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1. Introduction

The study of nonnegative real polynomials, i.e. polynomials whose evaluation on any point is non-
negative, is a topic of interest from many perspectives, e.g. verification of polynomial inequalities 
and polynomial optimization. From a complexity theoretical view the verification is NP-hard (Blum 
et al., 1998). If one can write a real polynomial as a sum of squares of real polynomials, then the 
polynomial is clearly nonnegative. It was shown by Hilbert (1888) in his celebrated theorem from 
1888 that there are basically three cases where any nonnegative polynomial is a sum of squares. 
We formulate Hilbert’s theorem in terms of forms, i.e. homogeneous polynomials, since any polyno-
mial is nonnegative if and only if its homogenization is nonnegative and a sum of squares if and 
only if its homogenization is a sum of squares (Marshall, 2008). Hilbert showed that the cones of 
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nonnegative forms and that of sums of squares of degree 2d in n variables are equal if and only if 
(n, 2d) ∈ {(2, 2d′), (n′, 2), (3, 4) | n′, d′ ∈ N}. Hilbert’s proof was non-constructive and it took almost 
80 years until the first example of a nonnegative polynomial which is not a sum of squares was given 
(this is the Motzkin polynomial (Motzkin, 1967)). It was then asked by Hilbert whether any nonnega-
tive polynomial is a sum of squares of rational functions. This is known as Hilbert’s 17th problem. E. 
Artin proved that this is true, thereby lying the cornerstone of the field of real algebraic geometry.

Motivated by Hilbert’s 1888 theorem, several authors investigated the equivariant setting. For a 
group G acting on the real polynomial ring one restricts to invariant forms, i.e. forms which are fixed 
under the action of G . Choi, Lam and Reznick investigated the question for the symmetric group Sn

which was completed by Goel et al. (2016). The signed symmetric group Bn acting on the polyno-
mial ring via permutation of variables and switching of signs was also considered (Goel et al., 2017). 
Recently, Debus and Riener considered Dn-invariant forms where Dn is the subgroup of Bn of even 
number of sign changes. All these groups have in common that they are reflection groups.

A finite group G is a real reflection group if G ⊂ GLn(Rn) is such that the matrix group is generated 
by reflections, i.e. isometries Rn → Rn with a hyperplane as the set of fixed points. We usually just 
say that an abstract group G is a real reflection group and the representation of G is implicitly known. 
A real reflection group is called essential if no non-trivial subspace of Rn is pointwise fixed. It is a 
classical result that any real reflection group can be decomposed into a direct product of essential 
reflection groups. The essential real reflection groups were fully classified by Coxeter (1934, 1935). 
There are four infinite families An, Bn, Dn and I2(m) and six exceptional real reflection groups H3, 
H4, F4, E6, E7, and E8.

For Bn, Dn and trivially I2(m) the equivariant classification of nonnegativity versus sums of squares 
was completed in Debus and Riener (2023). It is a natural question to consider the remaining infinite 
series of essential reflection groups An and to study the equivariant nonnegativity versus sums of 
squares question. In this paper we initiate a study of An-invariant quartics. Although the vector space 
dimension of An-invariant quartics is only 2, we will see that the understanding is challenging. A 
reason for the complexity involved here is that we do not consider nonnegativity of a polynomial 
globally. We consider nonnegativity on a hyperplane and do consider sums of squares modulo an 
ideal which is in general a very difficult problem.

The paper is structured as follows. Section 2 explains the action of the group An on an n-
dimensional vector space and the induced action on the polynomial ring. Following this, we examine 
the sets of nonnegative and sums of squares An-invariant quartics in Section 3. We begin in Subsec-
tion 3.1 to elaborate on the difference between global nonnegativity of quartics and nonnegativity of 
An-invariant quartics. In Subsection 3.2 we provide the extremal elements of the cone of An-invariant 
nonnegative quartics before we analyse the An-invariant sums of squares quartics in Subsection 3.3. 
Finally, we present a proof of our main theorem, Theorem 3.2 in Subsection 3.4.

2. The reflection groups of type A and An-invariant polynomials

The real reflection group An is, as a group, isomorphic to the symmetric group Sn+1. Recall that the 
reflection group Sn+1 is acting on Rn+1 via permutation of coordinates in all possible ways. We call 
this action the permutation action of the symmetric group. There is a non-trivial fixed subspace which 
is spanned by the vector (1, . . . , 1) under the permutation action and thus the permutation action 
does not define an essential real reflection group. The action of Sn+1 on the invariant subspace Un :=
{a ∈ Rn+1 : ∑n

i=1 ai = 0} via permutation of coordinates defines an essential real reflection group 
called An . We also say that it is the reflection group of type A.

