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Abstract
In the rapidly evolving landscape of deep learning (DL), un-
derstanding the inner workings of neural networks remains
a significant challenge. The need for transparency and ac-
countability in DL models grows in importance as they be-
come more prevalent in decision-making processes. Interpret-
ing these models is key to addressing this challenge. This
paper offers a comprehensive overview of interpretable meth-
ods for neural networks, particularly convolutional nets. The
focus is on gradient-based propagation techniques that pro-
vide insight into the intricate mechanisms behind neural net-
work predictions. Using a systematic review, we classify inter-
pretability approaches that are based on gradients, dive into
the theory of notable methods, and compare their strengths
and weaknesses. Furthermore, we investigate different evalua-
tion metrics for interpretable systems, often generalized under
the term eXplainable Artificial Intelligence (XAI). We highlight
the importance of these factors in evaluating the faithfulness,
robustness, localization, complexity, randomization, and ad-
herence to the axiomatic principles of XAI methods. Our ob-
jective is to assist researchers and practitioners in advancing
towards a future for artificial intelligence that is characterized
by a deeper understanding of its workings, thereby providing
the desired transparency and accuracy. To this end, we offer
a comprehensive summary of the latest advances in the field.
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Introduction
The advent of highly complex Deep Learning (DL)
models in recent years has revolutionized several sectors,
including medical diagnostics and autonomous vehicles [1,
2, 3]. These models have consistently outperformed
traditional algorithms in a variety of tasks due to their
exceptional capacity to extract complex patterns from
massive volumes of data. However, the same complexity
that enables them also obscures their decision-making
processes, making them incomprehensible to humans [4].

The lack of transparency in DL models, especially in
terms of their inner workings, is often referred to as
the "black-box" [5, 6]. In critical applications such as
medical imaging, where decisions can have far-reaching
consequences, the need for transparency and explainability
becomes imperative to make informed decisions. The
General Data Protection Regulation (GDPR) of the
European Union also includes a provision called the "right
to explanation," which grants individuals the ability to
request an explanation for any automated decisions made
about them [7]. This further emphasizes the critical need
to explain the functioning of deep learning models.

The field of eXplainable Artificial Intelligence (XAI)
has emerged in response to these challenges, with the
goal of bridging the gap between a model’s impressive
performance with millions of parameters and the ability
to explain its decision-making processes. This is achieved
through a diverse set of techniques, depending on the
specific model, the type of data it processes (i.e., image,
text, tabular, etc.) and the specific insights required
for a given application. Certain techniques prioritize
the identification of key features in the input data that
have the most influence on a model’s decision. For
instance, techniques can identify and emphasize individual
pixels or areas in an image that play a significant role
in a specific classification within medical imaging or
autonomous systems. This tool also facilitates the
analysis of textual data in reviews, social media posts,
and more, and extracts valuable information on sentiment
classification, including categorizing sentiment as positive,
negative, or neutral. Others may emphasize the model’s
acquired internal logic or relationships to reach a specific
decision, such as loan approval or insurance risk, in
financial or risk assessment applications.

While the potential of XAI is immense, it is crucial
to recognize that not all AI models possess the same
level of explainability [8]. For instance, linear regression
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and decision trees are typically more transparent than
complex neural networks. In addition, the use of XAI
varies greatly depending on the application domain and
the target audience, and there is no set consensus
on how to address these challenges associated with
model interpretation. Domain experts may require
in-depth technical explanations regarding the model’s
internal logic, whereas non-technical users would benefit
from simpler, overarching interpretations of the model’s
decisions. Hence, the selection of suitable XAI techniques
is closely linked to the choice of an appropriate AI
model, the application and the target user ensuring the
desired balance between accuracy and explainability for
the specific task at hand. Recent surveys [9, 10] in XAI
offer a comprehensive overview of the field’s development.

Furthermore, similar to any data-driven system, AI
models are susceptible to biases that exist within the
data they are trained on. Uncovering these potential
biases is a must for XAI techniques to guarantee that
AI systems are making decisions that are ethical and fair.
Considering the extensive scope of the XAI field in terms
of model explainability, data explainability, feature-based
techniques, and example-based techniques, this study will
not attempt to cover the entire spectrum. Instead, our
focus will be directed towards a particular subcategory:
visual gradient-based feature attribution methods. We
will dive deeper into this method, exploring its implications
and progressions over time.

This paper examines the extensive range of gradient-
based explanations, which offer an intuitive and effec-
tive way to examine their strengths, limitations, and var-
ious application areas. Gradient-only methods determine
whether a modification in a pixel would result in a modifi-
cation in the prediction. As we navigate through current
advances in the field, our aim is to provide a compre-
hensive assessment of the state-of-the-art (SOTA) neural
network interpretability, enabling researchers, practition-
ers, and enthusiasts to better understand and trust AI
systems. In addition, we will discuss the metrics used to
evaluate these explanation methods to ensure the reliabil-
ity and usefulness of the explanations themselves.

Related Works
Several methods attempt to uncover the underlying
reasoning of DL models. One such technique evaluates
the influence of individual input features on the model’s
predictions using feature attribution [11, 12]. Extracting
explanations that describe the input variables for images
(such as pixels) used by the model to generate a prediction
is a widely used strategy [13, 14]. Other studies have
used feature attribution to identify sensitive input features
and hidden neurons that impact predictions. Leino
et al. [15] define influence-directed explanations as the
average gradient of an instance measured in relation to a
neuron across a range of inputs.

In general, the extensive array of pixel attribution ap-

proaches can be categorized into two types of attribution
methods: (a) Occlusion- or perturbation-based methods,
such as LIME [13] and SHAP [16], that leverage image
manipulation techniques to generate model-agnostic ex-
planations, and (b) Gradient-based methods involve calcu-
lating the gradient of the prediction or classification score
in relation to the input features. The various gradient-
based methods primarily vary in their approach to com-
puting the gradient. Here, both attribution based ap-
proaches have a common characteristic that the explana-
tion has the same dimensions as the input image (or can
be effectively projected onto it). In addition, they assign
a numerical value to each individual pixel. This can be
interpreted as the significance of the pixel in relation to
the prediction or classification of the image.

Another useful categorization for pixel attribution
methods is based on the fundamental theory that
determines whether a change in a pixel would lead to a
change in the prediction. Two popular examples are the
vanilla gradient [11] and grad-CAM [17]. The attribution
based solely on the gradient can be interpreted in the
following manner: If the values of a pixel (representing
features such as color or intensity) were to increase, the
predicted class probability would correspondingly increase
(for positive gradient) or decrease (for negative gradient).
The magnitude of the gradient provides an indication of
the relative sensitivity of the prediction to changes in that
pixel’s value. However, the exact impact on the prediction
also depends on additional variables such as the model’s
architecture, the specific feature being modified, and the
interactions between different features.

Path-attribution methods involve comparing the cur-
rent image with a reference image, which may be an ar-
tificial "zero" image, such as a completely gray image.
The disparity between the actual prediction and the base-
line prediction is attributed to individual pixels. Note that
the selection of the reference image (distribution) signif-
icantly impacts the explanation. The common practice
is to utilize a "neutral" image. The category includes
model-specific techniques such as Deep Taylor Decom-
position and Integrated Gradient [18], as well as model-
agnostic techniques such as LIME and SHAP. Certain
path-attribution methods are considered "complete" as
they calculate the difference between the prediction of an
image and the prediction of a reference image by summing
up the relevance scores of all input features.

