, the first integral in 
(6.12) is well defined pointwise in ω, and belongs to C ([0, T ],Hs) and Xs,b(0, T ) for 
any 0 < T < τ(ω), as we show in Section 6.5. We emphasise, however, that it may not 
make sense as an Hs-valued Bochner integral, but only when interpreted in the Bourgain 
space, where dispersive effects are taken into account.

Second, to see that the stochastic integral exists, define

f(t) = ‖u‖2
X̃s,b(0,t) for 0 < t < τ, f(0) = 0. (6.13)

By Lemmas 23 and 24, proved in Section 10, f satisfies the hypotheses of Lemma 3, 
hence

τR(ω) = sup {t ∈ [0, τ(ω)) : f(s, ω) < R for 0 ≤ s ≤ t} (6.14)

is a stopping time for each R > 0, and limR→∞ τR(ω) = τ(ω). Now consider the process

1t≤τR(ω)u(t, ω),
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that is, the trivial extension beyond the time τR. It is progressively measurable by 
Lemma 2, so by (6.1) it belongs to L2 ([0, T ] × Ω,Hs) for all T > 0, and is Hs-adapted, 
hence

t∫
0

1s≤τR(s)S(t− s)M (u(s)) dW (s)

exists in L2(Ω, Hs) for all t ≥ 0, by the assumption (6.4). Thus the Itô integral appearing 
in (6.12) is well defined by the localisation procedure.

6.3. Existence and uniqueness

We now formulate the main existence and uniqueness results that will be proved.

Theorem 3 (Maximal local existence). Let s ∈ Rn and −1/2 < b′ < 0 < b < 1/2. Assume 
that (6.4)–(6.9) hold and that u0 ∈ L2(Ω, Hs) is F0-measurable. Then the problem (6.2), 
(6.3) has a solution u(t) in the sense of Definition 2, with a stopping time τ : Ω → (0, ∞]. 
The solution is maximal in the sense that, almost surely,

τ < ∞ =⇒ lim sup
t↗τ

‖u‖Xs,b(0,t) = ∞. (6.15)

The proof is given at the end of this subsection.

Theorem 4 (Uniqueness). Let s ∈ Rn and −1/2 < b′ < 0 < b < 1/2. Assume that 
(6.4)–(6.9) hold and that u0 ∈ L2(Ω, Hs) is F0-measurable. Suppose u and v are solutions 
of (6.2), (6.3), as in Definition 2, up to stopping times τ and τ ′, respectively, and with 
the same initial datum u0. Then almost surely

u(t) = v(t) for 0 ≤ t < min(τ, τ ′).

This is proved in Section 6.8. For the proof, we must be able to compare the two 
solutions on slabs [0, T ] × Ω. For this reason, we require also the following extension 
theorem.

Theorem 5 (Extension). Let s ∈ Rn and −1/2 < b′ < 0 < b < 1/2. Assume that 
(6.4)–(6.9) hold and that u0 ∈ L2(Ω, Hs) is F0-measurable. Suppose u is a solution of 
(6.2), (6.3), as in Definition 2, with stopping time τ . Define the conditional stopping 
times τR as in (6.13), (6.14). Then for any R > 0 and T > 0 the equation

U(t) = S(t)u0 + i

t∧τR∫
S(t− s) [N(u(s)) + L(u(s))] ds + i

t∫
S(t− s)M(U(s)) dW (s)
0 0
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has a unique solution U ∈ Zs,b(0, T ) such that, almost surely, U(t) = u(t) for 0 ≤ t ≤
min(T, τR).

This is proved in Section 6.7.
Now let us return to the existence result, Theorem 3. To prove it, we consider a 

truncated version of (6.12), depending on a parameter R > 0,

u(t) = S(t)u0 + i

t∫
0

S(t− s)N (Θu
R(s)u(s)) ds + i

t∫
0

S(t− s)L (u(s)) ds

+ i

t∫
0

S(t− s)M (u(s)) dW (s), (6.16)

where we use the notation

Θu
R(t) = θR

(
n∑

i=1
‖ui‖2

X̃
si,b

hi(ξ)
(0,t)

)
. (6.17)

Here θ : R → R is a smooth and compactly supported function with θ(x) = 1 for |x| ≤ 1, 
and we write θR(x) = θ(x/R). Inside the cutoffs we use the norm (2.35).

We shall prove the following global result for the truncated problem.

Theorem 6 (Global existence with truncation). Let R > 0, s ∈ Rn and −1/2 < b′ <

0 < b < 1/2. Assume that (6.4)–(6.9) are satisfied. Assume that u0 ∈ L2(Ω, Hs) is F0-
measurable. Then the truncated problem (6.16) has a unique global solution uR such that 
uR ∈ Zs,b(0, T ) for each T > 0. Moreover, for each T > 0 we have∥∥uR

∥∥
Zs,b(0,T ) ≤ CT,R,b ‖u0‖L2(Ω,Hs) , (6.18)

and if UR ∈ Zs,b(0, T ) is the solution with F0-measurable data U0 ∈ L2(Ω, Hs), then∥∥uR − UR
∥∥
Zs,b(0,T ) ≤ CT,R,b ‖u0 − U0‖L2(Ω,Hs) . (6.19)

Granting this last result for the moment, we can prove the local result, Theorem 3. 
Define

fR(t) =
∥∥uR

∥∥2
X̃s,b(0,t) for t > 0, fR(0) = 0.

By Lemmas 23 and 24, proved in Section 10, this function satisfies the hypotheses of 
Lemma 3, hence

τR(ω) = sup {t ∈ [0,∞) : fR(s, ω) < R for 0 ≤ s ≤ t} ,
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is a stopping time. Up to this time, uR is a solution of the non-truncated problem (6.12), 
and we let R → ∞ to get a maximal solution. To this end, we use the following.

Lemma 16. Let uR be as in Theorem 6, and define the stopping time τR as above. Then

uR(t) = uR′
(t) for 0 ≤ t ≤ min(τR, τR′) (6.20)

and

R ≤ R′ =⇒ τR ≤ τR′ . (6.21)

Moreover,

R < R′ and τR′ < ∞ =⇒ τR < τR′ . (6.22)

Proof. First, (6.20) follows from Theorem 4 (proved in Section 6.8, and independently 
of Theorem 6 and the present lemma).

Now let us prove (6.22) (which of course implies (6.21)). Suppose that R < R′ and 
τR′ < ∞. To get a contradiction, assume that τR′ ≤ τR. Then by (6.20), fR(t) = fR′(t)
for 0 < t ≤ τR′ . But by (2.8), fR′(τR′) = R′. Thus fR(τR′) = R′ > R, contradicting 
(2.7). Hence we must have τR < τR′ . �

In view of the last lemma, setting

τ = sup
R

τR,

which is a stopping time, we can consistently define u(t) for t ∈ [0, τ) by setting u(t) =
uR(t) for t ∈ [0, τR]. By (2.8) we have

τR < ∞ =⇒
∥∥uR

∥∥2
X̃s,b(0,τR) = R,

and by the estimate (10.4) in Lemma 21, this implies

τR < ∞ =⇒
∥∥uR

∥∥2
Xs,b(0,τR) ≥ CR, (6.23)

where C > 0 depends only on b. Then (6.15) follows. Thus we have shown that Theorem 3
is a consequence of Theorem 6 (and of Theorem 4, which is used to prove the above 
lemma).

The remainder of this section is devoted to the proof of Theorems 6, 5 and 4, in that 
order. We also prove a regularisation result for the truncated system, in Section 6.9. 
Finally, in Section 6.10 we show how the existence and uniqueness parts of Theorem 1
follow from the abstract results.

In preparation for the proofs, we discuss in the next two subsections some key conse-
quences of the assumptions made on the operators M and N.
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6.4. Properties of M

Assume that u ∈ L2 ([0, T ] × Ω,Hs) is Hs-adapted. Then by (6.4),

E

⎛⎝ t∫
0

‖S(t− s)M(u(s))‖2
L2(K,Hs) ds

⎞⎠ = E

⎛⎝ t∫
0

‖M(u(s))‖2
L2(K,Hs) ds

⎞⎠
≤ CE

⎛⎝ t∫
0

‖u(s)‖2
Hs ds

⎞⎠ ,

(6.24)

so for 0 ≤ t ≤ T the Itô integral

t∫
0

S(t− s)M(u(s)) dW (s)

is well defined in L2 (Ω,Hs), is Hs-adapted and pathwise continuous, and by the Itô 
isometry,

E

⎛⎜⎝
∥∥∥∥∥∥

t∫
0

S(t− s)M(u(s)) dW (s)

∥∥∥∥∥∥
2

Hs

⎞⎟⎠ = E

⎛⎝ t∫
0

‖M(u(s))‖2
L2(K,Hs) ds

⎞⎠ . (6.25)

By the maximal inequality (2.11),

E

⎛⎜⎝ sup
0≤t≤T

∥∥∥∥∥∥
t∫

0

S(t− s)M(u(s)) dW (s)

∥∥∥∥∥∥
2

Hs

⎞⎟⎠ ≤ 4E

⎛⎝ T∫
0

‖M(u(s))‖2
L2(K,Hs) ds

⎞⎠ .

(6.26)
Moreover, the stochastic integral belongs to L2 (Ω,Xs,b(0, T )

)
, as we now show.

Lemma 17. Let T > 0. Assume that M satisfies (6.4), and that 0 ≤ b < 1/2. Then

E

⎛⎜⎝
∥∥∥∥∥∥

t∫
0

S(t− s)M(u(s)) dW (s)

∥∥∥∥∥∥
2

Xs,b(0,T )

⎞⎟⎠ ≤ CE

⎛⎝ T∫
0

‖M(u(s))‖2
L2(K,Hs) ds

⎞⎠ (6.27)

for all Hs-adapted u ∈ L2 ([0, T ] × Ω,Hs). Here the constant C depends on b, but not 
on T .
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Proof. Set

I(t) = Λs
t∫

0

S(−s)M(u(s)) dW (s) =
t∫

0

ΛsS(−s)M(u(s)) dW (s),

where the operator

f �→ Λsf =

⎛⎜⎝ 〈D 〉s1 f1
...

〈D 〉sn fn

⎞⎟⎠
is an isometry of Hs onto L2

x = L2 (Rd,Cn
)
. Thus I(t) ∈ L2 (Ω, L2

x

)
and the left side of 

(6.27) equals

E

⎛⎝∫
Rd

∥∥∥Î(t, ξ)∥∥∥2
Hb(0,T )

dξ

⎞⎠ , (6.28)

where

Î(t) = FI(t) =
t∫

0

FΛsS(−s)M(u(s)) dW (s) ∈ L2 (Ω, L2
ξ

)
and F : L2

x → L2
ξ is the Fourier transform in x. Using repeatedly (2.9), we see that

‖FΛsS(−s)M(u(s))‖L2

(
K,L2

ξ

) ≤ (2π)d/2 ‖ΛsS(−s)M(u(s))‖L2(K,L2
x)

≤ ‖S(−s)M(u(s))‖L2(K,Hs) = ‖M(u(s))‖L2(K,Hs) . (6.29)

Thus the Itô isometry gives, for 0 ≤ t ≤ T ,

E

(∥∥∥Î(t, ξ)∥∥∥2
L2

ξ

)
≤ CE

⎛⎝ t∫
0

‖M(u(s))‖2
L2(K,Hs) ds

⎞⎠ .

Integrating this over 0 ≤ t ≤ T and using Tonelli’s theorem gives

∫
Ω

∫
Rd

T∫
0

∣∣∣̂I(t, ξ, ω)
∣∣∣2 dt dξ dP (ω) ≤ CTE

⎛⎝ T∫
0

‖M(u(s))‖2
L2(K,Hs) ds

⎞⎠ ,

implying that
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T∫
0

∣∣∣̂I(t, ξ, ω)
∣∣∣2 dt < ∞

for a.e. (ξ, ω). So extending Î(t) by zero outside the interval (0, T ), its Fourier transform 
with respect to t is well defined:

Ĩ(τ, ξ, ω) =
T∫

0

e−itτ Î(t, ξ, ω) dt,

and

∥∥∥Î(t, ξ)∥∥∥2
Hb(0,T )

≤
n∑

j=1

∫
R

〈 τ 〉2b
∣∣∣Ĩj(τ, ξ)∣∣∣2 dτ. (6.30)

Now we calculate

Ĩ(τ, ξ) =
T∫

0

e−itτ Î(t, ξ) dt =
T∫

0

e−itτ

⎛⎝ t∫
0

FΛsS(−s)M(u(s)) dW (s)

⎞⎠ dt

=
T∫

0

⎛⎝ T∫
s

e−itτ dt

⎞⎠FΛsS(−s)M(u(s)) dW (s),

where we used the stochastic Fubini’s theorem (see [17]). This is justified on account of 
the bound (6.29). Combining that bound with

∣∣∣∣∣∣
T∫
s

e−itτ dt

∣∣∣∣∣∣ ≤ C 〈 τ 〉−1
,

where C is independent of s and T , we obtain

∥∥∥∥∥∥
⎛⎝ T∫

s

e−itτ dt

⎞⎠FΛsS(−s)M(u(s))

∥∥∥∥∥∥
L2(K,L2

ξ)

≤ C 〈 τ 〉−1 ‖M(u(s))‖L2(K,Hs) ,

hence by Itô’s isometry

E

(∥∥∥Ĩj(τ, ξ)∥∥∥2
L2

ξ

)
≤ C 〈 τ 〉−2 E

⎛⎝ T∫
‖M(u(s))‖2

L2(K,Hs) ds

⎞⎠

0
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for 1 ≤ j ≤ n. Multiplying both sides by 〈 τ 〉2b, integrating in τ , and using Tonelli’s 
theorem and (6.28) and (6.30), we conclude that the left side of (6.27) equals

E

⎛⎝∫
Rd

∥∥∥Î(t, ξ)∥∥∥2
Hb(0,T )

dξ

⎞⎠ ≤ C

n∑
j=1

∫
R

〈 τ 〉2b E

⎛⎝∫
Rd

∣∣∣Ĩj(τ, ξ)∣∣∣2 dξ

⎞⎠ dτ

≤ C

⎛⎝ n∑
j=1

∫
R

〈 τ 〉2b−2
dτ

⎞⎠E

⎛⎝ T∫
0

‖M(u(s))‖2
L2(K,Hs) ds

⎞⎠ ,

completing the proof of the lemma. �
Combining (6.26), the last lemma and the embedding (2.28), we obtain the following 

key fact.