Recall that any group G acting on Rn induces an action of G on the polynomial ring R[x] in n
variables. The action is as follows:

σ · f (x) := f (σ−1 · x)

where x = (x1, . . . , xn) is a basis of the dual vector space of Rn and σ ∈ G . We refer to Blekherman 
and Riener (2021, Section 4) for details.
2
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It is a classical result by Chevalley, Sheppard and Todd that the invariant ring of real polynomials 
under the action of a finite matrix group in GLn(R) is isomorphic to a polynomial ring if and only if 
the group is a real reflection group (Chevalley, 1955; Shephard and Todd, 1954).

In order to study An invariant forms we consider the restriction of the permutation action of the 
symmetric group Sn+1 to the n dimensional real vector space

Un =
{

a ∈Rn+1 :
∑

i

ai = 0

}
.

Let ei ∈Rn denote the unit vector with 1 at the i-th coordinate. A linear basis of Un is

u1 = e1 − e2, . . . , un = e1 − en+1.

The group An acts on Un via permutation of the ei ’s in all possible ways. We obtain an induced 
action on an n-variate polynomial ring R[y], where y is a basis of the dual vector space of Un and 
on the quotient of an (n + 1)-variate polynomial ring R[x] modulo the ideal generated by the linear 
polynomial x1 + . . . + xn+1. While An does act on the (n + 1)-variate quotient ring R[x]/(x1 + . . . +
xn+1) via permutation of the xi ’s, the reflection group does not permute the yi ’s. We recall that those 
rings are isomorphic and two equivalent representations of An .

For two real representations V , W of a group G we say a linear map φ : V → W is G-equivariant
if σ · φ(v) = φ(σ · w) for any v ∈ V , w ∈ W , σ ∈ G .

Proposition 2.1. The ring homomorphism R[y] →R[x]/(x1 + . . . + xn+1) defined by yi �→ x1 − xi+1 , for all 
1 ≤ i ≤ n, is a An-equivariant isomorphism.

Proof. Recall that An fixes the subspace defined by x1 + . . . + xn+1 = 0. A basis of this subspace is 
x1 − xi+1 for 1 ≤ i ≤ n. The basis elements and x1 + . . . + xn+1 form a basis of the degree 1 part of 
R[x]. We have

R[x] ∼= R[x1 − x2, . . . ,x1 − xn+1][x1 + . . . + xn+1]
and

R[x]/(x1 + . . . + xn+1) ∼= R[y]
With the discussion above the induced linear isomorphism is An-equivariant. �

Since we have a ring isomorphism we have that being a sum of squares is equivalent for the image 
and preimage. Moreover nonnegativity of the preimage is equivalent to nonnegativity of the image on 
the subspace Un of Rn+1.

We denote by pk the power sum polynomial of degree k in the (n +1)-variables x, i.e. pk = ∑n+1
i=1 xk

i . 
It is classically known that the power sum polynomials p2, . . . , pn+1 generate the An-invariant ring 
as R-algebra modulo the ideal (p1).

Theorem 2.2. The invariant ring of An is isomorphic to a polynomial ring. The invariant ring of An acting via 
permutation of the variables x on the (n + 1)-variate quotient ring R[x]/(p1) is R[x]An ∼=R[p2, . . . , pn+1].

3. SOS versus PSD for An-invariant quartics

In this Section we prove our main result Theorem 3.2. We mainly restrict our notation and defi-
nitions to quartics. Since the invariant ring is generated by the power sums p2, . . . , pn+1 the vector 
space of An-invariant quartics is 2 dimensional and is spanned by the quotient classes of p2

2 and p4.
3
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Definition 3.1. We call a An-invariant quartic in R[x]/(p1) nonnegative or psd if and only if any el-
ement in its quotient class in R[x] is nonnegative on Un . We denote the set of psd An-invariant 
quartics by P An . We call a An-invariant quartic in R[x]/(p1) a sum of squares or sos if and only if an 
element in its quotient class in R[x] is of the form g2

1 + . . .+ g2
m + p1 · g for some g1, . . . , gm, g ∈R[x]. 

We denote the set of all An-invariant sos quartics by �An .

Suppose f1 = ap2
2 + bp4 + p1 · g1 and f2 = ap2

2 + bp4 + p1 · g2 are two equivalent An-invariant 
quartics. Then nonnegativity of the quotient class f1 mod (p1) is well defined since p1 = 0 on Un .

The sets P An , �An are pointed closed convex cones in the vector space R[x]/(p1).
The main result is the following.