Gradient-based propagation methods are noteworthy
due to their ability to provide a high level of granularity,
versatility, and direct correlation with input features.
They have a deep understanding of the flow of information
through networks, which makes their insights particularly
valuable across various sectors. Methods such as saliency
maps pinpointed influential pixels in input images [19], and
techniques such as the vanilla gradient method identified
pixels that have the most influence on the model’s output
score [11]. Over time, various methods such as guided
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Figure 1: Evolution of propagation-based visualization methods for explainability.

backpropagation and grad-CAM have improved the field
by providing clearer and more generalized insights [17,
14]. Although gradient-based feature attributions [20,
21], continue to be a subject of interest, some concerns
have been raised about their reliability, as highlighted
in recent research [22, 23]. One of these challenges
is the vulnerability of these methods to input noise,
which can affect their accuracy. Furthermore, there
is concern that these methods may sometimes provide
misleading explanations[24]. This is an area of active
investigation [18, 8].

Recent advances emphasize the need to perform san-
ity checks to assess the credibility of interpretations [25].
Several metrics have been introduced that assess the ax-
iomatic principles, implementation invariance, and consis-
tency of interpretability methods [26, 27, 24]. Quantus
and OpenXAI are frameworks that have been developed
to enhance the dependability of interpretability estima-
tors [28, 29]. While many methods are largely model-
agnostic, there is a growing niche that focuses on model-
specific interpretability, tailoring self-explainable frame-
works to particular architectures.

In this study, we comprehensively investigate the ap-
plication of backpropagation methods and their potential
for XAI research. When sourcing our insights, we meticu-
lously reviewed the seminal work shown in Figure 1, taking
into account both the foundational literature and the most
recent research from reputable conferences and journals.
This approach ensures a comprehensive understanding of
the development and possibilities of gradient-based inter-
pretability in neural networks without favoring any spe-
cific approach. However, we exclude the discussion of
more expensive visual explanation techniques that employ
a local or global surrogate model, such as LIME [13] and
SHAP [16] respectively.

Gradient-based Visual Interpretation
This section outlines different techniques that use gra-
dient information in post-hoc model settings and build
attribution maps for visual explanations. These methods
make use of the gradient of the network output (logits
or soft-max probabilities) with respect to (w.r.t.) the in-

put features. Consider a network with an N-dimensional
input x = {xi}Ni=1 ∈ RN and a C-dimensional output
S(x) = {Sc}Cc=1 ∈ RC . In this context, C is the total
number of classes, Sc can be a class score (logit) or soft-
max probability and Sc(x) represents the network’s score
function. The “gradient” term (δ/δx Sc(x)) estimates
the attribution map, Ac = {Aci }Ni=1 ∈ RN which captures
the importance of each input feature for a specific output
class c . In computer vision tasks, we consider Convolu-
tional Neural Networks (CNNs) with image input, i.e., the
pixels of the image are considered input features.

The idea of attention maps operates on differentiable
models and leverages the network’s gradient acquired
through forward-backward propagation to capture the
relationship between input and output (ref. Figure 2).
This is achieved by identifying influential regions or
sequences in the input data [42]. By analyzing the
relevance of each feature and its impact on a model’s
prediction, we not only gain valuable insights but also
uncover biases, identify anomalies, or flag excessive
dependencies on specific inputs, thus strengthening trust
and guiding model refinement [43]. The uniqueness is
attributed to:

• Direct correlation with input features: Unlike model-
agnostic techniques that offer a bird’s-eye view, such
as in LIME [13] where an explanation may be derived
locally from the records generated randomly in the
neighborhood of the target to be explained, gradient-
based methods directly correlate explanations with
specific input features. This direct correlation allows
for more actionable insights to be gained from the
explanations [44].

• Flexibility & scalability: These methods are inher-
ently adaptable, seamlessly fitting diverse DL archi-
tectures without significant modifications [3].

• High fidelity in medical applications: In medical
imaging, where interpretability can have life-altering
implications, certain methods like Grad-CAM and
integrated gradients have proven to be effective
in generating explanation maps that closely match
expert annotations in various tasks, such as tumor
detection in radiology images [45].
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Table 1: Detailed comparison of gradient-based methods for visual interpretability
Method Year Application Evaluation Method Interpretability Impact
Saliency [19] 2010 Direct gradients w.r.t. input Highlights influential pixels in

images
Sensitive to input noise

Vanilla Gradient
[11]

2013 Direct gradients w.r.t. input Pinpoints pixels that most affect
the output score

Can produce noisy explanations

Guided Backprop
[17]

2014 Combines positive gradients with
ReLU activations

Emphasizes pixels that positively
influence the final prediction

May not be suitable for all architec-
tures

Grad x Input [30] 2016 Element-wise multiplication of in-
put and its gradient

Offers pixel-wise decomposition
of the output

May produce artifacts

Grad-CAM [14] 2017 Weighted combination of feature
maps & gradients

Visualizes regions in images that
activate specific feature maps

Not always precise in localization

Integrated
Gradients [18]

2017 Path integration of gradients Decomposes prediction output
over input features

Computationally intensive

GradientSHAP [16] 2017 Integrating concepts from both
Integrated Gradients and SHapley
Additive exPlanations (SHAP).

Computes attributions by av-
eraging gradients over multiple
background samples.

Provides stable, averaged explana-
tions, effectively highlighting seman-
tically meaningful input regions.

DeepLIFT [31] 2017 Decomposes output prediction to
contributions of all neurons to the
input features

Differentiates feature activa-
tions from reference activations
and assigns contributions.

Provides high-resolution attributions
that can distinguish contributions of
different features

SmoothGrad [12] 2017 Averages noisy versions of input
gradients

Reduces noise in gradient-based
explanations

Requires multiple evaluations

VarGrad [32] 2018 Incorporates variance of gradients Requires multiple gradient eval-
uations

Enhances saliency by considering gra-
dient variance

FullGrad [33] 2019 Computes the gradients of the
biases from all over the network,
and then sums them

Response decomposition into in-
put sensitivity & per-neuron sen-
sitivity components

Satisfy both completeness & weak
dependence properties of saliency
maps

Expected
Gradient [34]

2020 Averages gradients over possible
inputs

Provides a more stable and av-
eraged explanation

Computationally intensive

Blur IG [35] 2020 Averages gradients over blurred
versions of the input

Reduces noise and offers
smoother explanations

Introduces blurring artifacts

Integrated
Hessians [36]

2021 Extends IG by incorporating
second-order derivatives

Provides deeper insights into
model sensitivity

Improves interpretability by consider-
ing decision boundary curvature

Guided Integrated
Gradients [37]

2021 Combines Guided Backprop with
IG for refined attributions

Precisely highlights critical paths
than either method alone

Offers detailed and specific feature
attributions

Adversarial
Gradient
Integration [38]

2021 Uses adversarial examples to
weigh gradients

Identifies model vulnerabilities
and robust features simultane-
ously

Provides insights into model weak-
nesses and robustness

Boundary-based
IG [39]

2022 Understands model predictions via
decision boundary dynamics

Highlights how input perturba-
tions shift the decision boundary

Clarifies model decisions by visualiz-
ing boundary changes

NoiseGrad and
FusionGrad [40]

2022 Incorporates noise in the gradient
computation

Offers diverse explanations by
considering gradient noise

Can be sensitive to noise type

Important
Direction GI [41]

2023 Targets the most influential direc-
tions in input space

Isolates and illustrates key input
directions affecting predictions

Offers a focused analysis of features
most critical to model decisions

We will examine the details of each gradient-based
method, as it offers a comprehensive understanding of
the overall approach that many other methods follow,
summarized in Table 1.

1. Saliency (2010). Saliency maps are designed to
generate a heatmap overlay on an input image [19].
The map computes the gradient S(x) = ||∇xy || of the
output prediction y in relation to the input image x .
The magnitude of the gradient for each pixel indicates
its influence on the prediction. Note that this is a
foundational method and often produce noisy results.
Variations to enhance clarity of saliency maps include
SmoothGrad [12].