Corollary 3. Let 0 ≤ S < T ≤ S+1. Assume that M satisfies (6.4), and that 0 ≤ b < 1/2. 
Then we have the bound∥∥∥∥∥∥

t∫
S

S(t− s)M(u(s)) dW (s)

∥∥∥∥∥∥
Zs,b(S,T )

≤ C(T − S)b ‖u‖L2(Ω,Xs,b(S,T )) (6.31)

for all u ∈ Zs,b(S, T ), where the constant C depends on b, but not on T or S.

Proof. Extend u by zero outside S < t < T . Then u belongs to L2 ([0, T ] × Ω,Hs) (see 
Remark 3), and applying (6.26), (6.24) and Lemma 17 we get

∥∥∥∥∥∥
t∫

S

S(t− s)M(u(s)) dW (s)

∥∥∥∥∥∥
Zs,b(S,T )

≤ C ‖u‖L2([S,T ]×Ω,Hs) .

Applying now (2.28), we obtain (6.31). �
6.5. Properties of N and L

Recalling that −1/2 < b′ < 0, choose 0 < ε < b′ + 1/2 and set

B := b′ + 1 − ε >
1
2 .

Let 0 ≤ S < T ≤ S + 1 and assume that u, v ∈ Xs,b(S, T ). Applying (2.29), (2.27), 
(2.28) and the assumption (6.7) we get
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sup
S≤t≤T

∥∥∥∥∥∥
t∫

S

S(t− s) [N(u(s)) − N(v(s))] ds

∥∥∥∥∥∥
Hs

≤ C

∥∥∥∥∥∥
t∫

S

S(t− s) [N(u(s)) − N(v(s))] ds

∥∥∥∥∥∥
Xs,B(S,T )

≤ C ‖N(u) − N(v)‖Xs,B−1(S,T ) ≤ C(T − S)ε ‖N(u) − N(v)‖Xs,b′ (S,T )

≤ C(T − S)ε
(
1 + ‖u‖Xs,b(S,T ) + ‖v‖Xs,b(S,T )

)p−1
‖u − v‖Xs,b(S,T )

(6.32)

and (taking v = 0 and using the assumption (6.5))

t �→
t∫

S

S(t− s)N(u(s)) ds belongs to C([S, T ],Hs). (6.33)

Note that in (6.32) the constants C depend only on b, b′ and B. Moreover, we claim that

u ∈ Xs,b(S, T ) ∩ C([S, T ],Hs) is Hs-adapted

=⇒ t �→
t∫

S

S(t− s)N(u(s)) ds is Hs-adapted.
(6.34)

To see this, let s′ be as in (6.9) and use mollification in the x-variable to obtain a sequence 
um such that

• um ∈ Xs′,b(S, T ) ∩ C([S, T ], Hs′),
• um is Hs′ -adapted,
• um → u in Xs,b(S, T ) ∩ C([S, T ], Hs) as m → ∞.

Then by the assumption (6.9), N(um) ∈ C([S, T ], Hs′) is adapted, and therefore pro-
gressively measurable, hence the Hs′-valued integral

Im(t) =
t∫

S

S(t− s)N(um(s)) ds

exists and is adapted. Moreover, by (6.32), Im converges, as m → ∞, in C([S, T ], Hs) to 
the integral appearing in (6.34), thereby proving that the latter is adapted. Finally, we 
note that (6.32)–(6.34) of course also hold for L, but then with p = 1 in (6.32).

6.6. Existence for the truncated problem

We now prove Theorem 6. To simplify the notation, instead of uR we simply write u.
Note that (6.16), with the cutoff given by (6.17), is equivalent to
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u(t) = S(t− S)u(S) + i

t∫
S

S(t− s)N (Θu
R(s)u(s)) ds + i

t∫
S

S(t− s)L (u(s)) ds

+ i

t∫
S

S(t− s)M (u(s)) dW (s) (6.35)

for 0 ≤ S ≤ t ≤ T . By Proposition 1, for u, v ∈ Zs,b(0, T ) we have, for S ∈ [0, T ],

‖Θu
R(t)u(t)‖Xs,b(0,S) ≤ C

√
R, (6.36)

‖Θu
R(t)u(t) − Θv

R(t)v(t)‖Xs,b(0,S) ≤ C ‖u − v‖Xs,b(0,S) (6.37)

where the constant depends on b and T . By Lemma 24, the cutoffs Θu
R(t) and Θv

R(t) are 
adapted.

Now fix a target time T > 0, and divide [0, T ] into N subintervals of length δ =
T/N , where N will be chosen large enough depending on R and T . On each subinterval 
[0, δ], [δ, 2δ], . . . we prove existence by a contraction argument in the Z-space.

Proceeding inductively, let us assume that for some 0 ≤ j < N we have proved 
existence up to time S = jδ, so u ∈ Zs,b(0, S) (for S = 0 this just means that u0 ∈
L2(Ω, Hs)). Set S′ = S + δ. Then for t ∈ [S, S′] we must solve

v(t) = S(t− S)u(S) + i

t∫
S

S(t− σ)N
(
Θ[u,v]

R (σ)v(σ)
)
dσ + i

t∫
S

S(t− σ)L(v(σ)) dσ

+ i

t∫
S

S(t− σ)M(v(σ)) dW (σ), (6.38)

where [u, v] is defined as in Lemma 15. If we can show that (6.38) has a unique solution 
v ∈ Zs,b(S, S′), then by Lemma 15 we have [u, v] ∈ Zs,b(0, S′). Renaming the latter 
function u, we have then extended the solution to [0, S′], and by induction this proves 
Theorem 6.

To solve (6.38) on [S, S′] = [S, S + δ], we set up a contraction argument in Zs,b(S, S′)
for the operator

T(v)(t) = r.h.s.(6.38) =: T0(t) + T1(v)(t) + T2(v)(t) + T3(v)(t), for S ≤ t ≤ S′.

So now let v, w ∈ Zs,b(S, S′). We will prove that

T(v) ∈ Zs,b(S, S′) (6.39)

and
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‖T(v) − T(w)‖Zs,b(S,S′) ≤
1
2 ‖v − w‖Zs,b(S,S′) (6.40)

provided that S′ − S = δ > 0 is taken sufficiently small, depending on R and T . Thus T
is a contraction on Zs,b(S, S′), so it has a unique fixed point v in that space.

We now prove (6.39) and (6.40) for each of the terms constituting T.

6.6.1. The term T0
By the induction hypothesis, u(S) belongs to L2 (Ω,Hs) and is FS-measurable, hence 

the same is true of T0(t) = S(t − S)u(S) for t ≥ S. By (2.26) and (2.29),

sup
t∈[S,S′]

‖S(t− S)u(S)‖Hs ≤ C ‖S(t− S)u(S)‖Xs,1(S,S′) ≤ C ‖u(S)‖Hs ,

implying T0 ∈ Zs,1(S, S′). This verifies (6.39) for the term T0.

6.6.2. The term T1
Applying (6.32) on [S, S′] to the difference

T1(v) − T1(w) = i

t∫
S

S(t− σ)
[
N
(
Θ[u,v]

R (σ)v(σ)
)
− N

(
Θ[u,w]

R (σ)w(σ)
)]

dσ

yields

sup
t∈[S,S′]

‖T1(v)(t) − T1(w)(t)‖Hs ≤ C ‖T1(v) − T1(w)‖Xs,B(S,S′)

≤ C(S′ − S)ε
(

1 +
∥∥∥Θ[u,v]

R v
∥∥∥
Xs,b(S,S′)

+
∥∥∥Θ[u,w]

R w
∥∥∥
Xs,b(S,S′)

)p−1

∥∥∥Θ[u,v]
R v − Θ[u,w]

R w
∥∥∥
Xs,b(S,S′)

.

But by (6.36), ∥∥∥Θ[u,v]
R v

∥∥∥
Xs,b(S,S′)

≤
∥∥∥Θ[u,v]

R [u,v]
∥∥∥
Xs,b(0,S′)

≤ C
√
R,

where C depends on T and b. The same holds with w instead of v. Similarly, (6.37) gives

∥∥∥Θ[u,v]
R v − Θ[u,w]

R w
∥∥∥
Xs,b(S,S′)

≤
∥∥∥Θ[u,v]

R [u,v] − Θ[u,w]
R [u,w]

∥∥∥
Xs,b(0,S′)

≤ C ‖[u,v] − [u,w]‖Xs,b(0,S′) ≤ C ‖v − w‖Xs,b(S,S′) , (6.41)

where we used Lemma 15 in the last step. Taking the L2(Ω)-norm we therefore obtain
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‖T1(v) − T1(w)‖Zs,b(S,S′) ≤ C(S′ − S)ε
(
1 +

√
R
)p−1

‖v − w‖L2(Ω,Xs,b(S,S′)) ,

where C depends on T and b. Taking w = 0, the bounds above also imply that T1(v)
belongs to Zs,b(S, S′), by (6.33) and (6.34).

6.6.3. The term T2

The arguments used for T1 apply also here, but simplify since we take p = 1 and there 
is no cutoff.

6.6.4. The term T3

By Remark 3, v ∈ L2 ([S, S′] × Ω,Hs). Extending v by zero outside [S, S′], the con-
siderations in Section 6.4, and in particular (6.26), (6.24) and Lemma 17, show that 
T3(v) belongs to Zs,b(S, S′). Moreover, by Corollary 3 and the linearity of M we have

‖T3(v) − T2(w)‖Zs,b(S,S′) ≤ C(S′ − S)b ‖v − w‖L2(Ω,Xs,b(S,S′)) ,

which proves (6.40) for the term T3, if δ = S′ − S is small enough. This concludes the 
proof of (6.39) and (6.40).

6.6.5. The bounds (6.18) and (6.19)
Taking w = 0, the above bounds show that the fixed point v satisfies

‖v‖Zs,b(S,S′) ≤ C ‖u(S)‖L2(Ω,Hs) ,

where C is an absolute constant. By induction it follows that the solution u ∈ Zs,b(0, T )
satisfies

‖u‖Zs,b(0,T ) ≤ CN ‖u0‖L2(Ω,Hs) ,

where N = T/δ depends on T and R. This proves (6.18), and the same argument gives 
(6.19) (let the w above be the fixed point corresponding to the solution U with data 
U0).

This concludes the proof of Theorem 6.

6.7. Extension

Here we prove Theorem 5.
Assume that 0 ≤ S < T and that we have found U, with the desired properties, on 

[0, S] (for S = 0 this just means that u0 ∈ L2(Ω, Hs)). Set S′ = S + δ, where δ > 0 will 
be chosen sufficiently small, depending on T and R. For t ∈ [S, S′] we must then solve
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V(t) = S(t−S)U(S)+i

t∧τR∫
S∧τR

S(t−σ) [N(u(s)) + L(u(s))] ds+i

t∫
S

S(t−s)M(V(s)) dW (s).

(6.42)
The solution V should be in Zs,b(S, S′), it should satisfy, almost surely,

V(t) = u(t) for S ≤ t ≤ S′ ∧ τR, (6.43)

and it should be the only solution with these properties.
For V ∈ Zs,b(S, S′) define

Φ(V)(t) = S(t− S)U(S) + i

t∧τR∫
S∧τR

S(t− s) [N(u(s)) + L(u(s))] ds

+ i

t∫
S

S(t− s)M([u,V](s)) dW (s),

where

[u,V](t) =
{

u(t) for 0 ≤ t ≤ S′ ∧ τR

V(t) for S′ ∧ τR < t ≤ S′.

Now observe that, almost surely,

S ≤ t ≤ S′ ∧ τR =⇒ Φ(V)(t) = u(t), (6.44)

since for such t we have [u, V](s) = u(s) for S ≤ s ≤ t, and by (6.12),

u(t) = S(t−S)u(S)+ i

t∫
S

S(t− s) [N(u(s)) + L(u(s))] ds+ i

t∫
S

S(t− s)M(u(s)) dW (s),

which equals Φ(V)(t) since S ≤ t ≤ τR and u(S) = U(S).
So if V is a fixed point of Φ, then by (6.44) we have, almost surely, [u, V] = V on 

[S, S′], hence V satisfies (6.42) and (6.43). Conversely, if V satisfies (6.42) and (6.43), it 
is clearly a fixed point. Thus it only remains to prove that Φ has a unique fixed point 
in Zs,b(S, S′). But this follows as in the proof of Theorem 6, if δ = S′ − S > 0 is small 
enough. This concludes the proof of Theorem 5.

6.8. Uniqueness

Here we prove Theorem 4.
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Fix R > 0 and T > 0 and define the conditional stopping time τR as in (6.13), (6.14). 
Similarly define τ ′R for v. It is enough to prove that, almost surely, u(t) = v(t) for 
0 ≤ t ≤ min(T, μ), where μ = min(τR, τ ′R).