Theorem 3.2. For n ≥ 3 we have P An = �An if and only if n is odd.

Note, we have P An = �An by Hilbert’s classification for all n ≤ 3. We will provide a proof of The-
orem 3.2 in Subsection 3.4. Our strategy is as follows. First, we calculate the extremal rays of the 
two-dimensional cone P An . Second, we give a description of �An using symmetry reduction. Third, 
we show that when n is even then one of the extremal rays is not a sum of squares, while for odd n
both extremal rays are sum of squares.

To motivate the fundamental difference between Sn-invariant and An-invariant nonnegative quar-
tics we start with an overview on nonnegativity in Subsection 3.1.

3.1. Global nonnegativity versus nonnegativity on Un

We motivate the subtle difference between globally nonnegative forms and forms nonnegative on 
Un in the vector space 〈p2

2, p4〉R . For n ≥ 3, the vector space of symmetric (n + 1)-variate quartics is 
five dimensional and is spanned by the following products of power sum polynomials

p4
1, p2 p2

1, p3 p1, p2
2, p4 .

For any n ≥ 3, there exist (n + 1)-variate symmetric quartic psd forms that are not sums of squares 
(Goel et al., 2016). For instance, there exists the following uniform example

fn := 4p4
1 − 5p2 p2

1 − 139

20
p3 p1 + 4p2

2 + 4p4

which is always nonnegative but never a sum of squares for any number of variables ≥ 4 (Acevedo et 
al., 2024, Theorem 3.6). Note however, that restricting to the subspace Un gives 4(p2

2 + p4). Thus fn is 
a sum of squares modulo the ideal (p1). The form fn can therefore not be used as a counter example 
for the reflection groups of type A. It was shown in Blekherman and Riener (2021, Example 5.4) that 
the form

1

n
p4 − 2.6

n2
p3 p1 + 1.79

n3
p2 p2

1 − 0.1275

n4
p4

1

lies on the boundary of the cone of symmetric sums of squares quartics and in the interior of the cone 
of symmetric psd quartics for any n ≥ 4. Moreover in Blekherman and Riener (2021, Theorem 5.3) the 
authors gave spectrahedral shadow representations of the cones of n-ary symmetric sums of squares 
quartics. Again, restricting to p1 = 0 leaves a form 1

n p4 which is clearly a sum of squares.
We show that any psd form in the vector space 〈p2

2, p4〉R is a sum of squares. The proposition 
follows also from the nonnegativity versus sums of squares classification in type B (Goel et al., 2017). 
The quartics result for type B was first observed by Choi, Lam and Reznick.

Proposition 3.3. Let f = ap2
2 + bp4 be a nonnegative (n + 1)-ary symmetric form, where a, b ∈R. Then f is 

a sum of squares.
4
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Proof. We restrict to testing nonnegativity of f on the unit sphere Sn = {x ∈Rn+1 : p2(x) = 1} which 
we can do without loss of generality by the homogeneity of f . We claim 1

n+1 ≤ p4 ≤ 1 on Sn and 
that the lower and upper bounds are attained.

The upper bound is evident and we can evaluate, e.g. at the point (1, 0, . . . , 0) ∈ Sn . Note that 
the claimed lower bound is attained, e.g. at the point 

(
1√

n+1
, . . . , 1√

n+1

)
. We need to show that it 

is the minimum of p4 on Sn . Instead of looking at the minimum of p4 subject to p2 = 1 we can 
consider the minimum of p2 on the simplex �n = {x ∈Rn+1

≥0 : ∑n+1
i=1 xi = 1}, since p4(a1, . . . , an+1) =

p2(a2
1, . . . , a

2
n+1) and p2(a1, . . . , an+1) = p1(a2

1, . . . , a
2
n+1) for all points a ∈ Rn≥0, and since a ∈ Sn is 

equivalent to (a2
1, . . . , a

2
n+1) ∈ �n . Note that the function p2 is convex on �n . Its Hessian is a diagonal 

matrix with diagonal (2, . . . , 2). For any point a ∈ �n we have p2(σ · a) = p2(a) for any permutation 
σ ∈ Sn+1. The point z := 1

(n+1)!
∑

σ∈Sn+1
σ · a lies on the diagonal of Rn+1 and in �n . Therefore, we 

have z = ( 1
n+1 , . . . , 1

n+1 ) and

1

n + 1
= p2(z) = p2

⎛
⎝ 1

(n + 1)!
∑

σ∈Sn+1

σ · a

⎞
⎠ ≤ 1

(n + 1)!
∑

σ∈Sn+1

p2(σ · a) = p2(a)

for any point a ∈ �n . This shows the lower bound.
In the following case distinction we suppose p2 = 1 and 1

n+1 ≤ p4 ≤ 1. We need to distinguish 
three cases depending on the sign of a.