2. Vanilla Gradient (2013). The method [11] is one of
the earliest pixel attribution approaches. It calculates the

basic gradient of the loss function Sgrad(x) = ∇xsc(x)
for the output score sc(x) of a specific target class c
w.r.t. the input image x . It then assigns a value of
zero to all other classes. This gives us a map of the
size of the input features that either show the absolute
values or highlight negative and positive contributions
separately. This helps identify pixels that would cause the
most significant change in the output score when altered.
This is achieved using gradient ascent to iteratively modify
the input image to maximize the logit outputs [46] shown
in Figure 2. Avanti et al. [31] discuss the utility of
vanilla gradients for model interpretation and highlight
their potential limitations, such as saturation problems
and noisy visualizations.

The method serves as the basis for more sophisticated
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Figure 2: General flowchart of propagation-based meth-
ods for visualizing the relationship between input and out-
put by leveraging the differentiable neural network’s gra-
dient obtained from one or more forward and backward
passes. (a) Gradient-based methods tends to backprop-
agate gradients from logits to input space. (b) Existing
CAM-based methods focus on generating better weight-
ing schemes to obtain weighted-sum attention maps.

techniques and domains, where they might outperform
more advanced gradient-based methods. In order to
better understand, when an image x is passed through
a CNN, it gives a score sc(x) for the corresponding class
c . The score depends on the input image in a complex
and non-linear way. The rationale for using the gradient
is to estimate the score by applying a first-order Taylor
expansion in equation 1 below.

sc(x) ≈ wT x + b

w =
δsc
δx
|x0

(1)

where, w represents the derivative of the score. How-
ever, there is ambiguity surrounding the implementation
of the backward pass for gradient calculations when work-
ing with nonlinear units such as ReLU (Rectifying Linear
Unit) that “remove” the sign. Here, the input to layer
f l+1 is the output of the ReLU function which is defined
as ReLU(f li ) = max(0, f li ) from the previous layer f l .
When performing a backpass, it can be difficult to de-
cide whether to assign a positive or negative activation.
When a neuron’s activation is zero, it becomes uncertain
which value should be propagated backwards. When it
comes to vanilla gradient, the ambiguity is resolved in the
following manner:

δf

δf li
=

δf

δf l+1i
· I(f li > 0) (2)

with f being the final output of the model. Here,
the element-wise indicator function I is used to assign a
zero value to negative activations at lower layers and a
value of one to positive or zero activations.The method
backpropagates the gradient up to layer l + 1, and then
simply nullifies the gradients where the activation at the
layer below is negative. However, if the activation falls
below zero, ReLU caps it at zero and remains unchanged
thereafter, leading to the problem of activation satura-
tion.

3. Guided Backprop (2014). Introduced as an improved
visualization technique for DNNs, guided backpropaga-
tion [17] modifies the standard backpropagation, sup-
pressing negative gradients to zero for clearer and sharper
results compared to using the vanilla gradients. The idea
is that negative gradients in standard backpropagation
can occasionally suppress evidence, making visualizations
noisy. By focusing only on positive gradients, guided back-
prop aims to highlight areas in the input image that pos-
itively contribute to the model’s decision. This sharpens
the focus on the most influential input regions in the input
image for the model’s prediction.

Mathematically, the activation for the forward pass
through multiple layers l to generate a feature map for the
final convolutional layer is defined as f l+1i = ReLU(f li ) =
max(0, f li ), where f 0 corresponds to the input image x
and f out corresponds to the final output. The typical
process of standard backpropagation through the l layers
to generate the reconstructed image R0 is defined as
follows:

Rli = (f
l
i > 0) · Rl+1i where, Rl+1i =

δf out

δf l+1i
(3)

Equation 4 defines the guided backpropagation that
suppresses negative values during the backward pass.

Rli = (f
l
i > 0) · (Rl+1i > 0) · Rl+1i (4)

4. Grad x Input (2016). A straightforward and computa-
tionally efficient method for generating an explanation for
CNN’s decision. The method [30] involves element-wise
multiplication of the input image by its gradient to
produce heat map S(x)GxI = x ⊙ ∇xF (x) that is more
localized and focused compared to previous gradient-
based methods. This makes it easier to identify the pixels
in the input image that contribute most to the model’s
output.

5. Grad-CAM (2017). Grad-CAM [14], short for
gradient-weighted class activation mapping, makes class-
discriminative visual explanations for decisions made by a
wide range of CNN architectures. Grad-CAM generates
a coarse localization map by propagating the gradients
of the target class into the final convolutional layer. In
simpler words, it aims to obtain a deeper understanding of
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the specific areas of an image that a convolutional layer
prioritizes when making a particular classification. This
decision of interest can be the class prediction (which we
find in the output layer), but it can theoretically be any
other layer in the neural network.

Let us analyze Grad-CAM from a practical standpoint.
The first convolutional layer of a CNN receives images
as input and generates feature maps that encode learned
features. The higher-level convolutional layers perform a
similar function, but they receive the feature maps from
the preceding convolutional layers as input. For the initial
approach, we can visualize the raw values of each feature
map, calculate the average across the feature maps, and
then overlay this information onto the image. This would
not be useful as the feature maps encode information for
all classes, whereas our focus is on a specific class. In
order to properly calculate the average over the feature
maps, it is essential to assign a weight to each pixel based
on its gradient.

Let y c be the class score, Ak be the feature map of
the last convolutional layer, and αcK be the weights that
capture the importance of the feature map k for the target
class c . Then the global average pooling of the gradient
maps is computed as follows:

αcK =
1

z

∑
i

∑
j

δy c

δAki,j
(5)

Here, z typically represents the normalization factor,
which is the total number of elements (pixels) in the
feature map Ak . Each feature map “pixel” is weighted by
the gradient of the class. Indices i and j correspond to the
width and height dimensions. Finally, the localization map
is defined as the linear combination followed by ReLU, as
shown in equation 6.

LGrad-CAMc ∈ Ru×v = ReLU
(∑

k

αckA
k

)
(6)

The resultant heatmap identifies areas that have an
impact, either positive or negative, on the target class.
This heatmap is passed through the ReLU function,
similar to what we learned for the vanilla gradient,
focusing solely on the regions that have an impact on
the target class. It is important to note that the word
‘pixel’ might be misleading here, as the feature map is
actually smaller than the image due to the presence of
pooling units. However, it is then mapped back to the
original image after scaling the explanation map to the
interval [0,1] and superimposing it on the original image
for visualization. The method is class-discriminative,
which means it can highlight different regions for different
target classes.

Selvaraju et al. [14] provide empirical results, showing
the utility of Grad-CAM in various tasks such as image
classification, captioning, and visual question answering.
It also demonstrates that Grad-CAM visualizations

can be used for weakly supervised object localization.
In the following year, building on the previous work,
Chattopadhay et al. [47] presented Grad-CAM++ as a
generalization of Grad-CAM. The method provided better
visualization using only the positive partial derivatives
of the last convolutional layer. Recently, a study [48]
focused on extending existing Grad-CAM techniques to
the 3D domain using the Inflated Inception 3D pipeline
for video-based Human Action Recognition (HAR). The
study shows enhanced understanding of spatio-temporal
information in HAR models, providing valuable insights
into the decision-making process of video-based AI
systems.

6. Integrated Gradients (2017). Gradients represent
infinitesimal prediction variations caused by infinitesimal
feature changes. So, when an input x leads to a high
prediction (e.g., a high probability for a particular class),
just looking at small changes in prediction (using standard
gradients) may not provide a clear understanding of why
the model made that prediction. This is because the
relationship between input features and the prediction
might be complex and non-linear. Furthermore, vanilla
gradients are subject to the saturation problem [18],
in which the gradients of certain features are close to
zero despite the fact that the model substantially relies
on those features. When using Integrated Gradients
(IG) [18] to explain something, gradients are typically
accumulated along the way from a baseline input to
the actual input. It provides a way to decompose the
difference in output prediction (between the baseline and
actual input) into contributions from each feature. The
method satisfies two important axioms: (i) sensitivity
(detecting features that make a difference) and, (ii)
implementation invariance (consistent attributions across
functionally equivalent networks).