Note that if μu
R is the conditional stopping time defined by the pair (μ, u), then 

μu
R = μ. Similarly, μv

R = μ. Therefore, by Theorem 5 there exist U, V ∈ Zs,b(0, T ) such 
that, almost surely, U(t) = u(t) and V(t) = v(t) for 0 ≤ t ≤ min(T, μ), and

U(t) = S(t)u0 + i

t∧μ∫
0

S(t− s) [N(U(s)) + L(U(s))] ds + i

t∫
0

S(t− s)M(U(s)) dW (s),

V(t) = S(t)u0 + i

t∧μ∫
0

S(t− s) [N(V(s)) + L(V(s))] ds + i

t∫
0

S(t− s)M(V(s)) dW (s),

for 0 ≤ t ≤ T .
Then it is enough to prove that, almost surely, U(t) = V(t) for 0 ≤ t ≤ T . We know 

this holds for t = 0. As in the proof of Theorem 6 we now cut [0, T ] into short intervals 
of length δ and proceed inductively. Assume that 0 ≤ S < T and that we have proved 
that, almost surely, U(t) = V(t) for t ∈ [0, S]. Then we prove that this is true also on 
[S, S′], where S′ = S + δ.

To this end, write

U(t) − V(t) = Δ1(t) + Δ2(t) + Δ3(t) for S ≤ t ≤ T ,

where

Δ1(t) = i

t∧μ∫
S∧μ

S(t− s) [N(U(s)) − N(V(s))] ds,

Δ2(t) = i

t∧μ∫
S∧μ

S(t− s) [L(U(s)) − L(V(s))] ds,

Δ3(t) = i

t∫
S

S(t− s) [M(U(s)) − M(V(s))] dW (s).

We are going to first estimate Δ1(t) pointwise in ω, and then take the L2 norm with 
respect to ω. So for the pointwise estimate we may restrict to ω at which U(t) = u(t)
and V(t) = v(t) for 0 ≤ t ≤ min(T, μ). We may also assume S ≤ μ, as otherwise the 
integral Δ1(t) vanishes. Write

Δ1(t) = i

t∫
S(t− s) [N(1s≤μU(s)) − N(1s≤μV(s))] ds.
S
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Let 0 < δ ≤ 1. Observe that

‖1t≤μU‖Xs,b(S,S′) ≤ C ‖u‖Xs,b(0,μ) ≤ C ‖u‖X̃s,b(0,μ) ≤ C
√
R,

since μ ≤ τR. Here C depends on T and b. The same holds for V, since μ ≤ τ ′R. Thus 
by (6.32) we get the bound, pointwise a.e. in ω,

‖Δ1‖Xs,b(S,S′) ≤ C
(
1 +

√
R
)p−1

δε ‖U − V‖Xs,b(S,S′) ,

which we then square and integrate with respect to ω. The same estimate holds for Δ2, 
but with p = 1. Finally, we bound Δ3. By Corollary 3,

E
(
‖Δ3‖2

Xs,b(S,S′)

)
≤ Cδ2bE

(
‖U − V‖2

Xs,b(S,S′)

)
.

Combining the above bounds, we obtain

E
(
‖U − V‖2

Xs,b(S,S′)

)
≤ C(1 + R)p−1δ2 min(ε,b)E

(
‖U − V‖2

Xs,b(S,S′)

)
,

where C depends on T and b. So for δ > 0 small enough,

E
(
‖U− V‖2

Xs,b(S,S′)

)
= 0,

hence, almost surely, U(t) = V(t) for S ≤ t ≤ S′. This concludes the proof of Theorem 4.

6.9. Regularisation and Itô’s formula

For μ ≥ 1 let Pμ be the Fourier multiplier with symbol θμ(ξ), that is, for f ∈ S ′(Rd),

P̂μf(ξ) = θ

(
ξ

μ

)
f̂(ξ).

We assume that supp θ ⊂ [−2, 2], hence P̂μf is supported in [−2μ, 2μ], so Pμf(x) is 
smooth. We also assume that |θ| ≤ 1. Then Pμ is bounded, with operator norm ≤ 1, 
on Hs and Xs,b for any s, b. Moreover, Pμ maps Hs into HN for arbitrarily large N . 
Finally, we assume that θ = 1 on [−1, 1], so that Pμ converges strongly to the identity 
operator in Hs and Xs,b as μ → ∞.

Now consider the following frequency-truncated version of (6.16):

u(t) = Pμ

⎛⎝S(t)u0 + i

t∫
0

S(t− s)N (Θu
R(s)Pμu(s)) ds + i

t∫
0

S(t− s)L (Pμu(s)) ds

+i

t∫
0

S(t− s)M (Pμu(s)) dW (s)

⎞⎠ , (6.45)



50 E. Dinvay, S. Selberg / Journal of Functional Analysis 287 (2024) 110565
and let us write uμ
0 = Pμu0. By the dominated convergence theorem,

‖uμ
0 − u0‖L2(Ω,Hs) → 0 as μ → ∞. (6.46)

To prove that the solutions of the regularised problem converge, we need the fact that

lim
μ→∞

‖(1 − Pμ)M(f)‖L2(K,Hs) = 0 (6.47)

for all f ∈ Hs. For any orthonormal basis {ej} of K we have, for each component Mi(f),

‖(1 − Pμ)Mi(f)‖2
L2(K,Hsi ) =

∑
j

‖(1 − Pμ)Mi(f)ej‖2
Hsi

=
∑
j

∫
(1 − θμ(ξ))2 |m̂i,j(ξ)|2 〈 ξ 〉2si dξ,

where mi,j = Mi(f)ej ∈ Hsi and

∑
j

∫
|m̂i,j(ξ)|2 〈 ξ 〉2si dξ = ‖Mi(f)‖2

L2(K,Hsi ) < ∞.

The dominated convergence theorem therefore implies (6.47).
We shall prove the following.

Theorem 7 (Regularised global existence). Let R > 0, s ∈ Rn and −1/2 < b′ < 0 <
b < 1/2. Assume that (6.4)–(6.9) are satisfied. Assume that u0 ∈ L2(Ω, Hs) is F0-
measurable. Then for all μ ≥ 1 and T > 0 the regularised problem (6.45) has a unique 
solution uμ ∈ Zs,b(0, T ), with initial value uμ

0 , and Fxuμ is supported in [−2μ, 2μ]. 
Moreover,

‖uμ‖Zs,b(0,T ) ≤ CT,R,b ‖u0‖L2(Ω,Hs) , (6.48)

where the constant is independent of μ. Finally, letting u be as in Theorem 6 (where it 
is denoted uR), we have

lim
μ→∞

‖uμ − u‖Zs,b(0,T ) = 0. (6.49)

Before proving the above theorem, let us remark that the main reason for regularising 
is that we can then apply Itô’s formula, as formulated in Theorem 2.10 in [17]; it does 
not apply directly to the problem (6.16), since the deterministic integral may not make 
sense as a Bochner integral in Hs. But in the frequency-truncated problem (6.45), the 
corresponding integral makes sense even in the more regular space Hs′ , by the assumption 
(6.9) and the fact that Pμ maps Hs into Hs′ . Then [17, Theorem 2.10] can be applied 
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(after applying S(−t) on both sides of (6.45), and passing Pμ inside the integrals). Passing 
to the limit μ → ∞, one can then hope to get Itô’s formula also for (6.16). Indeed, this 
works out in a case of particular interest to us here, namely the conservation of charge 
for the stochastic Dirac-Klein-Gordon system. The details of this are shown in Section 7.

We now prove Theorem 7. The existence and uniqueness works by a fixed point 
argument as in the proof of Theorem 6, up to some obvious modifications, since Pμ

is bounded on all the spaces involved. From (6.45) it is obvious that Fxuμ is supported 
in [−2μ, 2μ]. So it remains to prove (6.49). As in the proof of Theorem 6 we cut [0, T ]
into short intervals of length δ, where δ > 0 is chosen sufficiently small depending on R
and T (but not on μ). Suppose that we have proved (6.49) on [0, S] for some 0 ≤ S < T ; 
if S = 0, we appeal to (6.46). Now we must prove (6.49) on [S, S′] with S′ = S + δ. To 
this end, write

uμ(t) − u(t) = Δμ
1 (t) + Δμ

2 (t) + Δμ
3 (t) + Δμ

4 (t) for t ≥ S,

where

Δμ
1 (t) = S(t− S) (uμ(S) − u(S)) ,

Δμ
2 (t) = i

t∫
S

S(t− s)
[
PμN

(
Θuμ

R (s)Pμuμ(s)
)
− N (Θu

R(s)u(s))
]
ds,

Δμ
3 (t) = i

t∫
S

S(t− s) [PμL (Pμuμ(s)) − L (u(s))] ds,

Δμ
4 (t) = i

t∫
S

S(t− s) [PμM (Pμuμ(s)) − M (u(s))] dW (s).

First, by (2.26) and the induction hypothesis,

‖Δμ
1‖Zs,b(S,S′) ≤ C ‖uμ(S) − u(S)‖L2(Ω,Hs) → 0 as μ → ∞. (6.50)

Second, write

Δμ
2 (t) = Δμ

2,1(t) + Δμ
2,2(t),

where

Δμ
2,1(t) = iPμ

t∫
0

S(t− s)
[
N
(
Θuμ

R (s)Pμuμ(s)
)
− N (Θu

R(s)u(s))
]
ds,

Δμ
2,2(t) = i(Pμ − 1)

t∫
S(t− s)N (Θu

R(s)u(s)) ds.
0
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Estimating as in the proof of Theorem 6, we get

∥∥Δμ
2,1
∥∥
Zs,b(S,S′) ≤ C(1 + R)

p−1
2 δε

∥∥∥PμΘuμ

R uμ − Θu
Ru
∥∥∥
L2(Ω,Xs,b(S,S′))

≤ C(1 + R)
p−1
2 δε

(∥∥∥Pμ

[
Θuμ

R uμ − Θu
Ru
]∥∥∥

L2(Ω,Xs,b(S,S′))

+ ‖(1 − Pμ)Θu
Ru‖L2(Ω,Xs,b(S,S′))

)
≤ C(1 + R)

p−1
2

(
δε ‖uμ − u‖L2(Ω,Xs,b(S,S′)) + ρ(μ, S)

)
,

(6.51)

where

ρ(μ, S) = ‖uμ − u‖L2(Ω,Xs,b(0,S)) + ‖(1 − Pμ)u‖L2(Ω,Xs,b(0,T )) → 0 as μ → ∞, (6.52)

by the induction hypothesis and the dominated convergence theorem. Write Δμ
2,2 =

(1 −Pμ)v, where v ∈ L2 (Ω,Xs,B(0, T )
)
, by the proof of Theorem 6. Then by (2.29) and 

dominated convergence,

∥∥Δμ
2,2
∥∥
Zs,b(S,S′) ≤ C ‖(1 − Pμ)v‖L2(Ω,Xs,B(0,T )) → 0 as μ → ∞. (6.53)

The estimates for Δ2 apply also to Δ3 (with p = 1).
Finally, we split

Δμ
4 (t) = Δμ

4,1(t) + Δμ
4,2(t) + Δμ

4,3(t),

where

Δμ
4,1(t) = i

t∫
S

S(t− s)PμM (Pμ [uμ − u] (s)) dW (s),

Δμ
4,2(t) = i

t∫
S

S(t− s)PμM ([Pμ − 1]u(s)) dW (s),

Δμ
4,3(t) = i

t∫
S

S(t− s) (Pμ − 1)M (u(s)) dW (s).

Then as the proof of Theorem 6, and using the boundedness of Pμ,

∥∥Δμ
4,1
∥∥
Zs,b(S,S′) ≤ Cδb ‖uμ − u‖L2(Ω,Xs,b(S,S′)) . (6.54)

By the dominated convergence theorem,
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∥∥Δμ
4,2
∥∥
Zs,b(S,S′) ≤ C ‖(1 − Pμ)u‖L2(Ω,Xs,b(0,T )) → 0 as μ → ∞. (6.55)

By (6.26) and Lemma 17,

∥∥Δμ
4,3
∥∥
Zs,b(S,S′) ≤ CE

⎛⎝ T∫
0

‖(1 − Pμ)M(u(s))‖2
L2(K,Hs) ds

⎞⎠→ 0 as μ → ∞, (6.56)

using (6.47) and the dominated convergence theorem.
Combining (6.50)–(6.56), we conclude that

‖uμ − u‖Zs,b(S,S′) ≤
1
2 ‖uμ − u‖Zs,b(S,S′) + o(1) as μ → ∞,

for δ = S′ − S small enough. Together with the induction hypothesis this implies (6.49)
on the interval [0, S′], and by induction we then obtain the convergence on the whole 
interval [0, T ]. This completes the proof of Theorem 7.

6.10. Proof of Theorem 1

For the convenience of the reader, we now show exactly how the abstract framework 
applies to prove our first main result, Theorem 1, except for the charge conservation, 
which is proved in the next section.

Taking d = 1 and n = 3, we can cast the stochastic DKG system (3.1), (3.2) in the 
form (6.12), with

u =
(
ψ+
ψ−
φ+

)
, u0 =

(
f+
f−
g+

)
, h(ξ) =

( +ξ
−ξ

+ 〈 ξ 〉

)
, S(t)u0 =

(
S+ξ(t)f+
S−ξ(t)f−
S+〈 ξ 〉(t)g+

)
,

N(u) =

⎛⎝ iφψ−
iφψ+

i 〈Dx 〉−1 Re
(
ψ+ψ−

)
⎞⎠ ,

(−iMψ− −MK1ψ+
−iMψ+ −MK1ψ−

0

)
,

M(u) =

⎛⎝ iψ−K1
iψ+K1

(i/2) 〈Dx 〉−1
φK2

⎞⎠ ,

where φ stands for φ+ + φ+. Let s, r ∈ R and 0 < b < 1/2 be as in Lemma 7, and set 
b′ = −b. Corresponding to s = (s, s, r) we then define the spaces H(s,s,r) and X(s,s,r),b

as in (3.5) and (3.6). Define the Wiener process W (t) using K = L2(R, R) with an 
orthonormal basis {ej}j∈N . Assume that the convolution kernels satisfy k1 ∈ H |s|(R, R)
and k2 ∈ Hmax(0,r−1)(R, R).