(1) If a = 0 we have bp4 nonnegative implies b ≥ 0 and thus we have a sum of squares.
(2) If a > 0 we suppose without loss of generality that a = 1 and we have 1 + bp4 ≥ 0 on Sn which 

implies b ≥ −1. However, the form

p2
2 − p4 = p4 + 2

∑
i< j

x2
i x2

j − p4 = 2
∑
i< j

x2
i x2

j

on the boundary of the psd cone is also sos.
(3) If a < 0 we suppose a = −1 and have −1 +bp4 ≥ 0 on Sn implies b ≥ n + 1. The form (n + 1)p4 −

p2
2 on the boundary of the psd cone is a sum of squares since

(n + 1)p4 − p2
2 = np4 − 2

∑
i< j

x2
i x2

j =
∑
i< j

(x2
i − x2

j )
2. �

This subtle but important difference of nonnegativity on Rn+1 and on Un has important structural 
consequences regarding An-invariant sums of squares.

3.2. PSD An invariant quartics

A symmetric (n + 1)-variate polynomial which is nonnegative on the linear subspace Un must not 
necessarily be globally nonnegative (see e.g. the polynomial Gn for any n and Fn for any even n in 
Lemma 3.5). Since we are considering homogeneous invariant polynomials we have by biduality of 
convex cones (Blekherman et al., 2012, Lemma 4.18) the following Lemma.

Lemma 3.4. The boundary of P An consists of the forms f = a · p2
2 + b · p4 for which there exists 0 = z ∈ Un

such that f (z) = 0.

In analogy to the proof of Proposition 3.3 we will analyse the maximum and the minimum of p4
on the semialgebraic set defined by p2 = 1 and p1 = 0.
5



S. Debus, C. Goel, S. Kuhlmann et al. Journal of Symbolic Computation 128 (2025) 102393
Lemma 3.5. For n ≥ 3 the extremal (n + 1)-ary An-invariant psd quartics are

Gn := p2
2 − 1

β
p4 and Fn := −p2

2 + 1

α
p4,

where β = 1 − n + n2

n + n2
and α =

⎧⎪⎨
⎪⎩

1

n + 1
if n is odd,

4 + 2n + n2

2n + 3n2 + n3 if n is even.

Moreover the polynomials Gn and F2n are not globally nonnegative, but F2n+1 is globally nonnegative.

Proof of Lemma 3.5. We begin by verifying the claims on the global nonnegativity of Fn and Gn . 
Since F2n+1 = (2n + 2)p4 − p2

2 and 1
2n+2 ≤ p4 ≤ 1 on S2n+1, as argued in the proof of Proposition 3.3, 

we have F2n+1 is globally nonnegative. Moreover, for p2 = 1, since 1
n+1 ≤ p4 ≤ 1 on Sn , we have −1 +

1
n+1 · ( 4+2n+n2

2n+3n2+n3 )−1 = − 4
n2+2n+4

, thus the form F2n attains negative values on S2n and hence is not 
globally non-negative. Further since p2 = 1 and p4 = 1 has a solution in Sn we have Gn(1, 0, . . . , 0) =
1 − n+n2

1−n+n2 = 1−2n
1−n+n2 < 0 which shows that the polynomial Gn cannot be globally nonnegative.

Next, we verify that the polynomials Gn and Fn are indeed extremal An-invariant psd quartics. 
Since the quartics are homogeneous it is sufficient to analyse the minimum and maximum value of 
p4 on Sn ∩ Un . We have p1 = 0 and p2 = 1. This translates to the polynomial optimization problem

min
x∈Rn+1

±p4

s.t. p1 = 0

p2 = 1

By a variant of Timofte’s half degree principle (Riener, 2012, Theorem 1.1) the extremes are attained 
at a point with at most 2 different coordinates. The equality constraints transfer to the two equations

lt + (n + 1 − l)s = 0

lt2 + (n + 1 − l)s2 = 1

where 0 ≤ l ≤ n + 1 is an integer and s, t ∈R are real numbers. We observe that l ∈ {0, n + 1} which 
implies 1 ≤ l ≤ n. For given integers l and n the equations provide unique solutions for s and t up 
to sign. However, inserting the solution in p4 is independent of the signs of the coordinates and we 
have