The assignment of importance score to each input
feature is computed by defining a baseline input (e.g.,
a black image for an image network or a zero embedding
vector for a text model) and linearly interpolating between
the baseline input x̄ and the actual input image, x .
Equation 7 computes the gradient for the i th feature along
this interpolation path.

IGi(x) ::= (xi − x̄i)×
∫ 1
α=0

∂Sc(x̄ + α(x − x̄))
∂xi

dα (7)

here, ∂Sc(x)/∂xi is the gradient of Sc(x) along the
i th dimension. Integrating over a path prevents local
gradients from becoming saturated. If a straight line
is established, IG maintains symmetry. Note that this
explanation can be computationally expensive in compar-
ison to some simpler methods. In 2021, Hesse et al. [49]
demonstrated that given a non-negatively homogeneous
model, IG with a zero baseline is equivalent to Input ×
Gradient.
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7. GradientSHAP (2017): A method that combines ideas
from Integrated Gradients and SHapley Additive exPla-
nations (SHAP) to produce feature attributions for deep
learning models. GradientSHAP [16] computes attribu-
tions by averaging gradients over multiple background
samples and then sums up the difference between the
model’s output for the input and its expected output for
the reference. Thereby, the resulting attributions possess
desired properties, such as completeness and symmetry
preservation. While ’completeness’ ensures all parts of
the prediction are explained by the attributions,’symmetry
preservation’ aims to ensure equal contributions from
features are treated equally in attributions. Details
on different desired properties and their importance in
ensuring effective model interpretability are discussed in
the following subsection. Recently, López et al. [50] used
GradientSHAP in conjunction with other explainable at-
tribution methods to identify two subgroups of Pancreatic
Ductal Adenocarcinoma (PDAC) patients with differing
prognoses and biological factors, highlighting the role of
DNA methylation. This improved understanding of how
the model learned hidden features from multi-omics data
to make critical healthcare predictions.

9. DeepLIFT (2017). Deep Learning Important Features
(DeepLIFT) [31] dissects a network’s output prediction
on a specific input by backpropagating the contributions
of all neurons in the network to each feature of the input,
similar to Layerwise Relevance Propagation (LRP) [51].
Each unit i is assigned an attribution r (L)i that compares
the relative effect of each neuron’s activation at the
original network x to its reference activation x̄ and ranks
contributions based on the difference (shown in equations
8 & 9). To calculate the reference values z̄j i for all hidden
units, a forward pass through the network is performed,
with the baseline x̄ as input. Each unit’s activation is
recorded.

r
(L)
i =

{
Si(x)− Si(x̄) if i is the target unit

0 otherwise
(8)

r
(l)
i =

∑
j

zj i − z̄j i∑
i ′ zj i −

∑
i ′ z̄j i

r
(l+1)
j (9)

where, r (L)i and r (l)i represent the relevance scores in
the final layer L and at any layer l , respectively. The
attributions at the input layer are defined as Rci (x) = r

(1)
i .

The weighted activation z̄j i = w
(l+1,l)
j i x̄

(l)
i of a neuron i

onto neuron j when the baseline x̄ is fed to the network.
Equation 9 describes the "Rescale rule" that was used in
the original formulation of the method. The other rule,
"Reveal-Cancel" was also proposed in the paper [31].

DeepLIFT can identify dependencies that other tech-
niques miss by optionally taking positive and negative con-
tributions into account separately. Scores can be effi-
ciently computed with a single backward pass. Compared

to the attribution defined for IG in equation 7, the attri-
bution for the DeepLIFT can be defined as follows:

DeepLIFTi(x) = (xi − x̄i) ·
∂gSc(x)

∂xi
,

where, g =
f (z)− f (z̄
z − z̄

(10)

It is important to acknowledge that while Shrikumar et
al.’s [30] Grad x Input offers a computationally efficient
way to generate explanation maps, DeepLIFT [31] pro-
vides a more comprehensive and theoretically grounded
approach to feature attribution.

8. SmoothGrad (2017). Smilkov et al. [12] found that
the gradients (or derivatives) of the model’s prediction
w.r.t. the input can change sharply around the input
image. This happens even though the changes in the
images are so subtle that they are visually indistinguishable
to human eyes. The authors emphasize that noise
may appear due to high local variations of gradients.
SmoothGrad works by adding noise to the input multiple
times, computing the gradient each time, and then
averaging the results. This process smoothens and
sharpens the visualization, mitigating issues like noisy
gradients and providing clearer insights into the most
influential part of the input image for the model’s decision.
Empirical evaluations demonstrate that SmoothGrad
produces more visually coherent and interpretable saliency
maps compared to standard gradient visualizations [52].

For an input image x , the smoothed explanation
ESGrad(x) is calculated in equation 11 using σ, the
standard deviation of Gaussian noise.

E(x)SGrad ≈
1

N

N∑
i=1

E(x +N (0, σ2)) (11)

where, N be the number of times the noise is sampled,
and δi ∼ N (0, σ2) represents Gaussian noise with
zero mean and variance σ2. Although it is simpler to
implement, the number of noise samples (N) and the
noise level (σ) are hyperparameters that might require
adjustment.

10. VarGrad (2018). SmoothGrad [12] was designed
with the objective of providing more stable and consistent
explanation maps compared to other gradient-based
methods. While effective, it still requires multiple
computations at the cost of efficiency. In the following
year, VarGrad [32] aims to achieve similar results with less
computational overhead. VarGrad introduces a variance-
based weighting to gradients, which helps to emphasize
the most influential features while suppressing noise.
The underlying idea is that pixels with consistently high
gradient variance across different perturbations of the
input are more likely to be truly influential. By focusing
on regions with high gradient variance, VarGrad aims to
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identify areas in the input that are consistently influential
across multiple perturbations. Nevertheless, the choice
of perturbation type and magnitude could influence the
results.

EV Grad(x) ≈
1

N

N∑
i=1

[E(x + δi)− ESGrad(x)]2 (12)

Although both denoising strategies can improve
gradient-based explanations, Seo et al. [53] conclude
that SmoothGrad does not smooth the gradient of the
prediction function, whereas VarGrad captures higher-
order partial derivatives rather than being dependent on
the gradient of the prediction function.

11. FullGrad (2019). Existing visual explanation
methods often lack the ability to capture both fine-
grained detail and a holistic view of how a model
uses structural relationships within the input image.
FullGrad [33] provides a novel approach to decompose the
output prediction into input gradients and bias gradients
simultaneously, particularly for convolutional networks.

Mathematically, for a ReLU neural network f with
biases b ∈ RF , equation 13 adds the gradient w.r.t. the
input x , which is given by ∇x f (x ; b), and the gradient
w.r.t. the bias term, denoted by ∇bf (x ; b) which includes
the latent biases in batch normalization layers, as well as
explicit biases in convolutional and fully connected layers.

f (x ; b) = ∇x f (x ; b)T x +∇bf (x ; b)T b (13)

In a CNN, the bias parameters have the same spatial
structure as the feature map because of weight sharing
and sliding window mechanisms used during convolution.
After post-processing, we can visualize the bias contribu-
tion ∇bf (x ; b)T b of the explanation map in equation 14.

S(x) = ψ(∇x f (x ; b)T x) +
∑
l∈L

∑
c∈cl

ψ([∇bf (x ; b)T b]lc)

(14)
where, L denotes the total number of convolutional lay-

ers. In each layer l , cl represents the number of channels.
The function ψ(.) includes various post-processing steps,
such as upsampling, abstracting, and applying Min-Max
normalization. Upsampling ∇bf (x ; b)T b is necessary to
counteract the downsampling from the forward pass and
to ensure the gradient dimensions align with the image
dimensions at each layer l .