The boundedness (6.4) of M is now a consequence of Lemma 6. Concerning N, the 
property (6.5) is obvious, (6.6), (6.7) follow from Lemma 7, and (6.9) holds by Lemma 9, 
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if we take s′ = (s′, s′, r′) with s′ = r′ > max(r, s, 1/2). For L, the bound in (6.8) holds 
by Lemma 8, and the bound in (6.9) is trivial.

So with the above set-up, Theorem 1, with the exception of the charge conservation 
(considered below), follows from Theorems 3 and 4.

7. Charge conservation

Let s = 0 and 0 < r < 1/2. We now prove the statement in Theorem 1 about charge 
conservation of the local solution (ψ+, ψ−, φ), almost surely for 0 ≤ t < τ . Let R > 0. 
As explained in Section 6, the solution equals, up to the conditional stopping time τR, 
the solution (ψR

+, ψ
R
−, φ

R) of the R-truncated problem, obtained in Theorem 6 via the 
set-up in Section 6.10. Since τR → τ as R → ∞, it clearly suffices to prove the charge 
conservation for (ψR

+, ψ
R
−, φ

R).
In the remainder of this section we fix R > 0, and to simplify the notation we drop 

the superscript R on the solution. Thus, (ψ+, ψ−, φ) denotes the global solution of the 
truncated versions of (3.1), (3.2):

ψ±(t) = S±ξ(t)f± − iM

t∫
0

S±ξ(t− s)ψ∓(s) ds + i

t∫
0

S±ξ(t− s)(ΘφΘψ∓)(s) ds

+ i

t∫
0

S±ξ(t− s)ψ∓(s)K1 dW (s) −MK1

t∫
0

S±ξ(t− s)ψ±(s) ds, (7.1)

and

φ+(t) = S+〈 ξ 〉(t)g+ + i

t∫
0

S+〈 ξ 〉(t− s) 〈Dx 〉−1 Re
(
Θψ+Θψ−

)
(s) ds

+ i

2

t∫
0

S+〈 ξ 〉(t− s) 〈Dx 〉−1
φ(s)K2 dW (s). (7.2)

Here φ = 2 Reφ+ and Θ(t) is defined as in (3.12), with s = 0. We assume that θ is even, 
so that Pμf is real-valued if f is.

Set ψ = (ψ+, ψ−) and ψ0 = (f+, f−). We will prove that the charge is almost surely 
conserved:

‖ψ(t)‖2
L2 = ‖ψ0‖2

L2 for t ≥ 0.

To this end, we want to apply Itô’s formula with the functional H : L2(R) → R given by
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H(u) =
∫
R

|u(x)|2 dx.

However, as discussed in Section 6.9, it is necessary to first regularise the problem. So for 
μ ≥ 1 we consider the solution (ψμ

+, ψ
μ
−, φ

μ), obtained in Theorem 7, of the frequency-
truncated equations

ψμ
±(t) = S±ξ(t)Pμf± − iM

t∫
0

S±ξ(t− s)P 2
μψ

μ
∓(s) ds + i

t∫
0

S±ξ(t− s)Pμ

(
ΘPμφ

μ · ΘPμψ
μ
∓
)
(s) ds

+i

t∫
0

S±ξ(t− s)Pμ

(
Pμψ

μ
∓(s)

)
K1 dW (s) −MK1

t∫
0

S±ξ(t− s)P 2
μψ

μ
±(s) ds,

(7.3)

and

φμ
+(t) = S+〈 ξ 〉(t)Pμg+ + i

t∫
0

S+〈 ξ 〉(t− s) 〈Dx 〉−1
Pμ Re

(
ΘPμψ

μ
+ · ΘPμψ

μ
−

)
(s) ds

+ i

2

t∫
0

S+〈 ξ 〉(t− s) 〈Dx 〉−1
Pμ(Pμφ

μ)(s)K2 dW (s), (7.4)

where φμ = 2 Reφμ
+. Set ψμ =

(
ψμ

+, ψ
μ
−
)
. Then by Theorem 7 we have

E

(
sup

t∈[0,T ]

(
‖ψμ(t) − ψ(t)‖2

L2 + ‖φμ(t) − φ(t)‖2
Hr

))
→ 0 as μ → ∞ (7.5)

for any T > 0. Moreover, the spatial Fourier transform of 
(
ψμ

+, ψ
μ
−, φ

μ
)

is supported in 
[−2μ, 2μ].

Notice that H(ψμ) = H(ψμ
+) + H(ψμ

−) and that the first and second derivatives of 
the functional H are given by the linear form H′(u) = 2 Re〈·, u〉L2 and the bilinear form 
H′′(u) = 2 Re〈·, ·〉L2 .

In terms of X±(t) = S±ξ(−t)ψμ
±(t) we can rewrite (7.3) as

X±(t) = X±(0) +
t∫

0

Ψ(s) ds +
t∫

0

Φ(s) dW (s),

where

Ψ(t) = −iMS±ξ(−t)P 2
μψ

μ
∓(t) + iS±ξ(−t)Pμ(ΘPμφ

μ ·ΘPμψ
μ
∓)(t)−MK1S±ξ(−t)P 2

μψ
μ
±(t)
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and

Φ(t) = iS±ξ(−t)Pμ

(
Pμψ

μ
∓(t)

)
K1.

Applying now Itô’s formula, as stated in [17, Theorem 2.10], we get

H(X±(t)) −H(X±(0))

=
t∫

0

H′(X±(s))Ψ(s) ds+
t∫

0

H′(X±(s))Φ(s) dW (s) +
t∫

0

1
2 trH′′(X±(s)) (Φ(s),Φ(s)) ds.

Using the fact that the group S±ξ(t) is unitary on L2(R), the above works out to be

H(ψμ
±(t)) −H(ψμ

±(0))

=
t∫

0

2 Re
〈
−iMP 2

μψ
μ
∓(s) + iPμ(ΘPμφ

μ · ΘPμψ
μ
∓)(s) −MK1P

2
μψ

μ
±(s), ψμ

±(s)
〉
L2 ds

+
t∫

0

2 Re
〈
iPμ

(
Pμψ

μ
∓(s)

)
K1·, ψμ

±(s)
〉
L2 dW (s)

+
t∫

0

∞∑
j=1

Re
〈
iPμ(Pμψ

μ
∓(s))K1ej , iPμ(Pμψ

μ
∓(s))K1ej

〉
L2 ds

= I± + II± + III±.

Since M, MK1 ∈ R, Pμφ
μ and Θ are real-valued, and Pμ is hermitian, it is clear that

I+ + I− = −MK12 Re
t∫

0

(〈
Pμψ

μ
+(s), Pμψ

μ
+(s)

〉
L2 +

〈
Pμψ

μ
−(s), Pμψ

μ
−(s)

〉
L2

)
ds.

Thus

I+ + I− = −2MK1

t∫
0

‖Pμψ
μ(s)‖2

L2 ds = −
t∫

0

‖(Pμψ
μ(s))K1‖2

L2
ds,

where L2 = L2(L2, L2) and the last equality holds by Remark 2, since 2MK1 = ‖k1‖2
L2 . 

Next we notice that

II± = −2
∞∑
j=1

t∫
Im
〈
(Pμψ

μ
∓(s))K1ej , Pμψ

μ
±(s)

〉
L2 dBj(s).
0
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Thus II+ + II− = 0, since K1ej is a real-valued function. Finally we notice that

III± =
t∫

0

∥∥Pμ(Pμψ
μ
∓(s))K1

∥∥2
L2

ds,

hence

III+ + III− =
t∫

0

‖Pμ(Pμψ
μ(s))K1‖2

L2
ds,

where the operator inside the norm is regarded as a composition of three operators (first 
apply K1, then multiplication by Pμψ

μ and finally Pμ).
Summing the contributions, we arrive at

H(ψμ(t)) −H(ψμ(0)) =
t∫

0

(
‖Pμ(Pμψ

μ(s))K1‖2
L2

− ‖(Pμψ
μ(s))K1‖2

L2

)
ds, (7.6)

and letting μ → ∞ we get the charge conservation for ψ,

H(ψ(t)) −H(ψ(0)) = 0 for all t ≥ 0.

Indeed, let T > 0. By (7.5) we know that for some sequence μk → ∞ as k → ∞, we 
have, almost surely,

sup
t∈[0,T ]

‖ψμk(t) − ψ(t)‖L2 → 0 as k → ∞.

Thus, along μ = μk, the left hand side of (7.6) converges to H(ψ(t)) − H(ψ(0)) for 
0 ≤ t ≤ T . Moreover, the right hand side converges to zero by the dominated convergence 
theorem. Indeed, for μ large enough we have the bounds, uniformly in s ∈ [0, T ],

‖Pμ(Pμψ
μ(s))K1‖L2

≤ ‖(Pμψ
μ(s))K1‖L2

≤ ‖ψμ(s)‖L2 ‖k1‖L2 ≤ (‖ψ(s)‖L2 + 1) ‖k1‖L2 ,

and

0 ≤ ‖(Pμψ
μ(s))K1‖L2

− ‖Pμ(Pμψ
μ(s))K1‖L2

≤ C
(
‖ψ(s)‖L2 + 1

)
‖(1 − Pμ)(Pμψ

μ(s))K1‖L2
,

so it only remains to check that ‖(1 − Pμ)(Pμψ
μ(s))K1‖L2

tends to zero along μ = μk as 
k → ∞. But

‖(1 − Pμ)(Pμψ
μ(s))K1‖L2

≤ ‖(1 − Pμ)ψ(s)K1‖L2
+ ‖(1 − Pμ)(Pμψ

μ(s) − ψ(s))K1‖L2

≤ ‖(1 − Pμ)ψ(s)K1‖L2
+ ‖(Pμψ

μ(s) − ψ(s))K1‖L2
,
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since ‖1 − Pμ‖ ≤ 1. Now the first term ‖(1 − Pμ)ψ(s)K1‖L2
→ 0 by (6.47), and the last 

term equals

‖Pμψ
μ(s) − ψ(s)‖L2 ‖k1‖L2 ≤ ‖ψμ(s) − ψ(s)‖L2 ‖k1‖L2 + ‖(Pμ − 1)ψ(s)‖L2 ‖k1‖L2

that tends to zero along μ = μk as k → ∞. This concludes the proof of charge conserva-
tion.

8. Global existence

This section is devoted to the proof of Theorem 2. So we suppose now

s = 0, 1
4 < r <

1
2 , max(r, 1 − 2r) < b < 1/2. (8.1)

Fix some Lebesgue exponent

p ≥ max
(

4, 2b + 2r − 1
b + 2r − 1

)
and assume f± ∈ Lp

(
Ω, L2), as well as g+ ∈ L2(Ω, Hr).

Consider the local solution (ψ+, ψ−, φ+) from Theorem 1, existing up to the stopping 
time τ . For R ≥ 1 let (ψR

+, ψ
R
−, φ

R
+) be the solution of the truncated problem (7.1), 

(7.2), obtained in Theorem 6; it equals (ψ+, ψ−, φ+) up to the stopping time τR, which 
increases to τ as R → ∞. As proved in the last section, we have almost surely the 
conservation of charge,∥∥ψR

+(t)
∥∥2
L2 +

∥∥ψR
−(t)

∥∥2
L2 = ‖ψ0‖2

L2 for all t ≥ 0. (8.2)

And by (6.23) we have

τ < ∞ =⇒
∥∥ψR

+
∥∥
X0,b

+ξ (0,τR) +
∥∥ψR

−
∥∥
X0,b

−ξ (0,τR) +
∥∥φR

+
∥∥
Xr,b

+〈 ξ 〉(0,τR) ≥ C
√
R for all R,

(8.3)
where C depends only on b.

We now claim that for all R, T ≥ 1 we have bounds∥∥φR
+
∥∥
L2
(
Ω,Xr,b

+〈 ξ 〉(0,T )
) ≤ C(T )

(
‖g+‖L2(Ω,Hr) + ‖ψ0‖2

L4(Ω,L2)

)
(8.4)

and ∥∥ψR
±
∥∥
L1
(
Ω,X0,b

±ξ (0,T )
) ≤ C

(
T, ‖g+‖L2(Ω,Hr) , ‖ψ0‖Lp(Ω,L2)

)
, (8.5)

which are uniform in R. That is, the right hand sides do not depend on R. Note that by 
Hölder’s inequality, (8.4) implies the L1(Ω)-bound
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∥∥φR
+
∥∥
L1
(
Ω,Xr,b

+〈 ξ 〉(0,T )
) ≤ C(T )

(
‖g+‖L2(Ω,Hr) + ‖ψ0‖2

L4(Ω,L2)

)
. (8.6)

Granting the above claim for the moment, then we can almost surely exclude the 
scenario τ < ∞, as follows. Since {τ < ∞} =

⋃∞
T=1{τ < T}, it suffices to check that 

P ({τ < T}) = 0 for all T ≥ 0. But (8.3) implies that∥∥ψR
+
∥∥
L1
(
Ω,X0,b

+ξ (0,T )
) +
∥∥ψR

−
∥∥
L1
(
Ω,X0,b

−ξ (0,T )
) +
∥∥φR

+
∥∥
L1
(
Ω,Xr,b

+〈 ξ 〉(0,T )
) ≥ C

√
RP ({τ < T})

for all R ≥ 1. So if P ({τ < T}) > 0, then letting R → ∞ we get a contradiction to (8.6)
and (8.5).