p4(t, . . . , t︸ ︷︷ ︸
l times

, s, . . . , s︸ ︷︷ ︸
n+1−l times

) = (n + 1)2 − 3l(n + 1) + 3l2

(n + 1)(n + 1 − l)l

For the claim on the extremality of Fn we are left with verifying

min
1≤l≤n

(n + 1)2 − 3l(n + 1) + 3l2

(n + 1)(n + 1 − l)l
=

⎧⎪⎨
⎪⎩

1

n + 1
if n is odd

4 + 2n + n2

2n + 3n2 + n3
if n is even

which we do in Lemmas 3.7 and 3.8, and verify

max
1≤l≤n

(n + 1)2 − 3l(n + 1) + 3l2

(n + 1)(n + 1 − l)l
= 1 − n + n2

n + n2

to prove that Gn is extremal. This is Lemma 3.6. �

6
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3.2.1. Verification of the extremality of Gn

Lemma 3.6. For all n ≥ 3 we have max
1≤l≤n

(n + 1)2 − 3l(n + 1) + 3l2

(n + 1)(n + 1 − l)l
is attained at l = 1 and l = n, and equals 

1 − n + n2

n + n2 .

Proof. We calculate

(n + 1)2 − 3(n + 1) + 3

(n + 1)n
≥ (n + 1)2 − 3l(n + 1) + 3l2

(n + 1)(n + 1 − l)l

⇔ (−1 + l)(n − l)(n + 1)2 ≥ 0.

Note, for 1 ≤ l ≤ n the inequality is tight when l ∈ {1, n} and otherwise strict. �
3.2.2. Verification of the extremality of Fn

Lemma 3.7. We have min
1≤l≤n

(n + 1)2 − 3l(n + 1) + 3l2

(n + 1)(n + 1 − l)l
≥ 1

n + 1
and equality holds if and only if n is odd.

Proof. For 1 ≤ l ≤ n we have

(n + 1)2 − 3l(n + 1) + 3l2

(n + 1)(n + 1 − l)l
− 1

n + 1
≥ 0

⇐⇒ (n + 1)2 − 3l(n + 1) + 3l2

(n + 1)(n + 1 − l)l
− (n + 1 − l)l

(n + 1)(n + 1 − l)l
≥ 0

⇐⇒ (n + 1)2 − 3l(n + 1) + 3l2 − (n + 1 − l)l ≥ 0

⇐⇒ (n + 1 − 2l)2 ≥ 0

The last inequality is tight on integer values 1 ≤ l ≤ n if and only if n + 1 is even. �

Lemma 3.8. If n is even, then min
1≤l≤n

(n + 1)2 − 3l(n + 1) + 3l2

(n + 1)(n + 1 − l)l
is attained at l = n

2
and l = n

2
+ 1, and equals 

4 + 2n + n2

2n + 3n2 + n3 .

Proof. Evaluating 
(n + 1)2 − 3l(n + 1) + 3l2

(n + 1)(n + 1 − l)l
at l = n

2
and l = n + 2

2
gives 

4 + 2n + n2

2n + 3n2 + n3 . Moreover 

the denominator of

(n + 1)2 − 3l(n + 1) + 3l2

(n + 1)(n + 1 − l)l
− 4 + 2n + n2

2n + 3n2 + n3
= (n + 1)(4l2 − 4l(n + 1) + n(n + 2))

l(n + 1 − l)n(n + 2)

is strictly positive for all 1 ≤ l ≤ n. The numerator is also nonnegative since

4l2 − 4l(n + 1) + n(n + 2) = (2l − (n + 1))2 − 1 ≥ 0

because n + 1 is odd. �

7
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3.3. SOS An-invariant quartics

Given the action of a reflection group, representation theory and invariant theory can be applied to 
effectively describe the invariant sums of squares cone. We briefly sketch the symmetry reduction for 
sums of squares invariant by a reflection group. More details can be found in Blekherman and Riener 
(2021); Debus and Riener (2023); Gatermann and Parrilo (2004); Heaton et al. (2021). A reflection 
group G acts on the vector space R[x]d of all (n + 1)-variate forms of degree d giving it the structure 
of a G-module. We can decompose every G-module into a direct sum of its irreducible sub-modules to 
obtain its isotypic decomposition. Given an isotypic decomposition one constructs a symmetry adapted 
basis, which can be used to understand the invariant sums of squares of elements in R[x]2d . We 
outline this in the following.

First, we note that there is a natural projection onto the invariant part of R[x]d via the so called 
Reynolds-Operator of the group G:

RG :R[x]d → R[x]G
d , f �→ 1

|G|
∑
σ∈G

σ · f .