The method is distinguished by its comprehensive
decomposition of the neural network response into
two components: (i) input sensitivity, reflecting the
importance of individual input pixels, and, (ii) neuron
sensitivity, accounting for the importance of groups of
pixels and their structure. This provides a comprehensive
understanding of both local and global contributions to
the network’s decisions compared to traditional methods,
producing sharper and more object-region confined

saliency maps. Thereby, addresses the limitations of tra-
ditional explanation map-based interpretability methods
by satisfying both completeness and weak dependence
properties, which are typically not simultaneously achiev-
able in other methods. However, its practical use deviates
because the bias gradient is ignored in fully connected
layers and the upsampling steps are included. In addition,
the application of FullGrad to fields like tabular data and
natural language processing (NLP) has yet to be explored.

12. Expected Gradient (2020). The method [34] builds
on the concept of IGs but incorporates expectations over
multiple perturbed inputs. By default, IG uses the all-zero
vector as its baseline. However, when the target object’s
body is black, IG fails to effectively highlight that area.
Alternative baselines for IG includes an image with the
maximum distance from the current input, a Gaussian-
blurred image, an image with random pixel values, and
a black-and-white baseline [52]. However, each baseline
option has its advantages and disadvantages. A common
approach is to average the attribution scores from various
baselines drawn from a distribution.

Expected Gradient averages out noise and highlights
consistently influential features. By integrating over a
distribution of perturbed inputs with Riemann integra-
tion, expected gradient offers a more holistic view of
interpretable and consistent gradient-based visualiza-
tions. The method is particularly effective at highlighting
semantically meaningful regions in the input.

13. Blur Integrated Gradient (2020). A variant of the
IG method, seeks to explain the prediction by combining
gradients from both the frequency and spatial domains.
Blur Integrated Gradient (Blur-IG) [35] works by suc-
cessively blurring the input image with a Gaussian blur
filter and integrating over a straight-line path in the
input space between the blurred image and the original
image. The blurring process helps suppress noisy or
irrelevant features that may arise during interpolation
when new features are introduced along the integral line,
emphasizing only the most influential regions in the input.

14. Integrated Hessians (2021): Although IGs offer reli-
able attributions, calculating them can be computation-
ally expensive, especially for high-dimensional inputs. In-
tegrated Hessians [36] aim to approximate second-order
derivative information explaining pairwise interactions be-
tween features within neural networks with fewer compu-
tations. This method integrates the second derivatives
(Hessians) of the model’s output along a path from a
baseline x̄ to the input x , shown in equation 15. This
typically involves approximations and sampling techniques
to make computations of feature attributions feasible and
potentially faster compared to standard IGs. This makes
it particularly valuable for analyzing large models and/or
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high-dimensional data.

IHi(x) = (xi − x̄i)×
∫ 1

α=0

∂2Sc(x̄ + α(x − x̄))
∂xi∂xj

dα (15)

The method has demonstrated superior efficiency and
effectiveness in capturing feature interactions compared
to existing methods, particularly when the number of
features is large. Integrated Hessians provides a more
nuanced understanding of how feature interactions
influence model output, extending beyond specific types
of neural networks.

15. Adversarial Gradient Integration (2021): Conven-
tional gradient-based methods might struggle with the
ambiguity and inconsistency in model interpretations when
the input-output relationship is locally non-smooth. The
rationale behind selecting an uninformative baseline in IG
is not adequately justified for certain tasks [52]. Adversar-
ial Gradient Integration (AGI) [38] introduces a baseline-
free method. AGI integrates gradients for the model f
from adversarial examples belonging to a different class
j (different from the current prediction) to the target
example i along the steepest descent path to calculate
the reliable importance in these scenarios. Equation 16
presents the aggregation of gradients in the descending
steps, where “til adv” implies that the process stops ei-
ther when an adversarial example is found or when the
maximum predefined step limit is reached. The number
of non-target classes may be large, and then AGI calcu-
lates the attribution score by averaging it over multiple
randomly selected classess.

AGIi(x) =

∫
til adv

−∇xi f (x).
∇xi fj(x)
|∇xi fj(x)|

dα (16)

This method is distinct in that it does not does
not rely on a predefined reference point, which helps
avoid inconsistencies that arise from arbitrary reference
selections often used in other gradient-based methods.
The method demonstrated improved consistency and
clarity in assigning input feature contributions to model
predictions, surpassing existing methods. It showed
proficiency in handling cases with a reliable explanation
framework by eliminating the need for reference input.

16. Boundary-based Integrated Gradients (2022): The
calculation of path integrals in traditional IGs can be
sensitive to the choice of baseline and path. Boundary-
based IG [39] aims to reduce this sensitivity by targeting
decision boundaries and providing more precise and
meaningful attributions. The method utilizes a gradient
ascent approach, where gradients are calculated not just
with respect to the input features but also considering
their movement towards or away from the decision
boundary. This involves iteratively adjusting the input x ,
assuming it lies within a polytope P based on the gradient

information as shown in Equation 17 to probe the decision
boundary’s influence on the prediction.

BIGi(x) = IGi(x, x
′) (17)

If the model can be represented as a local linear model
f (x) = wpx + bp, the gradient wp may not accurately
account for the model’s decision if the polytope is far
from the decision boundary. Therefore, Wang et al. [39]
introduce the closest adversarial example x ′ of x , where
V xm, ||xm − x || < ||x ′ − x || → F (x) = F (xm) to facilitate
the explanation of f (x). xm refers to a point within the
polytope P that is closer to the decision boundary than the
original input x . As a result, xm is a more relevant point
for assessing the impact of the decision boundary on the
prediction made by the model F . Equation 17 is defined
by substituting the baseline of Integrated Gradients (IG)
with the adversarial example and then aggregating the
gradients in a manner similar to IG.

The method offers a more nuanced understanding
of feature influence, particularly in cases where small
changes in inputs near decision boundaries can lead to
significant changes in output. It is worth mentioning that
although the attributions are potentially more robust to
the choice of baseline and integration path compared
to standard IGs, the method’s reliance on accurate
identification of decision boundaries can be challenging
in complex models or datasets where boundaries are not
well-defined.

17. NoiseGrad & FusionGrad (2022): Bykov et al.
[40] introduce two gradient-based interpretation methods:
NoiseGrad and FusionGrad. NoiseGrad focuses on assess-
ing the robustness of gradient-based explanation maps by
introducing controlled noise into the input data. The ob-
jective is to gauge how stable and reliable a saliency map
by introducing perturbations to the input. FusionGrad
combines multiple gradient-based interpretation methods
to produce a composite explanation map, with the goal of
leveraging the advantages and minimizing the limitations
of each individual method.

The empirical evaluations in [40] presents that both
NoiseGrad and FusionGrad produce more interpretable
and consistent visualizations than some existing methods.
The techniques effectively highlight influential regions in
the input while suppressing noise and artifacts.

18. Important Direction Gradient Integration (2023): A
common challenge in IG-based methods and their variants
is that, despite being SOTA in interpreting deep neural
networks, they often integrate noise into their explanation
maps. Yang et al. [41] highlight that one reason is
the multiplication of the gradient and the path segment
during each step of Riemann integration. The Important
Direction Gradient Integration (IDGI) aims to address
this issue by identifying the most relevant direction of
gradient change for each input feature. IDGI operates by
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decomposing each gradient vector into two components:
the ’important direction,’ which contributes to changes
in the model’s prediction, and the ’noise direction,’ which
does not. The method then integrates only the important
direction components across the input space to emphasize
changes that affect the output prediction significantly.