It remains to prove the claim. Fix R, T ≥ 1. We first prove (8.4). Here we follow the 
proof of the bound (6.18) in Theorem 6, but with one crucial difference: to ensure that 
the bounds are uniform in R, we have to avoid using the cutoff bound (6.36) at any 
point.

We cut [0, T ] into small subintervals [0, δ], [δ, 2δ] etc. Fix now a subinterval [S, S′], 
S′ = S + δ. Recall that φR

+ satisfies (7.2), which we rewrite as

φR
+(t) = S+〈 ξ 〉(t− S)φR

+(S) + ΦS(t) + ΨS(t)

where

ΦS(t) = i

t∫
S

S+〈 ξ 〉(t− s) 〈Dx 〉−1 Re
(
ΘψR

+ΘψR
−

)
(s) ds,

Θ(t) = θR

(∥∥ψR
+
∥∥2
X̃0,b

+ξ (0,t) +
∥∥ψR

−
∥∥2
X̃0,b

−ξ (0,t) +
∥∥φR

+
∥∥2
X̃r,b

+〈 ξ 〉(0,t)

)
and

ΨS(t) = i

2

t∫
S

S+〈 ξ 〉(t− s) 〈Dx 〉−1
φR(s)K2 dW (s).

Write ∥∥φR
+
∥∥
Z(S,S′) =

∥∥φR
+
∥∥
L2
(
Ω,Xr,b

+〈 ξ 〉(S,S′)
) +
∥∥φR

+
∥∥
L2(Ω,C([S,S′],Hr))

As in the proof of Theorem 6 we obtain (using Corollary 3)

‖ΨS‖Z(S,S′) ≤ Cδb
∥∥φR

+
∥∥
Z(S,S′) .

So taking δ small enough, depending on b, we get, using also (2.26) and (2.29),

∥∥φR
+
∥∥

′ ≤ C
(∥∥φR

+(S)
∥∥

2 r + ‖ΦS‖L2(Ω,Xr,1 (S,S′))

)
.

Z(S,S ) L (Ω,H ) +〈 ξ 〉
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By (2.27), and using |Θ| ≤ 1, we get, almost surely,

‖ΦS‖Xr,1
+〈 ξ 〉(S,S′) ≤ C

∥∥∥ψR
+ψR

−

∥∥∥
L2

t ((S,S′),Hr−1)
≤ C

√
δ ‖ψ0‖2

L2 ,

where we used the Sobolev product law (2.13), (2.14), and the conservation of charge 
(8.2). So we conclude that on each subinterval [S, S′] = [nδ, (n + 1)δ] we have

∥∥φR
+
∥∥
Z(nδ,(n+1)δ) ≤ C

(∥∥φR
+(nδ)

∥∥
L2(Ω,Hr) +

√
δ ‖ψ0‖2

L4(Ω,L2)

)
.

For n = 0, φR
+(nδ) = g+, while for n ≥ 1,∥∥φR

+(nδ)
∥∥
L2(Ω,Hr) ≤

∥∥φR
+
∥∥
Z((n−1)δ,nδ)

It follows that∥∥φR
+
∥∥
Z(nδ,(n+1)δ) ≤ Cn+1 ‖g+‖L2(Ω,Hr) +

(
C + C2 + · · · + Cn+1)√δ ‖ψ0‖2L4(Ω,L2) for n = 0, . . . , T/δ.

Summing over the subintervals now yields (8.4).
With (8.4) in hand, we now prove (8.5). The field ψR

± satisfies (7.1), which we write 
here as

ψR
±(t) = S±ξ(t)f± +

4∑
j=1

Ψj,±(t)

with

Ψ1,±(t) = −iM

t∫
0

S±ξ(t− s)ψR
∓(s) ds,

Ψ2,±(t) = −MK1

t∫
0

S±ξ(t− s)ψR
±(s) ds,

Ψ3,±(t) = i

t∫
0

S±ξ(t− s)ψR
∓(s)K1 dW (s),

Ψ4,±(t) = i

t∫
0

S±ξ(t− s)
(
ΘφRΘψR

∓
)
(s) ds.

In the estimates for these terms, we use the bounds (2.26) and (2.27) on a time interval 
[0, T ] with T ≥ 1, hence the factors 

√
T and T 3/2 come up. By (2.26),

‖S±ξ(t)f±‖L1
(
Ω,X0,b(0,T )

) ≤ C
√
T ‖ψ0‖L1(Ω,L2) ≤ C

√
T ‖ψ0‖L2(Ω,L2) . (8.7)
±ξ
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By (2.27) and the charge conservation (8.2),

‖Ψ1,±‖L1
(
Ω,X0,b

±ξ (0,T )
) ≤ CMT 3/2 ∥∥ψR

∓
∥∥
L1
(
Ω,X0,0

±ξ (0,T )
) = CMT 3/2 ∥∥ψR

∓
∥∥
L1(Ω,L2((0,T )×R))

≤ CMT 2 ‖ψ0‖L2(Ω,L2) ,

(8.8)
and similarly for Ψ2,±. Applying Lemma 17 with the operator M1(f) = fK1, which by 
Remark 2 satisfies ‖M1(f)‖L2(L2,L2) = ‖f‖L2 ‖k1‖L2 , we get

‖Ψ3,±‖L1
(
Ω,X0,b

±ξ (0,T )
) ≤ ‖Ψ3,±‖L2

(
Ω,X0,b

±ξ (0,T )
) ≤ C

∥∥ψR
∓
∥∥
L2(Ω,L2((0,T )×R))

≤ C
√
T ‖ψ0‖L2(Ω,L2) .

(8.9)

By (2.27) with the time regularity 1 − b > 1/2 on the left hand side,

‖Ψ4,±‖X0,b
±ξ (0,T ) ≤ CT 3/2 ∥∥ΘφRΘψR

∓
∥∥
X0,−b

±ξ (0,T ) .

Note that (8.1) implies 1/2 − r < b/2 < b. So if one defines μ by

1
2 − r = μb,

then 0 < μ < 1/2, and we find ourselves in the assumption of Corollary 2. Therefore, 
one can bound the norm on the right hand side as∥∥ΘφRΘψR

∓
∥∥
X0,−b

±ξ (0,T ) ≤ C
∥∥ΘφR

+
∥∥
Xr,b

+〈 ξ 〉(0,T )

∥∥ΘψR
∓
∥∥μ
X0,b

∓ξ (0,T )

∥∥ΘψR
∓
∥∥1−μ

L2((0,T )×R) ,

where the last norm ∥∥ΘψR
∓
∥∥
L2((0,T )×R) ≤

√
T ‖ψ0‖L2

by charge conservation and the bound |Θ| ≤ 1. The first two norms are estimated as∥∥ΘφR
+
∥∥
Xr,b

+〈 ξ 〉(0,T ) ≤ C(T )
∥∥φR

+
∥∥
Xr,b

+〈 ξ 〉(0,T ) ,
∥∥ΘψR

∓
∥∥
X0,b

∓ξ (0,T ) ≤ C(T )
∥∥ψR

∓
∥∥
X0,b

∓ξ (0,T ) ,

where we used (6.37) (with v = 0) to dispose of the cutoff in front of φR
+ and ψR

+ (this is 
why there appears a constant C(T ) depending on T ). Combining the above estimates, 
we have

‖Ψ4,±‖X0,b
±ξ (0,T ) ≤ C(T )

∥∥φR
+
∥∥
Xr,b

+〈 ξ 〉(0,T )

(√
T ‖ψ0‖L2

)1−μ ∥∥ψR
∓
∥∥μ
X0,b

∓ξ (0,T ) .

Now write

1 = 1 + 1 − μ + μ, where q = 1 − μ = 2b + 2r − 1
.
2 q 1/2 − μ b + 2r − 1
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Then by Hölder’s inequality,

‖Ψ4,±‖L1
(
Ω,X

0,b
±ξ (0,T )

) ≤ C(T )T (1−μ)/2
∥∥∥φR

+

∥∥∥
L2
(
Ω,X

r,b
+〈 ξ 〉(0,T )

) ‖ψ0‖1−μ
Lq(Ω,L2)

∥∥∥ψR
∓

∥∥∥μ
L1
(
Ω,X

0,b
∓ξ (0,T )

) ,
(8.10)

Note that q ≤ p, so that we can replace Lq by Lp in the last estimate.
So finally, combining (8.7)–(8.10), making use of (8.4), and setting

f(T ) =
∥∥ψR

+
∥∥
L1
(
Ω,X0,b

+ξ (0,T )
) +
∥∥ψR

−
∥∥
L1
(
Ω,X0,b

−ξ (0,T )
) ,

we deduce that for all T ≥ 1 holds

f(T ) ≤ CT ‖ψ0‖L2(Ω,L2) + C(T )A(T )T (1−μ)/2 ‖ψ0‖1−μ
Lp(Ω,L2) [f(T )]μ ,

where A(T ) stands for the expression on the right hand side of (8.4). Recalling that 
0 < μ < 1/2, we conclude that

f(T ) ≤ CT (1 + C(T )A(T ))
(
1 + ‖ψ0‖Lp(Ω,L2)

)(
1 +
√
f(T )

)
for all T ≥ 1. By the next lemma, we then get (8.5), and this concludes the proof of 
global existence.

Lemma 18. If a, b ∈ [0, ∞) satisfy

b ≤ a
(
1 +

√
b
)
, (8.11)

then

b < 1 + 4a2.

Proof. To get a contradiction, assume that b ≥ 1 + 4a2. Then b ≥ 1, so (8.11) implies 
b ≤ a2

√
b, hence b ≤ 4a2, contradicting our assumption. �

9. Bourgain isometry

This section is devoted to the proof of Lemma 4. We start with a very general result 
related to Bochner spaces. It may be difficult to find it in the existing literature, so we 
provide here a complete proof.

Lemma 19. Let μ be a σ-finite complete measure on Y and G be a separable Banach 
space. Consider a closed subspace G0 in G with the quotient projection π0 : G → G/G0. 
The trivial case G0 = G is excluded, of course. Then there exists a unique linear operator 
Φ making the following diagram commutative:
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Lp(Y, μ;G) Lp(Y, μ;G)/Lp(Y, μ;G0)

Lp(Y, μ;G/G0)

P

π:f �→
(
y �→π0(f(y))

)
Ψ=Φ−1

Φ (9.1)

where P is the quotient projection and p ∈ [1, ∞). Moreover, Φ is invertible and ‖Φ‖ =∥∥Φ−1
∥∥ = 1.

Proof. We split the proof in several steps starting with the implied correctness of the 
diagram (9.1).

(1) Clearly, Lp(Y, μ; G0) is a closed subspace in Lp(Y, μ; G). Hence P is well defined as 
the corresponding quotient projection, in particular, ‖P‖ = 1.

(2) For any f ∈ Lp(Y, μ; G) the value π(f) is the composition Y
f−→ G 

π0−→ G/G0. Here 
G and G/G0 are endowed with the Borel σ-algebras, whereas f is measurable and 
π0 is continuous. Therefore π(f) is measurable. Moreover, π is linear with ‖π‖ � 1. 
Indeed,

‖πf‖pLp(Y,μ;G/G0) =
∫
Y

‖π0f(y)‖pG/G0
dμ(y) �

∫
Y

‖f(y)‖pG dμ(y) = ‖f‖pLp(Y,μ;G) .

(3) An important claim implied in the statement is surjectivity of π. Let h ∈
Lp(Y, μ; G/G0). We need to find an f ∈ Lp(Y, μ; G) such that πf = h. A direct point-
wise construction may not necessarily lead even to a measurable function f on Y . So 
we approximate h by a sequence hn, n ∈ N, of simple functions in Lp(Y, μ; G/G0). 
Then for any y ∈ Y and n ∈ N there is fn(y) ∈ G such that π0(fn(y)) = hn(y) and 
fn is simple. Note that fn may not converge anywhere. Let us choose a subsequence 
in {hn}, while keeping the same notation, such that

∞∑
n=1

‖hn+1 − hn‖Lp(Y,μ;G/G0) < ∞.

Making use of the fact that μ is σ-finite, that is Y =
∞⋃
k=1

Yk with disjoint Yk having 

μ(Yk) < ∞, we can introduce a measurable function χ : Y → (0, ∞) taking at most 
countably many values (in fact we need below that it is constant on each Yk) and 
normalized by 

∫
χdμ = 1. Pointwisely, we have

‖hn+1(y) − hn(y)‖G/G0
= inf {‖F‖G : F − (fn+1(y) − fn(y)) ∈ G0} .

Now let 
{
Y n
ln

}
be the partition associated with hn. Then for each n ∈ N we can 

approximate the infimum on the finest partition 
{
Y n+1
l

⋂
Y n
l

⋂
Yk

}
of Y as follows
n+1 n



64 E. Dinvay, S. Selberg / Journal of Functional Analysis 287 (2024) 110565
‖hn+1(y) − hn(y)‖pG/G0
+ χ(y)

2pn > ‖Fn(y)‖pG ,

where Fn(y) − (fn+1(y) − fn(y)) ∈ G0 and Fn is constant on each Y n+1
ln+1

⋂
Y n
ln

⋂
Yk. 