Suppose that we have

R[x]d
∼=

�⊕
j=1

V⊕η j

j

is the isotypic decomposition of the G action on R[x]d , i.e. V j are pairwise non-isomorphic irre-
ducible G-modules and each occurs with multiplicity η j ∈ N in R[x]d . A symmetry adapted basis is 
a list

{ f11, . . . , f1η1 , f21, . . . , f�η�
}

with the property that for every j there are G-equivariant homomorphisms φ ji which map f j1 to 
f ji for all 1 ≤ i ≤ η j , and furthermore that the orbit of each f ji spans an irreducible G-module 
isomorphic to V j and the set of all orbits of all f ji spans R[x]d . Given a symmetry adapted basis we 
can construct matrix polynomials

B j := (
RG( f ji1 f ji2)

)
1≤i1,i2≤η j

for 1 ≤ j ≤ �.

With these notations we have the following (see Debus and Riener 2023, Theorem 2.6):

Proposition 3.9. Let f ∈ R[x]G
2d be an invariant form. Then f is a sum of squares if and only if there exist 

positive semidefinite matrices A1, . . . , A� such that

f =
�∑

j=1

Tr(A j B j),

where the matrix polynomials B j are constructed from a symmetry adapted bases of R[x]d as defined above.

Note that calculating an isotypic decomposition of R[x]d and a symmetry adapted basis can in 
principle be done with linear algebra (see Serre, 1977). For the case of finite groups Hubert and Bazan 
(2022) constructed an algorithm to calculate equivariants which allows for an effective determination 
of symmetry adapted basis for all degrees. In the case when G ∈ {An−1, Sn, Bn, Dn} so-called higher 
Specht polynomials can be used and their construction is completely combinatorial (Debus and Riener, 
2023; Morita and Yamada, 1998). An implantation for the symmetric group was developed by Niño 
Cortés (2019) in Macaulay2 (Grayson and Stillman, no date).

We denote by Sλ the Specht module associated with a partition λ.
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Lemma 3.10. For n ≥ 3, the Sn+1-isotypic decomposition of R[x]2 equals

R[x]2 = 〈p2〉R ⊕ 〈p2
1〉R ⊕ 〈p1(xi − x j) : i < j〉R

⊕ 〈x2
i − x2

j : i < j〉R ⊕ 〈(xi − x j)(xk − xl) : #{i, j,k, l} = 4〉
= 2 · S(n+1) ⊕ 2 · S(n,1) ⊕ S(n−1,2).

Moreover, a symmetry adapted basis of the Sn+1-module R[x]2 is

{p2
1, p2, p1(x1 − x2),x2

1 − x2
2, (x1 − x2)(x3 − x4)}.

We point out that the isotypic decomposition of the Sn+1-module R[x]2 and the same symmetry 
adapted basis was used in the proof of Theorem 5.1 in Blekherman and Riener (2021).

Proof. Let n ≥ 3 be an integer. We verify that the claimed isotypic decomposition and symme-
try adapted basis of the Sn+1-module of R[x]2 holds. Therefore, we consider the coinvariant al-
gebra R[x]/(p1, . . . , pn+1) which is a Sn+1-module and actually isomorphic, as Sn+1-module, to 
the regular representation of Sn+1 (Bergeron, 2009, Section 8.1). Since R[x] ∼= R[p1, . . . , pn+1] ⊗R
R[x]/(p1, . . . , pn+1) is an isomorphism of graded Sn-modules, one can obtain a symmetry adapted 
basis of R[x]2 by multiplying the polynomials in a subset of the symmetry adapted basis of 
R[x]/(p1, . . . , pn+1) (consisting of the polynomials of degrees 0, 1, 2) with products of power sums 
p1 and p2. The minimal degree d in which a Specht module Sλ in R[x]/(p1, . . . , pn+1) occurs is the 
degree of the associated Specht polynomial and the multiplicity of the Specht module Sλ in this de-
gree component is one (Niño Cortés, 2019, Theorem 10.2). The only Specht polynomials of degree at 
most 2 are the constant polynomial 1 (for λ = (n + 1)), xi − x j (for λ = (n, 1)) and (xi − x j)(xk − xl)

(for λ = (n − 1, 2)), where i, j, k, l are pairwise distinct integers in [n + 1]. This is, since if the length 
of λ is at least three, then (xi − x j)(xi − xk)(x j − xk) divides the Specht polynomial, for some pairwise 
distinct integers i, j and k. If the length of λ = (λ1, λ2, . . . , λl) is at most two and λ2 ≥ 3 then the 
degree of any Specht polynomial is also at least 3, since (xi1 − xi2 )(x j1 − x j2 )(xk1 − xk2 ) divides the 
Specht polynomial for some pairwise distinct integers i1, i2, j1, j2, k1, k2.