Extensive testing showed that IDGI significantly
improved interpretability metrics by effectively reducing
the noise involved in traditional IG computations. This
improvement was consistent across different datasets and
model architectures, confirming the efficacy of focusing
on important directions in gradient-based explanations.
IDGI adheres to key axioms of explanation methods
such as completeness and sensitivity, indicating robust
theoretical foundations. However, depending on the
specific underlying IG method used, it is possible that it
does not satisfy the linearity axiom.

In addition to these methods, other XAI techniques,
such as model simplification, surrogate models, knowledge
distillation, and rule extraction, also play a crucial role
in interpreting neural networks [13, 54, 51, 55]. These
techniques are outside the scope of the paper.

Evaluation Metrics for XAI
While interpretability is inherently subjective, the quality
of the explanations can be objectively assessed on
the basis of simplicity, consistency, effectiveness and
completeness for their practical use. With the field’s
evolution, several metrics have emerged to assess and
validate interpretability techniques. These evaluation
metrics can be compartmentalized into six domains,
summarized in Table 2.

When two explanations differ greatly from each other,
the obvious question is - Which of them is the most ac-
curate? One notable evaluation technique is pixel flip-
ping [51], which evaluates the precision of an explana-
tion by examining how the omission of identified influen-
tial characteristics affects the prediction. However, this
method requires an explicit feature removal scheme tai-
lored to the type of data and prediction task.

Presently, it is evident that relying solely on visual as-
sessments is inadequate for determining the optimal strat-
egy to compare and explain different interpretable tech-
niques [28]. The evaluation should scrutinize AI explain-
ability methods against several benchmarks, encompass-
ing consistency, stability, and fidelity to the model’s de-
cisions. In this paper, we provide an overview of the six
evaluation criteria used to assess the effectiveness of in-
terpretability methods:
1. Faithfulness. The metrics assess the degree to which
an explanation accurately reflects the actual behavior and
decisions of the model. For example, the degree to which
the explanation satisfies recognized clinical features or
expert annotations in medical imaging can serve as a
measure of faithfulness [56].

The domain of ’faithfulness’ in model interpretability
deals with the intricate challenge of ensuring that expla-
nations provided by models are genuinely representative of
their underlying decision-making processes. The work of
Bhatt et al. [26] sheds new light on the subject by look-
ing at feature-based model explanations. The authors
propose a framework that allows for the quantification
and comprehension of the impact of each input feature
on the model’s output. Meanwhile, Dasgupta et al. [62]
extensively explore the concept of faithfulness in 2022, ad-
vocating the importance of consistency and sufficiency in
explanations. The seminal work on pixel-wise explanations
by Bach et al. [51] uses Layer-wise Relevance Propaga-
tion (LRP) to uncover the nuances of classifier decisions,
providing additional evidence in favor of this perspective.
Arya et al. [57], among others, have conducted critical
reviews of many different local feature attribution meth-
ods. Table 3 points to the importance of having strong
and consistent evaluation methodologies.

However, the journey of faithfulness does not saturate
here. Samek and his team’s research on the visualization
of DNN learning [58], emphasizes the importance of
transparency in the complex and intricate nature of these
networks. Additionally, Ancona et al.’s [70] description
of the crucial role of gradient-based attribution methods
emphasizes the pressing need for a comprehensive under-
standing of these methods. The discourse on faithfulness
is enriched by significant contributions, such as the Itera-
tive Removal Of Features (IROF) evaluation metric [71]
and the focus on infidelity [60]. They highlight both
the difficulties and opportunities of ensuring that model
explanations are authentic, clear, and, above all, accurate
in reflecting their functioning.

2. Robustness. It is critical to not only generate expla-
nations but also to ensure their resilience, emphasizing
that similar inputs should inherently produce analogous
explanations [59]. The metric evaluates the stability
of explanations in the presence of minor perturbations
or changes to the input. This is particularly crucial
in fields such as radiology, where minor differences in
imaging can result in markedly distinct diagnoses [72].
Yeh et al.’s [60] study emphasizes the significance of
objectively evaluating explanations, particularly those
based on saliency. Meanwhile, Montavon et al. [61] offer
comprehensive methods that emphasize continuity in
explanations, underscoring the importance of consistency.
These theme of faithfulness and trustworthiness in expla-
nations resonates in the works of Agarwal et al. [63], who
delve into the stability of explanations, both in terms of
input and representation. Together, these studies shown
in Table 4 collectively emphasize an important point:
while interpretability is crucial, the robustness of the
resulting explanations are equally, if not more, essential.

3. Localization: The metric focus on the precision of
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Table 2: Metrics and their major characteristics
Metric Definition & Purpose Categories Refer

Faithfulness Measures alignment of explanation with model’s actual behavior Quantitative Table 3
Robustness Assesses stability of explanations under minor input perturbations Quantitative, Visual Table 4
Localization Gauges precision of explanation in identifying influential input regions/features Quantitative, Visual Table 5
Complexity Measures simplicity and comprehensibility of the generated explanation Qualitative Table 6
Randomization Evaluates explanation reliability under model weight randomization Quantitative Table 7
Axiomatic Metrics Uses theoretical principles like implementation invariance & sensitivity for evaluation Quantitative Table 8

Table 3: Summarizing the relevance of the five properties within the framework of evaluating faithfulness
Property Key Contribution & Assumptions Influence & Impact
Faithfulness Correlation [26] Evaluates how each input attribute affects model

output for a specific data point. Emphasizes the
importance of quantitative evaluation criteria.

Serves as a foundational metric in explainable AI,
ensuring interpretations align with model decision-
making mechanics.

Faithfulness Estimate [56] Focuses on a posteriori explanations for trained DL
models around specific predictions to ensure they
reflect model’s actual dynamics.

Offers a balanced perspective on model interpretability
by emphasizing both local and global consistency of
the trained model.

Monotonicity Metric [57, 27] Emphasizes the importance of ensuring that the
output behavior should be predictable and consistent
with respect to specific input features.

Ensure that the model’s predictions are reliable,
especially in scenarios where erratic behavior can have
significant consequences.

Pixel Flipping [51] Investigates certain pixels or groups of pixels that
have a pronounced influence on the classification
outcome. Altering these pixels leads to changes in
model predictions.

Ensures consistent and reliable interpretations at the
pixel level, especially in domains where visual data is
pivotal.

Region Perturbation [58] Identifies critical regions in input data that have a
disproportionate influence on the model’s outcome.
Offering a pathway to more interpretable models,
especially in critical applications like medical imaging.

Ensures models focus on genuinely significant regions
and do not base decisions on irrelevant features.

Table 4: The relevance of six properties in the context of robustness evaluation.
Property Key Contribution & Primary Assumptions Influence & Impact
Local Lipschitz Estimate [59] Advocates for the robustness of explanations, arguing

that similar inputs should produce similar explanations.
Highlights the importance of robust explanations in
interpretability and introduces robustness metrics.

Max-Sensitivity [60] Investigates objective evaluation measures of saliency
explanations for DL models.

Sheds light on the fidelity and sensitivity aspects of
saliency explanations.

Continuity [61] Presents comprehensive methods for interpreting
DNNs.

Focuses on the continuity and consistency of explana-
tions as a measure of their robustness.

Consistency [62] Proposes a framework to evaluate the faithfulness of
local explanations for the underlying prediction model.

Highlights the consistency aspect of explanations as a
measure of their robustness.

Relative Input Stability [63] Addresses the stability of attribution-based explana-
tion methods, crucial for model trustworthiness.

Rethinks the stability of input explanations, emphasiz-
ing their relevance in robustness evaluation.

Relative Representation
Stability [63]

Focuses on the stability of attribution-based explana-
tion methods to establish model trust.

Addresses stability of representational explanation for
consistent interpretation.