One sets F0 = f1 and so πF0 = h1, in particular. Integrating the above inequality 
one obtains the estimate

‖hn+1 − hn‖Lp(Y,μ;G/G0) + 1
2n � ‖Fn‖Lp(Y,μ;G) ,

implying

∞∑
n=1

‖Fn‖Lp(Y,μ;G) �
∞∑

n=1
‖hn+1 − hn‖Lp(Y,μ;G/G0) + 1 < ∞.

Thus 
∑∞

n=0 Fn converges in Lp(Y, μ; G) to an F satisfying πF = h. Indeed,

π

(
N∑

n=0
Fn

)
=

N∑
n=1

(hn+1 − hn) + h1 = hN+1 → h as N → ∞.

Therefore π is surjective.
(4) Finally, we can define the linear mappings Φ and Ψ in the diagram (9.1). Indeed, by 

the previous step for any h ∈ Lp(Y, μ; G/G0) there is an fh ∈ Lp(Y, μ; G) such that 
πfh = h. We set Φ(h) = Pfh. If we have two elements such that πf1

h = πf2
h = h

then ∫
Y

∥∥π0f
1
h(y) − π0f

2
h(y)

∥∥p
G/G0

dμ(y) =
∥∥πf1

h − πf2
h

∥∥p
Lp(Y,μ;G/G0)

= 0.

Hence for a.e. y the difference f1
h(y) − f2

h(y) ∈ G0 and so f1
h − f2

h ∈ Lp(Y, μ; G0)
implying the equality Pf1

h = Pf2
h in Lp(Y, μ; G)/Lp(Y, μ; G0). Thus Φ is a well 

defined linear operator.
Similarly, for any h ∈ Lp(Y, μ; G)/Lp(Y, μ; G0) there is obviously an fh ∈ Lp(Y, μ; G)
such that Pfh = h. We can set Ψ(h) = πfh. If we have two elements satisfying 
Pf1

h = Pf2
h = h then their difference f1

h − f2
h ∈ Lp(Y, μ; G0). Hence for a.e. y the 

difference f1
h(y) − f2

h(y) ∈ G0 and so(
πf1

h − πf2
h

)
(y) = π0

(
f1
h(y) − f2

h(y)
)

= 0 in G/G0

implying the equality πf1
h = πf2

h in Lp(Y, μ; G/G0). Thus Ψ is well defined as well.
(5) Clearly, so defined Φ and Ψ are the only linear operators making the diagram (9.1)

commutative. Moreover, it is straightforward to check that the compositions ΨΦ
and ΦΨ are identities in the spaces Lp(Y, μ; G/G0) and Lp(Y, μ; G)/Lp(Y, μ; G0), 
respectively. Therefore Ψ = Φ−1.
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(6) In this step we prove the bound ‖Ψ‖ � 1 which in turn will automatically imply 
that Φ is bounded as well and ‖Φ‖ � 1. Let h ∈ Lp(Y, μ; G)/Lp(Y, μ; G0) then by 
steps 2, 4 we have

‖Ψh‖Lp(Y,μ;G/G0) = ‖πfh‖Lp(Y,μ;G/G0) � ‖fh‖Lp(Y,μ;G) .

In other words, ‖Ψh‖Lp(Y,μ;G/G0) � ‖f‖Lp(Y,μ;G) for every f belonging to the preim-
age P−1{h}. Therefore passing to infimum over this preimage one recovers the 
quotient norm of h, so that ‖Ψh‖Lp(Y,μ;G/G0) � ‖h‖Lp(Y,μ;G)/Lp(Y,μ;G0), which proves 
the claim ‖Ψ‖ � 1 due to the arbitrary choice of h.

(7) In order to complete the proof of the lemma it is only left to get the bound 
‖Φ‖ � 1. Here we need to be careful again about measurability of pointwise quotient 
norm approximations. So we will check that the bound ‖Φh‖Lp(Y,μ;G)/Lp(Y,μ;G0) �
‖h‖Lp(Y,μ;G/G0) holds for every simple h. It is enough since Φ is already known to 
be bounded, by the previous step.
Similarly to the previous step, from the identity ‖P‖ = 1 one deduces

‖Φh‖Lp(Y,μ;G)/Lp(Y,μ;G0) � ‖f‖Lp(Y,μ;G) , f ∈ π−1{h}. (9.2)

Let ε > 0 and function χ be as in step 3. Then

‖h‖pLp(Y,μ;G/G0) + ε =
∫
Y

(
inf

g∈π−1
0 {h(y)}

‖g‖pG + εχ(y)
)
dμ(y),

and so there exists gε : Y → G such that

inf
g∈π−1

0 {h(y)}
‖g‖pG + εχ(y) � ‖gε(y)‖pG , π0(gε(y)) = h(y)

and it takes at most countably many values, its partition being the finest one for h
and χ. In particular, gε ∈ Lp(Y, μ; G) and π(gε) = h, which because of (9.2) implies

‖Φh‖pLp(Y,μ;G)/Lp(Y,μ;G0) � ‖gε‖pLp(Y,μ;G) � ‖h‖pLp(Y,μ;G/G0) + ε.

Passing to the limit one obtains ‖Φh‖Lp(Y,μ;G)/Lp(Y,μ;G0) � ‖h‖Lp(Y,μ;G/G0), com-
pleting the proof. �

We formulate the following simple lemma, that can be either found in [22] or easily 
proved with the help of an argument similar to one used in step 6 of the previous proof.

Lemma 20. Consider nontrivial closed subspaces E0, F0 in normed spaces E, F , respec-
tively. Let T : E → F be a linear bounded operator satisfying T (E0) ⊂ F0. Then there 
exists a unique linear T̃ making the following diagram commutative:
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E F

E/E0 F/F0

T

P1 P2

T̃

(9.3)

Moreover, 
∥∥∥T̃ ∥∥∥ � ‖T ‖.

We take E = Xs,b
h(ξ), Y = Rd, dμ(ξ) = 〈ξ〉2sdξ, G = Hb(R) and F =

L2 (Rd, 〈ξ〉2sdξ;Hb(R)
)
. We introduce T as the isometric extension of eith(ξ)Fx defined 

on the Schwartz space S
(
Rd+1) with the property (2.19), so that

‖u‖2
Xs,b

h(ξ)
=
∫

〈ξ〉2s ‖T u(ξ)‖2
Hb(R) dξ. (9.4)

Now let us consider an interval I = (S, T ) and the closed subspaces
G0 =

{
u ∈ Hb(R) : u = 0 on I

}
, E0 =

{
u ∈ Xs,b

h(ξ) : u = 0 on I ×Rd
}

. It is known that 
Hb(I) = Hb(R)/G0 and Xs,b

h(ξ)(I) = Xs,b
h(ξ)/E0 endowed with the quotient norms, of 

course. We claim that there exists a unique invertible isometry T̃ making the following 
diagram commutative

Xs,b
h(ξ) L2 (Rd, 〈ξ〉2sdξ;Hb(R)

)
L2 (Rd, 〈ξ〉2sdξ;Hb(I)

)

Xs,b
h(ξ)(I) L2 (Rd, 〈ξ〉2sdξ;Hb(R)

)
/L2 (Rd, 〈ξ〉2sdξ;G0

)
T =eith(ξ)Fx

P1

T −1=F−1
ξ e−ith(ξ)

π

P2

ΦT̃

Φ−1

T̃ −1

(9.5)
This commutative diagram makes a complete sense of and proves the identity (2.34). In 
other words, the term eith(ξ)Fx staying in (2.34) should be understood as the composition 
Φ−1T̃ having operator norm equal to unity, namely,

‖u‖Xs,b
h(ξ)(S,T ) =

(∫
〈ξ〉2s

∥∥∥Φ−1T̃ u(ξ)
∥∥∥2
Hb(S,T )

dξ

)1/2

. (9.6)

In order to appeal to the previous two lemmas, and to prove the claim, one needs only 
to show the inclusions

T (E0) ⊂ L2 (Rd, 〈ξ〉2sdξ;G0
)
, T −1 (L2 (Rd, 〈ξ〉2sdξ;G0

))
⊂ E0.

Moreover, it is enough to check these on the smooth functions, namely, that the following 
hold

T
(
E0
⋂{

φψ : φ ∈ S
(
Rd
)
, ψ ∈ S(R)

})
⊂ L2 (Rd, 〈ξ〉2sdξ;G0

)
,

T −1
({

φψ : φ ∈ S
(
Rd
)
, ψ ∈ S(R)

⋂
G0

})
⊂ E0.
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This is obvious and so (9.5) is commutative. Therefore (9.4), (9.6) and (2.19), (2.34) are 
fully justified.

10. A modified Bourgain norm

In preparation for the proof of the cutoff estimates, we now investigate more closely 
the modified Bourgain norm defined in (2.35), and derive some of its key properties.

Fix s ∈ R, b ∈ (0, 1/2) and h ∈ C(Rd, R). Write the norm (2.17) as

‖u‖Xs,b =

⎛⎝∫
Rd

‖U(t, ξ)‖2
Hb

t (R) dξ

⎞⎠1/2

,

where the transform u(t, x) �→ U(t, ξ) is defined by

U(t, ξ) = 〈 ξ 〉s eith(ξ)û(t, ξ).

By (2.15), the above norm is equivalent to, with constants depending only on b, the norm

‖u‖
X̂s,b :=

⎛⎝∫
Rd

(
‖U(t, ξ)‖2

L2
t (R) + ‖U(t, ξ)‖2

Sb
t (R)

)
dξ

⎞⎠1/2

.

Inserting here the characteristic function 1(S,T )(t) of a time interval (S, T ), we compute

∥∥1(S,T )u
∥∥
X̂s,b =

⎛⎝∫
Rd

⎛⎝ T∫
S

|U(t, ξ)|2
(

1 +
1

b(t− S)2b
+

1
b(T − t)2b

)
dt + ‖U(t, ξ)‖2

Sb
t (S,T )

⎞⎠ dξ

⎞⎠1/2

.

(10.1)
By (2.32), (2.34) the latter is equivalent to, with constants depending only on b, the 
restriction norm

‖u‖Xs,b(S,T ) =

⎛⎝∫
Rd

‖U(t, ξ)‖2
Hb

t (S,T ) dξ

⎞⎠1/2

. (10.2)

The advantage of the norm (10.1) is that it has an explicit expression; there are no 
restriction norms involved. It is still a bit tricky to work with, however. We will use 
instead the simpler, modified norm

‖u‖
X̃s,b(S,T ) =

⎛⎝∫
Rd

⎛⎝ 1
(T − S)2b

T∫
S

|U(t, ξ)|2 dt +
T∫

S

T∫
S

|U(t, ξ) − U(r, ξ)|2
|t− r|1+2b dr dt

⎞⎠ dξ

⎞⎠1/2

,

(10.3)
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which is the same as (2.35), and turns out to be equivalent to the two previous norms.
In fact, we have the following.

Lemma 21. Let T0 > 0 and 0 < b < 1/2. Consider an interval (S, T ) with length at 
most T0. Then the norms defined on Xs,b(S, T ) by (10.1), (10.2) and (10.3) are pairwise 
equivalent, with constants depending only on b and T0.

Moreover, for all T > 0 we have the estimate

‖u‖Xs,b(0,T ) ≥ C ‖u‖
X̃s,b(0,T ) , (10.4)

where C > 0 depends only on b.

Proof. By translation invariance we may consider the interval (0, T ), where 0 < T ≤ T0. 
By (2.32) we already know that (10.1) and (10.2) are equivalent, uniformly in T (of 
any size). The equivalence of (10.1) and (10.3) reduces to proving the equivalence of the 
following norms on Hb(0, T ):

MT (φ) =

⎛⎝ T∫
0

|φ(t)|2
(

1 + 1
bt2b

+ 1
b(T − t)2b

)
dt +

T∫
0

T∫
0

|φ(t) − φ(r)|2

|t− r|1+2b dr dt

⎞⎠1/2

and

NT (φ) =

⎛⎝T−2b
T∫

0

|φ(t)|2 dt +
T∫

0

T∫
0

|φ(t) − φ(r)|2

|t− r|1+2b dr dt

⎞⎠1/2

.

First, since 0 < t < T implies T−2b < t−2b, it is clear that

NT (φ) ≤ b1/2MT (φ) for all T > 0. (10.5)

It remains to show

MT (φ) ≤ CNT (φ).

We claim that this holds for T = T0. Granting this for the moment, it follows that the 
inequality holds also for 0 < T ≤ T0, since setting g(s) = φ (sT/T0) and rescaling yields

MT (φ)2 ≤
(

T

T0

)1−2b

MT0(g)2 ≤ C2
(

T

T0

)1−2b

NT0(g)2 = C2NT (φ)2.

It remains to prove the claim, namely MT0(g) ≤ CNT0(g) for g ∈ Hb(0, T0), with C
depending on T0 and b. But on the one hand, (2.15) implies MT0(g) =

∥∥1(0,T0)g
∥∥

b . 

H (R)
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On the other hand, NT0(g) ∼b,T0 ‖g‖Hb(0,T0) by (2.16). By (2.31) it now follows that 
MT0(g) ∼b,T0 NT0(g).

Finally, (10.4) is immediate from (10.5). This completes the proof of the lemma. �
Before proceeding with the proof of the cutoff estimates, we mention some properties 

of the modified Bourgain norm (10.3).

Lemma 22. Let T0 > 0 and 0 < b < 1/2. Then for all 0 < T ≤ T0 and all u ∈ Xs,b(0, T )
we have the bounds

‖u‖
X̃s,b(r,t) ≤ C ‖u‖

X̃s,b(0,T ) for 0 ≤ r < t ≤ T (10.6)

and

‖u‖
X̃s,b(0,t) ≤ C

(
‖u‖

X̃s,b(0,r) + ‖u‖
X̃s,b(r,t)

)
for 0 ≤ r < t ≤ T, (10.7)

where the constants only depend on b and T0.