Therefore, S(n−1,2) has multiplicity one in R[x]2 and since p2
1, p2 span the subspace of symmetric 

forms of degree 2, we have S(n+1) has multiplicity two in R[x]2. By the hook length formula we have 
dimRS(n,1) = n and dimRS(n−1,2) = (n−2)(n+1)

2 . Since dimRS(n+1) = 1 we have

2 dimR S(n+1) + 2 dimR S(n,1) + dimR S(n−1,2) = 2 + 2n + (n − 2)(n + 1)

2
=

(
n + 2

n

)
= dimRR[x]2

which shows that the claimed isotypic decomposition is true.
We are left with verifying that the claimed symmetry adapted basis is also true. The forms 

p2
1, p2 are linearly independent symmetric polynomials in R[x]2 and therefore belong to the iso-

typic component of S(n+1) in R[x]2. The Specht polynomial (x1 − x2)(x3 − x4) spans, as Sn-module, 
a Sn-submodule of R[x]2 isomorphic to S(n+1,2) and can be chosen as the element from the isotypic 
component S(n−1,2) . The Specht polynomial x1 − x2 can be multiplied by p1 to obtain an element of 
the symmetry adapted basis belonging to S(n,1) . Note that p1(xi − x j) �→ (x2

i − x2
j ) defines an Sn+1-

equivariant isomorphism and since 〈p1(xi − x j) : i < j〉R and 〈x2
i − x2

j : i < j〉R intersect trivially, the 
direct sum of these Sn+1-modules must be the isotypic part of S(n−1,2) in R[x]2. �

We apply the Reynolds-Operator of the symmetric group Sn+1 to pairwise products of equivariants 
of the isotypic decomposition which do not use p1, since we consider sum of squares in R[x] modulo 
the ideal (p1).
9
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Lemma 3.11. For n ≥ 3, we have

RSn+1(p2
2) = p2

2 ,

RSn+1((x2
1 − x2

2)
2) = 2

n
p4 − 2

(n + 1)n
p2

2, and

RSn+1((x1 − x2)
2(x3 − x4)

2) =
4(p4

1 − 2np2
1 p2 + n2 p2

2 − 2p2
1 p2 − np2

2 + 4np1 p3 − n2 p4 + p2
2 − np4)

(n + 1)n(n − 1)(n − 2)
.

For a partition λ = (λ1, λ2, . . . , λl) of length l ≤ n + 1 we write mλ for the monomial symmet-
ric polynomial in (n + 1)-variables with respect to the partition λ, i.e., mλ is the sum over all 
monomials xλ1

i1
xλ2

i2
· · ·xλl

il
where 1 ≤ i1, i2, . . . , il ≤ n + 1 are pairwise distinct integers. For a parti-

tion λ = (λ1, . . . , λl) and a monomial xλ = xλ1
1 xλ2

2 · · ·xλl
l we have RSn+1(xλ) = (n+1−l)!ν1!···νk !

(n+1)! mλ , where 
ν1 ≥ ν2 ≥ . . . ≥ νk are the multiplicities of all pairwise distinct parts of the partition λ. For instance, 
for λ = (4, 4, 3, 2) we have ν1 = 2, ν2 = 1, ν3 = 1 and RSn+1 (x(4,4,3,2)) = (n−3)!2!1!1!

(n+1)! m(4,4,3,2) for all 
n ≥ 3.

Proof. Since p2
2 is symmetric, we have RSn+1 (p2

2) = p2
2. Moreover by the linearity of the Reynolds-

Operator and since RSn+1 ( f ) = RSn+1(σ · f ) for any permutation σ ∈ Sn+1 and any polynomial f ∈
R[x], we have

RSn+1((x2
1 − x2

2)
2) = 2RSn+1(x4

1) − 2RSn+1(x2
1x2

2) (3.1)

= 2
n!

(n + 1)!m4 − 2
2(n − 1)!
(n + 1)! m(2,2),

RSn+1((x1 − x2)
2(x3 − x4)

2) = 4RSn+1(x2
1x2

2) − 8RSn+1(x2
1x2x3) + 4RSn+1(x1x2x3x4) (3.2)

= 4
2!(n − 1)!
(n + 1)! m(2,2) − 8

2!(n − 2)!
(n + 1)! m(2,1,1)

+ 4
4!(n − 3)!
(n + 1)! m(1,1,1,1).