Table 5: The relevance of six properties in the context of localization evaluation.
Property Key Contribution & Assumptions Influence & Impact
Pointing Game [64] Top-down Neural Attention by Excitation Backprop in

network hierarchies.
Proposes a method for generating task-specific atten-
tion maps in CNNs.

Attribution Localization [65] Focusing on transparency in neural network’s decisions
using Layer-wise Relevance Propagation (LRP).

Contributes to the field of XAI by emphasizing
transparency.

Top-K Intersection [66] Interpretable semantic photo geolocation by estimat-
ing location in an image based on its content.

Delves into the nuances of image geolocation using
image content.

Relevance Rank Accuracy [67] Highlights the significance of ground truth evaluation
of DL explanations with CLEVR-XAI.

Stress on the importance of ground truth evaluation
for neural network explanations.

Focus [68] Sheds light on potential biases in XAI methods. Evaluates and rates XAI methods to uncover biases.
Receiver Operating
Characteristics [69]

Introduction to ROC analysis are essential for visual-
izing and understanding classifier performance.

Addresses misconceptions and pitfalls in using ROC
graphs.
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Table 6: The relevance of three properties in the context of complexity evaluation.
Property Key Contribution & Assumptions Influence & Impact
Sparseness [73] Highlights the significance of focusing on key features,

minimizing the influence of irrelevant ones.
Uncover the influence of adversarial training on influ-
encing model explanations and achieving sparseness.

Complexity [26] Introduces quantitative evaluation metrics for feature-
based model explanations: low sensitivity, high faithful-
ness, and low complexity.

Highlights the role of selection and aggregation of
explanation functions in achieving desired complexity
levels.

Effective Complexity [27] Sets a benchmark for evaluating interpretability and
provides a structured framework for understanding the
nuances of effective complexity in explanations.

Advocates for objective metrics that encompass sim-
plicity. Guides practitioners in discerning the balance
between feature extraction and explanation.

Table 7: The relevance of two properties in the context of randomization evaluation.
Property Key Contribution & Assumptions Influence & Impact
Model Parameter
Randomization [24]

Examines the role of adversarial training in influencing
model explanations. A robust methodology for evaluating
the effectiveness of various saliency methods, emphasizing
sparseness and stability.

Highlights the importance of evaluating explanation
techniques under randomized conditions and the
potential misleading nature of visual assessments.

Random Logit Test [74] Introduces the Cosine Similarity Convergence (CSC) metric
to measure the information ignored from later layers,
revealing that many explanations are independent of later
layer parameters.

Addresses the potential discrepancies in explanations
offered by various modified BP methods. Provides
tools and metrics to evaluate the faithfulness of
explanations under randomised scenarios.

the explanation in identifying the most influential regions
or features in the input data. For example, in image-
based tasks, high localization refers to the ability of a
method to accurately pinpoint the exact regions in an
image that contribute most significantly to the model’s
decision-making process [4].

In this context, Zhang et al. [64] pioneered the ex-
ploration of top-down attention mechanisms in CNNs,
demonstrating how excitation backprop can be harnessed
to generate task-specific attention maps. This is sup-
ported by the use of LRP to understand the nuances of a
network’s decisions [65]. In 2022, Theiner et al. [66] enter
the intricate domain of image geolocation, recognizing the
challenges and successes of determining locations solely
from visual content. Their findings emphasize the crucial
role CNNs play in semantic image interpretation. Arras
et al. [67] emphasize the imperativeness of ground truth
evaluation, rigorously assessing their accuracy beyond ex-
planation generations.

An in-depth analysis of XAI methods reveals the
inherent biases that contribute to the complexity of
localization in the field. [68]. Fawcett et al.’s [69]
exposition on the Receiver Operating Characteristics
(ROC) analysis offers a holistic view of classifier per-
formance visualization, marking a significant stride in
understanding and evaluating model interpretability from
a localization standpoint. The collective efforts outlined
in Table 5 establish a nuanced narrative that emphasizes
both challenges and advances in the interpretability of
localization-centric models.

4. Complexity: The metric assesses the simplicity and
comprehensibility of the generated explanation. Although
detailed explanations can offer deeper insights, they may
be overwhelming for certain end users. Striking a balance

between detail and simplicity is pivotal.
In the evolving discourse on model interpretability, the

realm of adversarial learning highlights the significance of
two pivotal attributes:’sparseness’ and ’stability’ in ex-
planations [73], asserting that a model’s interpretation
should zero in on the most crucial features, leaving out
the redundant. Here sparseness implies minimizing attri-
butions for irrelevant or weakly relevant features. Sta-
bility suggests that the explanations should remain con-
sistent within a small local neighborhood of the input.
Chalasani et al. [73] show that adversarial training with
L1-bounded adversaries results in models with sparse at-
tribution vectors. Recently, [75] focused on investigating
the interpretability of the Traffic Sign Recognition (TSR)
model under adversarial attack conditions. Here, LIME
and grad-CAM explanation proved more insightful in in-
terpreting the model’s behavior under adversarial condi-
tions.

Parallelly, Bhatt et al. [26] present a pragmatic
framework that focuses on quantitative metrics, with
a unique emphasis on the intricacies of ’complexity’ in
feature-based model explanations. The authors introduce
three primary criteria for evaluating explanations: low
sensitivity, high faithfulness, and low complexity. They
developed a framework for aggregating different explana-
tion functions that prioritizes simplicity. The concept of
’effective complexity’ also finds its roots in the work of
Nguyen and Martínez [27]. Both emphasize the balance
between the inherent subjectivity of interpretability and
merits of objective metrics. Table 6 illustrates the
multifaceted intricacies and imperatives of complexity in
model interpretability.

5. Randomization: The metric assesses the reliability
of an interpretable method by observing its behavior
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Table 8: The relevance of three properties in the context of axiomatic evaluation.
Property Key Contribution & Assumptions Influence & Impact
Completeness [18] Introduces two foundational axioms (Sensitivity and Imple-

mentation Invariance) and presents ’Integrated Gradients’ as
an attribution method

Provides a theoretical framework for evaluating attri-
bution methods and critiques potential shortcomings
of non-adherent methods

Non-Sensitivity [27] Interpretability, while subjective, can be evaluated using
objective measures like simplicity and broadness. Offers
metrics to guide method selection, emphasizing distinct roles
of feature extraction and explainability

Stresses the need for objective measures in inter-
pretability, aligning with the axiomatic approach’s
foundational emphasis.

Input Invariance [76] Examines potential pitfalls of saliency methods, proposing in-
put invariance as a reliability benchmark. Reliable explana-
tions shouldn’t be sensitive to factors that do not influence
the model prediction

Highlights the importance of genuine reflection of a
model’s decision-making in explanations

when the model’s weights are randomized. A credible
explanation method would produce non-informative or
random explanations for a randomized model, indicating
that the explanations are genuinely tied to the model’s
learned parameters [28].

The sanity check study [24] randomizes the model
parameters to check how the explanation maps vary.
Surprisingly, for some methods, such as guided backprop,
the heatmaps remained unchanged. The study highlights
the relevance of input features to neural network’s
prediction and relying solely on visual assessment can
be misleading. Some saliency methods are found
to be independent of both the model and the data-
generating process. And, an analogy is drawn with edge
detection in images, a technique that does not require
training data or a model. An extended study on a
wide range of modified backpropagation methods [74],
including Deep Taylor Decomposition, LRP, Excitation
Backpropagation, DeepLIFT [31], RectGrad [77], and
Guided Backpropagation, showed a surprising result.
Empirical evidence shows that the explanations provided
by all of these methods, except DeepLIFT, remain
independent of changes in the subsequent layers of the
model. This phenomenon is attributed to the convergence
of the relevance propagation to a rank-1 matrix. A
rank-1 matrix essentially collapses the information to a
single direction, making the backpropagated relevance
vectors insensitive to the input. Consequently, even
if the parameters in subsequent layers are randomized,
the explanation generated by these techniques remain
unaffected.