Proof. We apply Lemma 21. First, (10.6) follows via the equivalence of (10.3) with the 
restriction norm (10.2), and the fact that the latter is increasing with respect to the 
interval to which we restrict. Second, (10.7) follows via the equivalence of (10.3) with 
the sharp cutoff norm (10.1), writing 1(0,t) = 1(0,r)+1(r,t) (a.e.) and applying the triangle 
inequality. �
Lemma 23. Let 0 < b < 1/2. Assume that u ∈ Xs,b(0, T ) and set

f(t) = ‖u‖2
X̃s,b(0,t) for 0 < t ≤ T .

Then f is continuous on (0, T ]. Moreover, if we additionally assume that u ∈
C([0, T ], Hs), then

lim
t↘0

f(t) = 0,

so f extends to a continuous function on [0, T ].

Proof. For 0 < t ≤ T ,

f(t) = t−2b
t∫

0

‖u(r)‖2
Hs dr +

t∫
0

t∫
0

‖U(r, ξ) − U(σ, ξ)‖2
L2

ξ

|r − σ|1+2b dr dσ. (10.8)

Continuity follows from the dominated convergence theorem. It remains to prove 
limt↘0 f(t) = 0. For the second term in (10.8), this is clear by dominated convergence, 
and the first term we bound by
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t−2b
t∫

0

‖u(r)‖2
Hs dr ≤ t1−2b sup

0≤r≤t
‖u(r)‖2

Hs ,

which tends to zero as t ↘ 0 if u ∈ C([0, T ], Hs). �
Lemma 24. Assume that u ∈ Xs,b(0, T ) ∩C([0, T ], Hs) is an Hs-adapted random variable. 
Then the continuous function f : [0, T ] → [0, ∞) from Lemma 23 is adapted.

Proof. For both terms in (10.8), Ft-measurability follows by Tonelli’s theorem, since u(t)
is progressively measurable. �
11. Cutoff estimates in Hb and Xs,b

Here we prove Proposition 1, which we restate below for convenience. Let 0 < b < 1/2. 
Fix a smooth, compactly supported function θ : R → R, and write θR(x) = θ(x/R).

Via the transform u(t, x) �→ U(t, ξ) = 〈 ξ 〉s eith(ξ)û(t, ξ), and recalling Lemma 21, we 
can identify Xs,b

h(ξ)(S, T ) with the space L2(Rd, Hb(S, T )) with norm (this corresponds 
to (10.3))

‖U‖(S,T ) =

∥∥∥∥∥∥∥
⎛⎝ 1

(T − S)2b

T∫
S

|U(t, ξ)|2 dt +
T∫

S

T∫
S

|U(t, ξ) − U(r, ξ)|2
|t− r|1+2b dr dt

⎞⎠1/2∥∥∥∥∥∥∥
L2

ξ

.

If S = 0, we simply write ‖U‖T . This norm is associated to the inner product

〈U, V 〉T =
∫
Rd

⎛⎝ 1
T 2b

T∫
0

U(t, ξ)V (t, ξ) dt +
T∫

0

T∫
0

[U(t, ξ) − U(r, ξ)] [V (t, ξ) − V (r, ξ)]
|t− r|1+2b dr dt

⎞⎠ dξ.

For a vector U = (U1, . . . , Un) we write

‖U‖T =
(

n∑
i=1

‖Ui‖2
T

)1/2

.

With this notation, and taking into account Lemma 21, we can now restate Proposi-
tion 1 as follows.

Proposition 2. Let T0 > 0. Then for all T ∈ (0, T0] and R > 0 we have the estimates∥∥∥θR (‖U‖2
t

)
U
∥∥∥
T
� C

√
R, (11.1)∥∥∥θR (‖U‖2

t

)
U − θR

(
‖V‖2

t

)
V
∥∥∥
T
� C ‖U − V‖T , (11.2)

where the constant C depends only on b, T0 and θ.
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The remainder of this section is devoted to the proof of this result. For convenience, 
and without loss of generality, we assume that |θ| ≤ 1 and θ is supported in [−2, 2]. 
Throughout we assume that T0 > 0, b ∈ (0, 1/2) and that functions U, V etc. are in 
L2(Rd, Hb(S, T )), and similarly for vectors U, V etc.

We note the bound, for all x, y ∈ R,

|θR(x) − θR(y)| ≤ C

R
|x− y| . (11.3)

This holds with C = ‖θ′‖L∞ .
We first prove some preliminary lemmas.

11.1. Preliminary estimates

Lemma 25. For all T ∈ (0, T0] and R > 0 we have the estimate

∫
Rd

T∫
0

|U(t, ξ)|2
t∫

0

|〈V,W 〉t − 〈V,W 〉r|2

(t− r)1+2b dr dt dξ ≤ C ‖U‖2
T ‖V ‖2

T ‖W‖2
T , (11.4)

where C depends only on b and T0.

Proof. We write

〈V,W 〉t = μ(t) + ν(t),

where

μ(t) = t−2b
∫
Rd

t∫
0

V (s, ζ)W (s, ζ) ds dζ,

ν(t) = 2
∫
Rd

t∫
0

s∫
0

[V (s, ζ) − V (σ, ζ)] [W (s, ζ) −W (σ, ζ)]
(s− σ)1+2b dσ ds dζ.

The left side of (11.4) is therefore bounded by 2(I + J), where

I =
∫
Rd

T∫
0

|U(t, ξ)|2
t∫

0

|μ(t) − μ(r)|2

(t− r)1+2b dr dt dξ,

J =
∫
Rd

T∫
0

|U(t, ξ)|2
t∫

0

|ν(t) − ν(r)|2

(t− r)1+2b dr dt dξ.
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To estimate J we note that

ν(t) − ν(r) = 2
∫
Rd

t∫
r

s∫
0

[V (s, ζ) − V (σ, ζ)] [W (s, ζ) −W (σ, ζ)]
(s− σ)1+2b dσ ds dζ,

so by Cauchy-Schwarz,

|ν(t) − ν(r)|2 ≤ 2
∫
Rd

t∫
r

s∫
0

|V (s, ζ) − V (σ, ζ)|2

(s− σ)1+2b dσ ds dζ

× 2
∫
Rd

t∫
r

s∫
0

|W (s, ζ) −W (σ, ζ)|2

(s− σ)1+2b dσ ds dζ,

where the last line is bounded by ‖W‖2
T . Thus

J ≤ ‖W‖2
T 2
∫
Rd

T∫
0

|U(t, ξ)|2
t∫

0

1
(t− r)1+2b

×

⎛⎝∫
Rd

t∫
r

s∫
0

|V (s, ζ) − V (σ, ζ)|2

(s− σ)1+2b dσ ds dζ

⎞⎠ dr dt dξ, (11.5)

and Lemma 26 below yields the desired estimate J ≤ C ‖U‖2
T ‖V ‖2

T ‖W‖2
T .

In I we split the innermost integral as 
∫ t/2
0 + 

∫ t

t/2 and write I = I1 + I2 accordingly. 
The term I1 is easy to handle since t − r ∼ t. Applying Cauchy-Schwarz and (10.6) to 
bound |μ(t)| ≤ ‖V ‖t ‖W‖t ≤ C ‖V ‖T ‖W‖T , we then simply estimate

I1 ≤ C ‖V ‖2
T ‖W‖2

T

⎛⎝∫
Rd

T∫
0

|U(t, ξ)|2 t−2b dt dξ

⎞⎠ ≤ C ′ ‖V ‖2
T ‖W‖2

T ‖U‖2
T ,

where we used Lemma 21 in the last step.
It remains to consider I2. Writing

μ(t) = t1−2bf(t), where f(t) = 1
t

t∫
0

g(s) ds, g(s) =
∫
Rd

V (s, ζ)W (s, ζ) dζ,

we expand
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μ(t) − μ(r) = (t1−2b − r1−2b)f(t) + r1−2b[f(t) − f(r)]

= (t1−2b − r1−2b)f(t) + r1−2b

⎡⎣(1
t
− 1

r

) r∫
0

g(s) ds + 1
t

t∫
r

g(s) ds

⎤⎦
= t1−2b − r1−2b

t1−2b μ(t) + r − t

t
μ(r) + r1−2b

t

t∫
r

g(s) ds

=: Δ1 + Δ2 + Δ3.

Thus I2 ≤ 3(K1 + K2 + K3), where

Kj =
∫
Rd

T∫
0

|U(t, ξ)|2
t∫

t/2

Δ2
j

(t− r)1+2b dr dt dξ (j = 1, 2, 3).

For K2 we use once more the bound |μ(r)| ≤ C ‖V ‖T ‖W‖T and get

K2 ≤ C ‖V ‖2
T ‖W‖2

T

∫
Rd

T∫
0

|U(t, ξ)|2 t−2

⎛⎜⎝ t∫
t/2

(t− r)1−2b dr

⎞⎟⎠ dt dξ

≤ C ′ ‖V ‖2
T ‖W‖2

T

∫
Rd

T∫
0

|U(t, ξ)|2 t−2b dt dξ ≤ C ′′ ‖V ‖2
T ‖W‖2

T ‖U‖2
T .

The same bound is obtained for K1, since there t1−2b − r1−2b ∼ t−2b(t − r).
For K3 we bound, by Cauchy-Schwarz,

(t− r)−2b
t∫

r

|g(s)| ds ≤ ‖V ‖(r,t) ‖W‖(r,t) ≤ C ‖V ‖T ‖W‖T ,

where the last inequality follows from (10.6). Thus

K3 ≤ C ‖V ‖2
T ‖W‖2

T

∫
Rd

T∫
0

|U(t, ξ)|2 t−4b

⎛⎜⎝ t∫
t/2

(t− r)2b−1 dr

⎞⎟⎠ dt dξ

≤ C ′ ‖V ‖2
T ‖W‖2

T

∫
Rd

T∫
0

|U(t, ξ)|2 t−2b dt dξ ≤ C ′′ ‖V ‖2
T ‖W‖2

T ‖U‖2
T .

This completes the proof of the lemma. �
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The following lemma was used in the above proof.

Lemma 26. For all T ∈ (0, T0] and R > 0 we have the estimate

∫
Rd

T∫
0

|U(t, ξ)|2
t∫

0

1
(t− r)1+2b

⎛⎝∫
Rd

t∫
r

s∫
0

|V (s, ζ) − V (σ, ζ)|2

(s− σ)1+2b dσ ds dζ

⎞⎠ dr dt dξ

≤ C ‖U‖2
T ‖V ‖2

T ,

with a constant C depending only on b and T0.

Proof. Here 0 < r < s < t < T and 0 < σ < s. Rearranging the order of the integrations, 
we rewrite the integral as

∫
Rd

T∫
0

s∫
0

⎛⎝∫
Rd

T∫
s

|U(t, ξ)|2
⎛⎝ s∫

0

dr

(t− r)1+2b

⎞⎠ dt dξ

⎞⎠ |V (s, ζ) − V (σ, ζ)|2

(s− σ)1+2b dσ ds dζ

≤
∫
Rd

T∫
0

s∫
0

⎛⎝∫
Rd

T∫
s

|U(t, ξ)|2 1
2b(t− s)2b dt dξ

⎞⎠ |V (s, ζ) − V (σ, ζ)|2

(s− σ)1+2b dσ ds dζ.

But by Lemma 21 and (10.6),

∫
Rd

T∫
s

|U(t, ξ)|2 1
2b(t− s)2b dt dξ ≤ C ‖U‖2

(s,T ) ≤ C ‖U‖2
T ,

and the claimed inequality then follows. �
We will also need the following double mean value theorem.

Lemma 27. For all x, y, X, Y ∈ R,

|θ(x) − θ(y) − θ(X) + θ(Y )|
≤ ‖θ′′‖L∞ min (|x− y| , |X − Y |)max (|x−X| , |y − Y |) + ‖θ′‖L∞ |x− y −X + Y | .

Proof. Fix x, y, X, Y . By symmetry we may assume |x− y| ≤ |X − Y |. Defining κ(t) =
y + t(x − y) and ρ(t) = Y + t(X − Y ), we write

θ(x) − θ(y) =

⎛⎝ 1∫
θ′ (κ(t)) dt

⎞⎠ (x− y) =: I1(x− y)

0
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and

θ(X) − θ(Y ) =

⎛⎝ 1∫
0

θ′ (ρ(t)) dt

⎞⎠ (X − Y ) =: I2(X − Y ).

Then

θ(x) − θ(y) − θ(X) + θ(Y ) = (I1 − I2)(x− y) + I2(x− y −X + Y ).

Clearly, |I2| ≤ ‖θ′‖L∞ , so it only remains to check that

|I1 − I2| ≤ ‖θ′′‖L∞
1
2 (|x−X| + |y − Y |) .

But this is clear since

I1 − I2 =
1∫

0

⎛⎝ 1∫
0

θ′′ (ρ(t) + s [κ(t) − ρ(t)]) ds

⎞⎠ [κ(t) − ρ(t)] dt

and

|κ(t) − ρ(t)| = |y − Y + t(x− y −X + Y )| ≤ (1 − t) |y − Y | + t |x−X| . �
With these preliminary results in hand, we are now ready to start the proof of Propo-

sition 2. We split the argument into several steps.

11.2. Cutoff estimate, version I

Lemma 28. For all T ∈ (0, T0] and R > 0 we have the estimate∥∥∥θR (‖U‖2
t

)
V
∥∥∥
T
≤ C

(
1 + R−1 ‖U‖2

T

)
‖V ‖T , (11.6)

with a constant C depending only on b and T0.