Using Sage (The Sage Developers, 2024) we transform from monomial symmetric polynomials to 
power sum polynomials and insert the power sums in equations (3.1) and (3.2).

Sym = SymmetricFunctions(QQ)
pp = Sym.power()
mm = Sym.monomial()
print(pp(mm[4]))
print(pp(2*mm[2,2]))
print(pp(2*mm[2,1,1]))
print(pp(24*mm[1,1,1,1]))
p[4]
p[2, 2] - p[4]
p[2, 1, 1] - p[2, 2] - 2*p[3, 1] + 2*p[4]
p[1, 1, 1, 1] - 6*p[2, 1, 1] + 3*p[2, 2] + 8*p[3, 1] - 6*p[4]
R.<n,p1,p2,p3,p4> = LaurentPolynomialRing(QQ)
print(2/(n+1)*p4-4/((n+1)*n)*(p2^2-p4)/2)
print(4/((n+1)*n)*(p2^2-p4)-8/((n+1)*n*(n-1))*(p2*p1^2-p2^2-2*p3*p1+2*p4

)+4/((n+1)*n*(n-1)*(n-2))*(p1^4-6*p2*p1^2+3*p2^2+8*p3*p1-6*p4))
(-4*p2^2 + 4*n*p4 + 4*p4)/(2*n^2 + 2*n)
(4*p1^4 - 8*n*p1^2*p2 + 4*n^2*p2^2 - 8*p1^2*p2 - 4*n*p2^2 + 16*n*p1*p3 -

4*n^2*p4 + 4*p2^2 - 4*n*p4)/(n^4 - 2*n^3 - n^2 + 2*n)
10
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These are precisely the claimed images of the Reynolds-Operator. �
Lemma 3.12. If f ∈R[x] is a An-invariant sum of squares quartic modulo the ideal (p1) then

f = a

(
p4 − 1

n + 1
p2

2

)
+ b((1 − n + n2)p2

2 − n(1 + n)p4) + p1 · g

for some a, b ≥ 0 and g ∈R[x].

Proof. Since f ∈R[x] is An-invariant, we can apply the Reynolds-Operator RAn = RSn+1 to g2
1 + . . . +

g2
m and consider RSn+1 (g2

1 + . . . + g2
m) mod p1 which has to be of the form

λ1 p2
2 + λ2(p4 − 1

n + 1
p2

2) + λ3((1 − n + n2)p2
2 − n(1 + n)p4) (3.3)

for some scalars λ1, λ2, λ3 ≥ 0, by Lemma 3.11 and the discussion above. This is, since the symmetry 
adapted basis of the An-module R[x]2 consists of just one polynomial per isotypic component. The 
polynomials in the conical combination (3.3) are perfect squares of the elements from the symmetry 
adapted basis. The Reynolds-Operator applied to a product of two elements from distinct isotypic 
components is zero. Since

(1 − n)2 p2
2 = n(n + 1)(p4 − 1

n + 1
p2

2) + ((1 − n + n2)p2
2 − n(1 + n)p4)

we do not have to use the perfect square p2
2 in the characterization of all symmetric sum of squares 

quartics modulo (p1) which proves the claim. �
3.4. Proof of Theorem 3.2

We are ready to prove Theorem 3.2

Proof of Theorem 3.2. There are three statements that we want to show. First, the polynomial Gn ∈
R[x] is a sum of squares modulo (p1) for all n ≥ 3. Second, for n ≥ 4 odd the polynomial Fn ∈R[x] is 
a sum of squares modulo (p1). Third, for n ≥ 3 even the polynomial Fn ∈R[x] is not a sum of squares 
modulo (p1)

(1) We have

Gn = p2
2 − n + n2

1 − n + n2
p4

= 1

1 − n + n2
((1 − n + n2)p2

2 − n(1 + n)p4)

which shows that Gn is a sum of squares modulo (p1).
(2) If n ≥ 4 is odd we have Fn is a sum of squares by Proposition 3.3. This is, because α equals the 

global minimum of p4 on p2 = 1 and we have seen that the corresponding polynomial is a sum 
of squares.

(3) For even n ≥ 4 we have Fn = −p2
2 + 2n+3n2+n3

4+2n+n2 p4. We suppose that Fn is a sum of squares modulo 
(p1). We must have

−p2
2 + 2n + 3n2 + n3

4 + 2n + n2
p4 = a(p4 − 1

n + 1
p2

2) + b((1 − n + n2)p2
2 + (−n − n2)p4)

for some a, b ≥ 0. Comparing the coefficients implies

b = − 4

4 − 6n + n2 + n4

which is a contradiction. �
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