Unlike other methods, DeepLIFT [31] is not con-
strained by this limitation as it considers both positive
and negative contributions by backpropagating the
difference in activations relative to a reference activation.
DeepLIFT preserves parameter dependency across the
network, including the subsequent layers, resulting in
more faithful explanations that reflect the overall net-
work’s workings. Collectively, the techniques outlined in
Table 7 emphasize rigorous evaluation and discourage
accepting explanations at face value.

6. Axiomatic Metrics: Axioms serve as foundational
principles that any attribution method should ideally
adhere to. This perspective is invaluable, because it
offers strong theoretical groundwork for evaluating and
comparing different explanation methodologies. The
principles outlined in Table 8, including implementation
invariance and sensitivity, offer a rigorous framework to
test the validity and reliability of different interpretability
techniques. Sundararajan et al. [18] critically assess
existing attribution methods, emphasizing the absence of
adherence to the introduced axioms.

In a related context, Nguyen and Martínez [27] address
the challenges of quantitatively assessing interpretability.
They suggested using objective metrics as an alternative
to subjective evaluations, which can be unclear and open
to interpretation. Regarding the dependability of saliency
methods, Kindermans et al. [76] emphasize the concept
of "input invariance." Together, these approaches under-
score the multifaceted nuances of axiomatic evaluation,
setting the stage for a comprehensive exploration of
model transparency.

Incorporating these metrics into the evaluation process
ensures a holistic assessment of interpretability methods,
taking into account their theoretical foundations as well
as their practical implications.

Conclusion
Numerous surveys have accompanied the recent surge
in XAI research. In particular, gradient-based feature
attribution methods, a cornerstone of XAI, have gained
significant attention over the past decade. However,
these surveys often offer broad overviews that lack
extensive investigation of the specific techniques they
deserve. This paper addresses this gap by providing a
systematic review of the major advances in gradient-
based explanations. We have meticulously detailed the
"Gradient-based Visual Interpretation" section, providing
crucial information to foster understanding and address
key issues including the major applications in the summary
tables.

Researchers usually evaluate derived explanations based
on two aspects: explainability and faithfulness. Explain-
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ability refers to the ability to make a model’s decision
understandable to humans. In particular, human assess-
ment, fine-grain image recognition, and localization tests
are adopted to determine whether the explanations align
with user expectations. Faithfulness refers to the extent
to which explanations accurately reflect internal decision-
making processes. Specifically, various ablation tests are
used to evaluate faithfulness from a causal perspective.
In addition, randomization tests are employed to assess
whether explanations are dependent on the model parame-
ters and input instances. Other metrics such as algorithm
efficiency and interactivity that are tailored to specific re-
search challenges in XAI are not the focus of this paper
and are therefore not included.

Also, due to the lack of a standard consensus on
evaluating interpretability metrics, it is crucial to define
and address specific evaluation challenges and methods.
The most common being the hidden power of bias.
Although the gradient term for input features may appear
insignificant, model bias can play an outsized role in
predictions. This can result in misleading explanations
if we do not carefully factor in how bias propagates in
the forward pass. We need to isolate the impact of bias
to ensure that the explanations are truly representative
of the input features. For example, with active ReLUs
(wx +b > 0), bias plays a significant role in deeper layers
alongside input features. However, feeding a zero-input
image to a CNN activates very few ReLUs, minimizing
the impact of bias on the final prediction. Understanding
this relationship can be helpful for accurately interpreting
the role of bias in model decisions.

Furthermore, the quality of gradient-based explanations
can be highly dependent on the choice of hyperparame-
ters. For example, the baseline point in IG [18] or the
sampling steps in IDGI [41]. Finding the optimal settings
is often counterintuitive and less guided by the input itself.
It would be ideal to have explanation methods with fewer,
easily understandable hyperparameters. In addition, many
gradient-based techniques rely on assumptions about the
connection between gradients and prediction logic. For
example, we often attribute noisy visualizations to small
gradients (the ’gradient saturation’ problem), and this has
led to techniques like IGs. However, the exact theoreti-
cal connection between noisy visualizations and smaller
gradients remains unclear [52]. We still lack a strong ex-
planation for why accumulating gradients helps identify
important features. Although IG methods may seem to
work well in practice, we need both theoretical and em-
pirical evidence to fully justify their use and understand
their limitations. A stronger theoretical foundation will
ensure that these explanations are reliable under differ-
ent conditions and facilitate the development of improved
methods.

When discussing security risks, using gradients to ex-
plain a model’s inner workings can unintentionally disclose
excessive information, making the model susceptible to

attacks [39]. Consider linear models, where gradients are
essentially model weights. Sharing gradients as expla-
nations is much like revealing the inner workings of the
model. Research shows that extracting a model from its
gradients is significantly more efficient than doing so from
the prediction interface alone. It is critical to develop XAI
techniques that balance explainability with model security
to protect intellectual property.

Lastly, gradient-based explanations can be manipulated
by adversarial attacks that subtly alter inputs without
affecting the model’s output. Attackers can manipulate
input data with subtle changes imperceptible to humans
that can significantly impact the explanation generated by
the model. Say, a saliency map highlights specific image
regions as crucial for a prediction. An attacker might
modify those very regions slightly, without affecting the
model’s output, but causing the saliency map to pinpoint
entirely different areas. The vulnerability of explanations
may be attributed to high dimensionality and nonlinear
nature of neural networks. A solution to this problem
remains elusive.

Prioritizing the development of reliable explanation
methods that can withstand adversarial attacks, along
with countermeasures to audit such attacks, should be
a top priority. Addressing these challenges will not
only improve gradient-based methods, but also lay the
foundation for fair, reliable, secure, and theoretically
sound XAI techniques. This is particularly important
when considering the implementation of these methods
in sensitive applications.

Summary and Discussion
Every day, AI analyzes vast amounts of multimodal data—
text, images, and even sounds, to make decisions. Our
brains are amazing at interpreting the world around us,
but a computer struggles with the same task? Like
mistaking a turtle for a rifle [4]. This isn’t just a quirky
error; it challenges the reliability of decisions that affect
everything, from our social media feeds to our car’s
navigation system. That is the power and the peril of
AI.

Sometimes, decisions are hard, even for humans. Here,
we see the unfair expectation for AI to be perfect,
setting standards that no human could meet. We
need to remember that AI reflects our world, including
“uncertainties". In the quest for clarity, researchers
worldwide have been developing methods to make AI’s
decisions transparent, scrambling to open the AI black-
box with no clear consensus. But is a simpler story
the truth? We need to know which XAI technique is
accountable and which explanation is truly robust.

As AI becomes more intertwined with our daily activ-
ities and neural networks become increasingly complex,
tools and techniques for interpretability must keep pace.
Some of the recent advances in the field include hybrid
methods that combine the strengths of multiple XAI tech-
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niques, domain-adaptive interpretability methods tailored
for specific industries like finance or healthcare, and meta-
interpretability frameworks that offer insights into the be-
havior of XAI methods themselves. Through this com-
prehensive survey, we have navigated the landscape of
XAI, shedding light on propagation-based methods and
their significance in the broader context of interpretabil-
ity. Figure 1 presents the first comprehensive timeline
summarizing the major publication history of gradient-
based explanation methods. This visualization, along with
the summary provided in Table 1 enables researchers to
comprehend how each new algorithm builds upon the
strengths and weaknesses of its predecessors, fostering
a clear understanding of the field’s chronological devel-
opment. By tracing this trajectory of critical thinking,
researchers can identify the latest advances and emerging
trends, ultimately inspiring further contributions to the
field of gradient-based explanations. The field contin-
ues to evolve and grow as new paradigms of explainability
emerge in the future.
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