Proof. Setting ψ(t) = θR(‖U‖2
t ), the square of the left side of (11.6) equals A + 2B, 

where

A =
∫
Rd

T−2b
T∫

0

|ψ(t)V (t, ξ)|2 dt dξ,

B =
∫
Rd

T∫
0

t∫
0

|ψ(t)V (t, ξ) − ψ(r)V (r, ξ)|2

(t− r)1+2b dr dt dξ,
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and |ψ(t)| ≤ 1 implies A ≤ ‖V ‖2
T . Clearly, B ≤ 2(B1 + B2), where

B1 =
∫
Rd

T∫
0

t∫
0

|ψ(r)|2 |V (t, ξ) − V (r, ξ)|2

(t− r)1+2b dr dt dξ,

B2 =
∫
Rd

T∫
0

|V (t, ξ)|2
t∫

0

|ψ(t) − ψ(r)|2

(t− r)1+2b dr dt dξ,

where |ψ(r)| ≤ 1 implies B1 ≤ ‖vj‖2
T . In B2 we estimate, using (11.3),

|ψ(t) − ψ(r)| ≤ C

R

∣∣∣‖U‖2
t − ‖U‖2

r

∣∣∣ , (11.7)

and obtain B2 ≤ R−2 ‖U‖4
T ‖V ‖2

T as a consequence of Lemma 25. �
Remark 6. The estimate (11.6), using the equivalent norm (10.1) instead of (10.3), is 
claimed in [15], but there is a gap in the proof. To explain the problem, let us denote by 
| | |U| | |T the norm used in [15], that is, the norm given by (10.1):

|||U|||T =
∥∥1(0,T )u

∥∥
X̂s,b , where U(t, ξ) = 〈 ξ 〉s eith(ξ)û(t, ξ).

Then by the triangle inequality we have, for 0 < r < t,

||||U|||t − |||U|||r| ≤
∥∥1(r,t)u

∥∥
X̂s,b = |||U|||(r,t). (11.8)

Combining (11.8) with the analogue of (11.7) for the norm | | | · | | |t yields

|ψ(t) − ψ(r)| ≤ C

R
|||U|||(r,t)|||U|||t, (11.9)

which is essentially what was used in [15], instead of (11.7). But it is easy to see that 
(11.9) is not enough to prove the estimate for B2. Indeed, take U and V both to be 
the function 1(0,T )(t)f(ξ), where 0 < T < 1 and ‖f‖L2 = 1. Then by (2.37) we have 
‖U‖(r,t) ∼ (t − r)1/2−b and ‖U‖t ∼ t1/2−b, so if we estimate B2 by using (11.9), then we 
get

B2 ≤ C

R2

T∫
0

t1−2b
t∫

0

(t− r)−4b dr dt.

But the right hand side equals +∞ unless b < 1/4.
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11.3. Cutoff estimate, version II

As a corollary to Lemma 28, we obtain the following variation on that result, proving 
the bound (11.1) in Proposition 2, as well as (11.2) in the case V = 0.

Lemma 29. For all T ∈ (0, T0] and R > 0 we have the estimates∥∥∥θR (‖U‖2
t

)
V
∥∥∥
T
≤ C ‖V ‖T , (11.10)∥∥∥θR (‖U‖2

t

)
U
∥∥∥
T
≤ C

√
R, (11.11)

with a constant C depending only on b and T0.

Proof. We first prove (11.10). Recall the assumption supp θ ⊂ [−2, 2]. So if ‖U‖2
t ≥ 2R

for all t ∈ (0, T ), then the left side of the inequality equals zero. It remains to consider 
the case where ‖U‖2

t < 2R for some t ∈ (0, T ). Define

TU = sup
{
t ∈ (0, T ) : ‖U‖2

t < 2R
}
.

Then

‖U‖2
TU

≤ 2R, (11.12)

by the continuity of ‖U‖t with respect to t > 0 (see Lemma 23). And if TU < T , then 
θR(‖U‖2

t ) = 0 for t ∈ [TU, T ]. So (10.7) yields (if TU = T , this holds trivially)∥∥∥θR (‖U‖2
t

)
V
∥∥∥
T
≤ C

∥∥∥θR (‖U‖2
t

)
V
∥∥∥
TU

,

and by Lemma 28 the right hand side is dominated by

C
(
1 + R−1 ‖U‖2

TU

)
‖V ‖TU

≤ 3C ‖V ‖TU
,

where we used (11.12). By (10.6), ‖V ‖TU
≤ C ‖V ‖T , which proves (11.10). Taking now 

V = Uj and using the bound (11.12), we get (11.11). �
11.4. Difference estimate, version I

Lemma 30. For all T ∈ (0, T0] and R > 0 we have the estimates

∥∥∥θR (‖U‖2
t

)
U − θR

(
‖V‖2

t

)
V
∥∥∥
T
≤ C

(
1 + M2

R
+ M4

R2

)
‖U − V‖T , (11.13)

where
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M = ‖U‖T + ‖V‖T

and the constant C depends only on b and T0

Proof. Setting ψ(t) = θR(‖U‖2
t ) and χ(t) = θR(‖V‖2

t ), we reduce to proving, for 1 ≤
j ≤ n,

‖[ψ(t) − χ(t)]Uj‖T ≤ r.h.s.(11.13)

and

‖χ(t)(Uj − Vj)‖T ≤ C ‖Uj − Vj‖T .

The latter holds by (11.10), so we concentrate on the former, whose left hand side squared 
equals A + 2B, where

A =
∫
Rd

T−2b
T∫

0

|ψ(t) − χ(t)|2 |Uj(t, ξ)|2 dt dξ,

B =
∫
Rd

T∫
0

t∫
0

|[ψ(t) − χ(t)]Uj(t, ξ) − [ψ(r) − χ(r)]Uj(r, ξ)|2

(t− r)1+2b dr dt dξ.

Using (11.3) we estimate

|ψ(t) − χ(t)| ≤ C

R

∣∣∣‖U‖2
t − ‖V‖2

t

∣∣∣ . (11.14)

Writing

‖U‖2
t − ‖V‖2

t =
n∑

i=1
(〈Ui − Vi, Ui 〉t + 〈Vi, Ui − Vi 〉t) (11.15)

and applying Cauchy-Schwarz yields

(
‖U‖2

t − ‖V‖2
t

)2
≤ CM2 ‖U − V‖2

T for 0 ≤ t ≤ T , (11.16)

implying A ≤ CR−2M4 ‖U − V‖2
T , as desired.

It remains to bound the term B. Defining

κ = ψ − χ

we write B ≤ 2(B1 + B2), where
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B1 =
∫
Rd

T∫
0

t∫
0

|κ(r)|2 |Uj(t, ξ) − Uj(r, ξ)|2

(t− r)1+2b dr dt dξ,

B2 =
∫
Rd

T∫
0

|Uj(t, ξ)|2
t∫

0

|κ(t) − κ(r)|2

(t− r)1+2b dr dt dξ.

By (11.14) and (11.16), |κ(r)|2 ≤ CR−2M2 ‖U − V‖2
T , so

B1 ≤ CR−2M4 ‖U − V‖2
T .

In B2 we write out

κ(t) − κ(r) = θR(‖U‖2
t ) − θR(‖V‖2

t ) −
[
θR(‖U‖2

r) − θR(‖V‖2
r)
]

and apply Lemma 27 to get

B2 ≤ C

(
I

R4 + J

R2

)
,

where

I =
∫
Rd

T∫
0

|Uj(t, ξ)|2
(
‖U‖2

t − ‖V‖2
t

)2
t∫

0

(
‖U‖2

t − ‖U‖2
r

)2
+
(
‖V‖2

t − ‖V‖2
r

)2

(t− r)1+2b dr dt dξ

and

J =
∫
Rd

T∫
0

|Uj(t, ξ))|2
t∫

0

(
‖U‖2

t − ‖V‖2
t − ‖U‖2

r + ‖V‖2
r

)2

(t− r)1+2b dr dt dξ.

By (11.16) and Lemma 25,

I ≤ CbM
8 ‖U − V‖2

T ,

which is acceptable. Finally, using (11.15) and Lemma 25,

J ≤ CbM
4 ‖U − V‖2

T ,

and this concludes the proof of the lemma. �
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11.5. Difference estimate, version II

We are now in a position to finish the proof of Proposition 2, by proving the bound 
(11.2).

Lemma 31. For all T ∈ (0, T0] and R > 0 we have the estimate∥∥∥θR (‖U‖2
t

)
U − θR

(
‖V‖2

t

)
V
∥∥∥
T
≤ C ‖U − V‖T , (11.17)

where the constant C depends only on b and T0.

Proof. First, if ‖U‖2
t ≥ 2R and ‖V‖2

t ≥ 2R for all t ∈ [0, T ], then the left side equals 
zero.

Second, consider the hybrid case where ‖U‖2
t ≥ 2R for all t ∈ [0, T ], whereas ‖V‖2

t <

2R for some t ∈ [0, T ]. Then θR(‖U‖2
t ) = 0 for t ∈ [0, T ]. Defining TV as in the proof of 

Lemma 29, we find

l.h.s.(11.17) =
∥∥∥θR (‖V‖2

t

)
V
∥∥∥
T
≤ C

∥∥∥θR (‖V‖2
t

)
V
∥∥∥
TV

≤ C
√

2R,

by Lemma 29. So if ‖U − V‖TV
≥

√
R, we are done. If, on the other hand, ‖U− V‖Tv

≤√
R, then by the triangle inequality, ‖U‖TV

≤ (1 +
√

2)
√
R, since ‖V‖2

TV
≤ 2R. Then 

(11.17) follows by applying Lemma 30 to∥∥∥θR(‖V‖2
t )V
∥∥∥
Tv

=
∥∥∥θR(‖U‖2

t )U − θR(‖V‖2
t )V
∥∥∥
TV

.

The other hybrid case is symmetric, so we are only left with the case where ‖U‖2
t < 2R

for some t ∈ [0, T ] and ‖V‖2
s < 2R for some s ∈ [0, T ]. Define TU and TV as in the proof 

of Lemma 29, so ‖U‖2
TU

≤ 2R and ‖V‖2
TV

≤ 2R. By symmetry we may assume TU ≤ TV, 
and then (10.7) yields

l.h.s.(11.17) ≤ C
∥∥∥θR(‖U‖2

t )U − θR(‖V‖2
t )V
∥∥∥
TV

.

If ‖U‖2
TV

≤ 8R, we now obtain (11.17) by Lemma 30. If, on the other hand, ‖U‖2
TV

> 8R, 
then ‖U − V‖TV

≥
√

2R, and using (10.7) we obtain

l.h.s.(11.17) ≤ C

(∥∥∥θR(‖U‖2
t )U − θR(‖V‖2

t )V
∥∥∥
TU

+
∥∥∥θR(‖V‖2

t )V
∥∥∥

(TU,TV)

)
.

The first term on the right can be handled by Lemma 30, since ‖U‖2
TU

≤ 2R and 

‖V‖2
T ≤ C ‖V‖2

T ≤ C2R. For the second term, we get by (10.6) and Lemma 29,

U V



E. Dinvay, S. Selberg / Journal of Functional Analysis 287 (2024) 110565 81
∥∥∥θR(‖V‖2
t )V
∥∥∥

(TU,TV)
≤ C

∥∥∥θR(‖V‖2
t )V
∥∥∥
TV

≤ C ′ ‖V‖TV
≤ C ′ ‖U − V‖TV

,

where we used ‖U − V‖TV
≥

√
2R ≥ ‖V‖TV

. This concludes the proof of the lemma. �
11.6. Sobolev–Slobodeckij norm on Hb(0, T )

All the properties discussed above in this section are valid for usual Sobolev norms, 
for functions depending only on the time variable t. The proofs can be repeated di-
rectly without much of a difference. However, we can get also those properties easily by 
considering

u(t) = φ(t)Sh(ξ)(t)f

with φ ∈ Hb(S, T ) and f ∈ Hs(Rd). Indeed, from (2.34) and (2.35) it is clear that

‖u‖Xs,b
h(ξ)(S,T ) = ‖φ‖Hb(S,T ) ‖f‖Hs and ‖u‖

X̃s,b
h(ξ)(S,T ) = ‖φ‖

H̃b(S,T ) ‖f‖Hs ,

where

‖φ‖
H̃b(S,T ) = 1

(T − S)2b

T∫
S

|φ(t)|2 dt +
T∫

S

T∫
S

|φ(t) − φ(r)|2

|t− r|1+2b dr dt.

Normalising by taking ‖f‖Hs = 1, we then get from Lemma 21, for b ∈ (0, 1/2),

C−1
T0,b

‖φ‖Hb(S,T ) ≤ ‖φ‖
H̃b(S,T ) ≤ CT0,b ‖φ‖Hb(S,T ) (0 ≤ S < T ≤ T0), (11.18)

and Proposition 1 has the following analogue.

Proposition 3. Let T0 > 0 and b ∈ (0, 1/2). Let n ∈ N and suppose that φi, Φi ∈ Hb(0, T0)
for 1 ≤ i ≤ n. Then for T ∈ (0, T0], R > 0 and 1 ≤ j ≤ n we have the estimates∥∥∥∥∥θR

(
n∑

i=1
‖φi‖2

H̃b(0,t)

)
φj(t)

∥∥∥∥∥
Hb(0,T )

� C
√
R,

∥∥∥∥∥θR
(

n∑
i=1

‖φi‖2
H̃b(0,t)

)
φj(t) − θR

(
n∑

i=1
‖Φi‖2

H̃b(0,t)

)
Φj(t)

∥∥∥∥∥
Hb(0,T )

� C
n∑

i=1
‖φi − Φi‖Hb(0,T ) ,

where C depends only on b, T0 and θ.
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